JP2018040514A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2018040514A
JP2018040514A JP2016173462A JP2016173462A JP2018040514A JP 2018040514 A JP2018040514 A JP 2018040514A JP 2016173462 A JP2016173462 A JP 2016173462A JP 2016173462 A JP2016173462 A JP 2016173462A JP 2018040514 A JP2018040514 A JP 2018040514A
Authority
JP
Japan
Prior art keywords
air
coil
air conditioner
cold water
passes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016173462A
Other languages
Japanese (ja)
Other versions
JP6747920B2 (en
Inventor
美博 平原
Yoshihiro Hirahara
美博 平原
直樹 相澤
Naoki Aizawa
直樹 相澤
藤野 健治
Kenji Fujino
健治 藤野
大輔 羽鳥
Daisuke Hatori
大輔 羽鳥
信洋 平須賀
Nobuhiro Hirasuga
信洋 平須賀
Original Assignee
高砂熱学工業株式会社
Takasago Thermal Eng Co Ltd
株式会社三菱地所設計
Mitsubishi Jisho Sekkei Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高砂熱学工業株式会社, Takasago Thermal Eng Co Ltd, 株式会社三菱地所設計, Mitsubishi Jisho Sekkei Inc filed Critical 高砂熱学工業株式会社
Priority to JP2016173462A priority Critical patent/JP6747920B2/en
Publication of JP2018040514A publication Critical patent/JP2018040514A/en
Priority claimed from JP2020133599A external-priority patent/JP6974553B2/en
Application granted granted Critical
Publication of JP6747920B2 publication Critical patent/JP6747920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a technology which achieves individual air conditioning without complicating a device structure of the whole air conditioning system.SOLUTION: An air conditioning system includes: a first air conditioner installed in an air supply/exhaust path for ventilation, and for conditioning the outside air supplied to a habitable room; and a second air conditioner installed in the habitable room and for taking in the air in the habitable room and conditioning the air. The first air conditioner includes: a heat source machine having a first heat exchanger arranged in a path in which the exhaust air from the habitable room passes; and a first coil arranged in a path in which the outside air supplied to the habitable room passes, and in which refrigerant water which is heat-exchanged in a second heat exchanger of the heat source machine passes. The second air conditioner includes a second coil in which the refrigerant water which has passed the first coil or other refrigerant water which has exchanged heat with the refrigerant water passes.SELECTED DRAWING: Figure 1

