JP3201178B2 - Method for manufacturing duplex stainless steel welded pipe - Google Patents

Method for manufacturing duplex stainless steel welded pipe

Info

Publication number
JP3201178B2
JP3201178B2 JP26867394A JP26867394A JP3201178B2 JP 3201178 B2 JP3201178 B2 JP 3201178B2 JP 26867394 A JP26867394 A JP 26867394A JP 26867394 A JP26867394 A JP 26867394A JP 3201178 B2 JP3201178 B2 JP 3201178B2
Authority
JP
Japan
Prior art keywords
welding
stainless steel
duplex stainless
corrosion resistance
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26867394A
Other languages
Japanese (ja)
Other versions
JPH08132262A (en
Inventor
朋彦 大村
隆弘 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26867394A priority Critical patent/JP3201178B2/en
Publication of JPH08132262A publication Critical patent/JPH08132262A/en
Application granted granted Critical
Publication of JP3201178B2 publication Critical patent/JP3201178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ラインパイプまたは油
井管等に使用して好適な、耐食性に優れた2相ステンレ
ス鋼溶接管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a duplex stainless steel welded pipe having excellent corrosion resistance and suitable for use in a line pipe or an oil country tubular good.

【0002】[0002]

【従来の技術】2相ステンレス鋼は、フェライト相とオ
ーステナイト相の2相組織からなり、応力腐食割れ等の
耐食性に優れ、かつ靭性および溶接性も良好なことか
ら、炭酸ガスや硫化水素等の腐食性物質を多量に含む油
井やガス井の油井管、原油や天然ガス等を輸送するライ
ンパイプ用材料あるいは耐海水用材料として広く用いら
れている。この2相ステンレス鋼の適正な溶体化処理温
度は、通常、1050〜1100℃であり、この温度域
に加熱保持後水冷することによってフェライト率(フェ
ライト相の存在比)が通常50%となる。また、2相ス
テンレス鋼の耐食性皮膜に寄与する合金元素はCr、M
o、Nであり、フェライト相中にはCr、Moが濃化
し、オーステナイト相中にはNが濃化して両相の耐食性
のバランスを保っている。
2. Description of the Related Art Duplex stainless steels have a two-phase structure of a ferrite phase and an austenitic phase, have excellent corrosion resistance such as stress corrosion cracking, and have good toughness and weldability. It is widely used as a material for oil well pipes of oil wells and gas wells containing a large amount of corrosive substances, line pipes for transporting crude oil, natural gas, and the like, or materials for seawater resistance. The appropriate solution treatment temperature of the duplex stainless steel is usually 1,050 to 1,100 ° C, and the ferrite ratio (ferrite phase abundance ratio) is usually 50% by heating and holding in this temperature range and then cooling with water. The alloy elements that contribute to the corrosion-resistant coating of the duplex stainless steel are Cr and M.
o and N, and Cr and Mo are concentrated in the ferrite phase, and N is concentrated in the austenite phase to maintain the balance of corrosion resistance of both phases.

【0003】2相ステンレス鋼を溶接した場合の溶接金
属は、溶接時に上記の適正な溶体化処理温度より高温に
なって一度フェライト単相になるため、オーステナイト
相の成長が不十分でフェライト率が母材部の上記適正値
である50%より多くなる。
[0003] When a duplex stainless steel is welded, the weld metal becomes a single ferrite phase once at a temperature higher than the above-mentioned proper solution treatment temperature at the time of welding, so that the growth of the austenite phase is insufficient and the ferrite ratio is low. It is more than 50% which is the above-mentioned appropriate value of the base material portion.

【0004】また、フェライト相へのNの限界固溶量が
非常に少ないため、固溶しきれないNはCr窒化物とし
てフェライト相中に析出して靭性が劣化するのに加え、
Cr窒化物が析出した周辺にCr欠乏層が形成させるの
で耐食性も劣化し、溶接部の性能を著しく劣化させる。
[0004] Further, since the critical solid solution amount of N in the ferrite phase is very small, N which cannot be dissolved completely precipitates as Cr nitride in the ferrite phase to deteriorate toughness.
Since a Cr-deficient layer is formed around the area where the Cr nitride is deposited, the corrosion resistance is also deteriorated, and the performance of the weld is significantly deteriorated.

【0005】従って、溶接部の耐食性や靭性の劣化を防
止するには、溶接部のフェライト率を母材のフェライト
率に近づけることが重要で、このためオーステナイト生
成作用を有するN、Niなどの合金元素を溶金中へ積極
的に添加するか、あるいは溶接部を後熱溶体化処理する
ことが必要になる。
Therefore, in order to prevent deterioration of the corrosion resistance and toughness of the weld, it is important that the ferrite rate of the weld be close to the ferrite rate of the base material. It is necessary to positively add elements to the molten metal or to perform post-thermal solution treatment on the welded portion.

