JP3202922U - air conditioner - Google Patents

air conditioner Download PDF

Info

Publication number
JP3202922U
JP3202922U JP2015005660U JP2015005660U JP3202922U JP 3202922 U JP3202922 U JP 3202922U JP 2015005660 U JP2015005660 U JP 2015005660U JP 2015005660 U JP2015005660 U JP 2015005660U JP 3202922 U JP3202922 U JP 3202922U
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
refrigerant
heat exchange
piping system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2015005660U
Other languages
Japanese (ja)
Inventor
安彦 荒井
安彦 荒井
正巳 石垣
正巳 石垣
Original Assignee
安彦 荒井
安彦 荒井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安彦 荒井, 安彦 荒井 filed Critical 安彦 荒井
Priority to JP2015005660U priority Critical patent/JP3202922U/en
Application granted granted Critical
Publication of JP3202922U publication Critical patent/JP3202922U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

【課題】冷暖房効率が高く、省エネルギー性に優れ、室外機が不要で、冷房運転時に室外に温風が放出されず、ファンの騒音もなく、外気温の上昇を発生させることがなく、地球温暖化を防ぐことができ、除湿能力を大幅に向上させることができ、空気中の塵や埃などを除湿水と一緒に除去、排出し、滅菌して快適な生活空間を作り出すことができ、さらに静電気の発生を防止でき、衛生的で機能性、環境保護性に優れた空調機を提供する。【解決手段】圧縮器8と第1熱交換器の第1熱交換部3aと第1レシーバタンク10aと第1熱交換器の第2熱交換部3bと第2レシーバタンク10bと膨張弁11と第2熱交換器4Aとを接続して冷媒を循環させる冷房用配管系統6Aと、圧縮器と第3熱交換器の第1熱交換部5aと第1レシーバタンクと第3熱交換器の第2熱交換部5bと第2レシーバタンクと膨張弁と第2熱交換器とを接続して冷媒を循環させる暖房用配管系統7Aを切替部12で切替えて温度下降運転と温度上昇運転を繰り返す。【選択図】図1[PROBLEMS] To provide high air-conditioning efficiency, excellent energy saving, no need of outdoor units, no warm air is released outside during cooling operation, no fan noise, no increase in outdoor temperature, Dehumidification capacity can be greatly improved, dust and dust in the air can be removed and discharged together with dehumidified water, sterilized to create a comfortable living space, Providing air conditioners that can prevent the generation of static electricity, and are hygienic, functional and environmentally friendly. SOLUTION: A compressor 8, a first heat exchange part 3a of the first heat exchanger, a first receiver tank 10a, a second heat exchange part 3b of the first heat exchanger, a second receiver tank 10b, and an expansion valve 11. 6A of cooling piping which connects the 2nd heat exchanger 4A, and circulates a refrigerant | coolant, the 1st heat exchange part 5a of a compressor and a 3rd heat exchanger, a 1st receiver tank, and the 3rd of a 3rd heat exchanger (2) The heating piping system 7A that connects the heat exchange unit 5b, the second receiver tank, the expansion valve, and the second heat exchanger to circulate the refrigerant is switched by the switching unit 12, and the temperature lowering operation and the temperature increasing operation are repeated. [Selection] Figure 1

Description

本考案は、室内機に内蔵される熱交換器を多段式にすることにより、冷暖房の効率を高めることができ、省エネルギー性に優れ、室外機を不要とすることができる空調機に関する。   The present invention relates to an air conditioner that can increase the efficiency of air conditioning by making a heat exchanger built in an indoor unit into a multistage type, has excellent energy savings, and can eliminate the need for an outdoor unit.

従来、冷房や暖房を行う空調機(エアコン)は、圧縮器や凝縮器又は蒸発器として機能する熱交換器が内蔵された室外機と、蒸発器又は凝縮器として機能する熱交換器が内蔵された室内機を冷媒配管で接続したセパレート型が一般的である。
また、(特許文献1)のように、「内部に少なくともコンプレッサー、室内熱交換器、膨張弁、室外熱交換器及び各部品を接続する循環回路を含み、一体化されて壁の中に埋め込まれ、室内熱交換器の熱交換口が室内に向き、室内空気と熱を交換し、室外熱交換器の熱交換口が室外に向き、室外空気と熱を交換することを特徴とする一体式エアコン。」も考えられている。
特表2006−526127号公報
Conventionally, an air conditioner (air conditioner) that performs cooling or heating includes an outdoor unit that incorporates a heat exchanger that functions as a compressor, a condenser, or an evaporator, and a heat exchanger that functions as an evaporator or a condenser. A separate type in which the indoor units are connected by refrigerant piping is generally used.
In addition, as disclosed in (Patent Document 1), “including at least a compressor, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, and a circulation circuit that connects each component inside, and is integrated and embedded in a wall. An integrated air conditioner characterized in that the heat exchange port of the indoor heat exchanger faces indoors and exchanges heat with indoor air, and the heat exchange port of the outdoor heat exchangers faces outdoor and exchanges heat with outdoor air Is also considered.
JP-T-2006-526127

しかしながら、上記従来の技術は以下のような課題を有していた。
(1)従来の空調機において、室外機の圧縮器は、冷媒を室内機の熱交換器に送るポンプの役目を果たしている。室内機と室外機を冷媒配管で接続した一般的なセパレート型の空調機では、冷房運転時には、冷媒が圧縮器で圧縮され、高温高圧(80℃程度)の冷媒ガスになるので、そのままでは室内機の熱交換器に送ることができない。そこで、圧縮器から排出される高温高圧の冷媒ガスが、室外機の熱交換器を通過する際に、ファンで室外の空気を送風することにより、低温高圧(30℃程度)の冷媒液になるまで冷却して膨張弁を通過後、室内機の熱交換器(冷却器)に送り、室内の温度を下げている。よって、室内の温度が設定温度よりも高い時には、圧縮器を運転して低温高圧の冷媒液を室内機の熱交換器に送りながら、室内機に内蔵された室内用ファンで送風することにより、室内の温度を下げ、室内の温度が設定温度に達した時には圧縮器の運転を停止して送風のみを行い、時間経過と共に室内の温度が上昇し始めると、再び圧縮器の運転を開始するという動作を繰り返している。
つまり、室外機の役割は、高温高圧の冷媒ガスを低温の冷媒液に戻して室内機の熱交換器に送ることであり、室外機の熱交換器の設置場所や高温高圧の冷媒ガスを冷却する方法は何ら限定されるものではない。
しかし、従来の空調機では、室外機の熱交換器(凝縮器)にファンで外気を送風することによって冷媒ガスを冷ましているので、室外に温風が放出され、ファンの騒音と外気温が上昇して地球温暖化につながり、環境保護性に欠けるという課題を有していた。
また、常温の外気をそのまま利用しているので外気温の影響を受け、冷媒液を外気温以下に冷やすことはできず、運転に制約を受け易く、性能や効率の飛躍的な改善は望めないという課題を有していた。
(3)(特許文献1)の一体式エアコンは室内機と室外機を一体化することにより、室外機の設置スペースが不要で省スペース性に優れるが、単に共通の筐体で室内機と室外機を一体化したに過ぎず、地球温暖化や環境保護に関してはセパレート型の空調機と同様の課題を有していた。
また、室外機の騒音や振動により、睡眠が阻害されるという課題も有していた。
However, the above conventional technique has the following problems.
(1) In the conventional air conditioner, the compressor of the outdoor unit serves as a pump that sends the refrigerant to the heat exchanger of the indoor unit. In a general separate type air conditioner in which an indoor unit and an outdoor unit are connected by refrigerant piping, during cooling operation, the refrigerant is compressed by the compressor and becomes high-temperature and high-pressure (about 80 ° C) refrigerant gas. Can not be sent to the heat exchanger of the machine. Therefore, when the high-temperature and high-pressure refrigerant gas discharged from the compressor passes through the heat exchanger of the outdoor unit, the outdoor air is blown by a fan to become a low-temperature and high-pressure (about 30 ° C.) refrigerant liquid. After cooling down to pass through the expansion valve, it is sent to the heat exchanger (cooler) of the indoor unit to lower the indoor temperature. Therefore, when the indoor temperature is higher than the set temperature, by operating the compressor and sending the low-temperature and high-pressure refrigerant liquid to the heat exchanger of the indoor unit, by blowing with the indoor fan built in the indoor unit, When the room temperature is lowered and the room temperature reaches the set temperature, the operation of the compressor is stopped and only the air is blown. When the room temperature starts to rise with time, the compressor operation is started again. The operation is repeated.
In other words, the role of the outdoor unit is to return the high-temperature and high-pressure refrigerant gas to the low-temperature refrigerant liquid and send it to the heat exchanger of the indoor unit, and cool the location of the outdoor unit heat exchanger and the high-temperature and high-pressure refrigerant gas. The method to do is not limited at all.
However, in the conventional air conditioner, since the refrigerant gas is cooled by blowing the outside air to the heat exchanger (condenser) of the outdoor unit by the fan, the warm air is discharged to the outside, and the noise and the outside temperature of the fan are reduced. It had the problem of rising, leading to global warming and lacking environmental protection.
In addition, since ambient temperature outside air is used as it is, it is affected by the outside air temperature, the refrigerant liquid cannot be cooled below the outside temperature, is easily restricted by operation, and a dramatic improvement in performance and efficiency cannot be expected. It had the problem that.
(3) The integrated air conditioner of (Patent Document 1) integrates the indoor unit and the outdoor unit, so that an installation space for the outdoor unit is not required and is excellent in space saving. The machine was only integrated, and it had the same problems as the separate type air conditioner regarding global warming and environmental protection.
In addition, there was a problem that sleep was hindered by the noise and vibration of the outdoor unit.

本考案は上記課題を解決するためになされたものであり、冷暖房効率を高めることができ、省エネルギー性に優れ、従来のような室外機が不要で、特に冷房運転時には室外に温風が放出されることがなく、またファンの騒音もなく、外気温の上昇を発生させることがなく、地球温暖化を防ぐことができると共に、除湿能力を大幅に向上させることができ、空気中の塵や埃などを除湿水と一緒に除去、排出し、雑菌などを滅菌して快適な生活空間を作り出すことができ、さらに静電気の発生を防止でき、衛生的で機能性、環境保護性に優れた空調機の提供を目的とする。   The present invention has been made to solve the above-mentioned problems, and can improve the efficiency of cooling and heating, is excellent in energy saving, does not require a conventional outdoor unit, and warm air is discharged to the outside especially during cooling operation. In addition, there is no fan noise, no increase in outside air temperature, no global warming can be prevented, and the dehumidifying capacity can be greatly improved. Air conditioner with excellent hygiene, functionality, and environmental protection, which can create a comfortable living space by removing and discharging together with dehumidified water and sterilizing germs. The purpose is to provide.

上記課題を解決するために本考案の空調機は、以下の構成を有している。
本考案の請求項1に記載の空調機は、室内機の内部の空気の流れに対し、下流側に配置される第1熱交換部と上流側に配置される第2熱交換部を有する第1熱交換器と、前記第1熱交換器の下流側に配設される第2熱交換器と、下流側に配置される第1熱交換部と上流側に配置される第2熱交換部を有し前記第2熱交換器の下流側に配設される第3熱交換器と、を備え、(a)圧縮器と、前記第1熱交換器の前記第1熱交換部と、第1レシーバタンクと、前記第1熱交換器の前記第2熱交換部と、第2レシーバタンクと、膨張弁と、前記第2熱交換器と、を接続して冷媒を循環させる冷房用配管系統と、(b)前記圧縮器と、前記第3熱交換器の前記第1熱交換部と、前記第1レシーバタンクと、前記第3熱交換器の前記第2熱交換部と、前記第2レシーバタンクと、前記膨張弁と、前記第2熱交換器と、を接続して冷媒を循環させる暖房用配管系統と、を備え、常に前記圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、前記冷房用配管系統と前記暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返す構成を有している。
この構成により、以下のような作用を有する。
(1)室内機の内部に配設される第1熱交換器及び第3熱交換器がそれぞれ第1熱交換部及び第2熱交換部を有する多段式の熱交換器であることにより、熱容量を大幅に増加させることができ、冷媒を確実に液化させて冷却しながら、室内機の内部を流れる空気と安定して熱交換を行い、確実かつ効率的に冷暖房や除湿を行うことができ、室外機が不要で、運転時に外気温の影響などを受けることがなく、温度調整や除湿の性能を高めることができ、運転の効率性、安定性に優れると共に、冷房時に室外に温風が放出されることがなく、外気温の上昇を抑え、ファンの騒音もなく、地球温暖化を防ぐことができ、省エネルギー性、環境保護性に優れる。
(2)圧縮器と、第1熱交換器の第1熱交換部と、第1レシーバタンクと、第1熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第2熱交換器と、を接続して冷媒を循環させる冷房用配管系統を有するので、第1熱交換器の第1熱交換部で液化しながら冷却された冷媒を第1熱交換器の第2熱交換部に送ることにより、さらに冷却することができ、下流側の第2熱交換器を通過する冷媒の温度を確実かつ効果的に下げて、冷房効率や除湿性能を高めることができ、省エネルギー性に優れる。
(3)冷房用配管系統において、第1熱交換器の第1熱交換部と第2熱交換部の間、及び第1熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第1熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第1熱交換器及び第2熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(4)冷房用配管系統の第2レシーバタンクと第2熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として下流側の第2熱交換器に送ることができ、室内から取り込まれた空気を第1熱交換器で一旦、加熱した後、低温低圧の冷媒液が流れる第2熱交換器で冷却することにより、大きな温度差によって効率的に除湿しながら確実に冷却して冷房運転を行うことができ、除湿性能及び冷房の効率性、省エネルギー性に優れると共に、熱交換器のフィン間の狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、送風される空気中に細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(5)圧縮器と、第3熱交換器の第1熱交換部と、第1レシーバタンクと、第3熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第2熱交換器と、を接続して冷媒を循環させる暖房用配管系統を有するので、第3熱交換器の第1熱交換部で液化しながら放熱した冷媒を第3熱交換器の第2熱交換部に送ることにより、さらに放熱させることができ、室内から取り込まれた空気を第3熱交換器で確実かつ効果的に加熱して暖房を行うことができ、暖房の効率性、省エネルギー性に優れる。
(6)暖房用配管系統において、第3熱交換器の第1熱交換部と第2熱交換部の間、及び第3熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第3熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第3熱交換器及び第2熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(7)暖房用配管系統の第2レシーバタンクと第2熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として上流側の第2熱交換器に送ることができ、室内から取り込まれた空気を第2熱交換器で一旦、除湿、冷却した後、高温乃至中温で高圧の冷媒ガスが流れる第3熱交換器で加熱、乾燥することができ、大きな温度差によって効率的に除湿することができ、除湿性能に優れると共に、狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、送風される空気中に細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(8)冷房用配管系統により冷媒を循環させる場合には、室内から取り込まれ第1熱交換器で加熱された空気を第2熱交換器で除湿、冷却して結露を発生させ、暖房用配管系統により冷媒を循環させる場合には、室内から取り込まれた空気を第2熱交換器で除湿、冷却して結露を発生させることにより、空気中に含まれる塵や埃などを除去して結露水と共に排出し、雑菌などの繁殖を防ぎ、新鮮で清浄な空気を室内に供給することができる。特に湿気の多い日本の病院内の空間では、空気中の目に見えない埃の中に細菌が繁殖しており、その空気を吸うことによって感染、発病することがあるが、病院内の相対湿度を年間を通して30%以下にすることにより、空気中の埃を乾燥させ、細菌を死滅させて、安全で快適な生活空間を作り出すことができ、院内感染を効率的に防止することができる。
(9)冷房用配管系統と暖房用配管系統のいずれを選択して冷媒を循環させた場合でも、第2熱交換器には常に低温低圧の冷媒液が流れるため、第2熱交換器における冷媒の温度を安定化させることができ、第1熱交換器を通過する空気を確実に安定して冷却することができ、熱交換の安定性、確実性に優れ、冷房及び暖房の効率性、安定性を向上させることができる。
(10)冷房用配管系統及び暖房用配管系統を流れる冷媒がそれぞれ第1レシーバタンク及び第2レシーバタンクを経由することにより、冷媒の圧力を下げ、液化を促進して冷媒の温度を下げることができ、熱交換の効率性を高め、省エネルギー性を向上させることができる。
(11)常に圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、冷房用配管系統と暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことができ、設定温度(目標温度)に対して、±2℃程度の範囲で温度を制御することが可能で、室内の温度斑が少なく、温湿度制御の安定性、確実性に優れる。
In order to solve the above problems, an air conditioner of the present invention has the following configuration.
The air conditioner according to claim 1 of the present invention has a first heat exchange part arranged on the downstream side and a second heat exchange part arranged on the upstream side with respect to the air flow inside the indoor unit. 1 heat exchanger, 2nd heat exchanger arrange | positioned downstream of the said 1st heat exchanger, 1st heat exchange part arrange | positioned downstream, and 2nd heat exchange part arrange | positioned upstream A third heat exchanger disposed on the downstream side of the second heat exchanger, (a) a compressor, the first heat exchange part of the first heat exchanger, A cooling piping system for connecting the one receiver tank, the second heat exchange part of the first heat exchanger, the second receiver tank, the expansion valve, and the second heat exchanger to circulate the refrigerant. And (b) the compressor, the first heat exchange part of the third heat exchanger, the first receiver tank, the second heat exchange part of the third heat exchanger, and the front A heating piping system that connects the second receiver tank, the expansion valve, and the second heat exchanger to circulate the refrigerant, and constantly circulates the refrigerant by operating the compressor. By switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature, the temperature decreasing operation and the temperature increasing operation are repeated.
This configuration has the following effects.
(1) Since the first heat exchanger and the third heat exchanger disposed inside the indoor unit are multistage heat exchangers having a first heat exchange part and a second heat exchange part, respectively, the heat capacity Can be greatly increased, while the refrigerant is liquefied and cooled reliably, heat can be exchanged stably with the air flowing inside the indoor unit, and air conditioning and dehumidification can be performed reliably and efficiently. There is no need for an outdoor unit, it is not affected by the outside air temperature during operation, the temperature adjustment and dehumidification performance can be improved, and the operation efficiency and stability are excellent, and warm air is released outside during cooling. In this way, the rise in outside air temperature is suppressed, fan noise is eliminated, global warming can be prevented, and energy saving and environmental protection are excellent.
(2) a compressor, a first heat exchange part of the first heat exchanger, a first receiver tank, a second heat exchange part of the first heat exchanger, a second receiver tank, an expansion valve, 2 having a cooling piping system that circulates the refrigerant by connecting the two heat exchangers, the refrigerant cooled while being liquefied in the first heat exchange section of the first heat exchanger is supplied to the second heat exchanger. By sending it to the heat exchange section, it can be further cooled, and the temperature of the refrigerant passing through the second heat exchanger on the downstream side can be reliably and effectively lowered to improve the cooling efficiency and dehumidification performance, thereby saving energy. Excellent in properties.
(3) In the cooling piping system, the first heat exchanger between the first heat exchanger and the second heat exchanger and the second heat exchanger of the first heat exchanger and the expansion valve are respectively By arranging the 1 receiver tank and the 2nd receiver tank, the refrigerants in different states after passing through the first heat exchange part and the second heat exchange part of the first heat exchanger are not mixed, Heat exchange can be performed reliably in the first heat exchanger and the second heat exchanger, and operation stability and reliability are excellent.
(4) Since the expansion valve is disposed between the second receiver tank and the second heat exchanger of the cooling piping system, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. It can be sent to the second heat exchanger on the downstream side. After the air taken in from the room is once heated by the first heat exchanger, it is cooled by the second heat exchanger through which the low-temperature and low-pressure refrigerant liquid flows. Cooling operation can be performed by cooling reliably while dehumidifying efficiently due to a large temperature difference, and it is excellent in dehumidifying performance, cooling efficiency and energy saving, and passes through a narrow space between the fins of the heat exchanger The air can be micronized to generate negative ions, and the dehumidified dehumidified water (condensation water) is drained, so that there is no bacteria and dust in the blown air, and the generation of static electricity is prevented. Can be safe and secure In can provide a comfortable space.
(5) a compressor, a first heat exchange part of the third heat exchanger, a first receiver tank, a second heat exchange part of the third heat exchanger, a second receiver tank, an expansion valve, Since the heating piping system for circulating the refrigerant by connecting the two heat exchangers is provided, the refrigerant that has radiated heat while being liquefied in the first heat exchange section of the third heat exchanger is second heat of the third heat exchanger. By sending it to the exchange unit, it is possible to further dissipate heat, and the air taken in from the room can be heated reliably and effectively by the third heat exchanger, and heating efficiency and energy saving can be achieved. Excellent.
(6) In the heating piping system, between the first heat exchange part and the second heat exchange part of the third heat exchanger and between the second heat exchange part and the expansion valve of the third heat exchanger, respectively. By arranging the 1 receiver tank and the second receiver tank, refrigerants having different states after passing through the first heat exchange part and the second heat exchange part of the third heat exchanger are not mixed, Heat exchange can be performed reliably in the third heat exchanger and the second heat exchanger, and operation stability and reliability are excellent.
(7) Since the expansion valve is disposed between the second receiver tank and the second heat exchanger of the heating piping system, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. The third heat exchanger that can be sent to the second heat exchanger on the upstream side, and once the air taken in from the room is dehumidified and cooled by the second heat exchanger, then high-temperature to medium-temperature high-pressure refrigerant gas flows. It can be heated and dried with a large temperature difference, can be efficiently dehumidified, has excellent dehumidifying performance, and can pass through a narrow space to micronize air and generate negative ions. By draining the dehumidified dehumidified water (condensation water), there is no bacteria and dust in the blown air, it is possible to prevent the generation of static electricity, and a safe, safe and comfortable space can be realized.
(8) When the refrigerant is circulated by the cooling piping system, the air taken in from the room and heated by the first heat exchanger is dehumidified and cooled by the second heat exchanger to generate dew condensation. When circulating the refrigerant through the system, the air taken in from the room is dehumidified and cooled by the second heat exchanger to generate dew, thereby removing dew and dust contained in the air and dew condensation water. It can be discharged together to prevent the propagation of germs and the like, and fresh and clean air can be supplied indoors. Particularly in humid hospital spaces in Japan, bacteria grow in invisible dust in the air, and inhalation of the air may cause infection and disease. By setting the value to 30% or less throughout the year, it is possible to dry dust in the air, kill bacteria, create a safe and comfortable living space, and effectively prevent nosocomial infections.
(9) Even when either the cooling piping system or the heating piping system is selected and the refrigerant is circulated, the low-temperature and low-pressure refrigerant liquid always flows through the second heat exchanger, so the refrigerant in the second heat exchanger The temperature of the air can be stabilized, the air passing through the first heat exchanger can be reliably and stably cooled, and the heat exchange stability and reliability are excellent, and the efficiency and stability of cooling and heating are stable. Can be improved.
(10) The refrigerant flowing through the cooling piping system and the heating piping system passes through the first receiver tank and the second receiver tank, respectively, thereby reducing the refrigerant pressure and promoting liquefaction to lower the refrigerant temperature. It is possible to improve the efficiency of heat exchange and improve energy saving.
(11) Repeating the temperature lowering operation and the temperature increasing operation by switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature while always operating the compressor and circulating the refrigerant. It is possible to control the temperature within a range of about ± 2 ° C. with respect to the set temperature (target temperature), there are few indoor temperature spots, and the stability and certainty of temperature / humidity control is excellent.

ここで、この空調機は、室内機に複数の熱交換器を並設して内蔵することにより、従来、室外機に内蔵されていた熱交換器を省略したものである。
尚、室外機に内蔵されていた圧縮器は室内機に内蔵することもできるが、室外に設置してもよい。
また、室内機には従来と同様に室内用ファンが内蔵され、室内の空気を循環させることができる。室内用ファンは、室内機内部の空気の流れの中で、第3熱交換器よりも下流側に配置することが好ましい。室内の空気を室内用ファンで引っ張ることにより、第1熱交換器、第2熱交換器、第3熱交換器の全体に対して斑なく確実に空気を通過させることができ、熱交換の効率性、確実性に優れるためである。
尚、膨張弁は、冷房用配管系統及び暖房用配管系統における第1熱交換器の第2熱交換部と第2熱交換器との間に配設されるが、冷媒配管の一部を共通化することにより、1つの膨張弁を共有することができ、冷媒配管の簡素化、コンパクト化を図ることができる。
Here, this air conditioner omits the heat exchanger conventionally incorporated in the outdoor unit by arranging a plurality of heat exchangers in the indoor unit in parallel.
The compressor built in the outdoor unit can be built in the indoor unit, but it may be installed outside.
Further, the indoor unit has a built-in indoor fan as in the conventional case, and indoor air can be circulated. The indoor fan is preferably disposed downstream of the third heat exchanger in the air flow inside the indoor unit. By pulling the indoor air with the indoor fan, the air can be surely passed through the first heat exchanger, the second heat exchanger, and the third heat exchanger, and the heat exchange efficiency. It is because it is excellent in property and certainty.
The expansion valve is disposed between the second heat exchanger and the second heat exchanger of the first heat exchanger in the cooling piping system and the heating piping system, but a part of the refrigerant piping is shared. Therefore, one expansion valve can be shared, and the refrigerant piping can be simplified and made compact.