Description

本発明は、空調システムに関する。   The present invention relates to an air conditioning system.
照明やOA(Office Automation)機器の省エネ化、建物の断熱性能の向上に伴い、オ
フィスの冷暖房に必要な空調の負荷も減少の一途を辿っている。また、人が心地よく感じる温度は各人で異なる。このため、近年は室内全体を空調するという考え方が見直されつつあり、例えば、特許文献1には、個別に空調する技術が開示されている。
With the energy saving of lighting and OA (Office Automation) equipment and the improvement of thermal insulation performance of buildings, the air conditioning load required for air conditioning in offices is steadily decreasing. Also, the temperature at which people feel comfortable varies from person to person. For this reason, in recent years, the idea of air-conditioning the entire room is being reviewed. For example, Patent Document 1 discloses a technique for individually air-conditioning.
特開2009−156510号公報JP 2009-156510 A 特開2010−197027号公報JP 2010-197027 A 特開平09−229507号公報JP 09-229507 A
しかし、ビルの空調機械室から引き回したダクトによる空気で個別の空調を実現しようとすると、各人が所望する温度にするための冷暖熱を空気で輸送することになるため、水等の液体で輸送する場合に比べて熱輸送の動力に無駄が多い。そこで、水等の液体を冷却する冷凍機を用いて個別の空調を実現することも考えられるが、人が居る室内空間には一定の換気量が必要なので、外気を室内へ取り入れる経路の省略は難しい。   However, if individual air conditioning is realized with air drawn from the air conditioning machine room of the building, the cooling / heating heat to bring each person to the desired temperature will be transported by air. There is much waste in the power of heat transport compared to the case of transport. Therefore, it may be possible to realize individual air conditioning using a refrigerator that cools liquids such as water, but since a certain amount of ventilation is required in the indoor space where people are present, omitting the route for taking outside air into the room is not necessary. difficult.
また、居者毎に個別に用意された小型の各空調機に凝縮水を回収するドレン配管を設けて除湿を図ることも容易でないため、取り入れた外気を除湿する装置の省略も難しい。そして、取り入れた外気中の湿分を凝縮させるのに用いる冷媒と、個別の空調に用いる冷媒とでは温度領域が相違するが、各々の温度領域に対応する機器を個別に用意することも煩わしい。   Moreover, since it is not easy to dehumidify by providing a drain pipe for collecting condensed water in each small air conditioner individually prepared for each occupant, it is difficult to omit an apparatus for dehumidifying the introduced outside air. And although the temperature range differs between the refrigerant | coolant used for condensing the moisture in the taken in external air, and the refrigerant | coolant used for an individual air conditioning, it is also troublesome to prepare the apparatus corresponding to each temperature area | region separately.
そこで、本願は、空調システム全体の機器構成を複雑化させずに個別空調を実現する技術の提供を目的とする。   Therefore, an object of the present application is to provide a technique for realizing individual air conditioning without complicating the device configuration of the entire air conditioning system.
上記課題を解決するため、本願の空調システムは、換気用の給排気経路に設置されており、居室へ給気する外気を空調する第1空調機と、居室に設置されており、居室の空気を取り込んで空調する第2空調機と、を備え、第1空調機は、居室からの排気が通る経路に配置された凝縮器を有する熱源機と、居室へ給気する外気が通る経路に配置されており、熱源機の蒸発器で熱交換された冷水が通る第1コイルと、を有し、第2空調機は、第1コイルを通った冷水又は該冷水と熱交換した他の冷水が通る第2コイルを有する。上記の空調システムによれば、第2空調機の空調に用いる冷水を適切な温度に保つことができ、空調システム全体の機器構成を複雑化せずに個別空調を実現することができる。   In order to solve the above problems, the air conditioning system of the present application is installed in a ventilation air supply / exhaust path, and is installed in the living room, the first air conditioner that air-conditions the outside air supplied to the living room, and the air in the living room The first air conditioner is disposed in a path through which a heat source device having a condenser disposed in a path through which exhaust from the room passes and outside air supplied to the room passes. A first coil through which the cold water heat-exchanged by the evaporator of the heat source device passes, and the second air conditioner has cold water that has passed through the first coil or other cold water that has exchanged heat with the cold water. Having a second coil through. According to said air conditioning system, the cold water used for the air conditioning of a 2nd air conditioning machine can be maintained at appropriate temperature, and individual air conditioning can be implement | achieved, without complicating the apparatus structure of the whole air conditioning system.
上記の空調システムにおいて、第1空調機は、凝縮器及び蒸発器を循環する冷媒が通る第3コイルを有し、第3コイルは、居室へ給気する外気が通る経路に配置されていてもよい。また、上記の空調システムにおいて、第1空調機は、居室の天井裏空間に設置されていてもよい。   In the above air conditioning system, the first air conditioner has a third coil through which the refrigerant circulating through the condenser and the evaporator passes, and the third coil is arranged in a path through which the outside air supplied to the room passes. Good. In the above air conditioning system, the first air conditioner may be installed in a ceiling space of the living room.
また、本願の空調システムは、換気用の給排気経路に設置されており、居室へ給気する外気を空調する第1空調機と、居室に設置されており、居室の空気を取り込んで空調する第2空調機と、凝縮器及び蒸発器を有する熱源機と、を備え、第1空調機は、居室へ給気する外気が通る経路に配置されており、蒸発器で熱交換された冷水が通る第1コイルを有し、第2空調機は、第1コイルを通った冷水又は該冷水と熱交換した他の冷水が通る第2コイルを有する。上記の空調システムによれば、第2空調機の空調に用いる冷水を適切な温度に保つことができ、空調システム全体の機器構成を複雑化せずに個別空調を実現することができる。   In addition, the air conditioning system of the present application is installed in a ventilation air supply / exhaust path, and is installed in the living room and the first air conditioner that air-conditions the outside air supplied to the living room, and takes in the air in the living room and performs air conditioning. The first air conditioner is disposed in a path through which the outside air supplied to the living room passes, and the cold water heat-exchanged by the evaporator is provided with a second air conditioner and a heat source device having a condenser and an evaporator. The second air conditioner has a second coil through which cold water that has passed through the first coil or other cold water that has exchanged heat with the cold water passes. According to said air conditioning system, the cold water used for the air conditioning of a 2nd air conditioning machine can be maintained at appropriate temperature, and individual air conditioning can be implement | achieved, without complicating the apparatus structure of the whole air conditioning system.
上記の空調システムにおいて、第1空調機は、凝縮器及び蒸発器を循環する冷媒が通る第3コイルを有し、第3コイルは、居室へ給気する外気が通る経路に配置されていてもよい。また、上記の空調システムにおいて、第1空調機は、居室の天井裏空間に設置されていてもよい。   In the above air conditioning system, the first air conditioner has a third coil through which the refrigerant circulating through the condenser and the evaporator passes, and the third coil is arranged in a path through which the outside air supplied to the room passes. Good. In the above air conditioning system, the first air conditioner may be installed in a ceiling space of the living room.
また、本願の空調システムは、換気用の給排気経路に設置されており、居室へ給気する外気を空調する第1空調機と、居室に設置されており、居室の空気を取り込んで空調する第2空調機と、を備え、第1空調機は、居室からの排気が通る経路に配置された蒸発器を有する熱源機と、居室へ給気する外気が通る経路に配置されており、熱源機の凝縮器で熱交換された温水が通る第1コイルと、を有し、第2空調機は、第1コイルを通った温水又は該温水と熱交換した他の温水が通る第2コイルを有する。上記の空調システムによれば、第2空調機の空調に用いる温水を適切な温度に保つことができ、空調システム全体の機器構成を複雑化せずに個別空調を実現することができる。   In addition, the air conditioning system of the present application is installed in a ventilation air supply / exhaust path, and is installed in the living room and the first air conditioner that air-conditions the outside air supplied to the living room, and takes in the air in the living room and performs air conditioning. A second air conditioner, and the first air conditioner is disposed in a path through which a heat source having an evaporator disposed in a path through which exhaust from the room passes and an outside air supplied to the room passes through. A first coil through which hot water heat-exchanged by a condenser of the machine passes, and a second air conditioner passes through the second coil through which hot water passed through the first coil or other hot water heat-exchanged with the hot water passes. Have. According to said air conditioning system, the warm water used for the air conditioning of a 2nd air conditioning machine can be kept at an appropriate temperature, and an individual air conditioning can be implement | achieved, without complicating the apparatus structure of the whole air conditioning system.
更に、本願の空調システムは、換気用の給排気経路に設置されており、居室へ給気する外気を空調する第1空調機と、居室に設置されており、居室の空気を取り込んで空調する第2空調機と、を備え、第1空調機は、居室からの排気が通る経路に配置された第1熱交換器を有するヒートポンプ熱源機と、居室へ給気する外気が通る経路に配置されており、ヒートポンプ熱源機の第2熱交換機で熱交換された冷媒水が通る第1コイルと、を有し、第2空調機は、前記第1コイルを通った冷媒水又は該冷媒水と熱交換した他の冷媒水が通る第2コイルを有する。上記の空調システムによれば、第2空調機の空調に用いる冷媒水を適切な温度に保つことができ、空調システム全体の機器構成を複雑化せずに、冷房時と暖房時の両方において、個別空調を実現することができる。   Further, the air conditioning system of the present application is installed in a ventilation air supply / exhaust path, and is installed in the living room and the first air conditioner that air-conditions the outside air supplied to the living room, and takes in the air in the living room and performs air conditioning. A second air conditioner, and the first air conditioner is disposed in a path through which a heat pump heat source device having a first heat exchanger disposed in a path through which exhaust from the room passes and outside air supplied to the room passes. And a first coil through which the refrigerant water heat-exchanged by the second heat exchanger of the heat pump heat source machine passes, and the second air conditioner passes through the first coil or heats the refrigerant water and the refrigerant water. It has the 2nd coil which other exchanged coolant water passes. According to the air conditioning system described above, the coolant water used for air conditioning of the second air conditioner can be maintained at an appropriate temperature, and without complicating the entire air conditioning system, the cooling system and the heating system are both Individual air conditioning can be realized.
本願によれば、空調システム全体の機器構成を複雑化させずに個別空調を実現する技術の提供が可能となる。   According to the present application, it is possible to provide a technique for realizing individual air conditioning without complicating the device configuration of the entire air conditioning system.
図1は、第1実施形態に係る空調システムの概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of an air conditioning system according to the first embodiment. 図2は、第1実施形態に係る空調機の構成図である。FIG. 2 is a configuration diagram of the air conditioner according to the first embodiment. 図3は、タスク空調デスクの構成図である。FIG. 3 is a configuration diagram of the task air conditioning desk. 図4は、ファンコイルユニットの構成図である。FIG. 4 is a configuration diagram of the fan coil unit. 図5は、床置型のファンコイルユニットの構成図である。FIG. 5 is a configuration diagram of a floor-mounted fan coil unit. 図6は、第2実施形態に係る空調機の構成図である。FIG. 6 is a configuration diagram of an air conditioner according to the second embodiment. 図7は、第3実施形態に係る空調システムの概略構成を示す図である。FIG. 7 is a diagram illustrating a schematic configuration of an air conditioning system according to the third embodiment. 図8は、第4実施形態に係る空調システムの概略構成を示す図である。FIG. 8 is a diagram illustrating a schematic configuration of an air conditioning system according to the fourth embodiment. 図9は、第4実施形態に係る空調機の構成図である。FIG. 9 is a configuration diagram of an air conditioner according to the fourth embodiment. 図10は、第1変形例に係る空調システムの概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of an air conditioning system according to a first modification. 図11は、第2変形例に係る空調機の構成図である。FIG. 11 is a configuration diagram of an air conditioner according to a second modification.
以下、図面を参照して、各実施形態に係る空調システムについて説明する。以下の各実施形態の構成は例示であり、本願の空調システムは、各実施形態の構成には限定されない。また、各実施形態の構成を可能な限り組み合わせてもよい。なお、図中の温度や流量等の数値表記は、冷房時と暖房時の参考数値であり、本発明がこれらの数値に限られるものではない。   Hereinafter, the air conditioning system according to each embodiment will be described with reference to the drawings. The configuration of each embodiment below is an exemplification, and the air conditioning system of the present application is not limited to the configuration of each embodiment. Moreover, you may combine the structure of each embodiment as much as possible. In addition, numerical notations such as temperature and flow rate in the figure are reference numerical values during cooling and heating, and the present invention is not limited to these numerical values.
<第1実施形態>
《空調システム》
図1は、第1実施形態に係る空調システム1の概略構成を示す図である。第1実施形態の空調システム1は、目的空間(被調和室)の空調を行うものであり、例えば、室内の空気の温度、湿度、清浄度の調整を行う。第1実施形態は、空調システム1をオフィスに適用した例であり、図1に示すように、当該オフィスには目的空間としての事務室2及び会議室3が設けられている。事務室2及び会議室3は、居室の一例である。当該オフィスは、事務室2の天井11及び会議室3の天井12と天井スラブ13との間に空間14が設けられた二重天井構造となっている。天井11、12には、複数の吹出口15及び複数の還気口16が設けられている。
<First Embodiment>
《Air conditioning system》
FIG. 1 is a diagram illustrating a schematic configuration of an air conditioning system 1 according to the first embodiment. The air conditioning system 1 of the first embodiment performs air conditioning of a target space (a room to be conditioned), and for example, adjusts the temperature, humidity, and cleanliness of indoor air. 1st Embodiment is an example which applied the air-conditioning system 1 to the office, and as shown in FIG. 1, the said office is provided with the office room 2 and the conference room 3 as a target space. The office room 2 and the conference room 3 are examples of living rooms. The office has a double ceiling structure in which a space 14 is provided between the ceiling 11 of the office room 2 and the ceiling 12 of the conference room 3 and the ceiling slab 13. The ceilings 11 and 12 are provided with a plurality of air outlets 15 and a plurality of return air ports 16.
空調システム1は、空調機4を備えている。空調機4は、換気用の給排気経路に設置されている。空調機4は、事務室2や会議室3等の居室へ給気する外気を空調する。空調機4は、第1空調機の一例である。空調機4に接続された給気ダクト21を介して空調機4に外気が取り込まれる。空調機4に接続された給気ダクト22が、天井裏の空間14に引き込まれており、天井11、12に設けられた複数の吹出口15に給気ダクト22が繋がっている。天井11、12に設けられた吹出口15を介して、事務室2内及び会議室3内に外気が給気される。   The air conditioning system 1 includes an air conditioner 4. The air conditioner 4 is installed in the air supply / exhaust path for ventilation. The air conditioner 4 air-conditions the outside air supplied to living rooms such as the office room 2 and the conference room 3. The air conditioner 4 is an example of a first air conditioner. Outside air is taken into the air conditioner 4 through the air supply duct 21 connected to the air conditioner 4. An air supply duct 22 connected to the air conditioner 4 is drawn into the space 14 behind the ceiling, and the air supply duct 22 is connected to a plurality of air outlets 15 provided in the ceilings 11 and 12. Outside air is supplied into the office room 2 and the conference room 3 through the air outlets 15 provided in the ceilings 11 and 12.