【0006】ところで、従来、2相ステンレス鋼に限ら
ず、溶接管は素材帯鋼を成形ロール群に通して連続的に
管状に成形し、スクイズロールを用いて帯鋼両エッジ相
互を突き合わせ、この突き合わせ部を高周波加熱して電
縫溶接(以下、ERWという)するか、またはガス−タ
ングステン−アーク溶接(以下、GTAWという)やサ
ブマージ−アーク溶接(以下、SAWという)などのア
ーク溶接法により造管溶接を行って製造されている。
Conventionally, not only duplex stainless steel but also a welded pipe is formed by continuously passing a raw steel strip through a group of forming rolls into a tubular shape, and using a squeeze roll to butt both edges of the steel strip. The butt portion is heated by high frequency and subjected to electric resistance welding (hereinafter, referred to as ERW) or arc welding such as gas-tungsten-arc welding (hereinafter, referred to as GTAW) or submerged-arc welding (hereinafter, referred to as SAW). Manufactured by pipe welding.

【0007】従って、これらの溶接法によって2相ステ
ンレス鋼溶接管を製造する場合、溶接後の溶接金属のフ
ェライト率を適正化するためには、電縫溶接では溶接後
熱処理を施すことが、またアーク溶接ではフィラーワイ
ヤによる溶金中へのNiおよびNなどのオーステナイト
生成元素の積極添加が必要で、例えば「Duplex Stain-l
ess Steels '91−p421、p461、p469」には、上記GTA
W等のアーク溶接法での例であるが、2相ステンレス鋼
の溶接に際してシールドガス中に窒素を混入させて溶接
すると溶金中へNを固溶添加させることができ、溶接後
の溶接金属のフェライト率を適正化できる同時に、溶接
金属の耐食性をも向上させ得ることが知られている。
Therefore, when a duplex stainless steel welded pipe is manufactured by these welding methods, in order to optimize the ferrite ratio of the weld metal after welding, post-weld heat treatment is performed in electric resistance welding. In arc welding, it is necessary to actively add austenite-forming elements such as Ni and N into the molten metal by a filler wire. For example, “Duplex Stain-l
ess Steels '91 -p421, p461, p469 "contains the GTA
This is an example of an arc welding method such as W. When welding is performed by mixing nitrogen in a shielding gas when welding duplex stainless steel, N can be added to the molten metal in a solid solution, and the weld metal after welding It is known that the ferrite ratio can be optimized and the corrosion resistance of the weld metal can be improved.

【0008】また、近年では、上記従来の各溶接法に比
べて溶接速度が非常に速いレーザー溶接法の開発が進め
られているが、レーザー溶接法では設備上の制約からフ
ィラーワイヤを用いて溶金中へN、Ni等の合金元素を
添加することが困難なため、レーザー溶接後の溶接部に
適正な後熱処理を施して溶接金属の性能回復を図ってい
る。例えば、いずれも2相ステンレス鋼を対象とするも
のでないが、特開昭63−278688号公報にはオー
ステナイト系ステンレス鋼を、同63−278689号
公報にはフェライト系ステンレス鋼を、同63−278
690号公報にはMo含有低合金鋼をそれぞれ対象に、
所定条件の溶接速度でレーザー溶接後、溶接部に所定の
後熱処理を施して溶接金属の延性を回復させる方法が示
されている。
In recent years, development of a laser welding method, which has a very high welding speed as compared with the above-mentioned conventional welding methods, has been promoted. However, in the laser welding method, welding is performed using a filler wire due to facility restrictions. Since it is difficult to add alloying elements such as N and Ni into gold, proper post-heat treatment is performed on the weld after laser welding to recover the performance of the weld metal. For example, although neither is intended for duplex stainless steel, austenitic stainless steel is disclosed in JP-A-63-278688, ferritic stainless steel is disclosed in JP-A-63-278689, and 63-278 is disclosed.
No. 690 discloses a Mo-containing low alloy steel,
A method is disclosed in which, after laser welding at a welding speed of a predetermined condition, a predetermined post-heat treatment is performed on a welded portion to recover the ductility of a weld metal.