この空調機の温度の制御は、サーモスタットによって行われ、温度センサで検出した室内の温度と設定温度(目標温度)に基づいて圧縮器や室内用ファンなどの運転を制御する。そして、設定温度と室内の温度を比較し、設定温度が室内の温度よりも高い場合と、設定温度が室内の温度よりも低い場合とで、冷房用配管系統と暖房用配管系統の切り替えを行う。
尚、冷房用配管系統と暖房用配管系統の経路(冷媒配管)は一部共通しており、圧縮器の下流側に配設される切替部を切り替えることにより、圧縮器で圧縮された高温高圧の冷媒ガスを冷房用配管系統の第1熱交換器に供給するか、暖房用配管系統の第3熱交換器に供給するかを切り替えることができる。切替部としては、電磁弁の開閉で冷媒の流れの有無を選択するものが好適に用いられる。
従来の空調機では、室内の温度が設定温度に達した時には圧縮器の運転を停止して送風のみを行い、時間経過と共に室内の温度が変化し始めると、再び圧縮器の運転を開始するという動作を繰り返しているため、室内の温度が安定せず、部屋の隅々まで設定温度に達することが困難で、温度斑が発生し易いが、この空調機においては、常に圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、冷房用配管系統と暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことができ、設定温度(目標温度)に対して、±2℃程度の範囲で温度を制御することが可能で、室内の温度斑が少なく、温湿度制御の安定性、確実性に優れる。
The temperature of the air conditioner is controlled by a thermostat, and the operation of the compressor and the indoor fan is controlled based on the indoor temperature detected by the temperature sensor and the set temperature (target temperature). Then, the set temperature and the room temperature are compared, and switching between the cooling piping system and the heating piping system is performed when the set temperature is higher than the room temperature and when the set temperature is lower than the room temperature. .
Note that the cooling piping system and the heating piping system have a part in common (refrigerant piping), and the high-temperature and high-pressure compressed by the compressor is switched by switching the switching unit disposed on the downstream side of the compressor. It can be switched whether to supply the refrigerant gas to the first heat exchanger of the cooling piping system or to the third heat exchanger of the heating piping system. As the switching unit, one that selects the presence or absence of the refrigerant flow by opening and closing the electromagnetic valve is preferably used.
In the conventional air conditioner, when the indoor temperature reaches the set temperature, the operation of the compressor is stopped and only the air is blown, and when the indoor temperature starts to change over time, the operation of the compressor is started again. Since the operation is repeated, the room temperature is not stable, it is difficult to reach the set temperature to every corner of the room, and temperature spots are likely to occur. In this air conditioner, the compressor is always operated. While circulating the refrigerant, the temperature lowering operation and the temperature increasing operation can be repeated by switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature, and the set temperature (target temperature) is reached. On the other hand, the temperature can be controlled in a range of about ± 2 ° C., and there are few indoor temperature spots, and the stability and reliability of temperature and humidity control is excellent.

本考案の請求項2に記載の空調機は、室内機の内部の空気の流れに対し、上流側に配設される第1熱交換器と、下流側に配置される第1熱交換部と上流側に配置される第2熱交換部を有し前記第1熱交換器の下流側に配設される前記第2熱交換器と、前記第2熱交換器の下流側に配設される第3熱交換器と、を備え、(a)圧縮器と、前記第2熱交換器の前記第1熱交換部と、第1レシーバタンクと、前記第2熱交換器の前記第2熱交換部と、第2レシーバタンクと、膨張弁と、前記第3熱交換器と、を接続して冷媒を循環させる冷房用配管系統と、(b)前記圧縮器と、前記第2熱交換器の前記第1熱交換部と、前記第1レシーバタンクと、前記第2熱交換器の前記第2熱交換部と、前記第2レシーバタンクと、前記膨張弁と、前記第1熱交換器と、を接続して冷媒を循環させる暖房用配管系統と、を備え、常に前記圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、前記冷房用配管系統と前記暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返す構成を有している。
この構成により、以下の作用を有する。
(1)室内機の内部に配設される第2熱交換器が第1熱交換部及び第2熱交換部を有する多段式の熱交換器であることにより、熱容量を大幅に増加させることができ、冷媒を確実に液化させて冷却しながら、室内機の内部を流れる空気と安定して熱交換を行い、確実かつ効率的に冷暖房や除湿を行うことができ、室外機が不要で、運転時に外気温の影響などを受けることがなく、温度調整や除湿の性能を高めることができ、運転の効率性、安定性に優れると共に、冷房時に室外に温風が放出されることがなく、外気温の上昇を抑え、ファンの騒音もなく、地球温暖化を防ぐことができ、省エネルギー性、環境保護性に優れる。
(2)圧縮器と、第2熱交換器の第1熱交換部と、第1レシーバタンクと、第2熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第3熱交換器と、を接続して冷媒を循環させる冷房用配管系統を有するので、第2熱交換器の第1熱交換部で液化しながら冷却された冷媒を第2熱交換器の第2熱交換部に送ることにより、さらに冷却することができ、下流側の第3熱交換器を通過する冷媒の温度を確実かつ効果的に下げて、冷房効率や除湿性能を高めることができ、省エネルギー性に優れる。
(3)冷房用配管系統において、第2熱交換器の第1熱交換部と第2熱交換部の間、及び第2熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第2熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第2熱交換器及び第3熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(4)冷房用配管系統の第2レシーバタンクと第3熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として下流側の第2熱交換器に送ることができ、室内から取り込まれた空気を第2熱交換器で一旦、加熱した後、低温低圧の冷媒液が流れる第3熱交換器で冷却することにより、大きな温度差によって効率的に除湿しながら確実に冷却して冷房運転を行うことができ、除湿性能及び冷房の効率性、省エネルギー性に優れると共に、熱交換器のフィン間の狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、送風される空気中に細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(5)圧縮器と、第2熱交換器の第1熱交換部と、第1レシーバタンクと、第2熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第1熱交換器と、を接続して冷媒を循環させる暖房用配管系統を有するので、第2熱交換器の第1熱交換部で液化しながら放熱した冷媒を第2熱交換器の第2熱交換部に送ることにより、さらに放熱させることができ、室内から取り込まれた空気を第2熱交換器で確実かつ効果的に加熱して暖房を行うことができ、暖房の効率性、省エネルギー性に優れる。
(6)暖房用配管系統において、第2熱交換器の第1熱交換部と第2熱交換部の間、及び第2熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第2熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第2熱交換器及び第1熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(7)暖房用配管系統の第2レシーバタンクと第1熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として上流側の第1熱交換器に送ることができ、室内から取り込まれた空気を第1熱交換器で一旦、除湿、冷却した後、高温乃至中温で高圧の冷媒ガスが流れる第3熱交換器で加熱、乾燥することができ、大きな温度差と、狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(8)冷房用配管系統により冷媒を循環させる場合には、室内から取り込まれ第2熱交換器で加熱された空気を第3熱交換器で除湿、冷却して結露を発生させ、暖房用配管系統により冷媒を循環させる場合には、室内から取り込まれた空気を第1熱交換器で除湿、冷却して結露を発生させることにより、空気中に含まれる塵や埃などを除去して結露水と共に排出し、雑菌などの繁殖を防ぎ、新鮮で清浄な空気を室内に供給することができる。特に湿気の多い日本の病院内の空間では、空気中の目に見えない埃の中に細菌が繁殖しており、その空気を吸うことによって感染、発病することがあるが、病院内の相対湿度を年間を通して30%以下にすることにより、空気中の埃を乾燥させ、細菌を死滅させて、安全で快適な生活空間を作り出すことができ、院内感染を効率的に防止することができる。
(9)冷房用配管系統及び暖房用配管系統を流れる冷媒がそれぞれ第1レシーバタンク及び第2レシーバタンクを経由することにより、冷媒の圧力を下げ、液化を促進して冷媒の温度を下げることができ、熱交換の効率性を高め、省エネルギー性を向上させることができる。
(10)常に圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、冷房用配管系統と暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことができ、設定温度(目標温度)に対して、±2℃程度の範囲で温度を制御することが可能で、室内の温度斑が少なく、温湿度制御の安定性、確実性に優れる。
The air conditioner according to claim 2 of the present invention includes a first heat exchanger disposed on the upstream side and a first heat exchange unit disposed on the downstream side with respect to the air flow inside the indoor unit. The second heat exchanger having a second heat exchanging portion disposed on the upstream side and disposed on the downstream side of the first heat exchanger, and disposed on the downstream side of the second heat exchanger. A third heat exchanger, (a) a compressor, the first heat exchange part of the second heat exchanger, a first receiver tank, and the second heat exchange of the second heat exchanger. A cooling piping system that circulates a refrigerant by connecting a section, a second receiver tank, an expansion valve, and the third heat exchanger, and (b) the compressor and the second heat exchanger. The first heat exchange unit, the first receiver tank, the second heat exchange unit of the second heat exchanger, the second receiver tank, the expansion valve, and the first heat A heating piping system for connecting and circulating the refrigerant, and constantly operating the compressor to circulate the refrigerant, while depending on the set temperature and the indoor temperature, the cooling piping system By switching the heating piping system, the temperature lowering operation and the temperature increasing operation are repeated.
This configuration has the following effects.
(1) The second heat exchanger disposed inside the indoor unit is a multi-stage heat exchanger having a first heat exchange part and a second heat exchange part, so that the heat capacity can be greatly increased. The refrigerant can be liquefied and cooled, and heat can be exchanged stably with the air flowing inside the indoor unit, and air conditioning and dehumidification can be performed reliably and efficiently. The temperature adjustment and dehumidification performance can be improved without being affected by the outside air temperature from time to time, the operation efficiency and stability are excellent, and the warm air is not released outside during cooling. Suppresses the rise in temperature, eliminates fan noise, prevents global warming, and excels in energy saving and environmental protection.
(2) a compressor, a first heat exchange part of the second heat exchanger, a first receiver tank, a second heat exchange part of the second heat exchanger, a second receiver tank, an expansion valve, And a cooling piping system that circulates the refrigerant by connecting the three heat exchangers, the refrigerant cooled while being liquefied in the first heat exchange part of the second heat exchanger is supplied to the second heat exchanger. By sending it to the heat exchange section, it can be further cooled, the temperature of the refrigerant passing through the third heat exchanger on the downstream side can be reliably and effectively lowered, and the cooling efficiency and dehumidification performance can be improved, thereby saving energy. Excellent in properties.
(3) In the cooling piping system, the first heat exchange part and the second heat exchange part of the second heat exchanger, and the second heat exchange part and the expansion valve of the second heat exchanger, respectively. By arranging the 1 receiver tank and the 2nd receiver tank, the refrigerants in different states after passing through the first heat exchange part and the second heat exchange part of the second heat exchanger are not mixed, Heat exchange can be reliably performed in the second heat exchanger and the third heat exchanger, and operation stability and reliability are excellent.
(4) Since the expansion valve is disposed between the second receiver tank and the third heat exchanger of the cooling piping system, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. It can be sent to the second heat exchanger on the downstream side. After the air taken in from the room is once heated by the second heat exchanger, it is cooled by the third heat exchanger through which the low-temperature and low-pressure refrigerant liquid flows. Cooling operation can be performed by cooling reliably while dehumidifying efficiently due to a large temperature difference, and it is excellent in dehumidifying performance, cooling efficiency and energy saving, and passes through a narrow space between the fins of the heat exchanger The air can be micronized to generate negative ions, and the dehumidified dehumidified water (condensation water) is drained, so that there is no bacteria and dust in the blown air, and the generation of static electricity is prevented. Can be safe and secure In can provide a comfortable space.
(5) a compressor, a first heat exchange part of the second heat exchanger, a first receiver tank, a second heat exchange part of the second heat exchanger, a second receiver tank, an expansion valve, 1 has a heating piping system that circulates the refrigerant by connecting the heat exchanger, so that the refrigerant that has dissipated heat while being liquefied in the first heat exchange section of the second heat exchanger is second heat of the second heat exchanger. By sending it to the exchange unit, it is possible to further dissipate heat, and the air taken from the room can be heated reliably and effectively with the second heat exchanger, and heating efficiency and energy saving can be improved. Excellent.
(6) In the heating piping system, the first heat exchange part and the second heat exchange part of the second heat exchanger, and the second heat exchange part and the expansion valve of the second heat exchanger, respectively. By arranging the 1 receiver tank and the 2nd receiver tank, the refrigerants in different states after passing through the first heat exchange part and the second heat exchange part of the second heat exchanger are not mixed, Heat exchange can be reliably performed in the second heat exchanger and the first heat exchanger, and operation stability and reliability are excellent.
(7) Since the expansion valve is disposed between the second receiver tank of the heating piping system and the first heat exchanger, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. A third heat exchanger that can be sent to the first heat exchanger on the upstream side, and after the air taken in from the room is once dehumidified and cooled by the first heat exchanger, a high-pressure to medium-temperature high-pressure refrigerant gas flows It can be heated and dried with a large temperature difference and by passing through a narrow space, the air can be micronized to generate negative ions, and dehumidified dehumidified water (condensation water) can be drained In addition, there is no bacteria or dust, and it is possible to prevent the generation of static electricity, thus realizing a safe, secure and comfortable space.
(8) When the refrigerant is circulated by the cooling piping system, the air taken from the room and heated by the second heat exchanger is dehumidified and cooled by the third heat exchanger to generate dew condensation. When the refrigerant is circulated by the system, the air taken in from the room is dehumidified and cooled by the first heat exchanger to generate dew condensation, thereby removing dew and dust contained in the air and dew condensation water. It can be discharged together to prevent the propagation of germs and the like, and fresh and clean air can be supplied indoors. Particularly in humid hospital spaces in Japan, bacteria grow in invisible dust in the air, and inhalation of the air may cause infection and disease. By setting the value to 30% or less throughout the year, it is possible to dry dust in the air, kill bacteria, create a safe and comfortable living space, and effectively prevent nosocomial infections.
(9) The refrigerant flowing through the cooling piping system and the heating piping system passes through the first receiver tank and the second receiver tank, respectively, thereby reducing the pressure of the refrigerant and promoting liquefaction to lower the temperature of the refrigerant. It is possible to improve the efficiency of heat exchange and improve energy saving.
(10) The temperature lowering operation and the temperature increasing operation are repeated by switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature while always operating the compressor and circulating the refrigerant. It is possible to control the temperature within a range of about ± 2 ° C. with respect to the set temperature (target temperature), there are few indoor temperature spots, and the stability and certainty of temperature / humidity control is excellent.

ここで、請求項2の空調機は、請求項1の空調機と配管系統(循環経路)が異なるだけで、その他の構成は請求項1と同様なので説明を省略する。   Here, the air conditioner of claim 2 is different from the air conditioner of claim 1 only in the piping system (circulation path), and the other configuration is the same as that of claim 1 and thus the description thereof is omitted.

請求項3に記載の考案は、請求項1又は2に記載の空調機であって、前記第1レシーバタンクの出口側に配設された補助膨張弁を備えている構成を有している。
この構成により、請求項1又は2の作用に加え、以下の作用を有する。
(1)第1レシーバタンクの出口側に配設された補助膨張弁を備えることにより、冷媒の圧力をさらに低下させて、より温度の低い状態で冷房用配管系統又は暖房用配管系統の下流側へ冷媒を送ることができ、熱交換を促進して冷暖房の効率性を高めることができ、運転の効率性、省エネルギー性に優れる。
Invention of Claim 3 is an air conditioner of Claim 1 or 2, Comprising: It has the structure provided with the auxiliary | assistant expansion valve arrange | positioned at the exit side of the said 1st receiver tank.
With this configuration, in addition to the operation of the first or second aspect, the following operation is provided.
(1) By providing an auxiliary expansion valve disposed on the outlet side of the first receiver tank, the refrigerant pressure is further reduced, and the cooling piping system or the heating piping system downstream in a lower temperature state. The refrigerant can be sent to the air, heat exchange can be promoted to improve the efficiency of air conditioning, and the operation efficiency and energy saving are excellent.

ここで、請求項1の空調機においては、第1レシーバタンクの出口から第1熱交換器の第2熱交換部の入口に繋がる冷房用配管系統と、第1レシーバタンクの出口から第3熱交換器の第2熱交換部の入口に繋がる暖房用配管系統に分岐しているが、冷房用配管系統と暖房用配管系統が分岐する手前に補助膨張弁を配設することが好ましい。これにより、冷房用配管系統と暖房用配管系統で補助膨張弁を共有することができ、補助膨張弁で圧力を低下させた冷媒を確実に第1熱交換器の第2熱交換部又は第3熱交換器の第2熱交換部に選択的に送ることができる。
また、請求項2の空調機においては、第1レシーバタンクの出口から第2熱交換器の第2熱交換部の入口に至るまでの間に補助膨張弁を配設することができる。
Here, in the air conditioner according to the first aspect, the cooling piping system connected from the outlet of the first receiver tank to the inlet of the second heat exchange part of the first heat exchanger, and the third heat from the outlet of the first receiver tank. Although it branches to the heating piping system connected to the inlet of the second heat exchange section of the exchanger, it is preferable to dispose the auxiliary expansion valve before the cooling piping system and the heating piping system branch. Thereby, the auxiliary expansion valve can be shared by the cooling piping system and the heating piping system, and the refrigerant whose pressure has been reduced by the auxiliary expansion valve is reliably supplied to the second heat exchange section or the third heat exchanger of the first heat exchanger. It can be selectively sent to the second heat exchange part of the heat exchanger.
In the air conditioner of the second aspect, the auxiliary expansion valve can be disposed from the outlet of the first receiver tank to the inlet of the second heat exchange part of the second heat exchanger.

請求項1に記載の考案によれば、以下のような効果を有する。
(1)熱交換器の熱容量を大幅に増加させ、冷媒を確実に液化させて冷却しながら、室内機の内部を流れる空気と安定して熱交換を行い、確実かつ効率的に冷暖房を行うことができ、室外機が不要で、運転時に外気温の影響などを受けることがなく、温度調整や除湿の性能を高めることができ、運転の効率性、安定性に優れ、冷房時に室外に温風が放出されることがなく、外気温の上昇を抑え、ファンの騒音もなく、地球温暖化を防ぐことができる省エネルギー性、環境保護性に優れた空調機を提供することができる。
(2)常に圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、冷房用配管系統と暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことができ、設定温度(目標温度)に対して、±2℃程度の範囲で温度を制御することが可能で、室内の温度斑が少なく、温湿度制御の安定性、確実性に優れる。
The device according to claim 1 has the following effects.
(1) The heat capacity of the heat exchanger is greatly increased, and the refrigerant is liquefied and cooled, while stably exchanging heat with the air flowing through the interior of the indoor unit to reliably and efficiently perform cooling and heating. It does not require an outdoor unit, is not affected by the outside air temperature during operation, can improve temperature adjustment and dehumidification performance, has excellent operation efficiency and stability, and has warm air outside during cooling. Therefore, it is possible to provide an air conditioner excellent in energy saving and environmental protection that can suppress global warming without suppressing the rise of outside air temperature, without fan noise, and preventing global warming.
(2) The temperature lowering operation and the temperature increasing operation are repeated by switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature while always operating the compressor and circulating the refrigerant. It is possible to control the temperature within a range of about ± 2 ° C. with respect to the set temperature (target temperature), there are few indoor temperature spots, and the stability and certainty of temperature / humidity control is excellent.

請求項2に記載の考案によれば、請求項1と同様の効果を有する。   According to the device of the second aspect, the same effect as that of the first aspect is obtained.

請求項3に記載の考案によれば、請求項1又は2の効果に加え、以下のような効果を有する。
(1)冷媒の圧力を低下させて、より温度の低い状態で冷房用配管系統又は暖房用配管系統の下流側へ冷媒を送ることができ、熱交換を促進して冷暖房の効率性及び除湿能力を高めることができる運転の効率性、省エネルギー性に優れた空調機を提供することができる。
According to the invention described in claim 3, in addition to the effect of claim 1 or 2, the following effect is obtained.
(1) Refrigerant pressure can be reduced, and the refrigerant can be sent to the downstream side of the cooling piping system or heating piping system at a lower temperature, promoting heat exchange and cooling efficiency and dehumidifying capacity It is possible to provide an air conditioner excellent in driving efficiency and energy saving.

実施の形態1の空調機における冷房運転時の冷媒の循環路を示す要部断面模式図Cross-sectional schematic diagram of relevant parts showing a refrigerant circulation path during cooling operation in the air conditioner of Embodiment 1 実施の形態1の空調機における暖房運転時の冷媒の循環路を示す要部断面模式図Cross-sectional schematic diagram of relevant parts showing a refrigerant circulation path during heating operation in the air conditioner of Embodiment 1 実施の形態2の空調機における冷房運転時の冷媒の循環路を示す要部断面模式図Cross-sectional schematic diagram of relevant parts showing the refrigerant circulation path during cooling operation in the air conditioner of Embodiment 2. 実施の形態2の空調機における暖房運転時の冷媒の循環路を示す要部断面模式図Cross-sectional schematic diagram of relevant parts showing a refrigerant circulation path during heating operation in the air conditioner of the second embodiment.

(実施の形態1)
本考案の実施の形態1における空調機について、以下図面を参照しながら説明する。
図1は実施の形態1の空調機における冷房運転時の冷媒の循環路を示す要部断面模式図である。
図1中、1は実施の形態1の空調機、2は空調機1の室内機、3Aは室内機2の内部の空気の流れに対し、下流側に配置される第1熱交換部3aと上流側に配置される第2熱交換部3bを有する第1熱交換器、4Aは第1熱交換器3Aの下流側に配設される第2熱交換器、5Aは下流側に配置される第1熱交換部5aと上流側に配置される第2熱交換部5bを有し第2熱交換器4Aの下流側に配設される第3熱交換器、6Aは後述する圧縮器8と、第1熱交換器3Aの第1熱交換部3aと、後述する第1レシーバタンク10aと、第1熱交換器3Aの第2熱交換部3bと、後述する第2レシーバタンク10bと、後述する膨張弁11と、第2熱交換器4Aと、を接続して冷媒を循環させる冷房用配管系統、7Aは後述する圧縮器8と、第3熱交換器5Aの第1熱交換部5aと、後述する第1レシーバタンク10aと、第3熱交換器5Aの第2熱交換部5bと、後述する第2レシーバタンク10bと、後述する膨張弁11と、第2熱交換器4Aと、を接続して冷媒を循環させる暖房用配管系統、8は冷房用配管系統6A及び暖房用配管系統7Aの内部を流れる冷媒を圧縮する圧縮器、9a,9bは圧縮器8の下流側で分岐した冷房用配管系統6A及び暖房用配管系統7Aの分岐箇所にそれぞれ配設された電磁弁、10a,10bはそれぞれ第1熱交換器3Aの第1熱交換部3aの出口と第2熱交換部3bの入口との間、及び第1熱交換器3Aの第2熱交換部3bの出口と第2熱交換器4Aの入口との間に配設された第1レシーバタンク及び第2レシーバタンク、11は第2レシーバタンク10bと第2熱交換器4Aとの間に配設された膨張弁、12は冷房用配管系統6A及び暖房用配管系統7Aの分岐部にそれぞれ配設され冷媒の流れを切り替える切替部、13は圧縮器8の上流側に配設されたアキュムレータ、14は室内機2の内部の空気の流れの中で第3熱交換器5Aの下流側に配置されて室内と室内機2との間で空気を循環させる室内用ファンである。
(Embodiment 1)
The air conditioner in Embodiment 1 of this invention is demonstrated referring drawings below.
FIG. 1 is a schematic cross-sectional view of an essential part showing a refrigerant circulation path during cooling operation in the air conditioner of the first embodiment.
In FIG. 1, 1 is the air conditioner of the first embodiment, 2 is the indoor unit of the air conditioner 1, and 3 </ b> A is a first heat exchange unit 3 a disposed on the downstream side with respect to the air flow inside the indoor unit 2. A first heat exchanger having a second heat exchange section 3b arranged on the upstream side, 4A is a second heat exchanger arranged on the downstream side of the first heat exchanger 3A, and 5A is arranged on the downstream side. A third heat exchanger having a first heat exchanging part 5a and a second heat exchanging part 5b arranged on the upstream side and arranged on the downstream side of the second heat exchanger 4A, 6A is a compressor 8 described later. The first heat exchanger 3a of the first heat exchanger 3A, the first receiver tank 10a described later, the second heat exchanger 3b of the first heat exchanger 3A, the second receiver tank 10b described later, and the later described A cooling piping system for connecting the expansion valve 11 and the second heat exchanger 4A to circulate the refrigerant, and 7A a compressor 8 and third heat The first heat exchange part 5a of the exchanger 5A, the first receiver tank 10a described later, the second heat exchange part 5b of the third heat exchanger 5A, the second receiver tank 10b described later, and the expansion valve 11 described later. And the second heat exchanger 4A are connected to circulate the refrigerant, and the heating piping system 8 is a compressor that compresses the refrigerant flowing inside the cooling piping system 6A and the heating piping system 7A, 9a and 9b. Are the solenoid valves 10a and 10b respectively disposed at the branching points of the cooling piping system 6A and the heating piping system 7A branched on the downstream side of the compressor 8, and are respectively the first heat exchange portions of the first heat exchanger 3A. Between the outlet 3a and the inlet of the second heat exchanger 3b and between the outlet of the second heat exchanger 3b of the first heat exchanger 3A and the inlet of the second heat exchanger 4A. 1 receiver tank and 2nd receiver tank, 11 is 2nd receiver tank An expansion valve 12 disposed between the second heat exchanger 4A and the second heat exchanger 4A, and a switching unit 12 for switching the flow of refrigerant respectively disposed at the branching portions of the cooling piping system 6A and the heating piping system 7A, 13 Is an accumulator disposed on the upstream side of the compressor 8, and 14 is disposed on the downstream side of the third heat exchanger 5 </ b> A in the air flow inside the indoor unit 2. It is an indoor fan that circulates air.