天井11、12に設けられた還気口16を介して、事務室2内の空気及び会議室3内の空気が天井裏の空間14に戻る。天井11、12に設けられた吹出口15及び還気口16を介して、事務室2及び会議室3の換気が行われる。空調機4に接続された排気ダクト23を介して、天井裏の空間14から空調機4に排気が取り込まれる。空調機4に接続された排気ダクト24を介して、空調機4から排気が排出される。   The air in the office room 2 and the air in the meeting room 3 return to the space 14 on the back of the ceiling via the return air openings 16 provided in the ceilings 11 and 12. The office room 2 and the conference room 3 are ventilated through the air outlet 15 and the return air port 16 provided on the ceilings 11 and 12. Exhaust air is taken into the air conditioner 4 from the space 14 behind the ceiling through the exhaust duct 23 connected to the air conditioner 4. Exhaust gas is exhausted from the air conditioner 4 through the exhaust duct 24 connected to the air conditioner 4.
空調システム1では、事務室2、会議室3及び空調機4等を冷水が循環している。第1実施形態では、空調機システム1で冷房を行う場合について説明しているため、事務室2、会議室3及び空調機4等を冷水が循環しているが、空調機システム1で暖房を行う場合、事務室2、会議室3及び空調機4等を温水が循環する。したがって、各実施形態において、空調機システム1で暖房を行う場合、冷水を温水と読み替えればよい。また、各実施形態において、空調機システム1で冷暖房を行う場合、事務室2、会議室3及び空調機4等を冷温水が循環する。したがって、各実施形態において、空調機システム1で冷暖房を行う場合、冷水を冷温水と読み替えればよい。空調システム1は、冷水循環配管25、26を備えている。冷水循環配管25は、分岐して空調機4に接続され、冷水循環配管26は、空調機4に接続されている。冷水循環配管26に冷水ポンプ27が設けられている。冷水ポンプ27が駆動することにより、空調機4から冷水循環配管25に冷水が流入すると共に、冷水循環配管26から空調機4に冷水が戻る。   In the air conditioning system 1, cold water circulates through the office room 2, the conference room 3, the air conditioner 4, and the like. In the first embodiment, since the case where the air conditioner system 1 performs cooling is described, cold water is circulated through the office room 2, the conference room 3, the air conditioner 4, and the like. When performing, warm water circulates through the office room 2, the conference room 3, the air conditioner 4, and the like. Therefore, in each embodiment, when heating with the air conditioner system 1, cold water should just be read as warm water. Moreover, in each embodiment, when performing air conditioning with the air conditioning system 1, cold / hot water circulates through the office room 2, the conference room 3, the air conditioner 4, and the like. Therefore, in each embodiment, when performing air conditioning with the air conditioner system 1, cold water should just be read as cold / hot water. The air conditioning system 1 includes cold water circulation pipes 25 and 26. The cold water circulation pipe 25 is branched and connected to the air conditioner 4, and the cold water circulation pipe 26 is connected to the air conditioner 4. A cold water pump 27 is provided in the cold water circulation pipe 26. When the chilled water pump 27 is driven, chilled water flows from the air conditioner 4 into the chilled water circulation pipe 25, and the chilled water returns from the chilled water circulation pipe 26 to the air conditioner 4.
図2は、第1実施形態に係る空調機4の構成図である。空調機4は、給気ファン41及び排気ファン42を備える。給気ファン41が駆動することにより、給気ダクト21を介して空調機4内に外気が取り込まれる。空調機4内に取り込まれた外気が、給気経路43を通って給気ダクト22に導入されることにより、天井裏の空間14に外気が供給される。排気ファン42が駆動することにより、排気ダクト23を介して天井裏の空間14から
空調機4に排気が取り込まれる。空調機4内に取り込まれた排気が、排気経路44を通り、排気ダクト24を介して空調機4から排気が排出される。
FIG. 2 is a configuration diagram of the air conditioner 4 according to the first embodiment. The air conditioner 4 includes an air supply fan 41 and an exhaust fan 42. When the air supply fan 41 is driven, outside air is taken into the air conditioner 4 through the air supply duct 21. The outside air taken into the air conditioner 4 is introduced into the air supply duct 22 through the air supply path 43, so that the outside air is supplied to the space 14 behind the ceiling. When the exhaust fan 42 is driven, exhaust is taken into the air conditioner 4 from the space 14 behind the ceiling via the exhaust duct 23. Exhaust gas taken into the air conditioner 4 passes through the exhaust path 44 and is exhausted from the air conditioner 4 through the exhaust duct 24.
空調機4は、ヒートポンプ熱源機45と、コイル46〜48とを備える。ヒートポンプ熱源機45に替えて、空調用冷凍機を用いてもよい。コイル46〜48は、コイル46〜48を構成する配管を通る冷水と空気との間で熱交換を行う熱交換器である。コイル46、48は、給気経路43に配置され、給気経路43を通る外気の温湿度調節を行う。コイル47は、排気経路44に配置されている。ヒートポンプ熱源機45は、蒸発器51、圧縮機52、凝縮器53及び膨張弁54を有する。蒸発器51及び凝縮器53は、熱交換器である。蒸発器51、圧縮機52、凝縮器53及び膨張弁54を冷媒が循環している。ヒートポンプ熱源機45は、排気経路44に配置されている。空調機システム1で冷房を行う場合、凝縮器53に送られた冷媒が凝縮するとき、排気経路44を通る排気と凝縮器53に送られた冷媒との間で熱交換が行われる。排気経路44を通る排気によって冷媒が冷却されるため、排気経路44を通る排気の温度が低いことが好ましい。空調機システム1で冷房を行う場合、排気ダクト23を介して空調機4内に取り込まれた排気の温度は、給気ダクト21を介して空調機4内に取り込まれた外気の温度よりも低い。ヒートポンプ熱源機45が排気経路44に設置されているので熱源の効率を向上させている。空調機4内には、冷水が循環する循環経路が設けられており、冷水循環配管26を介して空調機4に戻った冷水は、蒸発器51及びコイル46〜48を構成する配管を通って、冷水循環配管25に流入する。暖房時には、蒸発器51は凝縮器として機能し、凝縮器53は蒸発器として機能する。冷房時と暖房時で蒸発器と凝縮器はその機能が逆になる。   The air conditioner 4 includes a heat pump heat source device 45 and coils 46 to 48. Instead of the heat pump heat source unit 45, an air conditioning refrigerator may be used. The coils 46 to 48 are heat exchangers that perform heat exchange between cold water and air passing through the pipes constituting the coils 46 to 48. The coils 46 and 48 are arranged in the air supply path 43 and adjust the temperature and humidity of the outside air passing through the air supply path 43. The coil 47 is disposed in the exhaust path 44. The heat pump heat source unit 45 includes an evaporator 51, a compressor 52, a condenser 53, and an expansion valve 54. The evaporator 51 and the condenser 53 are heat exchangers. A refrigerant circulates through the evaporator 51, the compressor 52, the condenser 53, and the expansion valve 54. The heat pump heat source unit 45 is disposed in the exhaust path 44. When performing cooling with the air conditioner system 1, when the refrigerant sent to the condenser 53 condenses, heat exchange is performed between the exhaust passing through the exhaust path 44 and the refrigerant sent to the condenser 53. Since the refrigerant is cooled by the exhaust gas passing through the exhaust passage 44, the temperature of the exhaust gas passing through the exhaust passage 44 is preferably low. When the air conditioner system 1 performs cooling, the temperature of the exhaust gas taken into the air conditioner 4 via the exhaust duct 23 is lower than the temperature of the outside air taken into the air conditioner 4 via the air supply duct 21. . Since the heat pump heat source unit 45 is installed in the exhaust path 44, the efficiency of the heat source is improved. In the air conditioner 4, a circulation path through which cold water circulates is provided, and the cold water that has returned to the air conditioner 4 through the cold water circulation pipe 26 passes through the pipes that constitute the evaporator 51 and the coils 46 to 48. And flows into the cold water circulation pipe 25. During heating, the evaporator 51 functions as a condenser, and the condenser 53 functions as an evaporator. The functions of the evaporator and condenser are reversed during cooling and heating.
冷水循環配管26を介して蒸発器51に流入した冷水は、蒸発器51で熱交換が行われた後、冷水循環配管61を通ってコイル46に流入する。詳細には、蒸発器51に流入した冷水は、蒸発器51、圧縮機52、凝縮器53及び膨張弁54を循環する冷媒との間で熱交換が行われる。コイル46を構成する配管を通る冷水は、給気経路43を通る外気との間で熱交換が行われた後、冷水循環配管62を通って冷水循環配管25に流入するとともに、冷水循環配管63を通ってコイル47に流入する。コイル46を通過する外気の温度がコイル46を構成する配管を通る冷水の温度よりも高い場合、外気がコイル46を通過する際、外気が除湿される。除湿時の凝縮水は、排気経路44に排出される。コイル47を構成する配管を通る冷水は、排気経路44を通る排気との間で熱交換が行われた後、冷水循環配管64を通ってコイル48に流入する。コイル48を構成する配管を通る冷水は、給気経路43を通る外気との間で熱交換が行われた後、冷水循環配管25に流入する。コイル46、48は、第1コイルの一例である。   The cold water that has flowed into the evaporator 51 via the cold water circulation pipe 26 is subjected to heat exchange in the evaporator 51 and then flows into the coil 46 through the cold water circulation pipe 61. Specifically, the cold water flowing into the evaporator 51 undergoes heat exchange with the refrigerant that circulates through the evaporator 51, the compressor 52, the condenser 53, and the expansion valve 54. The chilled water passing through the piping constituting the coil 46 undergoes heat exchange with the outside air passing through the air supply path 43, and then flows into the chilled water circulation piping 25 through the chilled water circulation piping 62, and at the same time, the chilled water circulation piping 63. Through the coil 47. When the temperature of the outside air that passes through the coil 46 is higher than the temperature of the cold water that passes through the piping that constitutes the coil 46, the outside air is dehumidified when it passes through the coil 46. The condensed water at the time of dehumidification is discharged to the exhaust path 44. The chilled water passing through the piping constituting the coil 47 undergoes heat exchange with the exhaust passing through the exhaust path 44 and then flows into the coil 48 through the chilled water circulation piping 64. The chilled water passing through the pipe constituting the coil 48 flows into the chilled water circulation pipe 25 after heat exchange with the outside air passing through the air supply path 43. The coils 46 and 48 are an example of a first coil.
図2に示すように、コイル46、48が、給気経路43に配置されている。したがって、コイル46を構成する配管を通る冷水を用いて、給気経路43を通る外気の温湿度調節を行った後、コイル48を構成する配管を通る冷水を用いて、給気経路43を通る外気の温度調節を再度行うことができる。給気経路43に配置されたコイル46を構成する配管を通った冷水は、排気経路44に配置されたコイル47を構成する配管を通った後、給気経路43に配置されたコイル48を構成する配管を通る。そのため、コイル46を構成する配管を通る冷水の温度とコイル48を構成する配管を通る冷水の温度とが異なっている。このように、異なる温度の冷水を用いて、給気経路43を通る外気の温湿度調節を行うことができる。空調機システム1で冷房を行う場合、コイル46を通過する外気は、コイル46を構成する配管を通る冷水によって冷却される。コイル46を構成する配管を通る冷水は蒸発器51から流入している。コイル46を構成する配管を通る冷水によってコイル46を通過する外気を冷却した場合、コイル46を通過する外気の温度はかなり低い温度になり、事務室2や会議室3等の居室へ給気する外気の温度として好ましくない。冷水が排気経路44に配置されたコイル47を構成する配管を通るため、コイル48を構成する配管を通る冷水の温度はコイル46を構成する配管を通る冷水の温度よりも高くなる。
コイル48を構成する配管を通る冷水によってコイル48を通過する外気の温度を上げることで、事務室2や会議室3等の居室へ給気する外気の温度として適切な温度に調節することができる。
As shown in FIG. 2, the coils 46 and 48 are arranged in the air supply path 43. Therefore, after adjusting the temperature and humidity of the outside air passing through the air supply path 43 using cold water passing through the pipe constituting the coil 46, the cold water passing through the pipe constituting the coil 48 is used to pass through the air supply path 43. The temperature of the outside air can be adjusted again. The cold water that has passed through the piping that constitutes the coil 46 that is disposed in the air supply path 43 passes through the piping that constitutes the coil 47 that is disposed in the exhaust path 44, and then constitutes the coil 48 that is disposed in the air supply path 43. Go through the pipes you want. Therefore, the temperature of the chilled water passing through the piping constituting the coil 46 is different from the temperature of the chilled water passing through the piping constituting the coil 48. In this way, the temperature and humidity of the outside air passing through the air supply path 43 can be adjusted using cold water having different temperatures. When cooling is performed by the air conditioner system 1, the outside air that passes through the coil 46 is cooled by cold water that passes through piping that forms the coil 46. Cold water that passes through the piping constituting the coil 46 flows from the evaporator 51. When the outside air that passes through the coil 46 is cooled by cold water that passes through the piping that constitutes the coil 46, the temperature of the outside air that passes through the coil 46 is considerably low, and is supplied to the living room such as the office room 2 and the conference room 3 It is not preferable as the temperature of the outside air. Since the cold water passes through the pipes constituting the coil 47 disposed in the exhaust path 44, the temperature of the cold water passing through the pipes constituting the coil 48 is higher than the temperature of the cold water passing through the pipes constituting the coil 46.
By raising the temperature of the outside air that passes through the coil 48 with cold water that passes through the piping that constitutes the coil 48, the temperature of the outside air that is supplied to the living room such as the office room 2 and the conference room 3 can be adjusted to an appropriate temperature. .
事務室2には、複数のタスク空調デスク31が設置されており、このタスク空調デスク31が設置された空間が事務作業等を行うタスク空間32となっている。図3は、タスク空調デスク31の構成図である。タスク空調デスク31は、空気を取り込んで空気調節を行う空調機である。タスク空調デスク31は、第2空調機の一例である。タスク空調デスク31は、ファン311、コイル312、吸込口313及び吹出口314を有する。ファン311は、タスク空間32内に空気を送風する送風機である。コイル312は、コイル312を構成する配管を通る冷水と空気との間で熱交換を行う熱交換器である。コイル312は、第2コイルの一例である。   A plurality of task air conditioning desks 31 are installed in the office room 2, and a space in which the task air conditioning desks 31 are installed is a task space 32 for performing office work and the like. FIG. 3 is a configuration diagram of the task air conditioning desk 31. The task air conditioning desk 31 is an air conditioner that takes in air and adjusts the air. The task air conditioning desk 31 is an example of a second air conditioner. The task air conditioning desk 31 includes a fan 311, a coil 312, a suction port 313, and an air outlet 314. The fan 311 is a blower that blows air into the task space 32. The coil 312 is a heat exchanger that exchanges heat between cold water and air that passes through the piping that forms the coil 312. The coil 312 is an example of a second coil.
ファン311が駆動することにより、タスク空間32内の空気が吸込口313から吸い込まれ、コイル312によって冷水と熱交換された空気が吹出口314から吹き出る。コイル312には、冷水循環配管25、26が接続されている。冷水循環配管25からコイル312に冷水が供給され、コイル312を構成する配管を通った冷水は冷水循環配管26に戻る。したがって、空調機4から冷水循環配管25に流入した冷水がコイル312を通り、コイル312を構成する配管を通った冷水が、冷水循環配管26を介して空調機4に戻る。   By driving the fan 311, the air in the task space 32 is sucked from the suction port 313, and the air heat-exchanged with the cold water by the coil 312 blows out from the blowout port 314. Cold water circulation pipes 25 and 26 are connected to the coil 312. Cold water is supplied from the cold water circulation pipe 25 to the coil 312, and the cold water passing through the pipe constituting the coil 312 returns to the cold water circulation pipe 26. Therefore, the cold water that has flowed into the cold water circulation pipe 25 from the air conditioner 4 passes through the coil 312, and the cold water that has passed through the pipe constituting the coil 312 returns to the air conditioner 4 through the cold water circulation pipe 26.