【0009】これに対し、上記したように、ERWまた
はGTAW等のアーク溶接によって2相ステンレス鋼溶
接管を造管溶接する場合には、シールドガス中への窒素
添加によってフェライト/オーステナイト比の改善を図
ることが可能である。しかし、これらの溶接法による2
相ステンレス鋼溶接管の溶接部の溶接金属におけるフェ
ライト相中にはCr窒化物が残留し、その周辺にCr欠
乏層が生成するため、母材部に比べて耐食性が劣化する
という問題があった。
On the other hand, as described above, when a duplex stainless steel welded pipe is welded by arc welding such as ERW or GTAW, the ferrite / austenite ratio is improved by adding nitrogen to the shielding gas. It is possible to plan. However, two of these welding methods
Cr nitrides remain in the ferrite phase in the weld metal of the weld portion of the duplex stainless steel welded pipe, and a Cr-deficient layer is formed around the ferrite phase. .

【0010】また、ERWまたはアーク溶接等の溶金の
冷却速度が遅い溶接法では、溶接金属に隣接して母材部
に熱影響部(以下、HAZという)が生じ、このうち溶
接金属の直横部の溶金が直接接触することで1150〜
1250℃の熱影響を受けた高温HAZにはフェライト
/オーステナイト相比のずれが生じ、これより外側で7
00〜950℃の熱影響を受けた低温HAZにはχ相や
σ相等の金属間化合物が析出するため、HAZの耐食性
および機械的性質が著しく劣るという欠点を有してい
る。しかし、HAZは溶接金属部とは異なり、溶接時に
おいて固体状態であるからフィラーワイヤによる合金元
素の添加やシールドガスの組成制御による合金元素の添
加が不可能である。
In a welding method such as ERW or arc welding in which the cooling rate of molten metal is low, a heat-affected zone (hereinafter, referred to as HAZ) is formed in the base metal portion adjacent to the weld metal. 1150-150
In the high temperature HAZ affected by the heat of 1250 ° C., a shift in the ferrite / austenite phase ratio occurs.
The low-temperature HAZ affected by heat at 00 to 950 ° C. has a disadvantage that the intermetallic compounds such as the χ phase and the σ phase are precipitated, so that the corrosion resistance and mechanical properties of the HAZ are extremely poor. However, unlike the weld metal part, HAZ is in a solid state at the time of welding, so that it is impossible to add an alloy element by a filler wire or to control the composition of a shielding gas.

【0011】なお、溶接後における後熱処理によって熱
影響部の耐食性をある程度回復させることは可能である
が、溶金の冷却速度が遅いため、溶接中にシールドガス
の窒素分圧に応じて窒素の蒸発または吸収が起こり、後
熱処理によって溶接金属のフェライト/オーステナイト
相比を制御することは事実上困難であり、耐食性を母材
と同等に回復させることはできない。
Although it is possible to recover the corrosion resistance of the heat-affected zone to some extent by post-heat treatment after welding, the cooling rate of the molten metal is slow, so that during welding, the nitrogen partial pressure depends on the nitrogen partial pressure of the shielding gas. Evaporation or absorption takes place, and it is practically difficult to control the ferrite / austenite phase ratio of the weld metal by post-heat treatment, and the corrosion resistance cannot be restored to the same level as that of the base metal.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、上記
の実状に鑑みなされたもので、溶接後に後熱処理を行わ
ずに母材とほぼ同等の耐食性を備える溶接部を有する2
相ステンレス鋼溶接管を安価に製造する方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention has been made in view of the above situation, and has a welded portion having substantially the same corrosion resistance as a base material without post-heating treatment after welding.
It is an object of the present invention to provide a method for inexpensively manufacturing a duplex stainless steel welded pipe.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、次の2
相ステンレス鋼溶接管の製造方法にある。
The gist of the present invention is as follows.
Manufacturing method of duplex stainless steel welded pipe.

【0014】2相ステンレス鋼製の素材帯鋼を成形ロー
ル群に通してオープンパイプ状に連続的に成形し、スク
イズロールによって素材帯鋼の両エッジ相互を突き合わ
せ、この突き合わせ部にレーザービームを照射して造管
溶接にあたり、分圧で0.01〜0.2atmの窒素を
含むHeまたはArからなるシールドガス中でレーザー
溶接することを特徴とする2相ステンレス鋼溶接管の製
造方法。
A material strip made of duplex stainless steel is continuously formed into an open pipe shape through a group of forming rolls, and both edges of the material strip are butted against each other by a squeeze roll, and a laser beam is applied to the butted portion. A method for producing a duplex stainless steel welded pipe, comprising performing laser welding in a shielding gas made of He or Ar containing nitrogen at a partial pressure of 0.01 to 0.2 atm for pipe welding.