以上のように構成された実施の形態1の空調機1の温度の制御は、従来の空調機と同様にサーモスタット(図示せず)によって行われ、温度センサ(図示せず)で検出した室内の温度と設定温度(目標温度)に基づいて圧縮器8や電磁弁9a,9b、室内用ファン13などの運転を制御する。そして、設定温度と室内の温度を比較し、設定温度が室内の温度よりも高い場合と、設定温度が室内の温度よりも低い場合とで、制御部(図示せず)の指示に基づいて各々の切替部12を切り替えて冷房用配管系統6Aと暖房用配管系統7Aの選択を行う。   Control of the temperature of the air conditioner 1 of the first embodiment configured as described above is performed by a thermostat (not shown) in the same manner as a conventional air conditioner, and is detected by a temperature sensor (not shown). Based on the temperature and the set temperature (target temperature), the operation of the compressor 8, the electromagnetic valves 9a and 9b, the indoor fan 13 and the like is controlled. Then, the set temperature and the room temperature are compared, and the case where the set temperature is higher than the room temperature and the case where the set temperature is lower than the room temperature are based on instructions from a control unit (not shown). The switching unit 12 is switched to select the cooling piping system 6A and the heating piping system 7A.

まず、実施の形態1の空調機の温度下降運転時の動作について説明する。
尚、破線の矢印は温度下降運転時の冷媒の流れを示している。
図1において、空調機1の運転中に、温度センサ(図示せず)で検出した室内の温度が設定温度よりも高い時(冷房運転時)は、冷房用配管系統6Aの電磁弁9aが開き、暖房用配管系統7Aの電磁弁9bが閉じて、冷媒は破線の矢印で示すように冷房用配管系統6Aを循環する。
圧縮機8から第1熱交換器3Aに送られた高温高圧の冷媒ガスは、まず第1熱交換部3aを通過することにより液化しながら冷却され、第1レシーバタンク10aへと入り、さらに第1熱交換器3Aの第2熱交換部3bを通過して冷却されることにより低温高圧の冷媒液となって第2レシーバタンク10bへと入る。
第2レシーバタンク10bを出た低温高圧の冷媒液は膨張弁11によって低温低圧の冷媒液となって第2熱交換器4Aへと送られる。
First, the operation during the temperature lowering operation of the air conditioner of Embodiment 1 will be described.
In addition, the arrow of a broken line has shown the flow of the refrigerant | coolant at the time of temperature fall operation.
In FIG. 1, when the temperature of the room detected by a temperature sensor (not shown) is higher than the set temperature (during cooling operation) during operation of the air conditioner 1, the electromagnetic valve 9a of the cooling piping system 6A is opened. Then, the solenoid valve 9b of the heating piping system 7A is closed, and the refrigerant circulates through the cooling piping system 6A as indicated by the dashed arrows.
The high-temperature and high-pressure refrigerant gas sent from the compressor 8 to the first heat exchanger 3A is cooled while being liquefied by first passing through the first heat exchanger 3a, enters the first receiver tank 10a, and further By passing through the second heat exchanging portion 3b of the 1 heat exchanger 3A and being cooled, it becomes a low-temperature and high-pressure refrigerant liquid and enters the second receiver tank 10b.
The low-temperature and high-pressure refrigerant liquid exiting the second receiver tank 10b is sent to the second heat exchanger 4A by the expansion valve 11 as a low-temperature and low-pressure refrigerant liquid.

一方、室内用ファン14によって室内から室内機2の内部に取り込まれた空気は、中温乃至高温で高圧の冷媒ガスが流れる第1熱交換器3Aの第2熱交換部3b及び第1熱交換部3aを通過することにより、一旦加熱される。
第1熱交換器3Aを通過して加熱された空気は、低温低圧の冷媒液が流れる第2熱交換器4Aを通過することにより除湿、冷却され、室内に送風される。このとき、第2熱交換器4Aを流れる低温低圧の冷媒液が熱を吸収して蒸発し、低温低圧の冷媒ガスとなり、アキュムレータ13へ送られ、圧縮器8で圧縮されて高温高圧の冷媒ガスとなって、再び第1熱交換器3Aへと送られる。
On the other hand, the air taken into the interior of the indoor unit 2 from the room by the indoor fan 14 is the second heat exchange unit 3b and the first heat exchange unit of the first heat exchanger 3A through which high-pressure refrigerant gas flows at a medium to high temperature. By passing through 3a, it is once heated.
The air heated through the first heat exchanger 3A is dehumidified and cooled by passing through the second heat exchanger 4A through which the low-temperature and low-pressure refrigerant liquid flows, and is blown into the room. At this time, the low-temperature and low-pressure refrigerant liquid flowing through the second heat exchanger 4A absorbs heat and evaporates to become low-temperature and low-pressure refrigerant gas, which is sent to the accumulator 13 and compressed by the compressor 8 to be compressed at high temperature and high pressure. Then, it is sent again to the first heat exchanger 3A.

次に、実施の形態1の空調機の温度上昇運転時の動作について説明する。
図2は実施の形態1の空調機における温度上昇運転時の冷媒の循環路を示す要部断面模式図である。
尚、実線の矢印は、温度上昇運転時の冷媒の流れを示している。
図2において、空調機1の運転中に、温度センサ(図示せず)で検出した室内の温度が設定温度よりも低い時(暖房運転時)は、暖房用配管系統7Aの電磁弁9bが開き、冷房用配管系統6Aの電磁弁9aが閉じて、冷媒は実線の矢印で示すように暖房用配管系統7Aを循環する。
圧縮機8から第3熱交換器5Aに送られた高温高圧の冷媒ガスは、まず第1熱交換部5aを通過しながら放熱することにより液化し、第1レシーバタンク10aへと入り、さらに第3熱交換器5Aの第2熱交換部5bを通過しながら放熱して低温高圧の冷媒液となって第2レシーバタンク10bへと入る。
第2レシーバタンク10bを出た低温高圧の冷媒液は膨張弁11によって低温低圧の冷媒液となって第2熱交換器4Aへと送られる。
Next, the operation | movement at the time of the temperature rise operation of the air conditioner of Embodiment 1 is demonstrated.
FIG. 2 is a schematic cross-sectional view of an essential part showing a refrigerant circulation path during a temperature rise operation in the air conditioner of the first embodiment.
In addition, the solid line arrow has shown the flow of the refrigerant | coolant at the time of temperature rising operation.
In FIG. 2, when the temperature of the room detected by a temperature sensor (not shown) is lower than the set temperature (during heating operation) during operation of the air conditioner 1, the electromagnetic valve 9b of the heating piping system 7A is opened. Then, the solenoid valve 9a of the cooling piping system 6A is closed, and the refrigerant circulates through the heating piping system 7A as indicated by the solid line arrow.
The high-temperature and high-pressure refrigerant gas sent from the compressor 8 to the third heat exchanger 5A is liquefied by first dissipating heat while passing through the first heat exchanger 5a, enters the first receiver tank 10a, and further The heat is dissipated while passing through the second heat exchanging portion 5b of the three heat exchanger 5A and enters the second receiver tank 10b as a low-temperature and high-pressure refrigerant liquid.
The low-temperature and high-pressure refrigerant liquid exiting the second receiver tank 10b is sent to the second heat exchanger 4A by the expansion valve 11 as a low-temperature and low-pressure refrigerant liquid.

一方、室内用ファン14によって室内から室内機2の内部に取り込まれた空気は、まず冷媒の流れていない第1熱交換器3Aを素通りする。その後、低温低圧の冷媒液が流れる第2熱交換器4Aを通過することにより、除湿、冷却される。このとき、第2熱交換器4Aを流れる低温低圧の冷媒液が熱を吸収して蒸発し、低温低圧の冷媒ガスとなってアキュムレータ13へ送られ、圧縮器8で圧縮されて高温高圧の冷媒ガスとなって、再び第3熱交換器5Aへと送られる。
第2熱交換器4Aを通過して除湿、冷却された空気は、中温乃至高温で高圧の冷媒ガスが流れる第3熱交換器5Aの第2熱交換部5b及び第1熱交換部5aを通過することにより加熱、乾燥され、除湿乾燥された暖かい空気が室内に送風される。
On the other hand, the air taken into the interior of the indoor unit 2 from the room by the indoor fan 14 first passes through the first heat exchanger 3A where no refrigerant flows. After that, dehumidification and cooling are performed by passing through the second heat exchanger 4A through which the low-temperature and low-pressure refrigerant liquid flows. At this time, the low-temperature and low-pressure refrigerant liquid flowing in the second heat exchanger 4A absorbs heat and evaporates, and becomes a low-temperature and low-pressure refrigerant gas. It becomes gas and is sent again to the third heat exchanger 5A.
The dehumidified and cooled air that has passed through the second heat exchanger 4A passes through the second heat exchange unit 5b and the first heat exchange unit 5a of the third heat exchanger 5A through which high-pressure refrigerant gas flows at a medium to high temperature. By doing so, warm air that has been heated, dried and dehumidified and dried is blown into the room.

空調機1は、温度センサで検出される室内の空気の温度が設定温度(目標温度)に近づくように、圧縮器8や室内用ファン12の運転を制御しながら、冷媒を循環させ、上記の動作を繰り返す。
尚、冷房用配管系統6A及び暖房用配管系統7Aにおいて、第3熱交換器5Aの第1熱交換部5a及び第2熱交換部5bを通過した冷媒液の中には一部冷媒ガスが混ざっているが、第1レシーバタンク10a及び第2レシーバタンク10bに入ることにより、圧力が下がり、液化が促進されて冷媒の温度が下がり易くなり、下流側での熱交換の効率を高めることができる。
また、本実施の形態では、冷房用配管系統6A及び暖房用配管系統7Aの切り替えを行う切替部として電磁弁9a,9bを用いたが、これに限定されるものではなく、いずれかの配管系統を択一的に選択できるものであればよい。
尚、必要に応じて、第1レシーバタンク10aの出口側(第1熱交換器3Aの第2熱交換部3bの入口及び第3熱交換器5Aの第2熱交換部5bの入口より上流側)に補助膨張弁を設けてもよい。これにより、冷媒の圧力をさらに低下させて、より温度の低い状態で冷房用配管系統6A及び暖房用配管系統7Aの下流側へ冷媒を送ることができ、熱交換を促進して冷暖房の効率性を高めることができ、運転の効率性、省エネルギー性に優れる。
The air conditioner 1 circulates the refrigerant while controlling the operation of the compressor 8 and the indoor fan 12 so that the temperature of the indoor air detected by the temperature sensor approaches the set temperature (target temperature). Repeat the operation.
In the cooling piping system 6A and the heating piping system 7A, a part of the refrigerant gas is mixed in the refrigerant liquid that has passed through the first heat exchange unit 5a and the second heat exchange unit 5b of the third heat exchanger 5A. However, by entering the first receiver tank 10a and the second receiver tank 10b, the pressure is lowered, liquefaction is promoted, the temperature of the refrigerant is easily lowered, and the efficiency of heat exchange on the downstream side can be increased. .
In the present embodiment, the electromagnetic valves 9a and 9b are used as the switching unit for switching between the cooling piping system 6A and the heating piping system 7A. However, the present invention is not limited to this, and any piping system is used. As long as it can be selected alternatively.
If necessary, the outlet side of the first receiver tank 10a (the upstream side of the inlet of the second heat exchanger 3b of the first heat exchanger 3A and the inlet of the second heat exchanger 5b of the third heat exchanger 5A) ) May be provided with an auxiliary expansion valve. As a result, the refrigerant pressure can be further reduced, and the refrigerant can be sent to the downstream side of the cooling piping system 6A and the heating piping system 7A in a lower temperature state. It is possible to improve the driving efficiency and energy saving.

実施の形態1における空調機によれば、以下の作用を有する。
(1)室内機の内部に配設される第1熱交換器及び第3熱交換器がそれぞれ第1熱交換部及び第2熱交換部を有する多段式の熱交換器であることにより、熱容量を大幅に増加させることができ、冷媒を確実に液化させて冷却しながら、室内機の内部を流れる空気と安定して熱交換を行い、確実かつ効率的に冷暖房や除湿を行うことができ、室外機が不要で、運転時に外気温の影響などを受けることがなく、温度調整や除湿の性能を高めることができ、運転の効率性、安定性に優れると共に、冷房時に室外に温風が放出されることがなく、外気温の上昇を抑え、ファンの騒音もなく、地球温暖化を防ぐことができ、省エネルギー性、環境保護性に優れる。
(2)圧縮器と、第1熱交換器の第1熱交換部と、第1レシーバタンクと、第1熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第2熱交換器と、を接続して冷媒を循環させる冷房用配管系統を有するので、第1熱交換器の第1熱交換部で液化しながら冷却された冷媒を第1熱交換器の第2熱交換部に送ることにより、さらに冷却することができ、下流側の第2熱交換器を通過する冷媒の温度を確実かつ効果的に下げて、冷房効率や除湿性能を高めることができ、省エネルギー性に優れる。
(3)冷房用配管系統において、第1熱交換器の第1熱交換部と第2熱交換部の間、及び第1熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第1熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第1熱交換器及び第2熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(4)冷房用配管系統の第2レシーバタンクと第2熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として下流側の第2熱交換器に送ることができ、室内から取り込まれた空気を第1熱交換器で一旦、加熱した後、低温低圧の冷媒液が流れる第2熱交換器で冷却することにより、大きな温度差によって効率的に除湿しながら確実に冷却して冷房運転を行うことができ、除湿性能及び冷房の効率性、省エネルギー性に優れると共に、熱交換器のフィン間の狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、送風される空気中に細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(5)圧縮器と、第3熱交換器の第1熱交換部と、第1レシーバタンクと、第3熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第2熱交換器と、を接続して冷媒を循環させる暖房用配管系統を有するので、第3熱交換器の第1熱交換部で液化しながら放熱した冷媒を第3熱交換器の第2熱交換部に送ることにより、さらに放熱させることができ、室内から取り込まれた空気を第3熱交換器で確実かつ効果的に加熱して暖房を行うことができ、暖房の効率性、省エネルギー性に優れる。
(6)暖房用配管系統において、第3熱交換器の第1熱交換部と第2熱交換部の間、及び第3熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第3熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第3熱交換器及び第2熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(7)暖房用配管系統の第2レシーバタンクと第2熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として上流側の第2熱交換器に送ることができ、室内から取り込まれた空気を第2熱交換器で一旦、除湿、冷却した後、高温乃至中温で高圧の冷媒ガスが流れる第3熱交換器で加熱、乾燥することができ、大きな温度差と、狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(8)冷房用配管系統により冷媒を循環させる場合には、室内から取り込まれ第1熱交換器で加熱された空気を第2熱交換器で除湿、冷却して結露を発生させ、暖房用配管系統により冷媒を循環させる場合には、室内から取り込まれた空気を第2熱交換器で除湿、冷却して結露を発生させることにより、空気中に含まれる塵や埃などを除去して結露水と共に排出し、雑菌などの繁殖を防ぎ、新鮮で清浄な空気を室内に供給することができる。特に湿気の多い日本の病院内の空間では、空気中の目に見えない埃の中に細菌が繁殖しており、その空気を吸うことによって感染、発病することがあるが、病院内の相対湿度を年間を通して30%以下にすることにより、空気中の埃を乾燥させ、細菌を死滅させて、安全で快適な生活空間を作り出すことができ、院内感染を効率的に防止することができる。
(9)冷房用配管系統と暖房用配管系統のいずれを選択して冷媒を循環させた場合でも、第2熱交換器には常に低温低圧の冷媒液が流れるため、第2熱交換器における冷媒の温度を安定化させることができ、第1熱交換器を通過する空気を確実に安定して冷却することができ、熱交換の安定性、確実性に優れ、冷房及び暖房の効率性、安定性を向上させることができる。
(10)冷房用配管系統及び暖房用配管系統を流れる冷媒がそれぞれ第1レシーバタンク及び第2レシーバタンクを経由することにより、冷媒の圧力を下げ、液化を促進して冷媒の温度を下げることができ、熱交換の効率性を高め、省エネルギー性を向上させることができる。
(11)常に圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、冷房用配管系統と暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことができ、設定温度(目標温度)に対して、±2℃程度の範囲で温度を制御することが可能で、室内の温度斑が少なく、温湿度制御の安定性、確実性に優れる。
The air conditioner according to Embodiment 1 has the following action.
(1) Since the first heat exchanger and the third heat exchanger disposed inside the indoor unit are multistage heat exchangers having a first heat exchange part and a second heat exchange part, respectively, the heat capacity Can be greatly increased, while the refrigerant is liquefied and cooled reliably, heat can be exchanged stably with the air flowing inside the indoor unit, and air conditioning and dehumidification can be performed reliably and efficiently. There is no need for an outdoor unit, it is not affected by the outside air temperature during operation, the temperature adjustment and dehumidification performance can be improved, and the operation efficiency and stability are excellent, and warm air is released outside during cooling. In this way, the rise in outside air temperature is suppressed, fan noise is eliminated, global warming can be prevented, and energy saving and environmental protection are excellent.
(2) a compressor, a first heat exchange part of the first heat exchanger, a first receiver tank, a second heat exchange part of the first heat exchanger, a second receiver tank, an expansion valve, 2 having a cooling piping system that circulates the refrigerant by connecting the two heat exchangers, the refrigerant cooled while being liquefied in the first heat exchange section of the first heat exchanger is supplied to the second heat exchanger. By sending it to the heat exchange section, it can be further cooled, and the temperature of the refrigerant passing through the second heat exchanger on the downstream side can be reliably and effectively lowered to improve the cooling efficiency and dehumidification performance, thereby saving energy. Excellent in properties.
(3) In the cooling piping system, the first heat exchanger between the first heat exchanger and the second heat exchanger and the second heat exchanger of the first heat exchanger and the expansion valve are respectively By arranging the 1 receiver tank and the 2nd receiver tank, the refrigerants in different states after passing through the first heat exchange part and the second heat exchange part of the first heat exchanger are not mixed, Heat exchange can be performed reliably in the first heat exchanger and the second heat exchanger, and operation stability and reliability are excellent.
(4) Since the expansion valve is disposed between the second receiver tank and the second heat exchanger of the cooling piping system, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. It can be sent to the second heat exchanger on the downstream side. After the air taken in from the room is once heated by the first heat exchanger, it is cooled by the second heat exchanger through which the low-temperature and low-pressure refrigerant liquid flows. Cooling operation can be performed by cooling reliably while dehumidifying efficiently due to a large temperature difference, and it is excellent in dehumidifying performance, cooling efficiency and energy saving, and passes through a narrow space between the fins of the heat exchanger The air can be micronized to generate negative ions, and the dehumidified dehumidified water (condensation water) is drained, so that there is no bacteria and dust in the blown air, and the generation of static electricity is prevented. Can be safe and secure In can provide a comfortable space.
(5) a compressor, a first heat exchange part of the third heat exchanger, a first receiver tank, a second heat exchange part of the third heat exchanger, a second receiver tank, an expansion valve, Since the heating piping system for circulating the refrigerant by connecting the two heat exchangers is provided, the refrigerant that has radiated heat while being liquefied in the first heat exchange section of the third heat exchanger is second heat of the third heat exchanger. By sending it to the exchange unit, it is possible to further dissipate heat, and the air taken in from the room can be heated reliably and effectively by the third heat exchanger, and heating efficiency and energy saving can be achieved. Excellent.
(6) In the heating piping system, between the first heat exchange part and the second heat exchange part of the third heat exchanger and between the second heat exchange part and the expansion valve of the third heat exchanger, respectively. By arranging the 1 receiver tank and the second receiver tank, refrigerants having different states after passing through the first heat exchange part and the second heat exchange part of the third heat exchanger are not mixed, Heat exchange can be performed reliably in the third heat exchanger and the second heat exchanger, and operation stability and reliability are excellent.
(7) Since the expansion valve is disposed between the second receiver tank and the second heat exchanger of the heating piping system, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. The third heat exchanger that can be sent to the second heat exchanger on the upstream side, and once the air taken in from the room is dehumidified and cooled by the second heat exchanger, then high-temperature to medium-temperature high-pressure refrigerant gas flows. It can be heated and dried with a large temperature difference and by passing through a narrow space, the air can be micronized to generate negative ions, and dehumidified dehumidified water (condensation water) can be drained In addition, there is no bacteria or dust, and it is possible to prevent the generation of static electricity, thus realizing a safe, secure and comfortable space.
(8) When the refrigerant is circulated by the cooling piping system, the air taken in from the room and heated by the first heat exchanger is dehumidified and cooled by the second heat exchanger to generate dew condensation. When circulating the refrigerant through the system, the air taken in from the room is dehumidified and cooled by the second heat exchanger to generate dew, thereby removing dew and dust contained in the air and dew condensation water. It can be discharged together to prevent the propagation of germs and the like, and fresh and clean air can be supplied indoors. Particularly in humid hospital spaces in Japan, bacteria grow in invisible dust in the air, and inhalation of the air may cause infection and disease. By setting the value to 30% or less throughout the year, it is possible to dry dust in the air, kill bacteria, create a safe and comfortable living space, and effectively prevent nosocomial infections.
(9) Even when either the cooling piping system or the heating piping system is selected and the refrigerant is circulated, the low-temperature and low-pressure refrigerant liquid always flows through the second heat exchanger, so the refrigerant in the second heat exchanger The temperature of the air can be stabilized, the air passing through the first heat exchanger can be reliably and stably cooled, and the heat exchange stability and reliability are excellent, and the efficiency and stability of cooling and heating are stable. Can be improved.
(10) The refrigerant flowing through the cooling piping system and the heating piping system passes through the first receiver tank and the second receiver tank, respectively, thereby reducing the refrigerant pressure and promoting liquefaction to lower the refrigerant temperature. It is possible to improve the efficiency of heat exchange and improve energy saving.
(11) Repeating the temperature lowering operation and the temperature increasing operation by switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature while always operating the compressor and circulating the refrigerant. It is possible to control the temperature within a range of about ± 2 ° C. with respect to the set temperature (target temperature), there are few indoor temperature spots, and the stability and certainty of temperature / humidity control is excellent.

(実施の形態2)
本考案の実施の形態2における空調機について、以下図面を参照しながら説明する。尚、実施の形態1と同様のものには同一の符号を付して説明を省略する。
図3は実施の形態2の空調機における温度下降運転時の冷媒の循環路を示す要部断面模式図である。
図3において、実施の形態2における空調機1Aが実施の形態1と異なるのは、室内機の内部の空気の流れに対し、最上流側に配設される第1熱交換器3B及び最下流側に配設される第3熱交換器5Bが通常(単段)の熱交換器であり、第1熱交換器3Bの下流側に配設される第2熱交換器4Bが下流側に配置される第1熱交換部4aと上流側に配置される第2熱交換部4bを有する二段式の熱交換器である点と、実施の形態1の空調機1における冷房用配管系統6A及び暖房用配管系統7Aの代わりに、圧縮器8と、第2熱交換器4Bの第1熱交換部4aと、第1レシーバタンク10aと、第2熱交換器4Bの第2熱交換部4bと、第2レシーバタンク10bと、膨張弁11と、第3熱交換器5Bと、を接続して冷媒を循環させる冷房用配管系統6Bと、圧縮器8と、第2熱交換器4Bの第1熱交換部4aと、第1レシーバタンク10aと、第2熱交換器4Bの第2熱交換部4bと、第2レシーバタンク10bと、膨張弁11と、第1熱交換器3Bと、を接続して冷媒を循環させる暖房用配管系統7Bを有している点である。
(Embodiment 2)
An air conditioner according to Embodiment 2 of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the thing similar to Embodiment 1, and description is abbreviate | omitted.
FIG. 3 is a schematic cross-sectional view of an essential part showing a refrigerant circulation path during a temperature lowering operation in the air conditioner of the second embodiment.
In FIG. 3, the air conditioner 1 </ b> A in the second embodiment is different from the first embodiment in that the first heat exchanger 3 </ b> B disposed on the most upstream side and the most downstream side with respect to the air flow inside the indoor unit. The third heat exchanger 5B disposed on the side is a normal (single stage) heat exchanger, and the second heat exchanger 4B disposed on the downstream side of the first heat exchanger 3B is disposed on the downstream side. The first heat exchanging part 4a and the second heat exchanging part 4b arranged on the upstream side, and the cooling pipe system 6A in the air conditioner 1 of the first embodiment, Instead of the heating piping system 7A, the compressor 8, the first heat exchange unit 4a of the second heat exchanger 4B, the first receiver tank 10a, and the second heat exchange unit 4b of the second heat exchanger 4B , The second receiver tank 10b, the expansion valve 11 and the third heat exchanger 5B are connected to circulate the refrigerant. System 6B, compressor 8, first heat exchange part 4a of second heat exchanger 4B, first receiver tank 10a, second heat exchange part 4b of second heat exchanger 4B, and second receiver tank 10b, the expansion valve 11, and the 1st heat exchanger 3B are connected, and it is the point which has the piping system 7B for heating which circulates a refrigerant | coolant.