天井11、12には、複数のファンコイルユニット33が設置されている。ファンコイルユニット33は、空気を取り込んで空気調節を行う空調機である。ファンコイルユニット33は、第2空調機の一例である。図4は、ファンコイルユニット33の構成図である。ファンコイルユニット33は、ファン331、コイル332及び吹出口333を有する。ファン331は、空気を送風する送風機であり、サーモスタットが内蔵されている。コイル332は、供給される冷水と空気との間で熱交換を行う熱交換器である。コイル332は、第2コイルの一例である。   A plurality of fan coil units 33 are installed on the ceilings 11 and 12. The fan coil unit 33 is an air conditioner that takes in air and adjusts the air. The fan coil unit 33 is an example of a second air conditioner. FIG. 4 is a configuration diagram of the fan coil unit 33. The fan coil unit 33 includes a fan 331, a coil 332, and an air outlet 333. The fan 331 is a blower that blows air, and has a built-in thermostat. The coil 332 is a heat exchanger that performs heat exchange between supplied cold water and air. The coil 332 is an example of a second coil.
ファン331が駆動することにより、ファン331から空気が取り込まれ、コイル332によって冷水と熱交換された空気が吹出口333から吹き出る。コイル332には、冷水循環配管25、26が接続されている。冷水循環配管25からコイル332に冷水が供給され、コイル332を構成する配管を通った冷水は冷水循環配管26に戻る。したがって、空調機4から冷水循環配管25に流入した冷水がコイル332を通り、コイル332を構成する配管を通った冷水が、冷水循環配管26を介して空調機4に戻る。   When the fan 331 is driven, air is taken in from the fan 331, and air that has been heat-exchanged with the cold water by the coil 332 is blown out from the air outlet 333. The coil 332 is connected to cold water circulation pipes 25 and 26. Cold water is supplied from the cold water circulation pipe 25 to the coil 332, and the cold water that has passed through the pipe constituting the coil 332 returns to the cold water circulation pipe 26. Therefore, the cold water that has flowed into the cold water circulation pipe 25 from the air conditioner 4 passes through the coil 332, and the cold water that has passed through the pipe constituting the coil 332 returns to the air conditioner 4 via the cold water circulation pipe 26.
会議室3には、床置型のファンコイルユニット34が設置されている。ファンコイルユニット34は、空気を取り込んで空気調節を行う空調機である。ファンコイルユニット34は、第2空調機の一例である。図5は、床置型のファンコイルユニット34の構成図である。ファンコイルユニット34は、ファン341、コイル342及び吹出口343を有する。ファン341は、空気を送風する送風機であり、サーモスタットが内蔵されている。コイル342は、供給される冷水と空気との間で熱交換を行う熱交換器である。コイル342は、第2コイルの一例である。   In the conference room 3, a floor-mounted fan coil unit 34 is installed. The fan coil unit 34 is an air conditioner that takes in air and adjusts the air. The fan coil unit 34 is an example of a second air conditioner. FIG. 5 is a configuration diagram of the floor-mounted fan coil unit 34. The fan coil unit 34 includes a fan 341, a coil 342, and an outlet 343. The fan 341 is a blower that blows air and incorporates a thermostat. The coil 342 is a heat exchanger that performs heat exchange between supplied cold water and air. The coil 342 is an example of a second coil.
ファン341が駆動することにより、ファン341から空気が取り込まれ、コイル342によって冷水と熱交換された空気が吹出口343から吹き出る。コイル342には、冷水循環配管25、26が接続されている。冷水循環配管25からコイル342に冷水が供給され、コイル342を構成する配管を通った冷水は冷水循環配管26に戻る。したがって、空調機4から冷水循環配管25に流入した冷水がコイル342を通り、コイル342を構成する配管を通った冷水が、冷水循環配管26を介して空調機4に戻る。   When the fan 341 is driven, air is taken in from the fan 341, and air that has been heat-exchanged with the cold water by the coil 342 is blown out from the air outlet 343. Cold water circulation pipes 25 and 26 are connected to the coil 342. Cold water is supplied from the cold water circulation pipe 25 to the coil 342, and the cold water that has passed through the pipe constituting the coil 342 returns to the cold water circulation pipe 26. Therefore, the cold water that has flowed into the cold water circulation pipe 25 from the air conditioner 4 passes through the coil 342, and the cold water that has passed through the pipe constituting the coil 342 returns to the air conditioner 4 through the cold water circulation pipe 26.
第1実施形態に係る空調システム1によれば、事務室2、会議室3及び空調機4等を循環する冷水は、蒸発器51で熱交換が行われた後、コイル46〜48を通る。コイル46、48を構成する配管を通る冷水は、給気経路43を通る外気との間で熱交換が行われ、コイル47を構成する配管を通る冷水は、排気経路44を通る排気との間で熱交換が行われる。これにより、個別の空調に用いる冷水を適切な温度に保つことができる。したがって、第1実施形態に係る空調システム1によれば、空調システム全体の機器構成を複雑化せずに個別空調を実現することができる。   According to the air conditioning system 1 according to the first embodiment, the cold water circulating through the office room 2, the conference room 3, the air conditioner 4, and the like passes through the coils 46 to 48 after heat exchange is performed in the evaporator 51. The cold water that passes through the pipes that constitute the coils 46 and 48 exchanges heat with the outside air that passes through the air supply path 43, and the cold water that passes through the pipes that constitute the coil 47 passes between the cold water passing through the exhaust path 44. Heat exchange takes place at. Thereby, the cold water used for individual air conditioning can be maintained at an appropriate temperature. Therefore, according to the air conditioning system 1 according to the first embodiment, individual air conditioning can be realized without complicating the device configuration of the entire air conditioning system.
例えば、冷水循環配管26を通る冷水の温度が19℃であり、蒸発器51で熱交換が行われた後の冷水の温度が11℃である場合、個別空調に11℃の温度の冷水を用いると個別空調機で冷水の温度を適切な温度に調節する必要がある。そのため、個別空調に11℃の温度の冷水を用いるのは好ましくない。第1実施形態に係る空調システム1によれば、蒸発器51で熱交換が行われた後の冷水がコイル46を構成する配管を通ることにより、冷水と給気経路43を通る外気との間で熱交換が行われるため、蒸発器51で熱交換が行われた後の冷水の温度よりもコイル46を構成する配管を通った後の冷水の温度が高い。例えば、コイル46を構成する配管を通った後の冷水の温度が16℃である場合、空調デスク31において、コイル312によって16℃の冷水と吸込口313から吸い込まれた空気との間で熱交換が行われ、吹出口333から20℃の空気が供給される。このように、個別空調に16℃の温度の冷水を用いることにより、空調デスク31、ファンコイルユニット33、34等の個別空調機で冷水の温度を適切な温度に調節する必要がない。ここでは、個別空調に冷水を用いる場合について説明したが、個別空調に温水を用いる場合についても同様に、個別空調機で温水の温度を適切な温度に調節する必要がない。空調機4から事務室2や会議室3等の居室に低い温度の冷水や高い温度の温水を供給し、個別空調機で冷水を加熱したり温水を冷却したりすることで冷水や温水の温度を適切な温度に調節する場合、加熱器や冷却器を個別空調機に別途設ける必要がある。また、空調機4から事務室2や会議室3等の居室に低い温度の冷水が供給されることにより、事務室2や会議室3等の居室内で結露が発生する可能性が高くなる。空調機4から事務室2や会議室3等の居室に適切な温度の冷水や温水を供給することにより、加熱器や冷却器を個別空調機に別途設ける必要がなくなると共に、事務室2や会議室3等の居室内における結露を抑止することができる。   For example, when the temperature of the cold water passing through the cold water circulation pipe 26 is 19 ° C. and the temperature of the cold water after the heat exchange in the evaporator 51 is 11 ° C., the cold water having a temperature of 11 ° C. is used for the individual air conditioning. It is necessary to adjust the temperature of the cold water to an appropriate temperature with an individual air conditioner. Therefore, it is not preferable to use cold water having a temperature of 11 ° C. for individual air conditioning. According to the air conditioning system 1 according to the first embodiment, the cold water after heat exchange is performed in the evaporator 51 passes between the cold water and the outside air passing through the air supply path 43 by passing through the piping constituting the coil 46. Therefore, the temperature of the cold water after passing through the pipe constituting the coil 46 is higher than the temperature of the cold water after the heat exchange is performed by the evaporator 51. For example, when the temperature of the cold water after passing through the piping constituting the coil 46 is 16 ° C., the air conditioning desk 31 exchanges heat between the cold water of 16 ° C. and the air sucked from the suction port 313 by the coil 312. And 20 ° C. air is supplied from the outlet 333. Thus, by using cold water having a temperature of 16 ° C. for individual air conditioning, it is not necessary to adjust the temperature of the cold water to an appropriate temperature by the individual air conditioners such as the air conditioning desk 31 and the fan coil units 33 and 34. Here, the case where cold water is used for individual air conditioning has been described, but similarly, when warm water is used for individual air conditioning, it is not necessary to adjust the temperature of the hot water to an appropriate temperature with the individual air conditioner. Cooling water or hot water temperature is supplied by supplying low-temperature cold water or high-temperature hot water from the air conditioner 4 to the office room 2 or the meeting room 3 or the like and heating the cold water or cooling the hot water with an individual air conditioner. When adjusting the temperature to an appropriate temperature, it is necessary to separately provide a heater or a cooler in the individual air conditioner. In addition, when cold water having a low temperature is supplied from the air conditioner 4 to the living room such as the office room 2 and the meeting room 3, the possibility of dew condensation occurring in the living room such as the office room 2 and the meeting room 3 increases. By supplying cold water or hot water of appropriate temperature from the air conditioner 4 to the office room 2 or the meeting room 3 or the like, it is not necessary to separately provide a heater or a cooler in the individual air conditioner. Condensation in the room such as the room 3 can be suppressed.
<第2実施形態>
第2実施形態に係る空調システム1について説明する。図6は、第2実施形態に係る空調機4の構成図である。図6に示すように、第2実施形態に係る空調システム1は、第1実施形態に係る空調システム1と比較して、空調機4の構成が異なっている。空調機4の構成以外の点について、第2実施形態に係る空調システム1の構成は、第1実施形態に係る空調システム1の構成と同様である。第2実施形態において、第1実施形態と同一の構成要素については、第1実施形態と同一の符号を付し、その説明を省略する。第2実施形態に係る空調機4では、蒸発器51、圧縮機52、凝縮器53及び膨張弁54を循環する冷媒を用いて、給気経路43を通る外気の温湿度調節を行う。
Second Embodiment
An air conditioning system 1 according to the second embodiment will be described. FIG. 6 is a configuration diagram of the air conditioner 4 according to the second embodiment. As shown in FIG. 6, the air conditioning system 1 according to the second embodiment is different in the configuration of the air conditioner 4 from the air conditioning system 1 according to the first embodiment. Regarding points other than the configuration of the air conditioner 4, the configuration of the air conditioning system 1 according to the second embodiment is the same as the configuration of the air conditioning system 1 according to the first embodiment. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted. In the air conditioner 4 according to the second embodiment, the temperature and humidity of the outside air passing through the air supply path 43 are adjusted using refrigerant circulating through the evaporator 51, the compressor 52, the condenser 53, and the expansion valve 54.
空調機4は、ヒートポンプ熱源機45と、コイル71、72とを備える。コイル71は、コイル71を構成する配管を通る冷水と空気との間で熱交換を行う熱交換器である。コイル71は、第1コイルの一例である。コイル72は、コイル72を通る冷媒と空気との間で熱交換を行う熱交換器である。コイル72は、第3コイルの一例である。コイル71、72は、給気経路43に配置され、給気経路43を通る外気の温湿度調節を行う。ヒートポンプ熱源機45は、蒸発器51、圧縮機52、凝縮器53及び膨張弁54を有する。ヒートポンプ熱源機45は、排気経路44に配置されている。空調機システム1で冷房を行う場合、凝縮器53に送られた冷媒が凝縮するとき、排気経路44を通る排気と凝縮器
53に送られた冷媒との間で熱交換が行われる。排気経路44を通る排気によって冷媒が冷却されるため、排気経路44を通る排気の温度が低いことが好ましい。空調機システム1で冷房を行う場合、排気ダクト23を介して空調機4内に取り込まれた排気の温度は、給気ダクト21を介して空調機4内に取り込まれた外気の温度よりも低い。ヒートポンプ熱源機45が排気経路44に設置されているので熱源の効率を向上させている。空調機4内には、冷水が循環する循環経路が設けられており、冷水循環配管26を介して空調機4に戻った冷水は、蒸発器51及びコイル71を構成する配管を通って、冷水循環配管25に流入する。暖房時には、蒸発器51は凝縮器として機能し、凝縮器53は蒸発器として機能する。冷房時と暖房時で蒸発器と凝縮器はその機能が逆になる。
The air conditioner 4 includes a heat pump heat source unit 45 and coils 71 and 72. The coil 71 is a heat exchanger that performs heat exchange between cold water and air passing through a pipe constituting the coil 71. The coil 71 is an example of a first coil. The coil 72 is a heat exchanger that performs heat exchange between the refrigerant passing through the coil 72 and the air. The coil 72 is an example of a third coil. The coils 71 and 72 are arranged in the air supply path 43 and adjust the temperature and humidity of the outside air passing through the air supply path 43. The heat pump heat source unit 45 includes an evaporator 51, a compressor 52, a condenser 53, and an expansion valve 54. The heat pump heat source unit 45 is disposed in the exhaust path 44. When performing cooling with the air conditioner system 1, when the refrigerant sent to the condenser 53 condenses, heat exchange is performed between the exhaust passing through the exhaust path 44 and the refrigerant sent to the condenser 53. Since the refrigerant is cooled by the exhaust gas passing through the exhaust passage 44, the temperature of the exhaust gas passing through the exhaust passage 44 is preferably low. When the air conditioner system 1 performs cooling, the temperature of the exhaust gas taken into the air conditioner 4 via the exhaust duct 23 is lower than the temperature of the outside air taken into the air conditioner 4 via the air supply duct 21. . Since the heat pump heat source unit 45 is installed in the exhaust path 44, the efficiency of the heat source is improved. A circulation path through which cold water circulates is provided in the air conditioner 4, and the cold water that has returned to the air conditioner 4 via the cold water circulation pipe 26 passes through the pipes that constitute the evaporator 51 and the coil 71, It flows into the circulation pipe 25. During heating, the evaporator 51 functions as a condenser, and the condenser 53 functions as an evaporator. The functions of the evaporator and condenser are reversed during cooling and heating.