【0015】上記本発明の方法においては、レーザー溶
接後の溶金の700℃における下記(1)式で求められ
る冷却速度V700 が10〜900℃/secの範囲とな
る条件でレーザー溶接するのがより好ましい。
In the method of the present invention, laser welding is performed under the conditions that the cooling rate V 700 of the molten metal after laser welding at 700 ° C. obtained by the following equation (1) is in the range of 10 to 900 ° C./sec. Is more preferred.

【0016】 V700 =3.02×10-7×(tV/P)2 ×(700−T0 3 ・・・・(1) ただし、t :素材帯鋼肉厚(mm) V :溶接速度(m/min) P :レーザー出力(kW) T0 :素材帯鋼両エッジ部の予熱温度(℃) 本発明者等は、種々実験研究の結果次の〜の知見を
得、この知見に基づいて本発明をなした。
V 700 = 3.02 × 10 −7 × (tV / P) 2 × (700−T 0 ) 3 (1) where t is the thickness of the steel strip of the material band (mm) V is the welding speed (m / min) P: laser output (kW) T 0: material steel strip both edges of the preheat temperature (℃) the present inventors have obtained a finding of ~ results of the following various experimental studies, this finding The present invention has been made based on the above.

【0017】 上記したように、ERWまたはGTA
W等のアーク溶接では、溶金の冷却速度が遅いためHA
Zが生じて耐食性が劣化するが、レーザー溶接する場合
には、上記従来のアーク溶接法に比べて溶金の冷却速度
が非常に速いため、耐食性の劣化するHAZが狭いか、
または全く無いこと。
As mentioned above, ERW or GTA
In arc welding of W, etc., the cooling rate of the molten metal is slow, so HA
Z is generated and the corrosion resistance is deteriorated. However, in the case of laser welding, since the cooling rate of the molten metal is much higher than that of the conventional arc welding method, the HAZ in which the corrosion resistance is deteriorated is narrow or
Or not at all.

【0018】 また、ERWまたはGTAW等のアー
ク溶接では、窒素を含むHeまたはArからなるシール
ドガス雰囲気中で溶接を行った場合に溶接金属のフェラ
イト相中に固溶しきれない窒素がCr窒化物として析出
し、フェライト率が母材と同等に回復するにも係わらず
母材に比べて耐食性が著しく劣化するが、これはCr窒
化物の形態がCr2 Nを主体とするもので、このCr2
Nの周辺にCr欠乏層が生成されるためであるのに対
し、所定濃度の窒素を含むHeまたはArからなるシー
ルドガス中でレーザー溶接する場合には、溶接金属中の
フェライト/オーステナイト相比を母材と同等に改善で
きるのに加え、溶金の冷却速が速いことから溶接金属中
へのNの過飽和固溶が生じ、かつCr窒化物の析出絶対
量が減少すると共に、Cr窒化物の形態がCrNに変化
し、その周辺に形成されるCr欠乏層が少なくなって耐
食性が向上すること。
In arc welding such as ERW or GTAW, nitrogen that cannot be dissolved completely in the ferrite phase of the weld metal when the welding is performed in a shielding gas atmosphere composed of He or Ar containing nitrogen contains Cr nitride. Despite the fact that the ferrite ratio recovers to the same level as that of the base material, the corrosion resistance is significantly deteriorated as compared with the base material. This is because the form of Cr nitride is mainly composed of Cr 2 N. Two
This is because a Cr-deficient layer is formed around N. On the other hand, when laser welding is performed in a shield gas made of He or Ar containing a predetermined concentration of nitrogen, the ferrite / austenite phase ratio in the weld metal is reduced. In addition to being able to improve the same as the base metal, the rapid cooling rate of the molten metal causes supersaturated solid solution of N in the weld metal, and the absolute amount of precipitation of Cr nitride decreases. The morphology changes to CrN, and the Cr-deficient layer formed around the CrN is reduced to improve the corrosion resistance.

【0019】 上記のシールドガス中におけるレー
ザー溶接の効果は、700℃における溶金の冷却速度V
700 を所定の範囲に制御する場合、より顕著になるこ
と。すなわち、上記(1)式で求められる値が10〜9
00℃/secになるような条件で溶接すれば、その効
果が顕著になること。
The effect of the laser welding in the above shielding gas is as follows.
When controlling 700 to a predetermined range, it becomes more remarkable. That is, the value obtained by the above equation (1) is 10 to 9
The effect becomes remarkable if welding is performed at a temperature of 00 ° C./sec.

【0020】なお、N(窒素)を含むHeまたはArか
らなるシールドガス雰囲気中でレーザー溶接した場合に
おける溶接金属の組織および耐食性に関する詳細な従来
知見は本発明者等の知る限り見当たらない。
As far as the present inventors know, no detailed conventional knowledge on the structure and corrosion resistance of the weld metal when laser welding is performed in a shielding gas atmosphere made of He or Ar containing N (nitrogen) is found.