まず、実施の形態2の空調機の温度下降運転時の動作について説明する。
尚、破線の矢印は温度下降運転時の冷媒の流れを示している。
図3において、空調機1Aの運転中に、温度センサ(図示せず)で検出した室内の温度が設定温度よりも高い時(冷房運転時)は、冷房用配管系統6Bの電磁弁9aが開き、暖房用配管系統7Bの電磁弁9bが閉じて、冷媒は破線の矢印で示すように冷房用配管系統6Bを循環する。
圧縮機8から第2熱交換器4Aに送られた高温高圧の冷媒ガスは、まず第1熱交換部4aを通過することにより液化しながら冷却され、第1レシーバタンク10aへと入り、さらに第2熱交換器4Aの第2熱交換部4bを通過して冷却されることにより低温高圧の冷媒液となって第2レシーバタンク10bへと入る。
第2レシーバタンク10bを出た低温高圧の冷媒液は膨張弁11によって低温低圧の冷媒液となって第3熱交換器5Bへと送られる。
First, the operation during the temperature lowering operation of the air conditioner of the second embodiment will be described.
In addition, the arrow of a broken line has shown the flow of the refrigerant | coolant at the time of temperature fall operation.
In FIG. 3, when the indoor temperature detected by the temperature sensor (not shown) is higher than the set temperature (during cooling operation) during operation of the air conditioner 1A, the electromagnetic valve 9a of the cooling piping system 6B is opened. Then, the solenoid valve 9b of the heating piping system 7B is closed, and the refrigerant circulates through the cooling piping system 6B as indicated by the dashed arrows.
The high-temperature and high-pressure refrigerant gas sent from the compressor 8 to the second heat exchanger 4A is cooled while being liquefied by first passing through the first heat exchange part 4a, enters the first receiver tank 10a, and further By passing through the second heat exchanging section 4b of the two heat exchanger 4A and being cooled, it becomes a low-temperature and high-pressure refrigerant liquid and enters the second receiver tank 10b.
The low-temperature and high-pressure refrigerant liquid that has exited the second receiver tank 10b becomes a low-temperature and low-pressure refrigerant liquid by the expansion valve 11 and is sent to the third heat exchanger 5B.

一方、室内用ファン14によって室内から室内機2の内部に取り込まれた空気は、中温乃至高温で高圧の冷媒ガスが流れる第2熱交換器4Bの第2熱交換部4b及び第1熱交換部4aを通過することにより、一旦加熱される。
第2熱交換器4Bを通過して加熱された空気は、低温低圧の冷媒液が流れる第3熱交換器5Bを通過することにより除湿、冷却され、室内に送風される。このとき、第3熱交換器5Bを流れる低温低圧の冷媒液が熱を吸収して蒸発し、低温低圧の冷媒ガスとなり、アキュムレータ13へ送られ、圧縮器8で圧縮されて高温高圧の冷媒ガスとなって、再び第2熱交換器4Bへと送られる。
On the other hand, the air taken into the interior of the indoor unit 2 from the room by the indoor fan 14 is the second heat exchange unit 4b and the first heat exchange unit of the second heat exchanger 4B through which a high-pressure refrigerant gas flows at a medium to high temperature. By passing through 4a, it is once heated.
The air heated by passing through the second heat exchanger 4B is dehumidified and cooled by passing through the third heat exchanger 5B through which the low-temperature and low-pressure refrigerant liquid flows, and is blown into the room. At this time, the low-temperature and low-pressure refrigerant liquid flowing through the third heat exchanger 5B absorbs heat and evaporates to become a low-temperature and low-pressure refrigerant gas, which is sent to the accumulator 13 and compressed by the compressor 8 to be compressed at high temperature and high pressure. Then, it is sent again to the second heat exchanger 4B.

次に、実施の形態2の空調機の温度上昇運転時の動作について説明する。
図4は実施の形態3の空調機における温度上昇運転時の冷媒の循環路を示す要部断面模式図である。
尚、実線の矢印は、温度上昇運転時の冷媒の流れを示している。
図4において、空調機1Aの運転中に、温度センサ(図示せず)で検出した室内の温度が設定温度よりも低い時(暖房運転時)は、暖房用配管系統7Bの電磁弁9bが開き、冷房用配管系統6Bの電磁弁9aが閉じて、冷媒は実線の矢印で示すように暖房用配管系統7Bを循環する。
圧縮機8から第2熱交換器4Bに送られた高温高圧の冷媒ガスは、まず第1熱交換部4aを通過しながら放熱することにより液化し、第1レシーバタンク10aへと入り、さらに第2熱交換器4Bの第2熱交換部4bを通過しながら放熱して低温高圧の冷媒液となって第2レシーバタンク10bへと入る。
第2レシーバタンク10bを出た低温高圧の冷媒液は膨張弁11によって低温低圧の冷媒液となって第1熱交換器3Bへと送られる。
Next, the operation at the time of temperature increase operation of the air conditioner of the second embodiment will be described.
FIG. 4 is a schematic cross-sectional view of an essential part showing a refrigerant circulation path during a temperature rise operation in the air conditioner of the third embodiment.
In addition, the solid line arrow has shown the flow of the refrigerant | coolant at the time of temperature rising operation.
In FIG. 4, when the indoor temperature detected by the temperature sensor (not shown) is lower than the set temperature (during heating operation) during operation of the air conditioner 1A, the electromagnetic valve 9b of the heating piping system 7B is opened. Then, the solenoid valve 9a of the cooling piping system 6B is closed, and the refrigerant circulates through the heating piping system 7B as indicated by the solid line arrows.
The high-temperature and high-pressure refrigerant gas sent from the compressor 8 to the second heat exchanger 4B is liquefied by first dissipating heat while passing through the first heat exchanger 4a, enters the first receiver tank 10a, and further The heat is dissipated while passing through the second heat exchanging part 4b of the two heat exchanger 4B, and enters the second receiver tank 10b as a low-temperature and high-pressure refrigerant liquid.
The low-temperature and high-pressure refrigerant liquid exiting the second receiver tank 10b is sent to the first heat exchanger 3B as a low-temperature and low-pressure refrigerant liquid by the expansion valve 11.

一方、室内用ファン14によって室内から室内機2の内部に取り込まれた空気は、低温低圧の冷媒液が流れる第1熱交換器3Bを通過することにより、除湿、冷却される。このとき、第1熱交換器3Bを流れる低温低圧の冷媒液が熱を吸収して蒸発し、低温低圧の冷媒ガスとなってアキュムレータ13へ送られ、圧縮器8で圧縮されて高温高圧の冷媒ガスとなって、再び第2熱交換器4Bへと送られる。
第1熱交換器3Bを通過して除湿、冷却された空気は、中温乃至高温で高圧の冷媒ガスが流れる第2熱交換器4Bの第2熱交換部4b及び第1熱交換部4aを通過することにより加熱、乾燥され、除湿乾燥された暖かい空気が室内に送風される。
On the other hand, the air taken into the interior of the indoor unit 2 from the room by the indoor fan 14 is dehumidified and cooled by passing through the first heat exchanger 3B through which the low-temperature and low-pressure refrigerant liquid flows. At this time, the low-temperature and low-pressure refrigerant liquid flowing in the first heat exchanger 3B absorbs heat and evaporates, and is sent to the accumulator 13 as a low-temperature and low-pressure refrigerant gas. It becomes gas and is sent again to the second heat exchanger 4B.
The dehumidified and cooled air that has passed through the first heat exchanger 3B passes through the second heat exchanger 4b and the first heat exchanger 4a of the second heat exchanger 4B through which high-pressure refrigerant gas flows at a medium to high temperature. Thus, warm air that has been heated, dried and dehumidified and dried is blown into the room.

空調機1Aは、温度センサで検出される室内の空気の温度が設定温度(目標温度)に近づくように、圧縮器8や室内用ファン12の運転を制御しながら、冷媒を循環させ、上記の動作を繰り返す。
尚、第2熱交換器4Bの第1熱交換部4a及び第2熱交換部4bを通過した冷媒液の中に一部冷媒ガスが混ざっているが、第1レシーバタンク10a及び第2レシーバタンク10bに入ることにより、圧力が下がり、液化が促進されて冷媒の温度が下がり易くなり、下流側での熱交換の効率を高めることができる。
また、本実施の形態では、冷房用配管系統6B及び暖房用配管系統7Bの切り替えを行う切替部として電磁弁9a,9bを用いたが、これに限定されるものではなく、いずれかの配管系統を択一的に選択できるものであればよい。
尚、必要に応じて、第1レシーバタンク10aの出口側(第2熱交換器4Bの第2熱交換部4bの入口より上流側)に補助膨張弁を設けてもよい。これにより、冷媒の圧力をさらに低下させて、より温度の低い状態で冷房用配管系統6B及び暖房用配管系統7Bの下流側へ冷媒を送ることができ、熱交換を促進して冷暖房の効率性を高めることができ、運転の効率性、省エネルギー性に優れる。
The air conditioner 1A circulates the refrigerant while controlling the operation of the compressor 8 and the indoor fan 12 so that the temperature of the indoor air detected by the temperature sensor approaches the set temperature (target temperature). Repeat the operation.
In addition, some refrigerant gas is mixed in the refrigerant liquid which passed the 1st heat exchange part 4a and the 2nd heat exchange part 4b of the 2nd heat exchanger 4B, but the 1st receiver tank 10a and the 2nd receiver tank By entering 10b, a pressure falls, liquefaction is accelerated | stimulated and it becomes easy to fall the temperature of a refrigerant | coolant, and the efficiency of the heat exchange in a downstream can be improved.
Moreover, in this Embodiment, although electromagnetic valve 9a, 9b was used as a switching part which switches the cooling piping system 6B and the heating piping system 7B, it is not limited to this, Any piping system As long as it can be selected alternatively.
If necessary, an auxiliary expansion valve may be provided on the outlet side of the first receiver tank 10a (upstream side of the inlet of the second heat exchange part 4b of the second heat exchanger 4B). Thereby, the refrigerant pressure can be further reduced, and the refrigerant can be sent to the downstream side of the cooling piping system 6B and the heating piping system 7B in a lower temperature state. It is possible to improve the driving efficiency and energy saving.

実施の形態2における空調機によれば、以下の作用を有する。
(1)室内機の内部に配設される第2熱交換器が第1熱交換部及び第2熱交換部を有する多段式の熱交換器であることにより、熱容量を大幅に増加させることができ、冷媒を確実に液化させて冷却しながら、室内機の内部を流れる空気と安定して熱交換を行い、確実かつ効率的に冷暖房や除湿を行うことができ、室外機が不要で、運転時に外気温の影響などを受けることがなく、温度調整や除湿の性能を高めることができ、運転の効率性、安定性に優れると共に、冷房時に室外に温風が放出されることがなく、外気温の上昇を抑え、ファンの騒音もなく、地球温暖化を防ぐことができ、省エネルギー性、環境保護性に優れる。
(2)圧縮器と、第2熱交換器の第1熱交換部と、第1レシーバタンクと、第2熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第3熱交換器と、を接続して冷媒を循環させる冷房用配管系統を有するので、第2熱交換器の第1熱交換部で液化しながら冷却された冷媒を第2熱交換器の第2熱交換部に送ることにより、さらに冷却することができ、下流側の第3熱交換器を通過する冷媒の温度を確実かつ効果的に下げて、冷房効率や除湿性能を高めることができ、省エネルギー性に優れる。
(3)冷房用配管系統において、第2熱交換器の第1熱交換部と第2熱交換部の間、及び第2熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第2熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第2熱交換器及び第3熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(4)冷房用配管系統の第2レシーバタンクと第3熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として下流側の第2熱交換器に送ることができ、室内から取り込まれた空気を第2熱交換器で一旦、加熱した後、低温低圧の冷媒液が流れる第3熱交換器で冷却することにより、大きな温度差によって効率的に除湿しながら確実に冷却して冷房運転を行うことができ、除湿性能及び冷房の効率性、省エネルギー性に優れると共に、熱交換器のフィン間の狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、送風される空気中に細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(5)圧縮器と、第2熱交換器の第1熱交換部と、第1レシーバタンクと、第2熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第1熱交換器と、を接続して冷媒を循環させる暖房用配管系統を有するので、第2熱交換器の第1熱交換部で液化しながら放熱した冷媒を第2熱交換器の第2熱交換部に送ることにより、さらに放熱させることができ、室内から取り込まれた空気を第2熱交換器で確実かつ効果的に加熱して暖房を行うことができ、暖房の効率性、省エネルギー性に優れる。
(6)暖房用配管系統において、第2熱交換器の第1熱交換部と第2熱交換部の間、及び第2熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第2熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第2熱交換器及び第1熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(7)暖房用配管系統の第2レシーバタンクと第1熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として上流側の第1熱交換器に送ることができ、室内から取り込まれた空気を第1熱交換器で一旦、除湿、冷却した後、高温乃至中温で高圧の冷媒ガスが流れる第3熱交換器で加熱、乾燥することができ、大きな温度差と、狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(8)冷房用配管系統により冷媒を循環させる場合には、室内から取り込まれ第2熱交換器で加熱された空気を第3熱交換器で除湿、冷却して結露を発生させ、暖房用配管系統により冷媒を循環させる場合には、室内から取り込まれた空気を第1熱交換器で除湿、冷却して結露を発生させることにより、空気中に含まれる塵や埃などを除去して結露水と共に排出し、雑菌などの繁殖を防ぎ、新鮮で清浄な空気を室内に供給することができる。特に湿気の多い日本の病院内の空間では、空気中の目に見えない埃の中に細菌が繁殖しており、その空気を吸うことによって感染、発病することがあるが、病院内の相対湿度を年間を通して30%以下にすることにより、空気中の埃を乾燥させ、細菌を死滅させて、安全で快適な生活空間を作り出すことができ、院内感染を効率的に防止することができる。
(9)冷房用配管系統及び暖房用配管系統を流れる冷媒がそれぞれ第1レシーバタンク及び第2レシーバタンクを経由することにより、冷媒の圧力を下げ、液化を促進して冷媒の温度を下げることができ、熱交換の効率性を高め、省エネルギー性を向上させることができる。
(10)常に圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、冷房用配管系統と暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことができ、設定温度(目標温度)に対して、±2℃程度の範囲で温度を制御することが可能で、室内の温度斑が少なく、温湿度制御の安定性、確実性に優れる。
The air conditioner according to Embodiment 2 has the following effects.
(1) The second heat exchanger disposed inside the indoor unit is a multi-stage heat exchanger having a first heat exchange part and a second heat exchange part, so that the heat capacity can be greatly increased. The refrigerant can be liquefied and cooled, and heat can be exchanged stably with the air flowing inside the indoor unit, and air conditioning and dehumidification can be performed reliably and efficiently. The temperature adjustment and dehumidification performance can be improved without being affected by the outside air temperature from time to time, the operation efficiency and stability are excellent, and the warm air is not released outside during cooling. Suppresses the rise in temperature, eliminates fan noise, prevents global warming, and excels in energy saving and environmental protection.
(2) a compressor, a first heat exchange part of the second heat exchanger, a first receiver tank, a second heat exchange part of the second heat exchanger, a second receiver tank, an expansion valve, And a cooling piping system that circulates the refrigerant by connecting the three heat exchangers, the refrigerant cooled while being liquefied in the first heat exchange part of the second heat exchanger is supplied to the second heat exchanger. By sending it to the heat exchange section, it can be further cooled, the temperature of the refrigerant passing through the third heat exchanger on the downstream side can be reliably and effectively lowered, and the cooling efficiency and dehumidification performance can be improved, thereby saving energy. Excellent in properties.
(3) In the cooling piping system, the first heat exchange part and the second heat exchange part of the second heat exchanger, and the second heat exchange part and the expansion valve of the second heat exchanger, respectively. By arranging the 1 receiver tank and the 2nd receiver tank, the refrigerants in different states after passing through the first heat exchange part and the second heat exchange part of the second heat exchanger are not mixed, Heat exchange can be reliably performed in the second heat exchanger and the third heat exchanger, and operation stability and reliability are excellent.
(4) Since the expansion valve is disposed between the second receiver tank and the third heat exchanger of the cooling piping system, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. It can be sent to the second heat exchanger on the downstream side. After the air taken in from the room is once heated by the second heat exchanger, it is cooled by the third heat exchanger through which the low-temperature and low-pressure refrigerant liquid flows. Cooling operation can be performed by cooling reliably while dehumidifying efficiently due to a large temperature difference, and it is excellent in dehumidifying performance, cooling efficiency and energy saving, and passes through a narrow space between the fins of the heat exchanger The air can be micronized to generate negative ions, and the dehumidified dehumidified water (condensation water) is drained, so that there is no bacteria and dust in the blown air, and the generation of static electricity is prevented. Can be safe and secure In can provide a comfortable space.
(5) a compressor, a first heat exchange part of the second heat exchanger, a first receiver tank, a second heat exchange part of the second heat exchanger, a second receiver tank, an expansion valve, 1 has a heating piping system that circulates the refrigerant by connecting the heat exchanger, so that the refrigerant that has dissipated heat while being liquefied in the first heat exchange section of the second heat exchanger is second heat of the second heat exchanger. By sending it to the exchange unit, it is possible to further dissipate heat, and the air taken from the room can be heated reliably and effectively with the second heat exchanger, and heating efficiency and energy saving can be improved. Excellent.
(6) In the heating piping system, the first heat exchange part and the second heat exchange part of the second heat exchanger, and the second heat exchange part and the expansion valve of the second heat exchanger, respectively. By arranging the 1 receiver tank and the 2nd receiver tank, the refrigerants in different states after passing through the first heat exchange part and the second heat exchange part of the second heat exchanger are not mixed, Heat exchange can be reliably performed in the second heat exchanger and the first heat exchanger, and operation stability and reliability are excellent.
(7) Since the expansion valve is disposed between the second receiver tank of the heating piping system and the first heat exchanger, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. A third heat exchanger that can be sent to the first heat exchanger on the upstream side, and after the air taken in from the room is once dehumidified and cooled by the first heat exchanger, a high-pressure to medium-temperature high-pressure refrigerant gas flows It can be heated and dried with a large temperature difference and by passing through a narrow space, the air can be micronized to generate negative ions, and dehumidified dehumidified water (condensation water) can be drained In addition, there is no bacteria or dust, and it is possible to prevent the generation of static electricity, thus realizing a safe, secure and comfortable space.
(8) When the refrigerant is circulated by the cooling piping system, the air taken from the room and heated by the second heat exchanger is dehumidified and cooled by the third heat exchanger to generate dew condensation. When the refrigerant is circulated by the system, the air taken in from the room is dehumidified and cooled by the first heat exchanger to generate dew condensation, thereby removing dew and dust contained in the air and dew condensation water. It can be discharged together to prevent the propagation of germs and the like, and fresh and clean air can be supplied indoors. Particularly in humid hospital spaces in Japan, bacteria grow in invisible dust in the air, and inhalation of the air may cause infection and disease. By setting the value to 30% or less throughout the year, it is possible to dry dust in the air, kill bacteria, create a safe and comfortable living space, and effectively prevent nosocomial infections.
(9) The refrigerant flowing through the cooling piping system and the heating piping system passes through the first receiver tank and the second receiver tank, respectively, thereby reducing the pressure of the refrigerant and promoting liquefaction to lower the temperature of the refrigerant. It is possible to improve the efficiency of heat exchange and improve energy saving.
(10) The temperature lowering operation and the temperature increasing operation are repeated by switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature while always operating the compressor and circulating the refrigerant. It is possible to control the temperature within a range of about ± 2 ° C. with respect to the set temperature (target temperature), there are few indoor temperature spots, and the stability and certainty of temperature / humidity control is excellent.

本考案は、冷暖房効率を高めることができ、省エネルギー性に優れ、従来のような室外機が不要で、特に冷房運転時には室外に温風が放出されることがなく、またファンの騒音もなく、外気温の上昇を発生させることがなく、地球温暖化を防ぐことができると共に、除湿能力を大幅に向上させることができ、空気中の塵や埃などを除湿水と一緒に除去、排出し、雑菌などを滅菌して快適な生活空間を作り出すことができ、さらに静電気の発生を防止でき、衛生的で機能性、環境保護性に優れた空調機の提供を行うことができ、一般家庭だけでなく、病院や工場などの温湿度を年間を通じて最適に管理することが可能で、院内感染や静電気の発生の防止にも貢献することができる。   The present invention can improve the heating and cooling efficiency, is excellent in energy saving, does not require a conventional outdoor unit, does not release warm air outside the room especially during cooling operation, and has no fan noise. It does not cause an increase in the outside temperature, can prevent global warming, can greatly improve the dehumidifying capacity, removes and discharges dust and dirt in the air together with dehumidified water, It is possible to sterilize various bacteria and create a comfortable living space, to prevent the generation of static electricity, and to provide air conditioners that are hygienic, functional and environmentally friendly. In addition, the temperature and humidity of hospitals and factories can be optimally managed throughout the year, contributing to the prevention of nosocomial infections and the generation of static electricity.

1,1A 空調機
2 室内機
3a,4a,5a 第1熱交換部
3b,4b,5b 第2熱交換部
3A,3B 第1熱交換器
4A,4B 第2熱交換器
5A,5B 第3熱交換器
6A,6B 冷房用配管系統
7A,7B 暖房用配管系統
8 圧縮器
9a,9b 電磁弁
10a 第1レシーバタンク
10b 第2レシーバタンク
11 膨張弁
12 切替部
13 アキュムレータ
14 室内用ファン
1, 1A Air conditioner 2 Indoor units 3a, 4a, 5a First heat exchange units 3b, 4b, 5b Second heat exchange units 3A, 3B First heat exchangers 4A, 4B Second heat exchangers 5A, 5B Third heat Exchanger 6A, 6B Cooling piping system 7A, 7B Heating piping system 8 Compressor 9a, 9b Electromagnetic valve 10a First receiver tank 10b Second receiver tank 11 Expansion valve 12 Switching unit 13 Accumulator 14 Indoor fan

本考案は、室内機に内蔵される熱交換器を多段式にすることにより、冷暖房の効率を高めることができ、省エネルギー性に優れ、室外機を不要とすることができる空調機に関する。   The present invention relates to an air conditioner that can increase the efficiency of air conditioning by making a heat exchanger built in an indoor unit into a multistage type, has excellent energy savings, and can eliminate the need for an outdoor unit.