冷水循環配管26を介して蒸発器51に流入した冷水は、蒸発器51で熱交換が行われた後、冷水循環配管73を通ってコイル71に流入する。詳細には、蒸発器51に流入した冷水は、蒸発器51、圧縮機52、凝縮器53及び膨張弁54を循環する冷媒との間で熱交換が行われる。コイル71を構成する配管を通る冷水は、給気経路43を通る外気との間で熱交換が行われた後、冷水循環配管25に流入する。コイル71を通過する外気の温度がコイル71を構成する配管を通る冷水の温度よりも高い場合、外気がコイル71を通過する際、外気が除湿される。除湿時の凝縮水は、排気経路44に排出される。冷媒が、冷媒配管74、75を介してコイル72に流入することで、冷媒は、蒸発器51、圧縮機52、凝縮器53、膨張弁54及びコイル72を循環する。コイル72を通る冷媒は、給気経路43を通る外気との間で熱交換が行われる。   The cold water flowing into the evaporator 51 through the cold water circulation pipe 26 is subjected to heat exchange in the evaporator 51 and then flows into the coil 71 through the cold water circulation pipe 73. Specifically, the cold water flowing into the evaporator 51 undergoes heat exchange with the refrigerant that circulates through the evaporator 51, the compressor 52, the condenser 53, and the expansion valve 54. The chilled water passing through the piping constituting the coil 71 flows into the chilled water circulation piping 25 after heat exchange with the outside air passing through the air supply path 43. When the temperature of the outside air that passes through the coil 71 is higher than the temperature of the cold water that passes through the piping that constitutes the coil 71, the outside air is dehumidified when it passes through the coil 71. The condensed water at the time of dehumidification is discharged to the exhaust path 44. As the refrigerant flows into the coil 72 via the refrigerant pipes 74 and 75, the refrigerant circulates through the evaporator 51, the compressor 52, the condenser 53, the expansion valve 54, and the coil 72. The refrigerant passing through the coil 72 exchanges heat with the outside air passing through the air supply path 43.
図6に示すように、コイル71、72が、給気経路43に配置されている。したがって、コイル71を構成する配管を通る冷水を用いて、給気経路43を通る外気の温湿度調節を行った後、コイル72を通る冷媒を用いて、給気経路43を通る外気の温度調節を再度行うことができる。空調機システム1で冷房を行う場合、コイル71を通過する外気は、コイル71を構成する配管を通る冷水によって冷却される。コイル71を構成する配管を通る冷水は蒸発器51から流入している。コイル71を構成する配管を通る冷水によってコイル71を通過する外気を冷却した場合、コイル71を通過する外気の温度はかなり低い温度になり、事務室2や会議室3等の居室へ給気する外気の温度として好ましくない。コイル72を通る冷媒(ホットガス)よってコイル72を通過する外気の温度を上げることで、事務室2や会議室3等の居室へ給気する外気の温度として適切な温度に調節することができる。   As shown in FIG. 6, the coils 71 and 72 are arranged in the air supply path 43. Therefore, after adjusting the temperature and humidity of the outside air passing through the air supply path 43 using cold water passing through the pipes constituting the coil 71, the temperature adjustment of the outside air passing through the air supply path 43 using the refrigerant passing through the coil 72. Can be done again. When cooling is performed by the air conditioner system 1, the outside air that passes through the coil 71 is cooled by cold water that passes through the piping that forms the coil 71. Cold water that passes through the piping constituting the coil 71 flows from the evaporator 51. When the outside air that passes through the coil 71 is cooled by cold water that passes through the piping that constitutes the coil 71, the temperature of the outside air that passes through the coil 71 becomes considerably low, and is supplied to the living room such as the office room 2 and the conference room 3 It is not preferable as the temperature of the outside air. By raising the temperature of the outside air that passes through the coil 72 by the refrigerant (hot gas) that passes through the coil 72, the temperature of the outside air that is supplied to the living room such as the office room 2 and the conference room 3 can be adjusted to an appropriate temperature. .
第2実施形態に係る空調システム1によれば、事務室2、会議室3及び空調機4等を循環する冷水は、蒸発器51で熱交換が行われた後、コイル71を構成する配管を通る。コイル71を構成する配管を通る冷水は、給気経路43を通る外気との間で熱交換が行われる。これにより、個別の空調に用いる冷水を適切な温度に保つことができる。したがって、第2実施形態に係る空調システム1によれば、空調システム全体の機器構成を複雑化せずに個別空調を実現することができる。   According to the air conditioning system 1 according to the second embodiment, the cold water circulating through the office room 2, the conference room 3, the air conditioner 4, etc. is subjected to heat exchange in the evaporator 51, and then the piping that constitutes the coil 71. Pass through. Heat exchange is performed between the cold water passing through the piping constituting the coil 71 and the outside air passing through the air supply path 43. Thereby, the cold water used for individual air conditioning can be maintained at an appropriate temperature. Therefore, according to the air conditioning system 1 according to the second embodiment, individual air conditioning can be realized without complicating the device configuration of the entire air conditioning system.
<第3実施形態>
第3実施形態に係る空調システム1について説明する。図7は、第3実施形態に係る空調システム1の概略構成を示す図である。図7に示すように、第3実施形態に係る空調システム1は、第1実施形態に係る空調システム1と比較して、空調機4の設置位置が異なっている。空調機4の設置位置以外の点について、第3実施形態に係る空調システム1の構成は、第1実施形態に係る空調システム1の構成と同様である。第3実施形態において、第1実施形態と同一の構成要素については、第1実施形態と同一の符号を付し、その説明を省略する。
<Third Embodiment>
An air conditioning system 1 according to a third embodiment will be described. FIG. 7 is a diagram illustrating a schematic configuration of an air conditioning system 1 according to the third embodiment. As shown in FIG. 7, the air conditioning system 1 according to the third embodiment differs from the air conditioning system 1 according to the first embodiment in the installation position of the air conditioner 4. Regarding the points other than the installation position of the air conditioner 4, the configuration of the air conditioning system 1 according to the third embodiment is the same as the configuration of the air conditioning system 1 according to the first embodiment. In the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
図7に示すように、空調システム1は、空調機4を備えており、天井裏の空間14に空
調機4が設置されている。空調機4は、換気用の給排気経路に設置されている。図7に示す空調機4の構成は、第1実施形態に係る空調システム1が備える空調機4の構成と同一であってもよいし、第2実施形態に係る空調システム1が備える空調機4の構成と同一であってもよい。空調機4に接続された給気ダクト21を介して空調機4に外気が取り込まれる。空調機4に接続された給気ダクト22は、天井裏の空間14に設置されており、天井11、12に設けられた複数の吹出口15に給気ダクト22が繋がっている。天井11、12に設けられた吹出口15を介して、事務室2内及び会議室3内に外気が給気される。
As shown in FIG. 7, the air conditioning system 1 includes an air conditioner 4, and the air conditioner 4 is installed in a space 14 behind the ceiling. The air conditioner 4 is installed in the air supply / exhaust path for ventilation. The configuration of the air conditioner 4 shown in FIG. 7 may be the same as the configuration of the air conditioner 4 included in the air conditioner system 1 according to the first embodiment, or the air conditioner 4 included in the air conditioner system 1 according to the second embodiment. The configuration may be the same. Outside air is taken into the air conditioner 4 through the air supply duct 21 connected to the air conditioner 4. The air supply duct 22 connected to the air conditioner 4 is installed in the space 14 behind the ceiling, and the air supply duct 22 is connected to a plurality of air outlets 15 provided in the ceilings 11 and 12. Outside air is supplied into the office room 2 and the conference room 3 through the air outlets 15 provided in the ceilings 11 and 12.
天井11、12に設けられた還気口16を介して、事務室2内の空気及び会議室3内の空気が天井裏の空間14に戻る。天井11、12に設けられた吹出口15及び還気口16を介して、事務室2及び会議室3の換気が行われる。空調機4に接続された排気ダクト23を介して、天井裏の空間14から空調機4に排気が取り込まれる。空調機4に接続された排気ダクト24を介して、空調機4から排気が排出される。第3実施形態に係る空調システム1によれば、空調機4を天井裏の空間14に設置することが可能であると共に、空調システム全体の機器構成を複雑化せずに個別空調を実現することができる。   The air in the office room 2 and the air in the meeting room 3 return to the space 14 on the back of the ceiling via the return air openings 16 provided in the ceilings 11 and 12. The office room 2 and the conference room 3 are ventilated through the air outlet 15 and the return air port 16 provided on the ceilings 11 and 12. Exhaust air is taken into the air conditioner 4 from the space 14 behind the ceiling through the exhaust duct 23 connected to the air conditioner 4. Exhaust gas is exhausted from the air conditioner 4 through the exhaust duct 24 connected to the air conditioner 4. According to the air conditioning system 1 according to the third embodiment, the air conditioner 4 can be installed in the space 14 behind the ceiling, and individual air conditioning can be realized without complicating the equipment configuration of the entire air conditioning system. Can do.
<第4実施形態>
第4実施形態に係る空調システム1について説明する。図8は、第4実施形態に係る空調システム1の概略構成を示す図である。図9は、第4実施形態に係る空調機4の構成図である。図8及び図9に示すように、第4実施形態に係る空調システム1は、第1実施形態に係る空調システム1と比較して、空調機4と冷水ポンプ27との間に空冷チラー81が設置されており、空調機4がヒートポンプ熱源機45を備えていない点が異なっている。第4実施形態に係る空調システム1におけるその他の構成は、第1実施形態に係る空調システム1の構成と同様である。第4実施形態において、第1実施形態と同一の構成要素については、第1実施形態と同一の符号を付し、その説明を省略する。
<Fourth embodiment>
An air conditioning system 1 according to the fourth embodiment will be described. FIG. 8 is a diagram illustrating a schematic configuration of an air conditioning system 1 according to the fourth embodiment. FIG. 9 is a configuration diagram of an air conditioner 4 according to the fourth embodiment. As shown in FIGS. 8 and 9, the air conditioning system 1 according to the fourth embodiment has an air cooling chiller 81 between the air conditioner 4 and the cold water pump 27 as compared to the air conditioning system 1 according to the first embodiment. The difference is that the air conditioner 4 is not provided with the heat pump heat source unit 45. Other configurations in the air conditioning system 1 according to the fourth embodiment are the same as the configurations of the air conditioning system 1 according to the first embodiment. In the fourth embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
空冷チラー81は、蒸発器、圧縮機、凝縮器、膨張弁及びファンを備える。空冷チラー81は、冷凍機等の熱源機である。冷水循環配管26は、空冷チラー81に接続されている。冷水ポンプ27が駆動することにより、空調機4から冷水循環配管25に冷水が流入すると共に、冷水循環配管26から空冷チラー81を通って、空調機4に冷水が戻る。冷水循環配管26を介して空冷チラー81に流入した冷水は、空冷チラー81の蒸発器で熱交換された後、空調機4と空冷チラー81との間に設けられた冷水循環配管82を通ってコイル46に流入する。詳細には、空冷チラー81の蒸発器に流入した冷水は、空冷チラー81の蒸発器、圧縮機、凝縮器及び膨張弁を循環する冷媒との間で熱交換が行われる。図9に示す空調機4のその他の構成は、第1実施形態に係る空調システム1が備える空調機4の構成と同一である。   The air-cooled chiller 81 includes an evaporator, a compressor, a condenser, an expansion valve, and a fan. The air cooling chiller 81 is a heat source machine such as a refrigerator. The cold water circulation pipe 26 is connected to an air cooling chiller 81. When the chilled water pump 27 is driven, chilled water flows into the chilled water circulation pipe 25 from the air conditioner 4, and the chilled water returns to the air conditioner 4 from the chilled water circulation pipe 26 through the air cooling chiller 81. The chilled water flowing into the air-cooled chiller 81 through the chilled water circulation pipe 26 is subjected to heat exchange in the evaporator of the air-cooled chiller 81, and then passes through the chilled water circulation pipe 82 provided between the air conditioner 4 and the air-cooled chiller 81. It flows into the coil 46. Specifically, the cold water flowing into the evaporator of the air-cooled chiller 81 undergoes heat exchange with the refrigerant circulating through the evaporator, the compressor, the condenser, and the expansion valve of the air-cooled chiller 81. The other structure of the air conditioner 4 shown in FIG. 9 is the same as the structure of the air conditioner 4 with which the air conditioning system 1 which concerns on 1st Embodiment is provided.
第2実施形態に係る空調システム1のように、第4実施形態に係る空調機4は、給気経路43に配置されたコイル72と、冷媒配管74、75とを備えていてもよい。この場合、空冷チラー81の蒸発器、圧縮機、凝縮器及び膨張弁を循環する冷媒が、冷媒配管74、75を介してコイル72に流入する。これにより、コイル72を通る冷媒を用いて、給気経路43を通る外気の温度調節を再度行うことができる。また、第3実施形態に係る空調システム1のように、天井裏の空間14に空調機4が設置されていてもよい。   Like the air conditioning system 1 according to the second embodiment, the air conditioner 4 according to the fourth embodiment may include a coil 72 disposed in the air supply path 43 and refrigerant pipes 74 and 75. In this case, the refrigerant circulating through the evaporator, the compressor, the condenser, and the expansion valve of the air-cooled chiller 81 flows into the coil 72 through the refrigerant pipes 74 and 75. Thereby, the temperature of the outside air passing through the air supply path 43 can be adjusted again using the refrigerant passing through the coil 72. Moreover, the air conditioner 4 may be installed in the space 14 behind the ceiling like the air conditioning system 1 according to the third embodiment.
第4実施形態に係る空調システム1によれば、ヒートポンプ熱源機45に替えて空冷チラー81を用いることにより、空調機4と熱源機とを分離することが可能である。したがって、第4実施形態に係る空調システム1によれば、冷水との熱交換を行う蒸発器を空調機4の外部に設置することが可能であると共に、空調システム全体の機器構成を複雑化せずに個別空調を実現することができる。   According to the air conditioning system 1 according to the fourth embodiment, it is possible to separate the air conditioner 4 and the heat source device by using the air cooling chiller 81 instead of the heat pump heat source device 45. Therefore, according to the air conditioning system 1 according to the fourth embodiment, it is possible to install an evaporator that performs heat exchange with cold water outside the air conditioner 4, and complicate the equipment configuration of the entire air conditioning system. Individual air conditioning can be achieved without
<第1変形例>
上記各実施形態に係る空調システム1では、事務室2の天井裏と会議室3の天井裏とが繋がり、一つの空間14が形成されている例を示しているが、図10に示すように、事務室2の天井裏と会議室3の天井裏とが繋がっていなくてもよい。図10は、変形例に係る空調システム1の概略構成を示す図である。図10に示す空調システム1では、事務室2の天井裏と会議室3の天井裏との間に壁91が設けられており、事務室2の天井11と天井スラブ13との間に空間92が設けられ、会議室3の天井12と天井スラブ13との間に空間93が設けられている。
<First Modification>
In the air conditioning system 1 according to each of the above embodiments, an example is shown in which the ceiling of the office room 2 and the ceiling of the conference room 3 are connected to form a single space 14, but as shown in FIG. The ceiling of the office room 2 and the ceiling of the conference room 3 do not have to be connected. FIG. 10 is a diagram illustrating a schematic configuration of an air conditioning system 1 according to a modification. In the air conditioning system 1 shown in FIG. 10, a wall 91 is provided between the ceiling back of the office room 2 and the ceiling back of the conference room 3, and a space 92 is provided between the ceiling 11 of the office room 2 and the ceiling slab 13. And a space 93 is provided between the ceiling 12 and the ceiling slab 13 of the conference room 3.