【0021】[0021]

【作用】本発明の構成要件の限定理由は、次の通りであ
る。
The reasons for limiting the constituent elements of the present invention are as follows.

【0022】[シールドガス]シールドガス中の窒素含
有量が、分圧で0.01atm未満であると、溶金中に
吸収される窒素量が少ないため溶接金属のフェライト/
オーステナイト相比が母材部のフェライト/オーステナ
イト相比から大幅に外れると共に、Cr2 Nを主体とす
るCr窒化物が多量に析出して溶接部の耐食性が著しく
劣化する。一方、シールドガス中の窒素含有量が、0.
2atmを超えると、もともと窒素はプラズマ化し易い
元素であることからレーザービームの照射によってシー
ルドガス中の窒素が多量にプラズマ化し、多量のプラズ
マにレーザーエネルギーが吸収されて材料に到達するレ
ーザーエネルギーが著しく低下して貫通溶接ができなく
なるのに加え、エネルギー低下に伴う溶金温度の低下に
よって溶金への窒素吸収量が低下し、溶接部の耐食性の
向上効果が得られない。従って、シールドガス中の窒素
含有量は、分圧で0.01〜0.2atmと定めた。
[Shielding gas] When the nitrogen content in the shielding gas is less than 0.01 atm in partial pressure, the amount of nitrogen absorbed in the molten metal is small, so that the ferrite /
The austenite phase ratio largely deviates from the ferrite / austenite phase ratio of the base material, and a large amount of Cr nitride mainly composed of Cr 2 N precipitates, thereby significantly deteriorating the corrosion resistance of the weld. On the other hand, when the nitrogen content in the shielding gas is 0.
When the pressure exceeds 2 atm, nitrogen is originally an element that easily becomes a plasma, so that a large amount of nitrogen in the shielding gas is turned into plasma by irradiation with a laser beam. In addition to the decrease, the penetration welding cannot be performed. In addition, the amount of nitrogen absorbed into the molten metal decreases due to the decrease in the temperature of the molten metal due to the decrease in energy, and the effect of improving the corrosion resistance of the welded portion cannot be obtained. Therefore, the nitrogen content in the shielding gas was determined to be 0.01 to 0.2 atm in partial pressure.

【0023】また、ベースガスとしては、材料表面の酸
化を防いで酸化物起因の溶接欠陥発生を防止し、かつレ
ーザービーム照射によってプラズマ化してレーザーエネ
ルギー吸収低下をできるだけ生じさせないようにするた
め、プラズマ化し難いHeガスまたはArガスとした。
In order to prevent the occurrence of welding defects due to oxides by preventing the oxidation of the material surface and to prevent the occurrence of welding defects due to oxides, and to minimize the reduction in laser energy absorption by laser irradiation, He gas or Ar gas, which is difficult to convert, was used.

【0024】[溶接金属の冷却速度]2相ステンレス鋼
をGTAW等のアーク溶接法によって溶接した場合の溶
接金属の組織および耐食性が、溶金の冷却速度に一義的
に依存することは、例えば「Duplex Stainless Steels
'91 p347」および「Duplex Stainless Steels '86 p15
5」等に公知である。しかし、2相ステンレス鋼をレー
ザー溶接した場合における溶金の冷却速度が溶接金属の
組織および耐食性に及ぼす影響は知られていない。そこ
で、上記したように、本発明者等はその関係を種々実験
研究の結果、上記(1)式を満足させと、上記量の窒素
を含むHeガスまたはArガス中でのレーザー溶接によ
る効果がより顕著になることを見いだした。
[Cooling Rate of Weld Metal] The fact that the structure and corrosion resistance of a weld metal when a duplex stainless steel is welded by an arc welding method such as GTAW or the like is uniquely dependent on the cooling rate of the molten metal. Duplex Stainless Steels
'91 p347 'and' Duplex Stainless Steels '86 p15
5 "and the like. However, the effect of the cooling rate of the molten metal on the structure and corrosion resistance of the weld metal when laser welding two-phase stainless steel is not known. Therefore, as described above, the present inventors have conducted various experimental studies on the relationship, and assuming that the above expression (1) is satisfied, the effect of laser welding in He gas or Ar gas containing the above amount of nitrogen is considered. It was found to be more noticeable.