従来、冷房や暖房を行う空調機(エアコン)は、圧縮機や凝縮器又は蒸発器として機能する熱交換器が内蔵された室外機と、蒸発器又は凝縮器として機能する熱交換器が内蔵された室内機を冷媒配管で接続したセパレート型が一般的である。
また、(特許文献1)のように、「内部に少なくともコンプレッサー、室内熱交換器、膨張弁、室外熱交換器及び各部品を接続する循環回路を含み、一体化されて壁の中に埋め込まれ、室内熱交換器の熱交換口が室内に向き、室内空気と熱を交換し、室外熱交換器の熱交換口が室外に向き、室外空気と熱を交換することを特徴とする一体式エアコン。」も考えられている。
特表2006−526127号公報
Conventionally, an air conditioner (air conditioner) that performs cooling or heating includes an outdoor unit that incorporates a heat exchanger that functions as a compressor , a condenser, or an evaporator, and a heat exchanger that functions as an evaporator or a condenser. A separate type in which the indoor units are connected by refrigerant piping is generally used.
In addition, as disclosed in (Patent Document 1), “including at least a compressor, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, and a circulation circuit that connects each component inside, and is integrated and embedded in a wall. An integrated air conditioner characterized in that the heat exchange port of the indoor heat exchanger faces indoors and exchanges heat with indoor air, and the heat exchange port of the outdoor heat exchangers faces outdoor and exchanges heat with outdoor air Is also considered.
JP-T-2006-526127

しかしながら、上記従来の技術は以下のような課題を有していた。
(1)従来の空調機において、室外機の圧縮機は、冷媒を室内機の熱交換器に送るポンプの役目を果たしている。室内機と室外機を冷媒配管で接続した一般的なセパレート型の空調機では、冷房運転時には、冷媒が圧縮機で圧縮され、高温高圧(80℃程度)の冷媒ガスになるので、そのままでは室内機の熱交換器に送ることができない。そこで、圧縮機から排出される高温高圧の冷媒ガスが、室外機の熱交換器を通過する際に、ファンで室外の空気を送風することにより、低温高圧(30℃程度)の冷媒液になるまで冷却して膨張弁を通過後、室内機の熱交換器(冷却器)に送り、室内の温度を下げている。よって、室内の温度が設定温度よりも高い時には、圧縮機を運転して低温高圧の冷媒液を室内機の熱交換器に送りながら、室内機に内蔵された室内用ファンで送風することにより、室内の温度を下げ、室内の温度が設定温度に達した時には圧縮機の運転を停止して送風のみを行い、時間経過と共に室内の温度が上昇し始めると、再び圧縮機の運転を開始するという動作を繰り返している。
つまり、室外機の役割は、高温高圧の冷媒ガスを低温の冷媒液に戻して室内機の熱交換器に送ることであり、室外機の熱交換器の設置場所や高温高圧の冷媒ガスを冷却する方法は何ら限定されるものではない。
しかし、従来の空調機では、室外機の熱交換器(凝縮器)にファンで外気を送風することによって冷媒ガスを冷ましているので、室外に温風が放出され、ファンの騒音と外気温が上昇して地球温暖化につながり、環境保護性に欠けるという課題を有していた。
また、常温の外気をそのまま利用しているので外気温の影響を受け、冷媒液を外気温以下に冷やすことはできず、運転に制約を受け易く、性能や効率の飛躍的な改善は望めないという課題を有していた。
(3)(特許文献1)の一体式エアコンは室内機と室外機を一体化することにより、室外機の設置スペースが不要で省スペース性に優れるが、単に共通の筐体で室内機と室外機を一体化したに過ぎず、地球温暖化や環境保護に関してはセパレート型の空調機と同様の課題を有していた。
また、室外機の騒音や振動により、睡眠が阻害されるという課題も有していた。
However, the above conventional technique has the following problems.
(1) In the conventional air conditioner, the compressor of the outdoor unit plays the role of a pump that sends the refrigerant to the heat exchanger of the indoor unit. In a general separate type air conditioner in which an indoor unit and an outdoor unit are connected by refrigerant piping, during cooling operation, the refrigerant is compressed by the compressor and becomes high-temperature and high-pressure (about 80 ° C) refrigerant gas. Cannot be sent to the heat exchanger of the machine. Therefore, when the high-temperature and high-pressure refrigerant gas discharged from the compressor passes through the heat exchanger of the outdoor unit, the outdoor air is blown by a fan to become a low-temperature and high-pressure (about 30 ° C.) refrigerant liquid. After cooling down to pass through the expansion valve, it is sent to the heat exchanger (cooler) of the indoor unit to lower the indoor temperature. Therefore, when the indoor temperature is higher than the set temperature, by operating the compressor and sending the low-temperature and high-pressure refrigerant liquid to the heat exchanger of the indoor unit, by blowing with the indoor fan built in the indoor unit, When the room temperature is lowered and the room temperature reaches the set temperature, the operation of the compressor is stopped and only the air is blown. When the room temperature starts to rise with time, the compressor operation is started again. The operation is repeated.
In other words, the role of the outdoor unit is to return the high-temperature and high-pressure refrigerant gas to the low-temperature refrigerant liquid and send it to the heat exchanger of the indoor unit, and cool the location of the outdoor unit heat exchanger and the high-temperature and high-pressure refrigerant gas. The method to do is not limited at all.
However, in the conventional air conditioner, since the refrigerant gas is cooled by blowing the outside air to the heat exchanger (condenser) of the outdoor unit by the fan, the warm air is discharged to the outside, and the noise and the outside temperature of the fan are reduced. It had the problem of rising, leading to global warming and lacking environmental protection.
In addition, since ambient temperature outside air is used as it is, it is affected by the outside air temperature, the refrigerant liquid cannot be cooled below the outside temperature, is easily restricted by operation, and a dramatic improvement in performance and efficiency cannot be expected. It had the problem that.
(3) The integrated air conditioner of (Patent Document 1) integrates the indoor unit and the outdoor unit, so that an installation space for the outdoor unit is not required and is excellent in space saving. The machine was only integrated, and it had the same problems as the separate type air conditioner regarding global warming and environmental protection.
In addition, there was a problem that sleep was hindered by the noise and vibration of the outdoor unit.

本考案は上記課題を解決するためになされたものであり、冷暖房効率を高めることができ、省エネルギー性に優れ、従来のような室外機が不要で、特に冷房運転時には室外に温風が放出されることがなく、またファンの騒音もなく、外気温の上昇を発生させることがなく、地球温暖化を防ぐことができると共に、除湿能力を大幅に向上させることができ、空気中の塵や埃などを除湿水と一緒に除去、排出し、雑菌などを滅菌して快適な生活空間を作り出すことができ、さらに静電気の発生を防止でき、衛生的で機能性、環境保護性に優れた空調機の提供を目的とする。   The present invention has been made to solve the above-mentioned problems, and can improve the efficiency of cooling and heating, is excellent in energy saving, does not require a conventional outdoor unit, and warm air is discharged to the outside especially during cooling operation. In addition, there is no fan noise, no increase in outside air temperature, no global warming can be prevented, and the dehumidifying capacity can be greatly improved. Air conditioner with excellent hygiene, functionality, and environmental protection, which can create a comfortable living space by removing and discharging together with dehumidified water and sterilizing germs. The purpose is to provide.

上記課題を解決するために本考案の空調機は、以下の構成を有している。
本考案の請求項1に記載の空調機は、室内機の内部の空気の流れに対し、下流側に配置される第1熱交換部と上流側に配置される第2熱交換部を有する第1熱交換器と、前記第1熱交換器の下流側に配設される第2熱交換器と、下流側に配置される第1熱交換部と上流側に配置される第2熱交換部を有し前記第2熱交換器の下流側に配設される第3熱交換器と、を備え、(a)圧縮機と、前記第1熱交換器の前記第1熱交換部と、第1レシーバタンクと、前記第1熱交換器の前記第2熱交換部と、第2レシーバタンクと、膨張弁と、前記第2熱交換器と、を接続して冷媒を循環させる冷房用配管系統と、(b)前記圧縮機と、前記第3熱交換器の前記第1熱交換部と、前記第1レシーバタンクと、前記第3熱交換器の前記第2熱交換部と、前記第2レシーバタンクと、前記膨張弁と、前記第2熱交換器と、を接続して冷媒を循環させる暖房用配管系統と、を備え、常に前記圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、前記冷房用配管系統と前記暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返す構成を有している。
この構成により、以下のような作用を有する。
(1)室内機の内部に配設される第1熱交換器及び第3熱交換器がそれぞれ第1熱交換部及び第2熱交換部を有する多段式の熱交換器であることにより、熱容量を大幅に増加させることができ、冷媒を確実に液化させて冷却しながら、室内機の内部を流れる空気と安定して熱交換を行い、確実かつ効率的に冷暖房や除湿を行うことができ、室外機が不要で、運転時に外気温の影響などを受けることがなく、温度調整や除湿の性能を高めることができ、運転の効率性、安定性に優れると共に、冷房時に室外に温風が放出されることがなく、外気温の上昇を抑え、ファンの騒音もなく、地球温暖化を防ぐことができ、省エネルギー性、環境保護性に優れる。
(2)圧縮機と、第1熱交換器の第1熱交換部と、第1レシーバタンクと、第1熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第2熱交換器と、を接続して冷媒を循環させる冷房用配管系統を有するので、第1熱交換器の第1熱交換部で液化しながら冷却された冷媒を第1熱交換器の第2熱交換部に送ることにより、さらに冷却することができ、下流側の第2熱交換器を通過する冷媒の温度を確実かつ効果的に下げて、冷房効率や除湿性能を高めることができ、省エネルギー性に優れる。
(3)冷房用配管系統において、第1熱交換器の第1熱交換部と第2熱交換部の間、及び第1熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第1熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第1熱交換器及び第2熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(4)冷房用配管系統の第2レシーバタンクと第2熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として下流側の第2熱交換器に送ることができ、室内から取り込まれた空気を第1熱交換器で一旦、加熱した後、低温低圧の冷媒液が流れる第2熱交換器で冷却することにより、大きな温度差によって効率的に除湿しながら確実に冷却して冷房運転を行うことができ、除湿性能及び冷房の効率性、省エネルギー性に優れると共に、熱交換器のフィン間の狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、送風される空気中に細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(5)圧縮機と、第3熱交換器の第1熱交換部と、第1レシーバタンクと、第3熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第2熱交換器と、を接続して冷媒を循環させる暖房用配管系統を有するので、第3熱交換器の第1熱交換部で液化しながら放熱した冷媒を第3熱交換器の第2熱交換部に送ることにより、さらに放熱させることができ、室内から取り込まれた空気を第3熱交換器で確実かつ効果的に加熱して暖房を行うことができ、暖房の効率性、省エネルギー性に優れる。
(6)暖房用配管系統において、第3熱交換器の第1熱交換部と第2熱交換部の間、及び第3熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第3熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第3熱交換器及び第2熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(7)暖房用配管系統の第2レシーバタンクと第2熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として上流側の第2熱交換器に送ることができ、室内から取り込まれた空気を第2熱交換器で一旦、除湿、冷却した後、高温乃至中温で高圧の冷媒ガスが流れる第3熱交換器で加熱、乾燥することができ、大きな温度差によって効率的に除湿することができ、除湿性能に優れると共に、狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、送風される空気中に細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(8)冷房用配管系統により冷媒を循環させる場合には、室内から取り込まれ第1熱交換器で加熱された空気を第2熱交換器で除湿、冷却して結露を発生させ、暖房用配管系統により冷媒を循環させる場合には、室内から取り込まれた空気を第2熱交換器で除湿、冷却して結露を発生させることにより、空気中に含まれる塵や埃などを除去して結露水と共に排出し、雑菌などの繁殖を防ぎ、新鮮で清浄な空気を室内に供給することができる。特に湿気の多い日本の病院内の空間では、空気中の目に見えない埃の中に細菌が繁殖しており、その空気を吸うことによって感染、発病することがあるが、病院内の相対湿度を年間を通して30%以下にすることにより、空気中の埃を乾燥させ、細菌を死滅させて、安全で快適な生活空間を作り出すことができ、院内感染を効率的に防止することができる。
(9)冷房用配管系統と暖房用配管系統のいずれを選択して冷媒を循環させた場合でも、第2熱交換器には常に低温低圧の冷媒液が流れるため、第2熱交換器における冷媒の温度を安定化させることができ、第1熱交換器を通過する空気を確実に安定して冷却することができ、熱交換の安定性、確実性に優れ、冷房及び暖房の効率性、安定性を向上させることができる。
(10)冷房用配管系統及び暖房用配管系統を流れる冷媒がそれぞれ第1レシーバタンク及び第2レシーバタンクを経由することにより、冷媒の圧力を下げ、液化を促進して冷媒の温度を下げることができ、熱交換の効率性を高め、省エネルギー性を向上させることができる。
(11)常に圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、冷房用配管系統と暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことができ、設定温度(目標温度)に対して、±2℃程度の範囲で温度を制御することが可能で、室内の温度斑が少なく、温湿度制御の安定性、確実性に優れる。
In order to solve the above problems, an air conditioner of the present invention has the following configuration.
The air conditioner according to claim 1 of the present invention has a first heat exchange part arranged on the downstream side and a second heat exchange part arranged on the upstream side with respect to the air flow inside the indoor unit. 1 heat exchanger, 2nd heat exchanger arrange | positioned downstream of the said 1st heat exchanger, 1st heat exchange part arrange | positioned downstream, and 2nd heat exchange part arrange | positioned upstream A third heat exchanger disposed downstream of the second heat exchanger, (a) a compressor , the first heat exchange part of the first heat exchanger, A cooling piping system for connecting the one receiver tank, the second heat exchange part of the first heat exchanger, the second receiver tank, the expansion valve, and the second heat exchanger to circulate the refrigerant. If, (b) said compressor, said first heat exchange portion of the third heat exchanger, said first receiver tank, and the second heat exchanging portion of the third heat exchanger, before A heating piping system that connects the second receiver tank, the expansion valve, and the second heat exchanger to circulate the refrigerant, and constantly circulates the refrigerant by operating the compressor. By switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature, the temperature decreasing operation and the temperature increasing operation are repeated.
This configuration has the following effects.
(1) Since the first heat exchanger and the third heat exchanger disposed inside the indoor unit are multistage heat exchangers having a first heat exchange part and a second heat exchange part, respectively, the heat capacity Can be greatly increased, while the refrigerant is liquefied and cooled reliably, heat can be exchanged stably with the air flowing inside the indoor unit, and air conditioning and dehumidification can be performed reliably and efficiently. There is no need for an outdoor unit, it is not affected by the outside air temperature during operation, the temperature adjustment and dehumidification performance can be improved, and the operation efficiency and stability are excellent, and warm air is released outside during cooling. In this way, the rise in outside air temperature is suppressed, fan noise is eliminated, global warming can be prevented, and energy saving and environmental protection are excellent.
(2) a compressor , a first heat exchange part of the first heat exchanger, a first receiver tank, a second heat exchange part of the first heat exchanger, a second receiver tank, an expansion valve, 2 having a cooling piping system that circulates the refrigerant by connecting the two heat exchangers, the refrigerant cooled while being liquefied in the first heat exchange section of the first heat exchanger is supplied to the second heat exchanger. By sending it to the heat exchange section, it can be further cooled, and the temperature of the refrigerant passing through the second heat exchanger on the downstream side can be reliably and effectively lowered to improve the cooling efficiency and dehumidification performance, thereby saving energy. Excellent in properties.
(3) In the cooling piping system, the first heat exchanger between the first heat exchanger and the second heat exchanger and the second heat exchanger of the first heat exchanger and the expansion valve are respectively By arranging the 1 receiver tank and the 2nd receiver tank, the refrigerants in different states after passing through the first heat exchange part and the second heat exchange part of the first heat exchanger are not mixed, Heat exchange can be performed reliably in the first heat exchanger and the second heat exchanger, and operation stability and reliability are excellent.
(4) Since the expansion valve is disposed between the second receiver tank and the second heat exchanger of the cooling piping system, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. It can be sent to the second heat exchanger on the downstream side. After the air taken in from the room is once heated by the first heat exchanger, it is cooled by the second heat exchanger through which the low-temperature and low-pressure refrigerant liquid flows. Cooling operation can be performed by cooling reliably while dehumidifying efficiently due to a large temperature difference, and it is excellent in dehumidifying performance, cooling efficiency and energy saving, and passes through a narrow space between the fins of the heat exchanger The air can be micronized to generate negative ions, and the dehumidified dehumidified water (condensation water) is drained, so that there is no bacteria and dust in the blown air, and the generation of static electricity is prevented. Can be safe and secure In can provide a comfortable space.
(5) a compressor , a first heat exchange part of the third heat exchanger, a first receiver tank, a second heat exchange part of the third heat exchanger, a second receiver tank, an expansion valve, Since the heating piping system for circulating the refrigerant by connecting the two heat exchangers is provided, the refrigerant that has radiated heat while being liquefied in the first heat exchange section of the third heat exchanger is second heat of the third heat exchanger. By sending it to the exchange unit, it is possible to further dissipate heat, and the air taken in from the room can be heated reliably and effectively by the third heat exchanger, and heating efficiency and energy saving can be achieved. Excellent.
(6) In the heating piping system, between the first heat exchange part and the second heat exchange part of the third heat exchanger and between the second heat exchange part and the expansion valve of the third heat exchanger, respectively. By arranging the 1 receiver tank and the second receiver tank, refrigerants having different states after passing through the first heat exchange part and the second heat exchange part of the third heat exchanger are not mixed, Heat exchange can be performed reliably in the third heat exchanger and the second heat exchanger, and operation stability and reliability are excellent.
(7) Since the expansion valve is disposed between the second receiver tank and the second heat exchanger of the heating piping system, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. The third heat exchanger that can be sent to the second heat exchanger on the upstream side, and once the air taken in from the room is dehumidified and cooled by the second heat exchanger, then high-temperature to medium-temperature high-pressure refrigerant gas flows. It can be heated and dried with a large temperature difference, can be efficiently dehumidified, has excellent dehumidifying performance, and can pass through a narrow space to micronize air and generate negative ions. By draining the dehumidified dehumidified water (condensation water), there is no bacteria and dust in the blown air, it is possible to prevent the generation of static electricity, and a safe, safe and comfortable space can be realized.
(8) When the refrigerant is circulated by the cooling piping system, the air taken in from the room and heated by the first heat exchanger is dehumidified and cooled by the second heat exchanger to generate dew condensation. When circulating the refrigerant through the system, the air taken in from the room is dehumidified and cooled by the second heat exchanger to generate dew, thereby removing dew and dust contained in the air and dew condensation water. It can be discharged together to prevent the propagation of germs and the like, and fresh and clean air can be supplied indoors. Particularly in humid hospital spaces in Japan, bacteria grow in invisible dust in the air, and inhalation of the air may cause infection and disease. By setting the value to 30% or less throughout the year, it is possible to dry dust in the air, kill bacteria, create a safe and comfortable living space, and effectively prevent nosocomial infections.
(9) Even when either the cooling piping system or the heating piping system is selected and the refrigerant is circulated, the low-temperature and low-pressure refrigerant liquid always flows through the second heat exchanger, so the refrigerant in the second heat exchanger The temperature of the air can be stabilized, the air passing through the first heat exchanger can be reliably and stably cooled, and the heat exchange stability and reliability are excellent, and the efficiency and stability of cooling and heating are stable. Can be improved.
(10) The refrigerant flowing through the cooling piping system and the heating piping system passes through the first receiver tank and the second receiver tank, respectively, thereby reducing the refrigerant pressure and promoting liquefaction to lower the refrigerant temperature. It is possible to improve the efficiency of heat exchange and improve energy saving.
(11) Repeating the temperature lowering operation and the temperature increasing operation by switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature while always operating the compressor and circulating the refrigerant. It is possible to control the temperature within a range of about ± 2 ° C. with respect to the set temperature (target temperature), there are few indoor temperature spots, and the stability and certainty of temperature / humidity control is excellent.

ここで、この空調機は、室内機に複数の熱交換器を並設して内蔵することにより、従来、室外機に内蔵されていた熱交換器を省略したものである。
尚、室外機に内蔵されていた圧縮機は室内機に内蔵することもできるが、室外に設置してもよい。
また、室内機には従来と同様に室内用ファンが内蔵され、室内の空気を循環させることができる。室内用ファンは、室内機内部の空気の流れの中で、第3熱交換器よりも下流側に配置することが好ましい。室内の空気を室内用ファンで引っ張ることにより、第1熱交換器、第2熱交換器、第3熱交換器の全体に対して斑なく確実に空気を通過させることができ、熱交換の効率性、確実性に優れるためである。
尚、膨張弁は、冷房用配管系統及び暖房用配管系統における第1熱交換器の第2熱交換部と第2熱交換器との間に配設されるが、冷媒配管の一部を共通化することにより、1つの膨張弁を共有することができ、冷媒配管の簡素化、コンパクト化を図ることができる。
Here, this air conditioner omits the heat exchanger conventionally incorporated in the outdoor unit by arranging a plurality of heat exchangers in the indoor unit in parallel.
In addition, although the compressor incorporated in the outdoor unit can be incorporated in the indoor unit, it may be installed outside.
Further, the indoor unit has a built-in indoor fan as in the conventional case, and indoor air can be circulated. The indoor fan is preferably disposed downstream of the third heat exchanger in the air flow inside the indoor unit. By pulling the indoor air with the indoor fan, the air can be surely passed through the first heat exchanger, the second heat exchanger, and the third heat exchanger, and the heat exchange efficiency. It is because it is excellent in property and certainty.
The expansion valve is disposed between the second heat exchanger and the second heat exchanger of the first heat exchanger in the cooling piping system and the heating piping system, but a part of the refrigerant piping is shared. Therefore, one expansion valve can be shared, and the refrigerant piping can be simplified and made compact.

この空調機の温度の制御は、サーモスタットによって行われ、温度センサで検出した室内の温度と設定温度(目標温度)に基づいて圧縮機や室内用ファンなどの運転を制御する。そして、設定温度と室内の温度を比較し、設定温度が室内の温度よりも高い場合と、設定温度が室内の温度よりも低い場合とで、冷房用配管系統と暖房用配管系統の切り替えを行う。
尚、冷房用配管系統と暖房用配管系統の経路(冷媒配管)は一部共通しており、圧縮機の下流側に配設される切替部を切り替えることにより、圧縮機で圧縮された高温高圧の冷媒ガスを冷房用配管系統の第1熱交換器に供給するか、暖房用配管系統の第3熱交換器に供給するかを切り替えることができる。切替部としては、電磁弁の開閉で冷媒の流れの有無を選択するものが好適に用いられる。
従来の空調機では、室内の温度が設定温度に達した時には圧縮機の運転を停止して送風のみを行い、時間経過と共に室内の温度が変化し始めると、再び圧縮機の運転を開始するという動作を繰り返しているため、室内の温度が安定せず、部屋の隅々まで設定温度に達することが困難で、温度斑が発生し易いが、この空調機においては、常に圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、冷房用配管系統と暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことができ、設定温度(目標温度)に対して、±2℃程度の範囲で温度を制御することが可能で、室内の温度斑が少なく、温湿度制御の安定性、確実性に優れる。
The temperature of the air conditioner is controlled by a thermostat, and the operation of the compressor and the indoor fan is controlled based on the indoor temperature detected by the temperature sensor and the set temperature (target temperature). Then, the set temperature and the room temperature are compared, and switching between the cooling piping system and the heating piping system is performed when the set temperature is higher than the room temperature and when the set temperature is lower than the room temperature. .
The route of the heating piping system and the cooling piping system (refrigerant pipe) is common part, by switching the switching unit disposed on the downstream side of the compressor, high temperature and high pressure compressed by the compressor It can be switched whether to supply the refrigerant gas to the first heat exchanger of the cooling piping system or to the third heat exchanger of the heating piping system. As the switching unit, one that selects the presence or absence of the refrigerant flow by opening and closing the electromagnetic valve is preferably used.
In the conventional air conditioner, when the room temperature reaches the set temperature, the compressor operation is stopped and only the air is blown. When the room temperature starts to change over time, the compressor operation is started again. Since the operation is repeated, the room temperature is not stable, it is difficult to reach the set temperature to every corner of the room, and temperature spots are likely to occur. In this air conditioner, the compressor is always operated. While circulating the refrigerant, the temperature lowering operation and the temperature increasing operation can be repeated by switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature, and the set temperature (target temperature) is reached. On the other hand, the temperature can be controlled in a range of about ± 2 ° C., and there are few indoor temperature spots, and the stability and reliability of temperature and humidity control is excellent.