図10に示すように、空調機4に接続された給気ダクト22が、事務室2の天井裏の空間92に引き込まれており、天井11に設けられた複数の吹出口15に給気ダクト22が繋がっている。図10には図示していないが、空調機4に接続された給気ダクト22が、会議室3の天井裏の空間93に引き込まれており、天井12に設けられた吹出口15に給気ダクト22が繋がっている。空調機4に接続された排気ダクト23を介して、事務室2の天井裏の空間92から空調機4に排気が取り込まれる。図10には図示していないが、空調機4に接続された排気ダクト23を介して、会議室3の天井裏の空間93から空調機4に排気が取り込まれる。また、第3実施形態に係る空調システム1のように、事務室2の天井裏の空間92に空調機4が設置されていてもよいし、会議室3の天井裏の空間93に空調機4が設置されていてもよい。これらに限定されず、変形例と各実施形態とを可能な限り組み合わせてもよい。   As shown in FIG. 10, the air supply duct 22 connected to the air conditioner 4 is drawn into a space 92 behind the ceiling of the office room 2, and the air supply duct is connected to the plurality of air outlets 15 provided in the ceiling 11. 22 are connected. Although not shown in FIG. 10, the air supply duct 22 connected to the air conditioner 4 is drawn into the space 93 behind the ceiling of the conference room 3, and supplies air to the air outlet 15 provided in the ceiling 12. The duct 22 is connected. Exhaust air is taken into the air conditioner 4 from the space 92 behind the ceiling of the office 2 via the exhaust duct 23 connected to the air conditioner 4. Although not shown in FIG. 10, exhaust is taken into the air conditioner 4 from the space 93 behind the ceiling of the conference room 3 through the exhaust duct 23 connected to the air conditioner 4. Further, as in the air conditioning system 1 according to the third embodiment, the air conditioner 4 may be installed in the space 92 behind the ceiling of the office room 2, or the air conditioner 4 is installed in the space 93 behind the ceiling of the conference room 3. May be installed. It is not limited to these, You may combine a modification and each embodiment as much as possible.
<第2変形例>
上記各実施形態や第1変形例に係る空調システム1では、基本的に給気経路43を通る外気と熱交換した冷水が冷水循環配管25を経てタスク空調デスク31やファンコイルユニット31、34へ供給されていた。しかし、上記空調システム1は、給気経路43を通る外気と熱交換した冷水と熱交換する他の冷水が、タスク空調デスク31やファンコイルユニット31、34へ供給してもよい。また、上記各実施形態や第1変形例に係る空調システム1の説明では、流量調整弁等による冷水や冷媒の流量制御について触れられていないが、上記空調システム1は、適宜の箇所に配置された流量調整弁等により、冷水や冷媒の流量調整を行ってもよい。
<Second Modification>
In the air conditioning system 1 according to each of the above-described embodiments and the first modified example, the chilled water heat-exchanged with the outside air passing through the air supply path 43 basically passes through the chilled water circulation pipe 25 to the task air conditioning desk 31 and the fan coil units 31 and 34. Had been supplied. However, the air conditioning system 1 may supply other cold water that exchanges heat with cold water that has exchanged heat with outside air that passes through the air supply path 43 to the task air conditioning desk 31 and the fan coil units 31 and 34. In the description of the air conditioning system 1 according to each of the embodiments and the first modification, the flow control of the cold water and the refrigerant by the flow rate adjustment valve or the like is not mentioned, but the air conditioning system 1 is disposed at an appropriate place. The flow rate of cold water or refrigerant may be adjusted by a flow rate adjusting valve or the like.
図11は、第2変形例に係る空調機の構成図である。図11に示すように、第2変形例に係る空調機4は、上記実施形態に係る空調機4と比較して、冷水循環配管26が蒸発器51ではなく熱交換器HXに繋がっており、熱交換器HXを通った冷水循環配管26の冷水が冷水循環配管25へ流れるようになっている。そして、熱交換器HXにおいて冷水循環配管25,26の冷水と熱交換を行う冷水は、蒸発器51から冷水循環配管73を経てコイル71を通った冷水であり、熱交換器HXを通った後はポンプPで昇圧されて再び蒸発器51へ送られる。蒸発器51から冷水循環配管73、コイル71、熱交換器HX、ポンプPを経て再び蒸発器51へ至る循環経路には、コイル71の出口側に設置される弁VA、コイル71のバイパス経路に設置される弁VB、熱交換器HXの出口側に設置される弁VC、熱交換器HXのバイパス経路に設置される弁VDが備わっている。弁VA,VB,VC,VDは何れも電動の流量調整弁であり、図示しない制御装置からの制御信号に従って弁の開度調整を行う。   FIG. 11 is a configuration diagram of an air conditioner according to a second modification. As shown in FIG. 11, in the air conditioner 4 according to the second modified example, the chilled water circulation pipe 26 is connected to the heat exchanger HX instead of the evaporator 51, as compared with the air conditioner 4 according to the above embodiment. The cold water in the cold water circulation pipe 26 that has passed through the heat exchanger HX flows into the cold water circulation pipe 25. And the cold water which heat-exchanges with the cold water of the cold water circulation piping 25 and 26 in the heat exchanger HX is the cold water which passed the coil 71 via the cold water circulation piping 73 from the evaporator 51, and passes through the heat exchanger HX. Is increased in pressure by the pump P and sent to the evaporator 51 again. In the circulation path from the evaporator 51 to the evaporator 51 through the cold water circulation pipe 73, the coil 71, the heat exchanger HX, and the pump P, the valve VA installed on the outlet side of the coil 71 and the bypass path of the coil 71 are connected. A valve VB to be installed, a valve VC to be installed on the outlet side of the heat exchanger HX, and a valve VD to be installed on the bypass path of the heat exchanger HX are provided. The valves VA, VB, VC, VD are all electric flow rate adjusting valves, and adjust the opening of the valves in accordance with a control signal from a control device (not shown).
弁VAは、空調システム1で冷房を行う場合には、コイル71を通過した外気の温度が例えば12℃となるように弁の開度を調整し、空調システム1で暖房を行う場合には、コイル72の下流側にある加湿器を通過した外気の温度が例えば23℃となるように弁の開度を調整する。弁VBは、弁VAと逆動作することにより、弁VAの開閉動作に伴う循環経路の流量変動を抑制する。冷房を行う夏期において、外気温度が高く負荷が大きい場合
、弁VAを開く方向に制御するとともに、弁VBを閉じる方向に制御することで、コイル71に流す冷媒水である冷水を多くする。夏期に外気温度が低い場合、弁VAを閉じる方向に制御するとともに、弁VBを開く方向に制御することで、コイル71に流す冷媒水である冷水を少なくする。一方、暖房を行う冬季において、外気温度が低く負荷が大きい場合、弁VAを開く方向に制御するとともに、弁VBを閉じる方向に制御することで、コイル71に流す温水を多くする。冬季に外気温度が高い場合、弁VAを閉じる方向に制御するとともに、弁VBを開く方向に制御することで、コイル71に流す温水を少なくする。
When the air conditioning system 1 performs cooling, the valve VA adjusts the opening of the valve so that the temperature of the outside air that has passed through the coil 71 becomes, for example, 12 ° C., and when the air conditioning system 1 performs heating, The opening degree of the valve is adjusted so that the temperature of the outside air that has passed through the humidifier on the downstream side of the coil 72 becomes 23 ° C., for example. The valve VB operates in the reverse direction to the valve VA, thereby suppressing flow rate fluctuations in the circulation path due to the opening / closing operation of the valve VA. In the summer season when cooling is performed, when the outside air temperature is high and the load is large, the valve VA is controlled to open and the valve VB is closed to increase the amount of cold water that is flowing through the coil 71. When the outside air temperature is low in the summer, the valve VA is controlled to close and the valve VB is opened to reduce the amount of cold water that is coolant water flowing through the coil 71. On the other hand, in the winter season when heating is performed, when the outside air temperature is low and the load is large, the valve VA is controlled to open and the valve VB is closed to increase the amount of hot water flowing through the coil 71. When the outside air temperature is high in winter, the warm water flowing through the coil 71 is reduced by controlling the valve VA in the closing direction and controlling the valve VB in the opening direction.
弁VCは、空調システム1で冷房を行う場合には、熱交換器HXから冷水循環配管25へ流れる冷水の温度が例えば16℃となるように弁の開度を調整し、空調システム1で暖房を行う場合には、熱交換器HXから冷水循環配管25へ流れる冷水(冷温水)の温度が例えば40℃となるように弁の開度を調整する。弁VDは、弁VCと逆動作することにより、弁VCの開閉動作に伴う循環経路の流量変動を抑制する。   When the air conditioning system 1 performs cooling, the valve VC adjusts the opening of the valve so that the temperature of the cold water flowing from the heat exchanger HX to the cold water circulation pipe 25 becomes, for example, 16 ° C. Is performed, the opening degree of the valve is adjusted so that the temperature of the cold water (cold hot water) flowing from the heat exchanger HX to the cold water circulation pipe 25 becomes, for example, 40 ° C. The valve VD operates in reverse to the valve VC, thereby suppressing flow rate fluctuations in the circulation path associated with the opening / closing operation of the valve VC.
また、本第2変形例において、冷媒配管74には弁VEが備わっている。弁VEは電動の流量調整弁であり、図示しない制御装置からの制御信号に従って弁の開度調整を行う。弁VEは、コイル72を通過した外気の温度が例えば19℃となるように弁の開度を調整する。   In the second modification, the refrigerant pipe 74 is provided with a valve VE. The valve VE is an electric flow rate adjusting valve, and adjusts the opening of the valve in accordance with a control signal from a control device (not shown). The valve VE adjusts the opening degree of the valve so that the temperature of the outside air that has passed through the coil 72 is 19 ° C., for example.
本第2変形例において、ヒートポンプ熱源機45は、空調システム1で冷房を行う場合には、蒸発器51からコイル71へ流れる冷水循環配管73の冷水の温度が例えば9℃となるように膨張弁54の開度調整や圧縮機52の動力調整が行われ、空調システム1で暖房を行う場合には、蒸発器51(凝縮器)からコイル71へ流れる冷水循環配管73の冷水(冷温水)の温度が例えば47℃となるように膨張弁54の開度調整や圧縮機52の動力調整が行われる。ヒートポンプ熱源機45がこのように動作することにより、弁VA,VB,VC,VDの開度調整による適正な温度制御が実現される。   In the second modification, when the air conditioning system 1 performs cooling, the heat pump heat source unit 45 is an expansion valve so that the temperature of the cold water in the cold water circulation pipe 73 flowing from the evaporator 51 to the coil 71 is, for example, 9 ° C. When opening adjustment of 54 and power adjustment of the compressor 52 are performed and heating is performed by the air conditioning system 1, cold water (cold hot water) of the cold water circulation pipe 73 flowing from the evaporator 51 (condenser) to the coil 71 is controlled. The opening of the expansion valve 54 and the power of the compressor 52 are adjusted so that the temperature becomes 47 ° C., for example. By operating the heat pump heat source unit 45 in this way, appropriate temperature control is realized by adjusting the opening of the valves VA, VB, VC, VD.
本第2変形例によれば、冷房時や暖房時における熱負荷の変動があっても、各弁VA,VB,VC,VD,VEの開度調整により室内の温度や湿度の変動が可及的に抑制されることになる。つまり、外気温度が夏期に高い又は冬季に低いといった負荷が大きい場合や、外気温度が夏期に低い又は又は冬季に高いといった負荷が少ない場合に対応して、冷媒水の供給を制御することができる。なお、図11では熱交換器HXが空調機4内に図示されているが、熱交換器HXは空調機4の外側に設置されていてもよい。   According to the second modification, even if there is a change in the heat load during cooling or heating, the temperature and humidity in the room can be changed by adjusting the opening of each valve VA, VB, VC, VD, VE. Will be suppressed. That is, the supply of the coolant water can be controlled in response to a large load such that the outside air temperature is high in summer or low in winter, or a low load such as a low outside temperature or high in winter. . In FIG. 11, the heat exchanger HX is illustrated in the air conditioner 4, but the heat exchanger HX may be installed outside the air conditioner 4.
空調システム1に用いられる冷水は、通常の雑用水であってもよいし、ブライン、薬液が注入された水、その他各種の水であってもよい。通常の雑用水であれば容易に得ることができるため、微少漏えいや気散による減少分の補給等も容易である。例えば、フロンを熱輸送媒体として循環させることも考えられるが、ガス化しやすく、温度制御が難しい。このため、第2空調機で必ずフロンの圧力(供給量)を制御する弁装置が必要となり、第2空調機とフロンを供給する熱源側の機器は必ず何かの通信手段でつなぐ必要がある。また、フロンの蒸発温度の下限値等を制御できない限り第2空調機(室内機)に結露(除湿)の心配が出てしまうためドレンパンとドレン排水管の設置が必要となり、図3及び図4に示すような簡易な空調機(簡易なファンコイル)の設置が困難となる。一方、水は制御性が良い熱輸送媒体であり、供給する温度を一定に保てるため第2空調機に供給した場合でも供給されている水の量を制御する装置(弁等)を設置しなくともある程度想定した範囲内で空気を制御できる。更に、16℃の高温冷水を使用しているので、冷水管の結露の心配もなく断熱も不要である。特に、天井裏の配管に断熱処理が施されていない場合、天井内で配管の回りの空気が冷やされることになるが、二次側の室内(例えば事務室2)の熱は天井内で吸収されて事務室2に戻ることから、エネルギーロスを心配する必要がない。特に図7のように空調機4を天井裏に配置する場合は、冷媒として水を用いることは、
本空調システム1のような複雑な制御を行いたくないシステムにおいて特に有用である。また、水は、環境への影響が無く、必要な冷温水を部屋ごとに製造したり供給したりすることも容易にできるので、所謂、マルチシステムを簡単に実現できるという利点を本空調システム1に持たせることができる。
The cold water used in the air conditioning system 1 may be ordinary miscellaneous water, brine, water into which a chemical solution has been injected, or other various types of water. Since it can be easily obtained with ordinary miscellaneous water, it is easy to replenish the amount of decrease due to slight leakage or air scatter. For example, it is conceivable to circulate chlorofluorocarbon as a heat transport medium, but it is easy to gasify and temperature control is difficult. For this reason, the second air conditioner always requires a valve device for controlling the pressure (supply amount) of the chlorofluorocarbon, and the second air conditioner and the heat source side device for supplying the chlorofluorocarbon must be connected by some communication means. . Further, unless the lower limit value of the evaporation temperature of chlorofluorocarbons can be controlled, the second air conditioner (indoor unit) will be worried about condensation (dehumidification), so it is necessary to install a drain pan and a drain drain pipe. It becomes difficult to install a simple air conditioner (simple fan coil) as shown in FIG. On the other hand, water is a heat transport medium with good controllability, and even if it is supplied to the second air conditioner to maintain a constant temperature, a device (such as a valve) that controls the amount of water supplied is not installed. However, air can be controlled within a certain range. Furthermore, since high-temperature cold water at 16 ° C. is used, there is no concern about condensation on the cold water pipe, and no heat insulation is required. In particular, if the pipes behind the ceiling are not heat-insulated, the air around the pipes is cooled in the ceiling, but the heat in the secondary room (for example, the office room 2) is absorbed in the ceiling. Because it returns to the office 2, there is no need to worry about energy loss. In particular, when the air conditioner 4 is arranged behind the ceiling as shown in FIG.
This is particularly useful in a system such as the air conditioning system 1 that does not want to perform complicated control. In addition, since water has no influence on the environment and necessary cold and hot water can be easily produced and supplied for each room, the air conditioning system 1 has the advantage that a so-called multi-system can be easily realized. Can have.
1 空調システム
2 事務室
3 会議室
4 空調機
11、12 天井
13 天井スラブ
14、92、93 空間
15 吹出口
16 還気口
21、23 給気ダクト
22、24 排気ダクト
25、26、61、62、63、64、73 冷水循環配管
27 冷水ポンプ
31 タスク空調デスク
32 タスク空間
33、34、 ファンコイルユニット
41 給気ファン
42 排気ファン
43 給気経路
44 排気経路
45 ヒートポンプ熱源機
46、47、48、71、72 コイル
51 蒸発器
52 圧縮機
53 凝縮器
54 膨張弁
74、75 冷媒配管
81 空冷チラー
311、331、341 ファン
312、332、342 コイル
313 吸込口
314、333、343 吹出口
P ポンプ
VA,VB,VC,VD,VE 弁
HX 熱交換器
DESCRIPTION OF SYMBOLS 1 Air conditioning system 2 Office room 3 Meeting room 4 Air conditioner 11, 12 Ceiling 13 Ceiling slab 14, 92, 93 Space 15 Air outlet 16 Return air outlet 21, 23 Air supply duct 22, 24 Exhaust duct 25, 26, 61, 62 63, 64, 73 Chilled water circulation pipe 27 Chilled water pump 31 Task air conditioning desk 32 Task spaces 33, 34, Fan coil unit 41 Air supply fan 42 Exhaust fan 43 Air supply path 44 Exhaust path 45 Heat pump heat source units 46, 47, 48, 71, 72 Coil 51 Evaporator 52 Compressor 53 Condenser 54 Expansion valve 74, 75 Refrigerant piping 81 Air-cooled chillers 311, 331, 341 Fan 312, 332, 342 Coil 313 Suction port 314, 333, 343 Air outlet P Pump VA, VB, VC, VD, VE valve HX heat exchanger