【0025】図1は、上記(1)式によって求められる
700℃における溶金の冷却速度V700 と溶接金属の孔
食発生電位の関係を示した図である。この図1から明ら
かなように、上記量の窒素を含むシールドガス雰囲気中
でレーザー溶接した場合には、700℃における溶接金
属の冷却速度V700 が10〜900℃/secであれば
溶接部の耐孔食性がより一層向上することがわかる。
FIG. 1 is a graph showing the relationship between the cooling rate V 700 of the molten metal at 700 ° C. and the potential for pitting corrosion of the weld metal, obtained by the above equation (1). As is apparent from FIG. 1, when laser welding is performed in a shielding gas atmosphere containing the above amount of nitrogen, if the cooling rate V 700 of the weld metal at 700 ° C. is 10 to 900 ° C./sec, the welded portion of the welded metal is welded. It can be seen that the pitting corrosion resistance is further improved.

【0026】従って、その溶接条件を700℃における
溶接金属の冷却速度V700 が10〜900℃/secと
なる条件でレーザー溶接するのが望ましいことがわか
る。すなわち、上記冷却速度V700 が10℃/sec未
満では溶接金属の冷却速度が遅すぎるため、溶接金属中
にCr2 Nの形態のCr窒化物が析出するのを完全には
抑制し得ず、また、900℃/secを超えると冷却速
度が速すぎるため、シールドガス中からの溶接金属中へ
の窒素吸収量が不十分となって耐食性の向上が十分に図
り得ないのである。
Therefore, it can be seen that it is desirable to perform laser welding under the condition that the cooling rate V 700 of the weld metal at 700 ° C. is 10 to 900 ° C./sec. That is, if the cooling rate V 700 is less than 10 ° C./sec, the cooling rate of the weld metal is too slow, so that precipitation of Cr nitride in the form of Cr 2 N in the weld metal cannot be completely suppressed, On the other hand, if it exceeds 900 ° C./sec, the cooling rate is too high, so that the amount of nitrogen absorbed from the shielding gas into the weld metal becomes insufficient, and the corrosion resistance cannot be sufficiently improved.

【0027】700℃における溶金の冷却速度V700
10〜900℃/secの範囲内の値にするには、素材
帯鋼肉厚tに応じて、レーザー出力P、溶接速度Vおよ
び帯鋼両エッジ部の予熱温度T0 のいずれか1つ以上を
適宜調整すればよい。
In order to set the cooling rate V 700 of the molten metal at 700 ° C. to a value within the range of 10 to 900 ° C./sec, the laser output P, the welding speed V, Any one or more of the preheating temperatures T 0 of both edge portions may be appropriately adjusted.

【0028】また、帯鋼両エッジ部の予熱は、図示省略
するが、スクイズロールの前段に、ERWで用いられる
高周波誘導加熱用の環状コイルあるいはコンタクトチッ
プを配置し、その投入電力量を調整制御することによっ
て所定の温度に加熱すればよい。
The preheating of both edges of the steel strip is not shown, but an annular coil or a contact tip for high-frequency induction heating used in ERW is arranged in front of the squeeze roll, and the supplied electric power is adjusted and controlled. Heating to a predetermined temperature.

【0029】なお、700℃における溶金の冷却速度V
700 を求める上記(1)式は、「Welding Journal 37(1
958) 210S 」に所載されるADAMSの溶金の冷却速度
を求める計算式を用いた。
The cooling rate V of the molten metal at 700 ° C.
The above equation (1) for obtaining 700 is expressed as “Welding Journal 37 (1
958) 210S ", which is used to calculate the cooling rate of ADAMS molten metal.

【0030】[0030]

【実施例】表1に示す成分組成を有する素材帯鋼を準備
した。
EXAMPLE A steel strip having the composition shown in Table 1 was prepared.

【0031】[0031]

【表1】 [Table 1]

【0032】これらの素材帯鋼を、常法によって表2に
示す各外径の溶接管とすべくオープンパイプ状に成形
し、帯鋼両エッジ相互の突き合わせ部にレーザービーム
を照射するに当たり、表2示す各条件でレーザー溶接を
行った。また、比較のためGTAWで造管溶接したもの
も準備した。
These steel strips were formed into an open pipe shape by conventional methods so as to obtain welded pipes having the respective outer diameters shown in Table 2, and when a laser beam was applied to the butted portion of both edges of the steel strip, a table was formed. Laser welding was performed under the respective conditions shown in FIG. For comparison, a tube welded with GTAW was also prepared.