本考案の請求項2に記載の空調機は、室内機の内部の空気の流れに対し、上流側に配設される第1熱交換器と、下流側に配置される第1熱交換部と上流側に配置される第2熱交換部を有し前記第1熱交換器の下流側に配設される第2熱交換器と、前記第2熱交換器の下流側に配設される第3熱交換器と、を備え、(a)圧縮機と、前記第2熱交換器の前記第1熱交換部と、第1レシーバタンクと、前記第2熱交換器の前記第2熱交換部と、第2レシーバタンクと、膨張弁と、前記第3熱交換器と、を接続して冷媒を循環させる冷房用配管系統と、(b)前記圧縮機と、前記第2熱交換器の前記第1熱交換部と、前記第1レシーバタンクと、前記第2熱交換器の前記第2熱交換部と、前記第2レシーバタンクと、前記膨張弁と、前記第1熱交換器と、を接続して冷媒を循環させる暖房用配管系統と、を備え、常に前記圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、前記冷房用配管系統と前記暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返す構成を有している。
この構成により、以下の作用を有する。
(1)室内機の内部に配設される第2熱交換器が第1熱交換部及び第2熱交換部を有する多段式の熱交換器であることにより、熱容量を大幅に増加させることができ、冷媒を確実に液化させて冷却しながら、室内機の内部を流れる空気と安定して熱交換を行い、確実かつ効率的に冷暖房や除湿を行うことができ、室外機が不要で、運転時に外気温の影響などを受けることがなく、温度調整や除湿の性能を高めることができ、運転の効率性、安定性に優れると共に、冷房時に室外に温風が放出されることがなく、外気温の上昇を抑え、ファンの騒音もなく、地球温暖化を防ぐことができ、省エネルギー性、環境保護性に優れる。
(2)圧縮機と、第2熱交換器の第1熱交換部と、第1レシーバタンクと、第2熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第3熱交換器と、を接続して冷媒を循環させる冷房用配管系統を有するので、第2熱交換器の第1熱交換部で液化しながら冷却された冷媒を第2熱交換器の第2熱交換部に送ることにより、さらに冷却することができ、下流側の第3熱交換器を通過する冷媒の温度を確実かつ効果的に下げて、冷房効率や除湿性能を高めることができ、省エネルギー性に優れる。
(3)冷房用配管系統において、第2熱交換器の第1熱交換部と第2熱交換部の間、及び第2熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第2熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第2熱交換器及び第3熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(4)冷房用配管系統の第2レシーバタンクと第3熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として下流側の第2熱交換器に送ることができ、室内から取り込まれた空気を第2熱交換器で一旦、加熱した後、低温低圧の冷媒液が流れる第3熱交換器で冷却することにより、大きな温度差によって効率的に除湿しながら確実に冷却して冷房運転を行うことができ、除湿性能及び冷房の効率性、省エネルギー性に優れると共に、熱交換器のフィン間の狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、送風される空気中に細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(5)圧縮機と、第2熱交換器の第1熱交換部と、第1レシーバタンクと、第2熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第1熱交換器と、を接続して冷媒を循環させる暖房用配管系統を有するので、第2熱交換器の第1熱交換部で液化しながら放熱した冷媒を第2熱交換器の第2熱交換部に送ることにより、さらに放熱させることができ、室内から取り込まれた空気を第2熱交換器で確実かつ効果的に加熱して暖房を行うことができ、暖房の効率性、省エネルギー性に優れる。
(6)暖房用配管系統において、第2熱交換器の第1熱交換部と第2熱交換部の間、及び第2熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第2熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第2熱交換器及び第1熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(7)暖房用配管系統の第2レシーバタンクと第1熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として上流側の第1熱交換器に送ることができ、室内から取り込まれた空気を第1熱交換器で一旦、除湿、冷却した後、高温乃至中温で高圧の冷媒ガスが流れる第3熱交換器で加熱、乾燥することができ、大きな温度差と、狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(8)冷房用配管系統により冷媒を循環させる場合には、室内から取り込まれ第2熱交換器で加熱された空気を第3熱交換器で除湿、冷却して結露を発生させ、暖房用配管系統により冷媒を循環させる場合には、室内から取り込まれた空気を第1熱交換器で除湿、冷却して結露を発生させることにより、空気中に含まれる塵や埃などを除去して結露水と共に排出し、雑菌などの繁殖を防ぎ、新鮮で清浄な空気を室内に供給することができる。特に湿気の多い日本の病院内の空間では、空気中の目に見えない埃の中に細菌が繁殖しており、その空気を吸うことによって感染、発病することがあるが、病院内の相対湿度を年間を通して30%以下にすることにより、空気中の埃を乾燥させ、細菌を死滅させて、安全で快適な生活空間を作り出すことができ、院内感染を効率的に防止することができる。
(9)冷房用配管系統及び暖房用配管系統を流れる冷媒がそれぞれ第1レシーバタンク及び第2レシーバタンクを経由することにより、冷媒の圧力を下げ、液化を促進して冷媒の温度を下げることができ、熱交換の効率性を高め、省エネルギー性を向上させることができる。
(10)常に圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、冷房用配管系統と暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことができ、設定温度(目標温度)に対して、±2℃程度の範囲で温度を制御することが可能で、室内の温度斑が少なく、温湿度制御の安定性、確実性に優れる。
The air conditioner according to claim 2 of the present invention includes a first heat exchanger disposed on the upstream side and a first heat exchange unit disposed on the downstream side with respect to the air flow inside the indoor unit. A second heat exchanger having a second heat exchange section disposed on the upstream side and disposed on the downstream side of the first heat exchanger, and a second heat exchanger disposed on the downstream side of the second heat exchanger. 3 heat exchangers, (a) the compressor , the first heat exchange part of the second heat exchanger, the first receiver tank, and the second heat exchange part of the second heat exchanger. A cooling piping system that connects the second receiver tank, the expansion valve, and the third heat exchanger to circulate the refrigerant, (b) the compressor, and the second heat exchanger. The first heat exchange unit, the first receiver tank, the second heat exchange unit of the second heat exchanger, the second receiver tank, the expansion valve, and the first heat exchange And a heating piping system that circulates the refrigerant by connecting the cooling piping system and the cooling piping system according to a set temperature and an indoor temperature while always operating the compressor and circulating the refrigerant. By switching the heating piping system, the temperature decreasing operation and the temperature increasing operation are repeated.
This configuration has the following effects.
(1) The second heat exchanger disposed inside the indoor unit is a multi-stage heat exchanger having a first heat exchange part and a second heat exchange part, so that the heat capacity can be greatly increased. The refrigerant can be liquefied and cooled, and heat can be exchanged stably with the air flowing inside the indoor unit, and air conditioning and dehumidification can be performed reliably and efficiently. The temperature adjustment and dehumidification performance can be improved without being affected by the outside air temperature from time to time, the operation efficiency and stability are excellent, and the warm air is not released outside during cooling. Suppresses the rise in temperature, eliminates fan noise, prevents global warming, and excels in energy saving and environmental protection.
(2) a compressor , a first heat exchange part of the second heat exchanger, a first receiver tank, a second heat exchange part of the second heat exchanger, a second receiver tank, an expansion valve, And a cooling piping system that circulates the refrigerant by connecting the three heat exchangers, the refrigerant cooled while being liquefied in the first heat exchange part of the second heat exchanger is supplied to the second heat exchanger. By sending it to the heat exchange section, it can be further cooled, the temperature of the refrigerant passing through the third heat exchanger on the downstream side can be reliably and effectively lowered, and the cooling efficiency and dehumidification performance can be improved, thereby saving energy. Excellent in properties.
(3) In the cooling piping system, the first heat exchange part and the second heat exchange part of the second heat exchanger, and the second heat exchange part and the expansion valve of the second heat exchanger, respectively. By arranging the 1 receiver tank and the 2nd receiver tank, the refrigerants in different states after passing through the first heat exchange part and the second heat exchange part of the second heat exchanger are not mixed, Heat exchange can be reliably performed in the second heat exchanger and the third heat exchanger, and operation stability and reliability are excellent.
(4) Since the expansion valve is disposed between the second receiver tank and the third heat exchanger of the cooling piping system, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. It can be sent to the second heat exchanger on the downstream side. After the air taken in from the room is once heated by the second heat exchanger, it is cooled by the third heat exchanger through which the low-temperature and low-pressure refrigerant liquid flows. Cooling operation can be performed by cooling reliably while dehumidifying efficiently due to a large temperature difference, and it is excellent in dehumidifying performance, cooling efficiency and energy saving, and passes through a narrow space between the fins of the heat exchanger The air can be micronized to generate negative ions, and the dehumidified dehumidified water (condensation water) is drained, so that there is no bacteria and dust in the blown air, and the generation of static electricity is prevented. Can be safe and secure In can provide a comfortable space.
(5) a compressor , a first heat exchange part of the second heat exchanger, a first receiver tank, a second heat exchange part of the second heat exchanger, a second receiver tank, an expansion valve, 1 has a heating piping system that circulates the refrigerant by connecting the heat exchanger, so that the refrigerant that has dissipated heat while being liquefied in the first heat exchange section of the second heat exchanger is second heat of the second heat exchanger. By sending it to the exchange unit, it is possible to further dissipate heat, and the air taken from the room can be heated reliably and effectively with the second heat exchanger, and heating efficiency and energy saving can be improved. Excellent.
(6) In the heating piping system, the first heat exchange part and the second heat exchange part of the second heat exchanger, and the second heat exchange part and the expansion valve of the second heat exchanger, respectively. By arranging the 1 receiver tank and the 2nd receiver tank, the refrigerants in different states after passing through the first heat exchange part and the second heat exchange part of the second heat exchanger are not mixed, Heat exchange can be reliably performed in the second heat exchanger and the first heat exchanger, and operation stability and reliability are excellent.
(7) Since the expansion valve is disposed between the second receiver tank of the heating piping system and the first heat exchanger, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. A third heat exchanger that can be sent to the first heat exchanger on the upstream side, and after the air taken in from the room is once dehumidified and cooled by the first heat exchanger, a high-pressure to medium-temperature high-pressure refrigerant gas flows It can be heated and dried with a large temperature difference and by passing through a narrow space, the air can be micronized to generate negative ions, and dehumidified dehumidified water (condensation water) can be drained In addition, there is no bacteria or dust, and it is possible to prevent the generation of static electricity, thus realizing a safe, secure and comfortable space.
(8) When the refrigerant is circulated by the cooling piping system, the air taken from the room and heated by the second heat exchanger is dehumidified and cooled by the third heat exchanger to generate dew condensation. When the refrigerant is circulated by the system, the air taken in from the room is dehumidified and cooled by the first heat exchanger to generate dew condensation, thereby removing dew and dust contained in the air and dew condensation water. It can be discharged together to prevent the propagation of germs and the like, and fresh and clean air can be supplied indoors. Particularly in humid hospital spaces in Japan, bacteria grow in invisible dust in the air, and inhalation of the air may cause infection and disease. By setting the value to 30% or less throughout the year, it is possible to dry dust in the air, kill bacteria, create a safe and comfortable living space, and effectively prevent nosocomial infections.
(9) The refrigerant flowing through the cooling piping system and the heating piping system passes through the first receiver tank and the second receiver tank, respectively, thereby reducing the pressure of the refrigerant and promoting liquefaction to lower the temperature of the refrigerant. It is possible to improve the efficiency of heat exchange and improve energy saving.
(10) The temperature lowering operation and the temperature increasing operation are repeated by switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature while always operating the compressor and circulating the refrigerant. It is possible to control the temperature within a range of about ± 2 ° C. with respect to the set temperature (target temperature), there are few indoor temperature spots, and the stability and certainty of temperature / humidity control is excellent.

ここで、請求項2の空調機は、請求項1の空調機と配管系統(循環経路)が異なるだけで、その他の構成は請求項1と同様なので説明を省略する。   Here, the air conditioner of claim 2 is different from the air conditioner of claim 1 only in the piping system (circulation path), and the other configuration is the same as that of claim 1 and thus the description thereof is omitted.

請求項3に記載の考案は、請求項1又は2に記載の空調機であって、前記第1レシーバタンクの出口側に配設された補助膨張弁を備えている構成を有している。
この構成により、請求項1又は2の作用に加え、以下の作用を有する。
(1)第1レシーバタンクの出口側に配設された補助膨張弁を備えることにより、冷媒の圧力をさらに低下させて、より温度の低い状態で冷房用配管系統又は暖房用配管系統の下流側へ冷媒を送ることができ、熱交換を促進して冷暖房の効率性を高めることができ、運転の効率性、省エネルギー性に優れる。
Invention of Claim 3 is an air conditioner of Claim 1 or 2, Comprising: It has the structure provided with the auxiliary | assistant expansion valve arrange | positioned at the exit side of the said 1st receiver tank.
With this configuration, in addition to the operation of the first or second aspect, the following operation is provided.
(1) By providing an auxiliary expansion valve disposed on the outlet side of the first receiver tank, the refrigerant pressure is further reduced, and the cooling piping system or the heating piping system downstream in a lower temperature state. The refrigerant can be sent to the air, heat exchange can be promoted to improve the efficiency of air conditioning, and the operation efficiency and energy saving are excellent.

ここで、請求項1の空調機においては、第1レシーバタンクの出口から第1熱交換器の第2熱交換部の入口に繋がる冷房用配管系統と、第1レシーバタンクの出口から第3熱交換器の第2熱交換部の入口に繋がる暖房用配管系統に分岐しているが、冷房用配管系統と暖房用配管系統が分岐する手前に補助膨張弁を配設することが好ましい。これにより、冷房用配管系統と暖房用配管系統で補助膨張弁を共有することができ、補助膨張弁で圧力を低下させた冷媒を確実に第1熱交換器の第2熱交換部又は第3熱交換器の第2熱交換部に選択的に送ることができる。
また、請求項2の空調機においては、第1レシーバタンクの出口から第2熱交換器の第2熱交換部の入口に至るまでの間に補助膨張弁を配設することができる。
Here, in the air conditioner according to the first aspect, the cooling piping system connected from the outlet of the first receiver tank to the inlet of the second heat exchange part of the first heat exchanger, and the third heat from the outlet of the first receiver tank. Although it branches to the heating piping system connected to the inlet of the second heat exchange section of the exchanger, it is preferable to dispose the auxiliary expansion valve before the cooling piping system and the heating piping system branch. Thereby, the auxiliary expansion valve can be shared by the cooling piping system and the heating piping system, and the refrigerant whose pressure has been reduced by the auxiliary expansion valve is reliably supplied to the second heat exchange section or the third heat exchanger of the first heat exchanger. It can be selectively sent to the second heat exchange part of the heat exchanger.
In the air conditioner of the second aspect, the auxiliary expansion valve can be disposed from the outlet of the first receiver tank to the inlet of the second heat exchange part of the second heat exchanger.

請求項1に記載の考案によれば、以下のような効果を有する。
(1)熱交換器の熱容量を大幅に増加させ、冷媒を確実に液化させて冷却しながら、室内機の内部を流れる空気と安定して熱交換を行い、確実かつ効率的に冷暖房を行うことができ、室外機が不要で、運転時に外気温の影響などを受けることがなく、温度調整や除湿の性能を高めることができ、運転の効率性、安定性に優れ、冷房時に室外に温風が放出されることがなく、外気温の上昇を抑え、ファンの騒音もなく、地球温暖化を防ぐことができる省エネルギー性、環境保護性に優れた空調機を提供することができる。
(2)常に圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、冷房用配管系統と暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことができ、設定温度(目標温度)に対して、±2℃程度の範囲で温度を制御することが可能で、室内の温度斑が少なく、温湿度制御の安定性、確実性に優れる。
The device according to claim 1 has the following effects.
(1) The heat capacity of the heat exchanger is greatly increased, and the refrigerant is liquefied and cooled, while stably exchanging heat with the air flowing through the interior of the indoor unit to reliably and efficiently perform cooling and heating. It does not require an outdoor unit, is not affected by the outside air temperature during operation, can improve temperature adjustment and dehumidification performance, has excellent operation efficiency and stability, and has warm air outside during cooling. Therefore, it is possible to provide an air conditioner excellent in energy saving and environmental protection that can suppress global warming without suppressing the rise of outside air temperature, without fan noise, and preventing global warming.
(2) The temperature lowering operation and the temperature increasing operation are repeated by switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature while always operating the compressor and circulating the refrigerant. It is possible to control the temperature within a range of about ± 2 ° C. with respect to the set temperature (target temperature), there are few indoor temperature spots, and the stability and certainty of temperature / humidity control is excellent.

請求項2に記載の考案によれば、請求項1と同様の効果を有する。   According to the device of the second aspect, the same effect as that of the first aspect is obtained.

請求項3に記載の考案によれば、請求項1又は2の効果に加え、以下のような効果を有する。
(1)冷媒の圧力を低下させて、より温度の低い状態で冷房用配管系統又は暖房用配管系統の下流側へ冷媒を送ることができ、熱交換を促進して冷暖房の効率性及び除湿能力を高めることができる運転の効率性、省エネルギー性に優れた空調機を提供することができる。
According to the invention described in claim 3, in addition to the effect of claim 1 or 2, the following effect is obtained.
(1) Refrigerant pressure can be reduced, and the refrigerant can be sent to the downstream side of the cooling piping system or heating piping system at a lower temperature, promoting heat exchange and cooling efficiency and dehumidifying capacity It is possible to provide an air conditioner excellent in driving efficiency and energy saving.

実施の形態1の空調機における冷房運転時の冷媒の循環路を示す要部断面模式図Cross-sectional schematic diagram of relevant parts showing a refrigerant circulation path during cooling operation in the air conditioner of Embodiment 1 実施の形態1の空調機における暖房運転時の冷媒の循環路を示す要部断面模式図Cross-sectional schematic diagram of relevant parts showing a refrigerant circulation path during heating operation in the air conditioner of Embodiment 1 実施の形態2の空調機における冷房運転時の冷媒の循環路を示す要部断面模式図Cross-sectional schematic diagram of relevant parts showing the refrigerant circulation path during cooling operation in the air conditioner of Embodiment 2. 実施の形態2の空調機における暖房運転時の冷媒の循環路を示す要部断面模式図Cross-sectional schematic diagram of relevant parts showing a refrigerant circulation path during heating operation in the air conditioner of the second embodiment.

(実施の形態1)
本考案の実施の形態1における空調機について、以下図面を参照しながら説明する。
図1は実施の形態1の空調機における冷房運転時の冷媒の循環路を示す要部断面模式図である。
図1中、1は実施の形態1の空調機、2は空調機1の室内機、3Aは室内機2の内部の空気の流れに対し、下流側に配置される第1熱交換部3aと上流側に配置される第2熱交換部3bを有する第1熱交換器、4Aは第1熱交換器3Aの下流側に配設される第2熱交換器、5Aは下流側に配置される第1熱交換部5aと上流側に配置される第2熱交換部5bを有し第2熱交換器4Aの下流側に配設される第3熱交換器、6Aは後述する圧縮機8と、第1熱交換器3Aの第1熱交換部3aと、後述する第1レシーバタンク10aと、第1熱交換器3Aの第2熱交換部3bと、後述する第2レシーバタンク10bと、後述する膨張弁11と、第2熱交換器4Aと、を接続して冷媒を循環させる冷房用配管系統、7Aは後述する圧縮機8と、第3熱交換器5Aの第1熱交換部5aと、後述する第1レシーバタンク10aと、第3熱交換器5Aの第2熱交換部5bと、後述する第2レシーバタンク10bと、後述する膨張弁11と、第2熱交換器4Aと、を接続して冷媒を循環させる暖房用配管系統、8は冷房用配管系統6A及び暖房用配管系統7Aの内部を流れる冷媒を圧縮する圧縮機、9a,9bは圧縮機8の下流側で分岐した冷房用配管系統6A及び暖房用配管系統7Aの分岐箇所にそれぞれ配設された電磁弁、10a,10bはそれぞれ第1熱交換器3Aの第1熱交換部3aの出口と第2熱交換部3bの入口との間、及び第1熱交換器3Aの第2熱交換部3bの出口と第2熱交換器4Aの入口との間に配設された第1レシーバタンク及び第2レシーバタンク、11は第2レシーバタンク10bと第2熱交換器4Aとの間に配設された膨張弁、12は冷房用配管系統6A及び暖房用配管系統7Aの分岐部にそれぞれ配設され冷媒の流れを切り替える切替部、13は圧縮機8の上流側に配設されたアキュムレータ、14は室内機2の内部の空気の流れの中で第3熱交換器5Aの下流側に配置されて室内と室内機2との間で空気を循環させる室内用ファンである。
(Embodiment 1)
The air conditioner in Embodiment 1 of this invention is demonstrated referring drawings below.
FIG. 1 is a schematic cross-sectional view of an essential part showing a refrigerant circulation path during cooling operation in the air conditioner of the first embodiment.
In FIG. 1, 1 is the air conditioner of the first embodiment, 2 is the indoor unit of the air conditioner 1, and 3 </ b> A is a first heat exchange unit 3 a disposed on the downstream side with respect to the air flow inside the indoor unit 2. A first heat exchanger having a second heat exchange section 3b arranged on the upstream side, 4A is a second heat exchanger arranged on the downstream side of the first heat exchanger 3A, and 5A is arranged on the downstream side. A third heat exchanger having a first heat exchanging part 5a and a second heat exchanging part 5b arranged on the upstream side and arranged on the downstream side of the second heat exchanger 4A, 6A is a compressor 8 described later. The first heat exchanger 3a of the first heat exchanger 3A, the first receiver tank 10a described later, the second heat exchanger 3b of the first heat exchanger 3A, the second receiver tank 10b described later, and the later described an expansion valve 11 to the cooling piping system for circulating a coolant and the second heat exchanger 4A, the connecting, 7A is a compressor 8 to be described later, the third heat The first heat exchange part 5a of the exchanger 5A, the first receiver tank 10a described later, the second heat exchange part 5b of the third heat exchanger 5A, the second receiver tank 10b described later, and the expansion valve 11 described later. And the second heat exchanger 4A are connected to circulate the refrigerant, and the heating piping system 8 is a compressor that compresses the refrigerant flowing inside the cooling piping system 6A and the heating piping system 7A, 9a and 9b. Are the solenoid valves 10a and 10b respectively provided at the branching points of the cooling piping system 6A and the heating piping system 7A branched on the downstream side of the compressor 8, and are respectively the first heat exchange portions of the first heat exchanger 3A. Between the outlet 3a and the inlet of the second heat exchanger 3b and between the outlet of the second heat exchanger 3b of the first heat exchanger 3A and the inlet of the second heat exchanger 4A. 1 receiver tank and 2nd receiver tank, 11 is 2nd receiver tank An expansion valve 12 disposed between the second heat exchanger 4A and the second heat exchanger 4A, and a switching unit 12 for switching the flow of refrigerant respectively disposed at the branching portions of the cooling piping system 6A and the heating piping system 7A, 13 Is an accumulator disposed on the upstream side of the compressor 8, and 14 is disposed on the downstream side of the third heat exchanger 5 </ b> A in the air flow inside the indoor unit 2. It is an indoor fan that circulates air.

以上のように構成された実施の形態1の空調機1の温度の制御は、従来の空調機と同様にサーモスタット(図示せず)によって行われ、温度センサ(図示せず)で検出した室内の温度と設定温度(目標温度)に基づいて圧縮機8や電磁弁9a,9b、室内用ファン13などの運転を制御する。そして、設定温度と室内の温度を比較し、設定温度が室内の温度よりも高い場合と、設定温度が室内の温度よりも低い場合とで、制御部(図示せず)の指示に基づいて各々の切替部12を切り替えて冷房用配管系統6Aと暖房用配管系統7Aの選択を行う。 Control of the temperature of the air conditioner 1 of the first embodiment configured as described above is performed by a thermostat (not shown) in the same manner as a conventional air conditioner, and is detected by a temperature sensor (not shown). Based on the temperature and the set temperature (target temperature), the operation of the compressor 8, the electromagnetic valves 9a and 9b, the indoor fan 13 and the like is controlled. Then, the set temperature and the room temperature are compared, and the case where the set temperature is higher than the room temperature and the case where the set temperature is lower than the room temperature are based on instructions from a control unit (not shown). The switching unit 12 is switched to select the cooling piping system 6A and the heating piping system 7A.

まず、実施の形態1の空調機の温度下降運転時の動作について説明する。
尚、破線の矢印は温度下降運転時の冷媒の流れを示している。
図1において、空調機1の運転中に、温度センサ(図示せず)で検出した室内の温度が設定温度よりも高い時(冷房運転時)は、冷房用配管系統6Aの電磁弁9aが開き、暖房用配管系統7Aの電磁弁9bが閉じて、冷媒は破線の矢印で示すように冷房用配管系統6Aを循環する。
圧縮機8から第1熱交換器3Aに送られた高温高圧の冷媒ガスは、まず第1熱交換部3aを通過することにより液化しながら冷却され、第1レシーバタンク10aへと入り、さらに第1熱交換器3Aの第2熱交換部3bを通過して冷却されることにより低温高圧の冷媒液となって第2レシーバタンク10bへと入る。
第2レシーバタンク10bを出た低温高圧の冷媒液は膨張弁11によって低温低圧の冷媒液となって第2熱交換器4Aへと送られる。
First, the operation during the temperature lowering operation of the air conditioner of Embodiment 1 will be described.
In addition, the arrow of a broken line has shown the flow of the refrigerant | coolant at the time of temperature fall operation.
In FIG. 1, when the temperature of the room detected by a temperature sensor (not shown) is higher than the set temperature (during cooling operation) during operation of the air conditioner 1, the electromagnetic valve 9a of the cooling piping system 6A is opened. Then, the solenoid valve 9b of the heating piping system 7A is closed, and the refrigerant circulates through the cooling piping system 6A as indicated by the dashed arrows.
The high-temperature and high-pressure refrigerant gas sent from the compressor 8 to the first heat exchanger 3A is cooled while being liquefied by first passing through the first heat exchanger 3a, enters the first receiver tank 10a, and further By passing through the second heat exchanging portion 3b of the 1 heat exchanger 3A and being cooled, it becomes a low-temperature and high-pressure refrigerant liquid and enters the second receiver tank 10b.
The low-temperature and high-pressure refrigerant liquid exiting the second receiver tank 10b is sent to the second heat exchanger 4A by the expansion valve 11 as a low-temperature and low-pressure refrigerant liquid.

一方、室内用ファン14によって室内から室内機2の内部に取り込まれた空気は、中温乃至高温で高圧の冷媒ガスが流れる第1熱交換器3Aの第2熱交換部3b及び第1熱交換部3aを通過することにより、一旦加熱される。
第1熱交換器3Aを通過して加熱された空気は、低温低圧の冷媒液が流れる第2熱交換器4Aを通過することにより除湿、冷却され、室内に送風される。このとき、第2熱交換器4Aを流れる低温低圧の冷媒液が熱を吸収して蒸発し、低温低圧の冷媒ガスとなり、アキュムレータ13へ送られ、圧縮機8で圧縮されて高温高圧の冷媒ガスとなって、再び第1熱交換器3Aへと送られる。
On the other hand, the air taken into the interior of the indoor unit 2 from the room by the indoor fan 14 is the second heat exchange unit 3b and the first heat exchange unit of the first heat exchanger 3A through which high-pressure refrigerant gas flows at a medium to high temperature. By passing through 3a, it is once heated.
The air heated through the first heat exchanger 3A is dehumidified and cooled by passing through the second heat exchanger 4A through which the low-temperature and low-pressure refrigerant liquid flows, and is blown into the room. At this time, the low-temperature and low-pressure refrigerant liquid flowing through the second heat exchanger 4A absorbs heat and evaporates to become a low-temperature and low-pressure refrigerant gas, which is sent to the accumulator 13 and compressed by the compressor 8 to be compressed at high temperature and high pressure. Then, it is sent again to the first heat exchanger 3A.

次に、実施の形態1の空調機の温度上昇運転時の動作について説明する。
図2は実施の形態1の空調機における温度上昇運転時の冷媒の循環路を示す要部断面模式図である。
尚、実線の矢印は、温度上昇運転時の冷媒の流れを示している。
図2において、空調機1の運転中に、温度センサ(図示せず)で検出した室内の温度が設定温度よりも低い時(暖房運転時)は、暖房用配管系統7Aの電磁弁9bが開き、冷房用配管系統6Aの電磁弁9aが閉じて、冷媒は実線の矢印で示すように暖房用配管系統7Aを循環する。
圧縮機8から第3熱交換器5Aに送られた高温高圧の冷媒ガスは、まず第1熱交換部5aを通過しながら放熱することにより液化し、第1レシーバタンク10aへと入り、さらに第3熱交換器5Aの第2熱交換部5bを通過しながら放熱して低温高圧の冷媒液となって第2レシーバタンク10bへと入る。
第2レシーバタンク10bを出た低温高圧の冷媒液は膨張弁11によって低温低圧の冷媒液となって第2熱交換器4Aへと送られる。
Next, the operation | movement at the time of the temperature rise operation of the air conditioner of Embodiment 1 is demonstrated.
FIG. 2 is a schematic cross-sectional view of an essential part showing a refrigerant circulation path during a temperature rise operation in the air conditioner of the first embodiment.
In addition, the solid line arrow has shown the flow of the refrigerant | coolant at the time of temperature rising operation.
In FIG. 2, when the temperature of the room detected by a temperature sensor (not shown) is lower than the set temperature (during heating operation) during operation of the air conditioner 1, the electromagnetic valve 9b of the heating piping system 7A is opened. Then, the solenoid valve 9a of the cooling piping system 6A is closed, and the refrigerant circulates through the heating piping system 7A as indicated by the solid line arrow.
The high-temperature and high-pressure refrigerant gas sent from the compressor 8 to the third heat exchanger 5A is liquefied by first dissipating heat while passing through the first heat exchanger 5a, enters the first receiver tank 10a, and further The heat is dissipated while passing through the second heat exchanging portion 5b of the three heat exchanger 5A and enters the second receiver tank 10b as a low-temperature and high-pressure refrigerant liquid.
The low-temperature and high-pressure refrigerant liquid exiting the second receiver tank 10b is sent to the second heat exchanger 4A by the expansion valve 11 as a low-temperature and low-pressure refrigerant liquid.

一方、室内用ファン14によって室内から室内機2の内部に取り込まれた空気は、まず冷媒の流れていない第1熱交換器3Aを素通りする。その後、低温低圧の冷媒液が流れる第2熱交換器4Aを通過することにより、除湿、冷却される。このとき、第2熱交換器4Aを流れる低温低圧の冷媒液が熱を吸収して蒸発し、低温低圧の冷媒ガスとなってアキュムレータ13へ送られ、圧縮機8で圧縮されて高温高圧の冷媒ガスとなって、再び第3熱交換器5Aへと送られる。
第2熱交換器4Aを通過して除湿、冷却された空気は、中温乃至高温で高圧の冷媒ガスが流れる第3熱交換器5Aの第2熱交換部5b及び第1熱交換部5aを通過することにより加熱、乾燥され、除湿乾燥された暖かい空気が室内に送風される。
On the other hand, the air taken into the interior of the indoor unit 2 from the room by the indoor fan 14 first passes through the first heat exchanger 3A where no refrigerant flows. After that, dehumidification and cooling are performed by passing through the second heat exchanger 4A through which the low-temperature and low-pressure refrigerant liquid flows. At this time, the refrigerant liquid of the low-temperature low-pressure flowing through the second heat exchanger 4A is evaporated and absorbs heat, is fed to the accumulator 13 becomes low-temperature low-pressure refrigerant gas, the refrigerant is compressed in high temperature and high pressure by the compressor 8 It becomes gas and is sent again to the third heat exchanger 5A.
The dehumidified and cooled air that has passed through the second heat exchanger 4A passes through the second heat exchange unit 5b and the first heat exchange unit 5a of the third heat exchanger 5A through which high-pressure refrigerant gas flows at a medium to high temperature. By doing so, warm air that has been heated, dried and dehumidified and dried is blown into the room.

空調機1は、温度センサで検出される室内の空気の温度が設定温度(目標温度)に近づくように、圧縮機8や室内用ファン12の運転を制御しながら、冷媒を循環させ、上記の動作を繰り返す。
尚、冷房用配管系統6A及び暖房用配管系統7Aにおいて、第3熱交換器5Aの第1熱交換部5a及び第2熱交換部5bを通過した冷媒液の中には一部冷媒ガスが混ざっているが、第1レシーバタンク10a及び第2レシーバタンク10bに入ることにより、圧力が下がり、液化が促進されて冷媒の温度が下がり易くなり、下流側での熱交換の効率を高めることができる。
また、本実施の形態では、冷房用配管系統6A及び暖房用配管系統7Aの切り替えを行う切替部として電磁弁9a,9bを用いたが、これに限定されるものではなく、いずれかの配管系統を択一的に選択できるものであればよい。
尚、必要に応じて、第1レシーバタンク10aの出口側(第1熱交換器3Aの第2熱交換部3bの入口及び第3熱交換器5Aの第2熱交換部5bの入口より上流側)に補助膨張弁を設けてもよい。これにより、冷媒の圧力をさらに低下させて、より温度の低い状態で冷房用配管系統6A及び暖房用配管系統7Aの下流側へ冷媒を送ることができ、熱交換を促進して冷暖房の効率性を高めることができ、運転の効率性、省エネルギー性に優れる。
The air conditioner 1 circulates the refrigerant while controlling the operation of the compressor 8 and the indoor fan 12 so that the temperature of the indoor air detected by the temperature sensor approaches the set temperature (target temperature). Repeat the operation.
In the cooling piping system 6A and the heating piping system 7A, a part of the refrigerant gas is mixed in the refrigerant liquid that has passed through the first heat exchange unit 5a and the second heat exchange unit 5b of the third heat exchanger 5A. However, by entering the first receiver tank 10a and the second receiver tank 10b, the pressure is lowered, liquefaction is promoted, the temperature of the refrigerant is easily lowered, and the efficiency of heat exchange on the downstream side can be increased. .
In the present embodiment, the electromagnetic valves 9a and 9b are used as the switching unit for switching between the cooling piping system 6A and the heating piping system 7A. However, the present invention is not limited to this, and any piping system is used. As long as it can be selected alternatively.
If necessary, the outlet side of the first receiver tank 10a (the upstream side of the inlet of the second heat exchanger 3b of the first heat exchanger 3A and the inlet of the second heat exchanger 5b of the third heat exchanger 5A) ) May be provided with an auxiliary expansion valve. As a result, the refrigerant pressure can be further reduced, and the refrigerant can be sent to the downstream side of the cooling piping system 6A and the heating piping system 7A in a lower temperature state. It is possible to improve the driving efficiency and energy saving.

実施の形態1における空調機によれば、以下の作用を有する。
(1)室内機の内部に配設される第1熱交換器及び第3熱交換器がそれぞれ第1熱交換部及び第2熱交換部を有する多段式の熱交換器であることにより、熱容量を大幅に増加させることができ、冷媒を確実に液化させて冷却しながら、室内機の内部を流れる空気と安定して熱交換を行い、確実かつ効率的に冷暖房や除湿を行うことができ、室外機が不要で、運転時に外気温の影響などを受けることがなく、温度調整や除湿の性能を高めることができ、運転の効率性、安定性に優れると共に、冷房時に室外に温風が放出されることがなく、外気温の上昇を抑え、ファンの騒音もなく、地球温暖化を防ぐことができ、省エネルギー性、環境保護性に優れる。
(2)圧縮機と、第1熱交換器の第1熱交換部と、第1レシーバタンクと、第1熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第2熱交換器と、を接続して冷媒を循環させる冷房用配管系統を有するので、第1熱交換器の第1熱交換部で液化しながら冷却された冷媒を第1熱交換器の第2熱交換部に送ることにより、さらに冷却することができ、下流側の第2熱交換器を通過する冷媒の温度を確実かつ効果的に下げて、冷房効率や除湿性能を高めることができ、省エネルギー性に優れる。
(3)冷房用配管系統において、第1熱交換器の第1熱交換部と第2熱交換部の間、及び第1熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第1熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第1熱交換器及び第2熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(4)冷房用配管系統の第2レシーバタンクと第2熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として下流側の第2熱交換器に送ることができ、室内から取り込まれた空気を第1熱交換器で一旦、加熱した後、低温低圧の冷媒液が流れる第2熱交換器で冷却することにより、大きな温度差によって効率的に除湿しながら確実に冷却して冷房運転を行うことができ、除湿性能及び冷房の効率性、省エネルギー性に優れると共に、熱交換器のフィン間の狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、送風される空気中に細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(5)圧縮機と、第3熱交換器の第1熱交換部と、第1レシーバタンクと、第3熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第2熱交換器と、を接続して冷媒を循環させる暖房用配管系統を有するので、第3熱交換器の第1熱交換部で液化しながら放熱した冷媒を第3熱交換器の第2熱交換部に送ることにより、さらに放熱させることができ、室内から取り込まれた空気を第3熱交換器で確実かつ効果的に加熱して暖房を行うことができ、暖房の効率性、省エネルギー性に優れる。
(6)暖房用配管系統において、第3熱交換器の第1熱交換部と第2熱交換部の間、及び第3熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第3熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第3熱交換器及び第2熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(7)暖房用配管系統の第2レシーバタンクと第2熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として上流側の第2熱交換器に送ることができ、室内から取り込まれた空気を第2熱交換器で一旦、除湿、冷却した後、高温乃至中温で高圧の冷媒ガスが流れる第3熱交換器で加熱、乾燥することができ、大きな温度差と、狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(8)冷房用配管系統により冷媒を循環させる場合には、室内から取り込まれ第1熱交換器で加熱された空気を第2熱交換器で除湿、冷却して結露を発生させ、暖房用配管系統により冷媒を循環させる場合には、室内から取り込まれた空気を第2熱交換器で除湿、冷却して結露を発生させることにより、空気中に含まれる塵や埃などを除去して結露水と共に排出し、雑菌などの繁殖を防ぎ、新鮮で清浄な空気を室内に供給することができる。特に湿気の多い日本の病院内の空間では、空気中の目に見えない埃の中に細菌が繁殖しており、その空気を吸うことによって感染、発病することがあるが、病院内の相対湿度を年間を通して30%以下にすることにより、空気中の埃を乾燥させ、細菌を死滅させて、安全で快適な生活空間を作り出すことができ、院内感染を効率的に防止することができる。
(9)冷房用配管系統と暖房用配管系統のいずれを選択して冷媒を循環させた場合でも、第2熱交換器には常に低温低圧の冷媒液が流れるため、第2熱交換器における冷媒の温度を安定化させることができ、第1熱交換器を通過する空気を確実に安定して冷却することができ、熱交換の安定性、確実性に優れ、冷房及び暖房の効率性、安定性を向上させることができる。
(10)冷房用配管系統及び暖房用配管系統を流れる冷媒がそれぞれ第1レシーバタンク及び第2レシーバタンクを経由することにより、冷媒の圧力を下げ、液化を促進して冷媒の温度を下げることができ、熱交換の効率性を高め、省エネルギー性を向上させることができる。
(11)常に圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、冷房用配管系統と暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことができ、設定温度(目標温度)に対して、±2℃程度の範囲で温度を制御することが可能で、室内の温度斑が少なく、温湿度制御の安定性、確実性に優れる。
The air conditioner according to Embodiment 1 has the following action.
(1) Since the first heat exchanger and the third heat exchanger disposed inside the indoor unit are multistage heat exchangers having a first heat exchange part and a second heat exchange part, respectively, the heat capacity Can be greatly increased, while the refrigerant is liquefied and cooled reliably, heat can be exchanged stably with the air flowing inside the indoor unit, and air conditioning and dehumidification can be performed reliably and efficiently. There is no need for an outdoor unit, it is not affected by the outside air temperature during operation, the temperature adjustment and dehumidification performance can be improved, and the operation efficiency and stability are excellent, and warm air is released outside during cooling. In this way, the rise in outside air temperature is suppressed, fan noise is eliminated, global warming can be prevented, and energy saving and environmental protection are excellent.
(2) a compressor , a first heat exchange part of the first heat exchanger, a first receiver tank, a second heat exchange part of the first heat exchanger, a second receiver tank, an expansion valve, 2 having a cooling piping system that circulates the refrigerant by connecting the two heat exchangers, the refrigerant cooled while being liquefied in the first heat exchange section of the first heat exchanger is supplied to the second heat exchanger. By sending it to the heat exchange section, it can be further cooled, and the temperature of the refrigerant passing through the second heat exchanger on the downstream side can be reliably and effectively lowered to improve the cooling efficiency and dehumidification performance, thereby saving energy. Excellent in properties.
(3) In the cooling piping system, the first heat exchanger between the first heat exchanger and the second heat exchanger and the second heat exchanger of the first heat exchanger and the expansion valve are respectively By arranging the 1 receiver tank and the 2nd receiver tank, the refrigerants in different states after passing through the first heat exchange part and the second heat exchange part of the first heat exchanger are not mixed, Heat exchange can be performed reliably in the first heat exchanger and the second heat exchanger, and operation stability and reliability are excellent.
(4) Since the expansion valve is disposed between the second receiver tank and the second heat exchanger of the cooling piping system, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. It can be sent to the second heat exchanger on the downstream side. After the air taken in from the room is once heated by the first heat exchanger, it is cooled by the second heat exchanger through which the low-temperature and low-pressure refrigerant liquid flows. Cooling operation can be performed by cooling reliably while dehumidifying efficiently due to a large temperature difference, and it is excellent in dehumidifying performance, cooling efficiency and energy saving, and passes through a narrow space between the fins of the heat exchanger The air can be micronized to generate negative ions, and the dehumidified dehumidified water (condensation water) is drained, so that there is no bacteria and dust in the blown air, and the generation of static electricity is prevented. Can be safe and secure In can provide a comfortable space.
(5) a compressor , a first heat exchange part of the third heat exchanger, a first receiver tank, a second heat exchange part of the third heat exchanger, a second receiver tank, an expansion valve, Since the heating piping system for circulating the refrigerant by connecting the two heat exchangers is provided, the refrigerant that has radiated heat while being liquefied in the first heat exchange section of the third heat exchanger is second heat of the third heat exchanger. By sending it to the exchange unit, it is possible to further dissipate heat, and the air taken in from the room can be heated reliably and effectively by the third heat exchanger, and heating efficiency and energy saving can be achieved. Excellent.
(6) In the heating piping system, between the first heat exchange part and the second heat exchange part of the third heat exchanger and between the second heat exchange part and the expansion valve of the third heat exchanger, respectively. By arranging the 1 receiver tank and the second receiver tank, refrigerants having different states after passing through the first heat exchange part and the second heat exchange part of the third heat exchanger are not mixed, Heat exchange can be performed reliably in the third heat exchanger and the second heat exchanger, and operation stability and reliability are excellent.
(7) Since the expansion valve is disposed between the second receiver tank and the second heat exchanger of the heating piping system, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. The third heat exchanger that can be sent to the second heat exchanger on the upstream side, and once the air taken in from the room is dehumidified and cooled by the second heat exchanger, then high-temperature to medium-temperature high-pressure refrigerant gas flows. It can be heated and dried with a large temperature difference and by passing through a narrow space, the air can be micronized to generate negative ions, and dehumidified dehumidified water (condensation water) can be drained In addition, there is no bacteria or dust, and it is possible to prevent the generation of static electricity, thus realizing a safe, secure and comfortable space.
(8) When the refrigerant is circulated by the cooling piping system, the air taken in from the room and heated by the first heat exchanger is dehumidified and cooled by the second heat exchanger to generate dew condensation. When circulating the refrigerant through the system, the air taken in from the room is dehumidified and cooled by the second heat exchanger to generate dew, thereby removing dew and dust contained in the air and dew condensation water. It can be discharged together to prevent the propagation of germs and the like, and fresh and clean air can be supplied indoors. Particularly in humid hospital spaces in Japan, bacteria grow in invisible dust in the air, and inhalation of the air may cause infection and disease. By setting the value to 30% or less throughout the year, it is possible to dry dust in the air, kill bacteria, create a safe and comfortable living space, and effectively prevent nosocomial infections.
(9) Even when either the cooling piping system or the heating piping system is selected and the refrigerant is circulated, the low-temperature and low-pressure refrigerant liquid always flows through the second heat exchanger, so the refrigerant in the second heat exchanger The temperature of the air can be stabilized, the air passing through the first heat exchanger can be reliably and stably cooled, and the heat exchange stability and reliability are excellent, and the efficiency and stability of cooling and heating are stable. Can be improved.
(10) The refrigerant flowing through the cooling piping system and the heating piping system passes through the first receiver tank and the second receiver tank, respectively, thereby reducing the refrigerant pressure and promoting liquefaction to lower the refrigerant temperature. It is possible to improve the efficiency of heat exchange and improve energy saving.
(11) Repeating the temperature lowering operation and the temperature increasing operation by switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature while always operating the compressor and circulating the refrigerant. It is possible to control the temperature within a range of about ± 2 ° C. with respect to the set temperature (target temperature), there are few indoor temperature spots, and the stability and certainty of temperature / humidity control is excellent.

(実施の形態2)
本考案の実施の形態2における空調機について、以下図面を参照しながら説明する。尚、実施の形態1と同様のものには同一の符号を付して説明を省略する。
図3は実施の形態2の空調機における温度下降運転時の冷媒の循環路を示す要部断面模式図である。
図3において、実施の形態2における空調機1Aが実施の形態1と異なるのは、室内機の内部の空気の流れに対し、最上流側に配設される第1熱交換器3B及び最下流側に配設される第3熱交換器5Bが通常(単段)の熱交換器であり、第1熱交換器3Bの下流側に配設される第2熱交換器4Bが下流側に配置される第1熱交換部4aと上流側に配置される第2熱交換部4bを有する二段式の熱交換器である点と、実施の形態1の空調機1における冷房用配管系統6A及び暖房用配管系統7Aの代わりに、圧縮機8と、第2熱交換器4Bの第1熱交換部4aと、第1レシーバタンク10aと、第2熱交換器4Bの第2熱交換部4bと、第2レシーバタンク10bと、膨張弁11と、第3熱交換器5Bと、を接続して冷媒を循環させる冷房用配管系統6Bと、圧縮機8と、第2熱交換器4Bの第1熱交換部4aと、第1レシーバタンク10aと、第2熱交換器4Bの第2熱交換部4bと、第2レシーバタンク10bと、膨張弁11と、第1熱交換器3Bと、を接続して冷媒を循環させる暖房用配管系統7Bを有している点である。
(Embodiment 2)
An air conditioner according to Embodiment 2 of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the thing similar to Embodiment 1, and description is abbreviate | omitted.
FIG. 3 is a schematic cross-sectional view of an essential part showing a refrigerant circulation path during a temperature lowering operation in the air conditioner of the second embodiment.
In FIG. 3, the air conditioner 1 </ b> A in the second embodiment is different from the first embodiment in that the first heat exchanger 3 </ b> B disposed on the most upstream side and the most downstream side with respect to the air flow inside the indoor unit. The third heat exchanger 5B disposed on the side is a normal (single stage) heat exchanger, and the second heat exchanger 4B disposed on the downstream side of the first heat exchanger 3B is disposed on the downstream side. The first heat exchanging part 4a and the second heat exchanging part 4b arranged on the upstream side, and the cooling pipe system 6A in the air conditioner 1 of the first embodiment, Instead of the heating piping system 7A, the compressor 8, the first heat exchange part 4a of the second heat exchanger 4B, the first receiver tank 10a, and the second heat exchange part 4b of the second heat exchanger 4B , The second receiver tank 10b, the expansion valve 11 and the third heat exchanger 5B are connected to circulate the refrigerant. And the system 6B, a compressor 8, a first heat exchange portion 4a of the second heat exchanger 4B, a first receiver tank 10a, and the second heat exchanger portion 4b of the second heat exchanger 4B, the second receiver tank 10b, the expansion valve 11, and the 1st heat exchanger 3B are connected, and it is the point which has the piping system 7B for heating which circulates a refrigerant | coolant.

まず、実施の形態2の空調機の温度下降運転時の動作について説明する。
尚、破線の矢印は温度下降運転時の冷媒の流れを示している。
図3において、空調機1Aの運転中に、温度センサ(図示せず)で検出した室内の温度が設定温度よりも高い時(冷房運転時)は、冷房用配管系統6Bの電磁弁9aが開き、暖房用配管系統7Bの電磁弁9bが閉じて、冷媒は破線の矢印で示すように冷房用配管系統6Bを循環する。
圧縮機8から第2熱交換器4Aに送られた高温高圧の冷媒ガスは、まず第1熱交換部4aを通過することにより液化しながら冷却され、第1レシーバタンク10aへと入り、さらに第2熱交換器4Aの第2熱交換部4bを通過して冷却されることにより低温高圧の冷媒液となって第2レシーバタンク10bへと入る。
第2レシーバタンク10bを出た低温高圧の冷媒液は膨張弁11によって低温低圧の冷媒液となって第3熱交換器5Bへと送られる。
First, the operation during the temperature lowering operation of the air conditioner of the second embodiment will be described.
In addition, the arrow of a broken line has shown the flow of the refrigerant | coolant at the time of temperature fall operation.
In FIG. 3, when the indoor temperature detected by the temperature sensor (not shown) is higher than the set temperature (during cooling operation) during operation of the air conditioner 1A, the electromagnetic valve 9a of the cooling piping system 6B is opened. Then, the solenoid valve 9b of the heating piping system 7B is closed, and the refrigerant circulates through the cooling piping system 6B as indicated by the dashed arrows.
The high-temperature and high-pressure refrigerant gas sent from the compressor 8 to the second heat exchanger 4A is cooled while being liquefied by first passing through the first heat exchange part 4a, enters the first receiver tank 10a, and further By passing through the second heat exchanging section 4b of the two heat exchanger 4A and being cooled, it becomes a low-temperature and high-pressure refrigerant liquid and enters the second receiver tank 10b.
The low-temperature and high-pressure refrigerant liquid that has exited the second receiver tank 10b becomes a low-temperature and low-pressure refrigerant liquid by the expansion valve 11 and is sent to the third heat exchanger 5B.

一方、室内用ファン14によって室内から室内機2の内部に取り込まれた空気は、中温乃至高温で高圧の冷媒ガスが流れる第2熱交換器4Bの第2熱交換部4b及び第1熱交換部4aを通過することにより、一旦加熱される。
第2熱交換器4Bを通過して加熱された空気は、低温低圧の冷媒液が流れる第3熱交換器5Bを通過することにより除湿、冷却され、室内に送風される。このとき、第3熱交換器5Bを流れる低温低圧の冷媒液が熱を吸収して蒸発し、低温低圧の冷媒ガスとなり、アキュムレータ13へ送られ、圧縮機8で圧縮されて高温高圧の冷媒ガスとなって、再び第2熱交換器4Bへと送られる。
On the other hand, the air taken into the interior of the indoor unit 2 from the room by the indoor fan 14 is the second heat exchange unit 4b and the first heat exchange unit of the second heat exchanger 4B through which a high-pressure refrigerant gas flows at a medium to high temperature. By passing through 4a, it is once heated.
The air heated by passing through the second heat exchanger 4B is dehumidified and cooled by passing through the third heat exchanger 5B through which the low-temperature and low-pressure refrigerant liquid flows, and is blown into the room. At this time, the low-temperature and low-pressure refrigerant liquid flowing through the third heat exchanger 5B absorbs heat and evaporates to become a low-temperature and low-pressure refrigerant gas, which is sent to the accumulator 13 and compressed by the compressor 8 to be compressed at high temperature and high pressure. Then, it is sent again to the second heat exchanger 4B.

次に、実施の形態2の空調機の温度上昇運転時の動作について説明する。
図4は実施の形態3の空調機における温度上昇運転時の冷媒の循環路を示す要部断面模式図である。
尚、実線の矢印は、温度上昇運転時の冷媒の流れを示している。
図4において、空調機1Aの運転中に、温度センサ(図示せず)で検出した室内の温度が設定温度よりも低い時(暖房運転時)は、暖房用配管系統7Bの電磁弁9bが開き、冷房用配管系統6Bの電磁弁9aが閉じて、冷媒は実線の矢印で示すように暖房用配管系統7Bを循環する。
圧縮機8から第2熱交換器4Bに送られた高温高圧の冷媒ガスは、まず第1熱交換部4aを通過しながら放熱することにより液化し、第1レシーバタンク10aへと入り、さらに第2熱交換器4Bの第2熱交換部4bを通過しながら放熱して低温高圧の冷媒液となって第2レシーバタンク10bへと入る。
第2レシーバタンク10bを出た低温高圧の冷媒液は膨張弁11によって低温低圧の冷媒液となって第1熱交換器3Bへと送られる。
Next, the operation at the time of temperature increase operation of the air conditioner of the second embodiment will be described.
FIG. 4 is a schematic cross-sectional view of an essential part showing a refrigerant circulation path during a temperature rise operation in the air conditioner of the third embodiment.
In addition, the solid line arrow has shown the flow of the refrigerant | coolant at the time of temperature rising operation.
In FIG. 4, when the indoor temperature detected by the temperature sensor (not shown) is lower than the set temperature (during heating operation) during operation of the air conditioner 1A, the electromagnetic valve 9b of the heating piping system 7B is opened. Then, the solenoid valve 9a of the cooling piping system 6B is closed, and the refrigerant circulates through the heating piping system 7B as indicated by the solid line arrows.
The high-temperature and high-pressure refrigerant gas sent from the compressor 8 to the second heat exchanger 4B is liquefied by first dissipating heat while passing through the first heat exchanger 4a, enters the first receiver tank 10a, and further The heat is dissipated while passing through the second heat exchanging part 4b of the two heat exchanger 4B, and enters the second receiver tank 10b as a low-temperature and high-pressure refrigerant liquid.
The low-temperature and high-pressure refrigerant liquid exiting the second receiver tank 10b is sent to the first heat exchanger 3B as a low-temperature and low-pressure refrigerant liquid by the expansion valve 11.

一方、室内用ファン14によって室内から室内機2の内部に取り込まれた空気は、低温低圧の冷媒液が流れる第1熱交換器3Bを通過することにより、除湿、冷却される。このとき、第1熱交換器3Bを流れる低温低圧の冷媒液が熱を吸収して蒸発し、低温低圧の冷媒ガスとなってアキュムレータ13へ送られ、圧縮機8で圧縮されて高温高圧の冷媒ガスとなって、再び第2熱交換器4Bへと送られる。
第1熱交換器3Bを通過して除湿、冷却された空気は、中温乃至高温で高圧の冷媒ガスが流れる第2熱交換器4Bの第2熱交換部4b及び第1熱交換部4aを通過することにより加熱、乾燥され、除湿乾燥された暖かい空気が室内に送風される。
On the other hand, the air taken into the interior of the indoor unit 2 from the room by the indoor fan 14 is dehumidified and cooled by passing through the first heat exchanger 3B through which the low-temperature and low-pressure refrigerant liquid flows. At this time, the refrigerant liquid of the low-temperature low-pressure flowing through the first heat exchanger 3B is evaporated and absorbs heat, is fed to the accumulator 13 becomes low-temperature low-pressure refrigerant gas, the refrigerant is compressed in high temperature and high pressure by the compressor 8 It becomes gas and is sent again to the second heat exchanger 4B.
The dehumidified and cooled air that has passed through the first heat exchanger 3B passes through the second heat exchanger 4b and the first heat exchanger 4a of the second heat exchanger 4B through which high-pressure refrigerant gas flows at a medium to high temperature. Thus, warm air that has been heated, dried and dehumidified and dried is blown into the room.

空調機1Aは、温度センサで検出される室内の空気の温度が設定温度(目標温度)に近づくように、圧縮機8や室内用ファン12の運転を制御しながら、冷媒を循環させ、上記の動作を繰り返す。
尚、第2熱交換器4Bの第1熱交換部4a及び第2熱交換部4bを通過した冷媒液の中に一部冷媒ガスが混ざっているが、第1レシーバタンク10a及び第2レシーバタンク10bに入ることにより、圧力が下がり、液化が促進されて冷媒の温度が下がり易くなり、下流側での熱交換の効率を高めることができる。
また、本実施の形態では、冷房用配管系統6B及び暖房用配管系統7Bの切り替えを行う切替部として電磁弁9a,9bを用いたが、これに限定されるものではなく、いずれかの配管系統を択一的に選択できるものであればよい。
尚、必要に応じて、第1レシーバタンク10aの出口側(第2熱交換器4Bの第2熱交換部4bの入口より上流側)に補助膨張弁を設けてもよい。これにより、冷媒の圧力をさらに低下させて、より温度の低い状態で冷房用配管系統6B及び暖房用配管系統7Bの下流側へ冷媒を送ることができ、熱交換を促進して冷暖房の効率性を高めることができ、運転の効率性、省エネルギー性に優れる。
The air conditioner 1A circulates the refrigerant while controlling the operation of the compressor 8 and the indoor fan 12 so that the temperature of the indoor air detected by the temperature sensor approaches the set temperature (target temperature). Repeat the operation.
In addition, some refrigerant gas is mixed in the refrigerant liquid which passed the 1st heat exchange part 4a and the 2nd heat exchange part 4b of the 2nd heat exchanger 4B, but the 1st receiver tank 10a and the 2nd receiver tank By entering 10b, a pressure falls, liquefaction is accelerated | stimulated and it becomes easy to fall the temperature of a refrigerant | coolant, and the efficiency of the heat exchange in a downstream can be improved.
Moreover, in this Embodiment, although electromagnetic valve 9a, 9b was used as a switching part which switches the cooling piping system 6B and the heating piping system 7B, it is not limited to this, Any piping system As long as it can be selected alternatively.
If necessary, an auxiliary expansion valve may be provided on the outlet side of the first receiver tank 10a (upstream side of the inlet of the second heat exchange part 4b of the second heat exchanger 4B). Thereby, the refrigerant pressure can be further reduced, and the refrigerant can be sent to the downstream side of the cooling piping system 6B and the heating piping system 7B in a lower temperature state. It is possible to improve the driving efficiency and energy saving.

実施の形態2における空調機によれば、以下の作用を有する。
(1)室内機の内部に配設される第2熱交換器が第1熱交換部及び第2熱交換部を有する多段式の熱交換器であることにより、熱容量を大幅に増加させることができ、冷媒を確実に液化させて冷却しながら、室内機の内部を流れる空気と安定して熱交換を行い、確実かつ効率的に冷暖房や除湿を行うことができ、室外機が不要で、運転時に外気温の影響などを受けることがなく、温度調整や除湿の性能を高めることができ、運転の効率性、安定性に優れると共に、冷房時に室外に温風が放出されることがなく、外気温の上昇を抑え、ファンの騒音もなく、地球温暖化を防ぐことができ、省エネルギー性、環境保護性に優れる。
(2)圧縮機と、第2熱交換器の第1熱交換部と、第1レシーバタンクと、第2熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第3熱交換器と、を接続して冷媒を循環させる冷房用配管系統を有するので、第2熱交換器の第1熱交換部で液化しながら冷却された冷媒を第2熱交換器の第2熱交換部に送ることにより、さらに冷却することができ、下流側の第3熱交換器を通過する冷媒の温度を確実かつ効果的に下げて、冷房効率や除湿性能を高めることができ、省エネルギー性に優れる。
(3)冷房用配管系統において、第2熱交換器の第1熱交換部と第2熱交換部の間、及び第2熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第2熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第2熱交換器及び第3熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(4)冷房用配管系統の第2レシーバタンクと第3熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として下流側の第2熱交換器に送ることができ、室内から取り込まれた空気を第2熱交換器で一旦、加熱した後、低温低圧の冷媒液が流れる第3熱交換器で冷却することにより、大きな温度差によって効率的に除湿しながら確実に冷却して冷房運転を行うことができ、除湿性能及び冷房の効率性、省エネルギー性に優れると共に、熱交換器のフィン間の狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、送風される空気中に細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(5)圧縮機と、第2熱交換器の第1熱交換部と、第1レシーバタンクと、第2熱交換器の第2熱交換部と、第2レシーバタンクと、膨張弁と、第1熱交換器と、を接続して冷媒を循環させる暖房用配管系統を有するので、第2熱交換器の第1熱交換部で液化しながら放熱した冷媒を第2熱交換器の第2熱交換部に送ることにより、さらに放熱させることができ、室内から取り込まれた空気を第2熱交換器で確実かつ効果的に加熱して暖房を行うことができ、暖房の効率性、省エネルギー性に優れる。
(6)暖房用配管系統において、第2熱交換器の第1熱交換部と第2熱交換部の間、及び第2熱交換器の第2熱交換部と膨張弁の間に、それぞれ第1レシーバタンク及び第2レシーバタンクが配設されていることにより、第2熱交換器の第1熱交換部及び第2熱交換部をそれぞれ通過した後の状態の異なる冷媒が混ざることがなく、確実に第2熱交換器及び第1熱交換器での熱交換を行うことができ、動作の安定性、確実性に優れる。
(7)暖房用配管系統の第2レシーバタンクと第1熱交換器との間に膨張弁が配設されていることにより、冷媒の圧力を下げ、温度を低下させて低温低圧の冷媒液として上流側の第1熱交換器に送ることができ、室内から取り込まれた空気を第1熱交換器で一旦、除湿、冷却した後、高温乃至中温で高圧の冷媒ガスが流れる第3熱交換器で加熱、乾燥することができ、大きな温度差と、狭い空間を通過することで空気をミクロ化してマイナスイオンを発生させることができ、また除湿された除湿水(結露水)を排水することで、細菌や埃もなく、静電気の発生も防止することができ、安心、安全で快適な空間を実現できる。
(8)冷房用配管系統により冷媒を循環させる場合には、室内から取り込まれ第2熱交換器で加熱された空気を第3熱交換器で除湿、冷却して結露を発生させ、暖房用配管系統により冷媒を循環させる場合には、室内から取り込まれた空気を第1熱交換器で除湿、冷却して結露を発生させることにより、空気中に含まれる塵や埃などを除去して結露水と共に排出し、雑菌などの繁殖を防ぎ、新鮮で清浄な空気を室内に供給することができる。特に湿気の多い日本の病院内の空間では、空気中の目に見えない埃の中に細菌が繁殖しており、その空気を吸うことによって感染、発病することがあるが、病院内の相対湿度を年間を通して30%以下にすることにより、空気中の埃を乾燥させ、細菌を死滅させて、安全で快適な生活空間を作り出すことができ、院内感染を効率的に防止することができる。
(9)冷房用配管系統及び暖房用配管系統を流れる冷媒がそれぞれ第1レシーバタンク及び第2レシーバタンクを経由することにより、冷媒の圧力を下げ、液化を促進して冷媒の温度を下げることができ、熱交換の効率性を高め、省エネルギー性を向上させることができる。
(10)常に圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、冷房用配管系統と暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことができ、設定温度(目標温度)に対して、±2℃程度の範囲で温度を制御することが可能で、室内の温度斑が少なく、温湿度制御の安定性、確実性に優れる。
The air conditioner according to Embodiment 2 has the following effects.
(1) The second heat exchanger disposed inside the indoor unit is a multi-stage heat exchanger having a first heat exchange part and a second heat exchange part, so that the heat capacity can be greatly increased. The refrigerant can be liquefied and cooled, and heat can be exchanged stably with the air flowing inside the indoor unit, and air conditioning and dehumidification can be performed reliably and efficiently. The temperature adjustment and dehumidification performance can be improved without being affected by the outside air temperature from time to time, the operation efficiency and stability are excellent, and the warm air is not released outside during cooling. Suppresses the rise in temperature, eliminates fan noise, prevents global warming, and excels in energy saving and environmental protection.
(2) a compressor , a first heat exchange part of the second heat exchanger, a first receiver tank, a second heat exchange part of the second heat exchanger, a second receiver tank, an expansion valve, And a cooling piping system that circulates the refrigerant by connecting the three heat exchangers, the refrigerant cooled while being liquefied in the first heat exchange part of the second heat exchanger is supplied to the second heat exchanger. By sending it to the heat exchange section, it can be further cooled, the temperature of the refrigerant passing through the third heat exchanger on the downstream side can be reliably and effectively lowered, and the cooling efficiency and dehumidification performance can be improved, thereby saving energy. Excellent in properties.
(3) In the cooling piping system, the first heat exchange part and the second heat exchange part of the second heat exchanger, and the second heat exchange part and the expansion valve of the second heat exchanger, respectively. By arranging the 1 receiver tank and the 2nd receiver tank, the refrigerants in different states after passing through the first heat exchange part and the second heat exchange part of the second heat exchanger are not mixed, Heat exchange can be reliably performed in the second heat exchanger and the third heat exchanger, and operation stability and reliability are excellent.
(4) Since the expansion valve is disposed between the second receiver tank and the third heat exchanger of the cooling piping system, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. It can be sent to the second heat exchanger on the downstream side. After the air taken in from the room is once heated by the second heat exchanger, it is cooled by the third heat exchanger through which the low-temperature and low-pressure refrigerant liquid flows. Cooling operation can be performed by cooling reliably while dehumidifying efficiently due to a large temperature difference, and it is excellent in dehumidifying performance, cooling efficiency and energy saving, and passes through a narrow space between the fins of the heat exchanger The air can be micronized to generate negative ions, and the dehumidified dehumidified water (condensation water) is drained, so that there is no bacteria and dust in the blown air, and the generation of static electricity is prevented. Can be safe and secure In can provide a comfortable space.
(5) a compressor , a first heat exchange part of the second heat exchanger, a first receiver tank, a second heat exchange part of the second heat exchanger, a second receiver tank, an expansion valve, 1 has a heating piping system that circulates the refrigerant by connecting the heat exchanger, so that the refrigerant that has dissipated heat while being liquefied in the first heat exchange section of the second heat exchanger is second heat of the second heat exchanger. By sending it to the exchange unit, it is possible to further dissipate heat, and the air taken from the room can be heated reliably and effectively with the second heat exchanger, and heating efficiency and energy saving can be improved. Excellent.
(6) In the heating piping system, the first heat exchange part and the second heat exchange part of the second heat exchanger, and the second heat exchange part and the expansion valve of the second heat exchanger, respectively. By arranging the 1 receiver tank and the 2nd receiver tank, the refrigerants in different states after passing through the first heat exchange part and the second heat exchange part of the second heat exchanger are not mixed, Heat exchange can be reliably performed in the second heat exchanger and the first heat exchanger, and operation stability and reliability are excellent.
(7) Since the expansion valve is disposed between the second receiver tank of the heating piping system and the first heat exchanger, the refrigerant pressure is lowered and the temperature is lowered to obtain a low-temperature and low-pressure refrigerant liquid. A third heat exchanger that can be sent to the first heat exchanger on the upstream side, and after the air taken in from the room is once dehumidified and cooled by the first heat exchanger, a high-pressure to medium-temperature high-pressure refrigerant gas flows It can be heated and dried with a large temperature difference and by passing through a narrow space, the air can be micronized to generate negative ions, and dehumidified dehumidified water (condensation water) can be drained In addition, there is no bacteria or dust, and it is possible to prevent the generation of static electricity, thus realizing a safe, secure and comfortable space.
(8) When the refrigerant is circulated by the cooling piping system, the air taken from the room and heated by the second heat exchanger is dehumidified and cooled by the third heat exchanger to generate dew condensation. When the refrigerant is circulated by the system, the air taken in from the room is dehumidified and cooled by the first heat exchanger to generate dew condensation, thereby removing dew and dust contained in the air and dew condensation water. It can be discharged together to prevent the propagation of germs and the like, and fresh and clean air can be supplied indoors. Particularly in humid hospital spaces in Japan, bacteria grow in invisible dust in the air, and inhalation of the air may cause infection and disease. By setting the value to 30% or less throughout the year, it is possible to dry dust in the air, kill bacteria, create a safe and comfortable living space, and effectively prevent nosocomial infections.
(9) The refrigerant flowing through the cooling piping system and the heating piping system passes through the first receiver tank and the second receiver tank, respectively, thereby reducing the pressure of the refrigerant and promoting liquefaction to lower the temperature of the refrigerant. It is possible to improve the efficiency of heat exchange and improve energy saving.
(10) The temperature lowering operation and the temperature increasing operation are repeated by switching between the cooling piping system and the heating piping system according to the set temperature and the room temperature while always operating the compressor and circulating the refrigerant. It is possible to control the temperature within a range of about ± 2 ° C. with respect to the set temperature (target temperature), there are few indoor temperature spots, and the stability and certainty of temperature / humidity control is excellent.

本考案は、冷暖房効率を高めることができ、省エネルギー性に優れ、従来のような室外機が不要で、特に冷房運転時には室外に温風が放出されることがなく、またファンの騒音もなく、外気温の上昇を発生させることがなく、地球温暖化を防ぐことができると共に、除湿能力を大幅に向上させることができ、空気中の塵や埃などを除湿水と一緒に除去、排出し、雑菌などを滅菌して快適な生活空間を作り出すことができ、さらに静電気の発生を防止でき、衛生的で機能性、環境保護性に優れた空調機の提供を行うことができ、一般家庭だけでなく、病院や工場などの温湿度を年間を通じて最適に管理することが可能で、院内感染や静電気の発生の防止にも貢献することができる。   The present invention can improve the heating and cooling efficiency, is excellent in energy saving, does not require a conventional outdoor unit, does not release warm air outside the room especially during cooling operation, and has no fan noise. It does not cause an increase in the outside temperature, can prevent global warming, can greatly improve the dehumidifying capacity, removes and discharges dust and dirt in the air together with dehumidified water, It is possible to sterilize various bacteria and create a comfortable living space, to prevent the generation of static electricity, and to provide air conditioners that are hygienic, functional and environmentally friendly. In addition, the temperature and humidity of hospitals and factories can be optimally managed throughout the year, contributing to the prevention of nosocomial infections and the generation of static electricity.

1,1A 空調機
2 室内機
3a,4a,5a 第1熱交換部
3b,4b,5b 第2熱交換部
3A,3B 第1熱交換器
4A,4B 第2熱交換器
5A,5B 第3熱交換器
6A,6B 冷房用配管系統
7A,7B 暖房用配管系統
圧縮機
9a,9b 電磁弁
10a 第1レシーバタンク
10b 第2レシーバタンク
11 膨張弁
12 切替部
13 アキュムレータ
14 室内用ファン
1, 1A Air conditioner 2 Indoor units 3a, 4a, 5a First heat exchange units 3b, 4b, 5b Second heat exchange units 3A, 3B First heat exchangers 4A, 4B Second heat exchangers 5A, 5B Third heat Exchanger 6A, 6B Cooling piping system 7A, 7B Heating piping system 8 Compressor 9a, 9b Solenoid valve 10a First receiver tank 10b Second receiver tank 11 Expansion valve 12 Switching unit 13 Accumulator 14 Indoor fan

Claims (3)

室内機の内部の空気の流れに対し、下流側に配置される第1熱交換部と上流側に配置される第2熱交換部を有する第1熱交換器と、前記第1熱交換器の下流側に配設される第2熱交換器と、下流側に配置される第1熱交換部と上流側に配置される第2熱交換部を有し前記第2熱交換器の下流側に配設される第3熱交換器と、を備え、
(a)圧縮器と、前記第1熱交換器の前記第1熱交換部と、第1レシーバタンクと、前記第1熱交換器の前記第2熱交換部と、第2レシーバタンクと、膨張弁と、前記第2熱交換器と、を接続して冷媒を循環させる冷房用配管系統と、
(b)前記圧縮器と、前記第3熱交換器の前記第1熱交換部と、前記第1レシーバタンクと、前記第3熱交換器の前記第2熱交換部と、前記第2レシーバタンクと、前記膨張弁と、前記第2熱交換器と、を接続して冷媒を循環させる暖房用配管系統と、
を備え、
常に前記圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、前記冷房用配管系統と前記暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことを特徴とする空調機。
A first heat exchanger having a first heat exchange section disposed on the downstream side and a second heat exchange section disposed on the upstream side with respect to the flow of air inside the indoor unit; and A second heat exchanger disposed on the downstream side, a first heat exchange unit disposed on the downstream side, and a second heat exchange unit disposed on the upstream side, on the downstream side of the second heat exchanger. A third heat exchanger disposed,
(A) a compressor, the first heat exchange part of the first heat exchanger, a first receiver tank, the second heat exchange part of the first heat exchanger, a second receiver tank, and an expansion A cooling piping system for connecting the valve and the second heat exchanger to circulate the refrigerant;
(B) the compressor, the first heat exchange part of the third heat exchanger, the first receiver tank, the second heat exchange part of the third heat exchanger, and the second receiver tank. And a heating piping system for connecting the expansion valve and the second heat exchanger to circulate the refrigerant,
With
The temperature lowering operation and the temperature increasing operation are repeated by switching the cooling piping system and the heating piping system according to the set temperature and the room temperature while always operating the compressor and circulating the refrigerant. Air conditioner characterized by.
室内機の内部の空気の流れに対し、上流側に配設される第1熱交換器と、下流側に配置される第1熱交換部と上流側に配置される第2熱交換部を有し前記第1熱交換器の下流側に配設される前記第2熱交換器と、前記第2熱交換器の下流側に配設される第3熱交換器と、を備え、
(a)圧縮器と、前記第2熱交換器の前記第1熱交換部と、第1レシーバタンクと、前記第2熱交換器の前記第2熱交換部と、第2レシーバタンクと、膨張弁と、前記第3熱交換器と、を接続して冷媒を循環させる冷房用配管系統と、
(b)前記圧縮器と、前記第2熱交換器の前記第1熱交換部と、前記第1レシーバタンクと、前記第2熱交換器の前記第2熱交換部と、前記第2レシーバタンクと、前記膨張弁と、前記第1熱交換器と、を接続して冷媒を循環させる暖房用配管系統と、
を備え、
常に前記圧縮機を運転して冷媒を循環させながら、設定温度と室内の温度に応じて、前記冷房用配管系統と前記暖房用配管系統を切り替えることにより、温度下降運転と温度上昇運転を繰り返すことを特徴とする空調機。
With respect to the air flow inside the indoor unit, there is a first heat exchanger disposed on the upstream side, a first heat exchange unit disposed on the downstream side, and a second heat exchange unit disposed on the upstream side. The second heat exchanger disposed on the downstream side of the first heat exchanger, and the third heat exchanger disposed on the downstream side of the second heat exchanger,
(A) The compressor, the first heat exchange part of the second heat exchanger, the first receiver tank, the second heat exchange part of the second heat exchanger, the second receiver tank, and the expansion A cooling piping system for connecting the valve and the third heat exchanger to circulate the refrigerant;
(B) the compressor, the first heat exchange part of the second heat exchanger, the first receiver tank, the second heat exchange part of the second heat exchanger, and the second receiver tank. A heating piping system for connecting the expansion valve and the first heat exchanger to circulate the refrigerant;
With
The temperature lowering operation and the temperature increasing operation are repeated by switching the cooling piping system and the heating piping system according to the set temperature and the room temperature while always operating the compressor and circulating the refrigerant. Air conditioner characterized by.
前記第1レシーバタンクの出口側に配設された補助膨張弁を備えたことを特徴とする請求項1又は2に記載の空調機。 The air conditioner according to claim 1 or 2, further comprising an auxiliary expansion valve disposed on an outlet side of the first receiver tank.
JP2015005660U 2015-11-06 2015-11-06 air conditioner Expired - Lifetime JP3202922U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015005660U JP3202922U (en) 2015-11-06 2015-11-06 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015005660U JP3202922U (en) 2015-11-06 2015-11-06 air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011265274A Continuation JP2013117351A (en) 2011-12-02 2011-12-02 Air conditioner

Publications (1)

Publication Number Publication Date
JP3202922U true JP3202922U (en) 2016-03-03

Family

ID=55434517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015005660U Expired - Lifetime JP3202922U (en) 2015-11-06 2015-11-06 air conditioner

Country Status (1)

Country Link
JP (1) JP3202922U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642608A (en) * 2017-02-22 2017-05-10 中国汽车工业工程有限公司 Coating workshop spray booth circulating air system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642608A (en) * 2017-02-22 2017-05-10 中国汽车工业工程有限公司 Coating workshop spray booth circulating air system
CN106642608B (en) * 2017-02-22 2022-06-10 中国汽车工业工程有限公司 Paint spraying chamber circulating air system of coating workshop

Similar Documents

Publication Publication Date Title
JP5076745B2 (en) Ventilation air conditioner
JP6494765B2 (en) Air conditioning system
KR100816042B1 (en) Heat recovery vantilation with dual circuit heat pump
KR100643079B1 (en) Power-saving air conditioner using heat pump
JP5983451B2 (en) Heating system
JP2008190789A (en) Air conditioner
JPWO2019064335A1 (en) Refrigeration cycle equipment
JP5537832B2 (en) External air conditioner and external air conditioning system
JP3202922U (en) air conditioner
KR100619746B1 (en) Hybrid multi-air conditioner
KR20090006334U (en) Air handling unit
JP2006194525A (en) Multi-chamber type air conditioner
JP2010243005A (en) Dehumidification system
JP2013117351A (en) Air conditioner
JP2009236415A (en) Air-conditioning system
JP4045551B2 (en) Heat pump air conditioner
JP2018204823A (en) Ventilation system
JP2018054255A (en) Air conditioner
JP2018040514A (en) Air conditioning system
JP5066022B2 (en) Air conditioning system
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
JP2007333378A (en) Heat pump type air conditioner
KR100539744B1 (en) Multi-air conditioner capable of heating and cooling simultaneously for building
JP3187932U (en) Dehumidifier
JP2005172264A (en) Water heat source heat pump type air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

R150 Certificate of patent or registration of utility model

Ref document number: 3202922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term