Claims (8)

  1. 換気用の給排気経路に設置されており、居室へ給気する外気を空調する第1空調機と、
    前記居室に設置されており、前記居室の空気を取り込んで空調する第2空調機と、を備え、
    前記第1空調機は、
    前記居室からの排気が通る経路に配置された凝縮器を有する熱源機と、
    前記居室へ給気する前記外気が通る経路に配置されており、前記熱源機の蒸発器で熱交換された冷水が通る第1コイルと、を有し、
    前記第2空調機は、前記第1コイルを通った冷水又は該冷水と熱交換した他の冷水が通る第2コイルを有する、
    空調システム。
    A first air conditioner installed in a ventilation air supply / exhaust path and air-conditioning outside air supplied to the living room;
    A second air conditioner that is installed in the living room and takes in the air of the living room to air-condition,
    The first air conditioner is
    A heat source unit having a condenser disposed in a path through which exhaust from the room passes,
    A first coil that is disposed in a path through which the outside air that supplies air to the living room passes, and through which cold water that has undergone heat exchange in the evaporator of the heat source unit passes,
    The second air conditioner has a second coil through which cold water that has passed through the first coil or other cold water that has exchanged heat with the cold water passes.
    Air conditioning system.
  2. 前記第1空調機は、前記凝縮器及び前記蒸発器を循環する冷媒が通る第3コイルを有し、
    前記第3コイルは、前記居室へ給気する前記外気が通る経路に配置されている、
    請求項1に記載の空調システム。
    The first air conditioner has a third coil through which the refrigerant circulating through the condenser and the evaporator passes.
    The third coil is disposed in a path through which the outside air supplied to the living room passes.
    The air conditioning system according to claim 1.
  3. 前記第1空調機は、前記居室の天井裏空間に設置されている、
    請求項1または2に記載の空調システム。
    The first air conditioner is installed in a ceiling space of the living room,
    The air conditioning system according to claim 1 or 2.
  4. 換気用の給排気経路に設置されており、居室へ給気する外気を空調する第1空調機と、
    前記居室に設置されており、前記居室の空気を取り込んで空調する第2空調機と、
    凝縮器及び蒸発器を有する熱源機と、
    を備え、
    前記第1空調機は、前記居室へ給気する前記外気が通る経路に配置されており、前記蒸発器で熱交換された冷水が通る第1コイルを有し、
    前記第2空調機は、前記第1コイルを通った冷水又は該冷水と熱交換した他の冷水が通る第2コイルを有する、
    空調システム。
    A first air conditioner installed in a ventilation air supply / exhaust path and air-conditioning outside air supplied to the living room;
    A second air conditioner which is installed in the living room and takes in the air of the living room and air-conditions;
    A heat source machine having a condenser and an evaporator;
    With
    The first air conditioner is disposed in a path through which the outside air that supplies air to the living room passes, and has a first coil through which cold water heat-exchanged by the evaporator passes.
    The second air conditioner has a second coil through which cold water that has passed through the first coil or other cold water that has exchanged heat with the cold water passes.
    Air conditioning system.
  5. 前記第1空調機は、前記凝縮器及び前記蒸発器を循環する冷媒が通る第3コイルを有し、
    前記第3コイルは、前記居室へ給気する前記外気が通る経路に配置されている、
    請求項4に記載の空調システム。
    The first air conditioner has a third coil through which the refrigerant circulating through the condenser and the evaporator passes.
    The third coil is disposed in a path through which the outside air supplied to the living room passes.
    The air conditioning system according to claim 4.
  6. 前記第1空調機が前記居室の天井裏空間に設置されている、
    請求項4または5に記載の空調システム。
    The first air conditioner is installed in a ceiling space of the living room;
    The air conditioning system according to claim 4 or 5.
  7. 換気用の給排気経路に設置されており、居室へ給気する外気を空調する第1空調機と、
    前記居室に設置されており、前記居室の空気を取り込んで空調する第2空調機と、を備え、
    前記第1空調機は、
    前記居室からの排気が通る経路に配置された蒸発器を有する熱源機と、
    前記居室へ給気する前記外気が通る経路に配置されており、前記熱源機の凝縮器で熱交換された温水が通る第1コイルと、を有し、
    前記第2空調機は、前記第1コイルを通った温水又は該温水と熱交換した他の温水が通る第2コイルを有する、
    空調システム。
    A first air conditioner installed in a ventilation air supply / exhaust path and air-conditioning outside air supplied to the living room;
    A second air conditioner that is installed in the living room and takes in the air of the living room to air-condition,
    The first air conditioner is
    A heat source unit having an evaporator disposed in a path through which exhaust from the living room passes,
    A first coil that is disposed in a path through which the outside air that supplies air to the living room passes, and through which hot water that is heat-exchanged by a condenser of the heat source unit passes,
    The second air conditioner has a second coil through which hot water that has passed through the first coil or other hot water that has exchanged heat with the hot water passes.
    Air conditioning system.
  8. 換気用の給排気経路に設置されており、居室へ給気する外気を空調する第1空調機と、
    前記居室に設置されており、前記居室の空気を取り込んで空調する第2空調機と、を備え、
    前記第1空調機は、
    前記居室からの排気が通る経路に配置された第1熱交換器を有するヒートポンプ熱源機と、
    前記居室へ給気する前記外気が通る経路に配置されており、前記ヒートポンプ熱源機の第2熱交換機で熱交換された冷媒水が通る第1コイルと、を有し、
    前記第2空調機は、前記第1コイルを通った冷媒水又は該冷媒水と熱交換した他の冷媒水が通る第2コイルを有する、
    空調システム。
    A first air conditioner installed in a ventilation air supply / exhaust path and air-conditioning outside air supplied to the living room;
    A second air conditioner that is installed in the living room and takes in the air of the living room to air-condition,
    The first air conditioner is
    A heat pump heat source device having a first heat exchanger disposed in a path through which exhaust from the living room passes,
    A first coil that is disposed in a path through which the outside air that supplies air to the living room passes, and through which coolant water heat-exchanged in a second heat exchanger of the heat pump heat source device passes,
    The second air conditioner has a second coil through which refrigerant water that has passed through the first coil or other refrigerant water that has exchanged heat with the refrigerant water passes.
    Air conditioning system.
JP2016173462A 2016-09-06 2016-09-06 Air conditioning system Active JP6747920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016173462A JP6747920B2 (en) 2016-09-06 2016-09-06 Air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016173462A JP6747920B2 (en) 2016-09-06 2016-09-06 Air conditioning system
JP2020133599A JP6974553B2 (en) 2016-09-06 2020-08-06 Air conditioner and air conditioning system for air supply / exhaust path

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020133599A Division JP6974553B2 (en) 2016-09-06 2020-08-06 Air conditioner and air conditioning system for air supply / exhaust path

Publications (2)

Publication Number Publication Date
JP2018040514A true JP2018040514A (en) 2018-03-15
JP6747920B2 JP6747920B2 (en) 2020-08-26

Family

ID=61625470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016173462A Active JP6747920B2 (en) 2016-09-06 2016-09-06 Air conditioning system

Country Status (1)

Country Link
JP (1) JP6747920B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066320A1 (en) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 Ventilation and air conditioning system
JP2020134015A (en) * 2019-02-20 2020-08-31 株式会社快活フロンティア Air conditioning ventilation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066320A1 (en) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 Ventilation and air conditioning system
JP2020134015A (en) * 2019-02-20 2020-08-31 株式会社快活フロンティア Air conditioning ventilation system

Also Published As

Publication number Publication date
JP6747920B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP4555097B2 (en) Clean room air conditioner
JP3800210B2 (en) Water source heat pump unit
JP4207166B2 (en) Dehumidifying air conditioner
WO2017029741A1 (en) Air-conditioning system
JP2006029598A (en) Air conditioner, and its control method
JP2006292313A (en) Geothermal unit
JP4566023B2 (en) Heat pump type cooling device, air conditioner using the heat pump type cooling device, and heat pump type heating device
JP4520370B2 (en) Water heat source heat pump type radiation panel air conditioner
JP6747920B2 (en) Air conditioning system
JP6425750B2 (en) Air conditioning system
JP5312616B2 (en) Air conditioner
JP2016194383A (en) air conditioner
JP2015206519A (en) Air-conditioning system
JP4293646B2 (en) Air conditioner and air conditioning method
JP2018100791A (en) Air Conditioning System
JP6974553B2 (en) Air conditioner and air conditioning system for air supply / exhaust path
Crowther et al. Design considerations for dedicated OA systems
AU2019200456B2 (en) Air conditioning system
JP6825875B2 (en) Air conditioning system
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
JP2017180876A (en) Cold/hot water conversion unit and air conditioning system
JP2010243005A (en) Dehumidification system
KR101836767B1 (en) Air conditioning system for vehicle
JP6804726B2 (en) Air conditioning system
KR20210033182A (en) Energy enhanced air-conditioning system and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200806

R150 Certificate of patent or registration of utility model

Ref document number: 6747920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150