【0033】[0033]

【表2】 [Table 2]

【0034】得られた溶接ままの溶接管の溶接部(HA
Zも含む)から、管周方向寸法が30mm、管軸方向寸
法が10mmの円弧断面の中央に溶接シーム部が位置す
るように試験片を採取した。これらの試験片を表3に示
す成分組成の人工海水中で、図2に示す試験装置を用
い、JIS−G0577に規定の方法に基づいて孔食電
位を測定することにより、その溶接金属の耐食性を評価
した。
The obtained welded portion of the welded pipe (HA)
Z), a test piece was sampled such that the welded seam portion was located at the center of an arc cross section having a pipe circumferential dimension of 30 mm and a pipe axial dimension of 10 mm. The corrosion resistance of the weld metal was determined by measuring the pitting potential of these test pieces in artificial seawater having the component composition shown in Table 3 using the test device shown in FIG. 2 based on the method specified in JIS-G0577. Was evaluated.

【0035】[0035]

【表3】 [Table 3]

【0036】なお、試験片は溶接シーム部を中心として
測定断面のみを1cm2 露出させ、測定直前に800番
研磨紙で研磨後、試験片への付加電位を自然電極電位か
ら電位掃引速度20mV/minの速度で上げて行き、
孔食発生電位を測定した。また、参照電極にAg/Ag
Cl電極を用い、試験温度を60℃とし、測定中Ar脱
気を行い、孔食発生は電流密度が100μA/cm2
達した電位とした。
The test piece was exposed at 1 cm 2 only at the measurement section centering on the welded seam portion. The test piece was polished with No. 800 abrasive paper immediately before measurement, and the potential applied to the test piece was changed from the natural electrode potential to a potential sweep rate of 20 mV /. go up at the speed of min,
The pitting potential was measured. In addition, Ag / Ag
Using a Cl electrode, the test temperature was set to 60 ° C., Ar degassing was performed during the measurement, and the occurrence of pitting corrosion was set to a potential at which the current density reached 100 μA / cm 2 .

【0037】孔食電位の測定結果を、表2に併記した。The results of measuring the pitting potential are also shown in Table 2.

【0038】表2から明らかなように、本発明例では5
21mV以上の孔食電位が得られており、溶接部の耐食
性に優れている。これに対し、比較例では孔食電位が5
10mV以下で溶接部の耐食性が劣っている。また、従
来例のGTAWで造管溶接したものは、孔食電位が45
0mV以下で本発明の比較例に比べても溶接部の耐食性
が劣っている。
As is clear from Table 2, in the present invention example, 5
A pitting corrosion potential of 21 mV or more is obtained, and the welded portion is excellent in corrosion resistance. In contrast, in the comparative example, the pitting potential was 5
Below 10 mV, the corrosion resistance of the weld is inferior. In the case of conventional pipe welding using GTAW, the pitting potential is 45%.
At 0 mV or less, the corrosion resistance of the welded part is inferior to the comparative example of the present invention.

【0039】[0039]

【発明の効果】本発明の方法によれば、溶接ままで使用
して溶接部の耐食性に優れる2相ステンレス鋼管を安価
に提供することができるので、その工業的価値は大き
い。
According to the method of the present invention, a duplex stainless steel pipe having excellent corrosion resistance at a welded portion can be provided at low cost by using it as it is, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】700℃に於ける溶金の冷却速度と孔食電位と
の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the cooling rate of molten metal at 700 ° C. and pitting potential.

【図2】孔食電位を測定する試験装置の概略を示す図で
ある。
FIG. 2 is a diagram schematically showing a test device for measuring pitting potential.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/00 302 C22C 38/00 302H (58)調査した分野(Int.Cl.7,DB名) B23K 26/00 B21C 37/08 B23K 26/12 B23K 26/14 C22C 38/00 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 identification code FI C22C 38/00 302 C22C 38/00 302H (58) Field surveyed (Int.Cl. 7 , DB name) B23K 26/00 B21C 37 / 08 B23K 26/12 B23K 26/14 C22C 38/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2相ステンレス鋼製の素材帯鋼を成形ロー
ル群に通してオープンパイプ状に連続的に成形し、スク
イズロールによって素材帯鋼の両エッジ相互を突き合わ
せ、この突き合わせ部にレーザービームを照射して造管
溶接するにあたり、分圧で0.01〜0.2atmの窒
素を含むHeまたはArからなるシールドガス中でレー
ザー溶接することを特徴とする2相ステンレス鋼溶接管
の製造方法。
1. A material strip made of duplex stainless steel is continuously formed into an open pipe shape through a group of forming rolls, and both edges of the material strip are butted with a squeeze roll. For welding pipes by irradiating with a laser beam, laser welding in a shielding gas consisting of He or Ar containing nitrogen at a partial pressure of 0.01 to 0.2 atm. .
【請求項2】レーザー溶接後の700℃における下式で
求められる溶金の冷却速度V700 が10〜900℃/s
ecの範囲となる条件でレーザー溶接することを特徴と
する請求項1に記載の2相ステンレス鋼溶接管の製造方
法。 V700 =3.02×10-7×(tV/P)2 ×(700
−T0 3 ただし、t :素材帯鋼肉厚(mm) V :溶接速度(m/min) P :レーザー出力(kW) T0 :素材帯鋼両エッジ部の予熱温度(℃)
2. The cooling rate V 700 of the molten metal at 700 ° C. after laser welding, which is determined by the following equation, is 10 to 900 ° C./s.
The method for producing a duplex stainless steel welded pipe according to claim 1, wherein the laser welding is performed under a condition of ec. V 700 = 3.02 × 10 −7 × (tV / P) 2 × (700
−T 0 ) 3 , where t: material strip steel thickness (mm) V: welding speed (m / min) P: laser output (kW) T 0 : preheating temperature of both edges of the material strip (° C.)
JP26867394A 1994-11-01 1994-11-01 Method for manufacturing duplex stainless steel welded pipe Expired - Fee Related JP3201178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26867394A JP3201178B2 (en) 1994-11-01 1994-11-01 Method for manufacturing duplex stainless steel welded pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26867394A JP3201178B2 (en) 1994-11-01 1994-11-01 Method for manufacturing duplex stainless steel welded pipe

Publications (2)

Publication Number Publication Date
JPH08132262A JPH08132262A (en) 1996-05-28
JP3201178B2 true JP3201178B2 (en) 2001-08-20

Family

ID=17461811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26867394A Expired - Fee Related JP3201178B2 (en) 1994-11-01 1994-11-01 Method for manufacturing duplex stainless steel welded pipe

Country Status (1)

Country Link
JP (1) JP3201178B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840835B1 (en) * 2002-06-14 2004-08-27 Air Liquide USE OF HELIUM / NITROGEN GAS MIXTURES IN LASER WELDING OF STAINLESS STEEL TUBES
JP2011240390A (en) 2010-05-20 2011-12-01 Denso Corp Laser welding method, and pipe joint product joined by the method
JP2011245546A (en) 2010-05-31 2011-12-08 Denso Corp Laser welding method, pipe joint product, and fuel injection valve using the product
CN113631732B (en) * 2019-03-29 2023-03-21 日铁不锈钢株式会社 Duplex stainless steel welded joint and method for manufacturing same

Also Published As

Publication number Publication date
JPH08132262A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
US5118028A (en) Diffusion bonding method for corrosion-resistant materials
EP3228413B1 (en) Method for producing circumferential weld joint for low-carbon martensite stainless steel tubing
JP4400568B2 (en) Welded structure with excellent stress corrosion cracking resistance
JP3454354B2 (en) Austenitic / ferritic duplex stainless steel welding material and method for welding high Cr steel using the same
JPH11320097A (en) Weld joint structure of high cr ferrite steel
JP3201178B2 (en) Method for manufacturing duplex stainless steel welded pipe
JPH05375A (en) Submerged arc welding method and equipment for steel pipe
JP4016800B2 (en) Thick large-diameter straight UOE steel pipe that satisfies the strict toughness requirements of both the inner weld metal and the reheated part, and its manufacturing method
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JP2002226947A (en) Martensitic stainless steel welded joint having excellent strain aging resistance
JP3077576B2 (en) Method for producing low carbon martensitic stainless steel welded pipe
JP3204065B2 (en) Method for manufacturing duplex stainless steel welded pipe
JPH09168878A (en) Manufacture of duplex stainless steel welded tube
JP3146890B2 (en) Method for manufacturing duplex stainless steel welded pipe
JP3146889B2 (en) Method for producing duplex stainless steel welded pipe with excellent weld toughness and corrosion resistance
JP3033483B2 (en) Method for producing martensitic stainless steel welded pipe with excellent carbon dioxide gas corrosion resistance
JP3319358B2 (en) Method for producing welded steel pipe for line pipe with excellent hydrogen-induced cracking resistance, sulfide stress cracking resistance and low-temperature toughness
JP2004230392A (en) Welding material for martensitic stainless steel pipe and welding method therefor
JP2003220492A (en) Cored wire for laser beam welding of steel material and solid wire
Kumar et al. Effect of post weld heat treatment on impact toughness of SA 516 GR. 70 Low Carbon Steel Welded by Saw Process
JP3327128B2 (en) Welding material
JP2000063997A (en) Welded tube of martensitic stainless steel
JP3146918B2 (en) Manufacturing method of austenitic stainless steel welded pipe
JP2002155341A (en) Corrosion resistant steel having excellent carbon dioxide gas corrosion resistance and weld zone toughness, and corrosion resistant line pipe using the steel
JP2000288738A (en) Structure in welded joint of high chrominum ferrite steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees