JP3199807B2 - Optical evaporation monitor - Google Patents

Optical evaporation monitor

Info

Publication number
JP3199807B2
JP3199807B2 JP00068092A JP68092A JP3199807B2 JP 3199807 B2 JP3199807 B2 JP 3199807B2 JP 00068092 A JP00068092 A JP 00068092A JP 68092 A JP68092 A JP 68092A JP 3199807 B2 JP3199807 B2 JP 3199807B2
Authority
JP
Japan
Prior art keywords
chamber
optical
grid
vapor deposition
cold cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00068092A
Other languages
Japanese (ja)
Other versions
JPH05179444A (en
Inventor
久 山本
Original Assignee
アネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アネルバ株式会社 filed Critical アネルバ株式会社
Priority to JP00068092A priority Critical patent/JP3199807B2/en
Publication of JPH05179444A publication Critical patent/JPH05179444A/en
Application granted granted Critical
Publication of JP3199807B2 publication Critical patent/JP3199807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、蒸発物質に電子を衝
突させた際に発生する励起発光の強度を測定して、この
測定値からその蒸発物質の堆積速度を測定する光学式蒸
着モニター装置の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical evaporation monitor for measuring the intensity of excited luminescence generated when electrons collide with an evaporating substance and measuring the deposition rate of the evaporating substance from the measured value. Related to the configuration.

【0002】[0002]

【従来の技術】従来のこの種の装置には、冷陰極放電を
利用するものと熱陰極を利用するものの2種類がある。
例えば冷陰極放電を利用する装置としては特公平2ー4
8625に開示されたものがあり、熱陰極を利用する装
置としては米国特許第4036167号に開示されたも
のがある。前者の構成を図2に示し、後者の構成を図3
に示す。
2. Description of the Related Art There are two types of conventional devices of this type, one utilizing a cold cathode discharge and the other utilizing a hot cathode.
For example, as a device utilizing cold cathode discharge, Japanese Patent Publication No. 2-4
No. 8625, and an apparatus utilizing a hot cathode is disclosed in US Pat. No. 4,036,167. FIG. 2 shows the former configuration, and FIG. 3 shows the latter configuration.
Shown in

【0003】図2に断面図で示す装置では、放電室17
内に、相対向する2つの円盤状の冷陰極1a、1bを囲
んでそれらと同軸に円筒形箱状の陽極16が設けられて
いる。その円筒の胴部に開けられた蒸気窓12を通っ
て、図の紙面と垂直な方向に蒸発物質が通過するよう構
成されている。冷陰極1a、1bと陽極16との間には
電源13により1kV乃至3kVの高電圧が印加されて
電気力線8(点線の矢で代表して示してある)が作られ
ている。陽極16の外側に永久磁石2を配置してあり、
この磁石により磁力線7(1本の太い矢で代表して示し
てある)で示す磁界が形成される。そして、この互いに
直交する磁界と電界の作用により冷陰極1a、1bから
発した電子(図示せず)は磁力線7の回りを回転する電
子電流となり、通過中の蒸発物質の励起確率を格段に向
上させ、蒸発物質から充分な強度の励起光を発光させ
る。
In the device shown in cross section in FIG.
Inside, a cylindrical box-shaped anode 16 is provided coaxially with the surrounding two disk-shaped cold cathodes 1a and 1b facing each other. The evaporant is configured to pass through a steam window 12 formed in the body of the cylinder, in a direction perpendicular to the plane of the drawing. A high voltage of 1 kV to 3 kV is applied between the cold cathodes 1 a and 1 b and the anode 16 by the power supply 13 to form the electric flux lines 8 (represented by dotted arrows). The permanent magnet 2 is arranged outside the anode 16,
The magnet forms a magnetic field indicated by the magnetic field lines 7 (represented by one thick arrow). The electrons (not shown) emitted from the cold cathodes 1a and 1b become the electron current rotating around the magnetic field lines 7 by the action of the mutually perpendicular magnetic field and electric field, and the excitation probability of the evaporating substance passing therethrough is remarkably improved. Then, excitation light of sufficient intensity is emitted from the evaporated substance.

【0004】陽極16の側壁には光学窓11が設けられ
ている。従って、蒸発物質から発した励起光10は、蒸
気流路と直角な方向に配置されたこの光学窓11から、
光学系導入管15を通って外部に取り出される。この励
起光10は、外部で光検出器(図示せず)に入射し、そ
の発光強度をこの検出器で測定する。そして、この発光
強度から蒸発物質の堆積速度(および、それを時間的に
積算して堆積薄膜の膜厚)を測定する。
An optical window 11 is provided on a side wall of the anode 16. Therefore, the excitation light 10 emitted from the evaporating substance is transmitted through the optical window 11 arranged in a direction perpendicular to the vapor flow path.
The light is taken out through the optical system introduction tube 15. The excitation light 10 is externally incident on a photodetector (not shown), and the emission intensity is measured by the detector. Then, the deposition rate of the evaporated substance (and the thickness of the deposited thin film by integrating the deposition rate over time) is measured from the emission intensity.

【0005】図3に斜視図で要部を示してある装置で
は、加熱されたフィラメント19から熱電子18が放出
され、この熱電子18は、180V乃至200Vの高電
圧を印加された電子加速用陽極23で、加速されて矢印
で示した方向に前進する。前進の途中に、蒸気窓12か
ら導入された蒸発物質9を照射するようになっている。
電子衝突によって発生した励起光10は、光学系導入管
15(その、もとあった位置を一点鎖線で示す)により
外部に取り出され前述同様の測定が行なわれる。
[0005] In the device whose essential part is shown in a perspective view in FIG. 3, thermoelectrons 18 are emitted from a heated filament 19, and the thermoelectrons 18 are used for electron acceleration to which a high voltage of 180 V to 200 V is applied. The anode 23 accelerates and advances in the direction indicated by the arrow. During the forward movement, the evaporating substance 9 introduced from the steam window 12 is irradiated.
The excitation light 10 generated by the electron collision is taken out to the outside by the optical system introduction tube 15 (the original position is indicated by a dashed line), and the same measurement as described above is performed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
図2、図3にそれぞれ示した従来の装置には、蒸発物質
が金属等の単元素である場合には充分な性能を発揮する
が、蒸発物質が化合物、特に酸化物である場合に充分な
精度で堆積速度の計測が行なえない欠点があった。
However, the conventional devices shown in FIGS. 2 and 3, respectively, exhibit sufficient performance when the evaporating substance is a single element such as a metal. When the substance is a compound, especially an oxide, there is a disadvantage that the deposition rate cannot be measured with sufficient accuracy.

【0007】例えば、SiO2 (酸化珪素)を電子ビー
ム蒸着する場合には、電子ビームの照射で生成した蒸発
成分中には、SiO2 の多くがSiO2 分子のままでな
くSi、SiO、O等に分解されて含まれていることが
知られている。光学式蒸着センサー部に飛来した分子は
センサー内部で電子衝撃を受けるため、この分解が一層
進行する傾向にある。
[0007] For example, SiO 2 and (silicon oxide) in the case of electron beam evaporation, the evaporation component generated by irradiation of the electron beam, Si many SiO 2 is not remained SiO 2 molecules, SiO, O It is known that they are included after being decomposed into the like. Molecules that have come to the optical vapor deposition sensor are subjected to electron impact inside the sensor, so that the decomposition tends to proceed further.

【0008】ここで最も問題となるのが酸素の存在であ
る。参考のため図4に酸素の発光スペクトルを示す。横
軸は波長(nm)をとり、縦軸は発光強度(相対強度)
をとって示してある。酸素は多様な遷移状態とエネルギ
ー状態を取るため、酸素の励起光は200nm〜600
nmの全波長領域に渡ってブロードに発生しその強度も
強い。このため、この酸素の励起光は、Siの主たる励
起光である252nmや288nmの波長の光の分離検
出を難しくし、SiO2 の蒸発量の分離、計測を困難に
する。
The most problematic here is the presence of oxygen. FIG. 4 shows an emission spectrum of oxygen for reference. The horizontal axis indicates wavelength (nm), and the vertical axis indicates emission intensity (relative intensity).
Is shown. Since oxygen has various transition states and energy states, the excitation light of oxygen is 200 nm to 600 nm.
It occurs broadly over the entire wavelength region of nm and has a strong intensity. Therefore, the excitation light of oxygen makes it difficult to separate and detect light having a wavelength of 252 nm or 288 nm, which is the main excitation light of Si, and makes it difficult to separate and measure the amount of evaporation of SiO 2 .

【0009】この発明は上述の問題を解決するために成
されたものであって、従って、この発明の目的は、蒸発
物質に化合物や酸化物等を用いた場合であっても、堆積
膜の膜堆積速度の高精度の測定が可能であるような光学
式蒸着モニター装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and accordingly, an object of the present invention is to provide a method for depositing a deposited film even when a compound or oxide is used as an evaporating substance. An object of the present invention is to provide an optical vapor deposition monitor device capable of measuring a film deposition rate with high accuracy.

【0010】[0010]

【問題を解決するための手段】この目的を達成するため
に、光学式蒸着モニター装置の放電室の内部に負の電位
を印加したグリッドを設け、このグリッドで前記放電室
を蒸気の進行方向につき前室と後室の二室に分割し、こ
の後室で発生させる励起発光を検出に用いて測定を行な
うよう装置を構成するものである。
In order to achieve this object, a grid to which a negative potential is applied is provided inside a discharge chamber of an optical evaporation monitor, and the grid is used to move the discharge chamber in the direction of vapor movement. The apparatus is configured to divide into two chambers, a front chamber and a rear chamber, and to perform measurement using excitation light emission generated in the rear chamber for detection.

【0011】電子衝撃に使用する電子を、冷陰極放電に
より発生させるもの、熱陰極により発生させるもの、両
者の併用で発生させるもの、がある。
Electrons used for electron impact include those generated by cold cathode discharge, those generated by a hot cathode, and those generated by a combination of both.

【0012】[0012]

【作用】酸化物の場合で説明すると、一般に酸化物から
解離した酸素は負イオンとなる。グリッドには負の電位
が印加してあるため、蒸気流路中の負イオンの酸素は前
室21の中にに閉じ込められ、解離した正イオンの金属
イオンと中性粒子のみが後室22に進行する。そしてこ
の後室22で励起光を発生する。一度電子衝撃を受けた
粒子は完全な基底状態に戻らず準安定状態を保つている
場合も多いが、この粒子は次の電子衝撃によって容易に
励起する状態にある。従ってグリッドを用いて上述のよ
うな2室構造にするときは、計測の障害となる酸素の励
起光を減少させるとともに、金属元素の励起光強度を増
大させるという二重の効果が得られる。
In the case of an oxide, generally, oxygen dissociated from the oxide becomes a negative ion. Since a negative potential is applied to the grid, oxygen of negative ions in the vapor flow path is confined in the front chamber 21, and only dissociated positive metal ions and neutral particles are stored in the rear chamber 22. proceed. Then, the excitation light is generated in the chamber 22 after this. Particles that have been once subjected to electron impact often remain in a metastable state without returning to a perfect ground state, but are in a state of being easily excited by the next electron impact. Therefore, when the above-described two-chamber structure is formed by using the grid, a double effect of reducing the excitation light of oxygen, which is an obstacle to measurement, and increasing the intensity of excitation light of the metal element can be obtained.

【0013】[0013]

【実施例】以下、図面を参照して、この発明の実施例に
つき説明する。尚、図はこの発明が理解できる程度に、
各構成成分の形状、大きさおよび配置関係を概略的に示
してあるにすぎない。図1はこの発明の冷陰極型光学式
蒸着モニター装置の実施例を示す図で、(A)は正面断
面図、(B)は平面断面図である。
Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the figures are to the extent that the present invention can be understood.
It merely shows the shape, size and arrangement of each component schematically. FIG. 1 is a view showing an embodiment of a cold cathode type optical evaporation monitor according to the present invention, in which (A) is a front sectional view and (B) is a plan sectional view.

【0014】角筒状の冷陰極1には蒸気窓120a、1
20bと、光学窓110が開けられている。相対向する
永久磁石2a、2bの継鉄3は正六面体箱状の放電室を
形成し内部の陽極棒4a、4bとは電気的に接続されて
いる。放電室はそのほかにも、前述の冷陰極1と、絶縁
石6a、6bを経由して導入されたグリッド5を内蔵す
る。そしてこのグリッド5は蒸発物質の流れの方向に対
して直交する方向に挿入されており、このため前述の放
電室を前室21、後室22の2室に分割している。
Steam windows 120a, 1
20b and the optical window 110 are open. The yoke 3 of the opposed permanent magnets 2a and 2b forms a regular hexahedral box-shaped discharge chamber, and is electrically connected to the internal anode rods 4a and 4b. In addition, the discharge chamber incorporates the cold cathode 1 described above and the grid 5 introduced via the insulating stones 6a and 6b. The grid 5 is inserted in a direction perpendicular to the direction of the flow of the evaporating substance. Therefore, the above-mentioned discharge chamber is divided into two chambers, a front chamber 21 and a rear chamber 22.

【0015】永久磁石2a、2bで磁力線7が作られ
る。冷陰極1と陽極棒4a、4bの間に電界を与える電
源13、グリッドに負電位を印加する電源14があっ
て、周囲の冷陰極1と陽極棒4a、4bとグリッド5と
の3者の間に電気力線8が作られている。
The lines of magnetic force 7 are formed by the permanent magnets 2a and 2b. There is a power supply 13 for applying an electric field between the cold cathode 1 and the anode rods 4a and 4b, and a power supply 14 for applying a negative potential to the grid. Electric lines of force 8 are formed between them.

【0016】この放電室に、蒸気窓12を通って蒸発物
質9が導入され、内部で発光した励起光10は光学窓1
1から光学系導入管15を通して外部に取り出されるよ
うに構成されている。
The evaporating substance 9 is introduced into the discharge chamber through the vapor window 12, and the excitation light 10 emitted inside the optical window 1
1 is configured to be taken out through the optical system introduction tube 15 to the outside.

【0017】次にこの装置の動作につき説明する。グリ
ッド5により前、後の2室21および22に分けられた
放電室の、両室それぞれの構造は、ほぼ中央に陽極4
a、4bがあり、その外側を冷陰極1及びグリッド5が
取り囲むように構成されており、いわゆる逆マグネトロ
ン型の構造となっている。この前、後室21、22の中
央部にある陽極棒4a、4bからこれを取り囲む冷陰極
1及びグリッド5に向けて放射状に電気力線8の電界が
形成され、さらに永久磁石2a、2bによりこの電界と
直交する方向に磁力線7の磁界が形成されている。この
電界と磁界の作用により冷陰極1から放出された電子は
磁力線7の回りに回転電子電流を作り、長距離を走行し
て長時間放電室に滞留する。このため、蒸気窓12aよ
り流入した蒸発物質9との衝突確率が増大し、蒸発物質
9の蒸発量が微量である場合でも計測に充分な量の励起
光10を発生させる。
Next, the operation of this apparatus will be described. The structure of each of the discharge chambers divided into two chambers 21 and 22 before and after by the grid 5 is substantially the center of the anode 4.
The cold cathode 1 and the grid 5 surround the outside, and have a so-called inverted magnetron type structure. Before this, electric fields of electric lines of force 8 are formed radially from the anode rods 4a, 4b in the center of the rear chambers 21, 22 toward the cold cathode 1 and the grid 5 surrounding the anode rods 4a, 4b, and further by the permanent magnets 2a, 2b. A magnetic field of the magnetic field lines 7 is formed in a direction orthogonal to the electric field. The electrons emitted from the cold cathode 1 by the action of the electric field and the magnetic field generate a rotating electron current around the magnetic field lines 7, travel a long distance, and stay in the discharge chamber for a long time. For this reason, the probability of collision with the evaporating substance 9 flowing from the vapor window 12a increases, and even when the amount of evaporation of the evaporating substance 9 is very small, a sufficient amount of excitation light 10 for measurement is generated.

【0018】ここで前、後、両放電室の役割であるが、
図の下方から飛来した酸化物の蒸発物質9は、蒸気窓1
2aよりまず前室21に入り、ここで電子衝撃を受けて
さらに分解されイオン化もしくは励起される。前、後室
21、22の間のグリッド5には負の電位が印加してあ
るので、そのうち正イオンと中性粒子のみがグリッド5
を通り抜けて後室22に移動し、酸化物の分解で発生し
た酸素負イオン等のすべての負イオンは前室21に残
る。すなわち、酸素負イオンを前室21に閉じ込め、解
離した正イオンである金属イオン及び中性粒子のみを後
室22に導く。そのため、この後室22の励起光を検出
することにより、発光検出に有害な酸素を取り除き、金
属元素リッチな状態で発光検出を行うことが可能とな
る。また、一度前室21で電子等の衝撃を受けた粒子
は、完全な基底状態に戻らず準安定状態を保つ場合が多
く、この場合は後室22の次の電子衝撃で非常に励起し
やすい状態となっているので、後室22での金属元素の
発光はより強度の高いものとなる。
The roles of the discharge chambers before and after are as follows.
The oxide evaporating substance 9 that has flown from the bottom of the figure is the vapor window 1
From 2a, first, it enters the front chamber 21, where it is further decomposed and ionized or excited by electron impact. Since a negative potential is applied to the grid 5 between the front and rear chambers 21 and 22, only positive ions and neutral particles are
And moves to the rear chamber 22, and all negative ions such as oxygen negative ions generated by decomposition of the oxide remain in the front chamber 21. That is, oxygen negative ions are confined in the front chamber 21, and only metal ions and neutral particles, which are dissociated positive ions, are guided to the rear chamber 22. Therefore, by detecting the excitation light in the rear chamber 22, oxygen harmful to the emission detection is removed, and the emission can be detected in a state rich in metal elements. In addition, particles that have once been impacted by electrons or the like in the front chamber 21 often do not return to a perfect ground state and remain in a metastable state, and in this case, they are very easily excited by the next electron impact in the rear chamber 22. In this state, the emission of the metal element in the rear chamber 22 has a higher intensity.

【0019】なお、この実施例は、冷陰極用電源13と
グリッド用電源14を個別に設けて、冷陰極とグリッド
の電位が異なる場合を示したが、両電源を一つにして冷
陰極とグリッドの電位を同一としても同様の効果が得ら
れることは明かである。
In this embodiment, the cold cathode power supply 13 and the grid power supply 14 are separately provided, and the case where the potentials of the cold cathode and the grid are different is shown. It is clear that the same effect can be obtained even when the potential of the grid is the same.

【0020】図5にはこの発明の別の実施例の光学式蒸
着モニター装置の正面断面図を示す。図1と同じ部材に
は同じ符号を用いている。この実施例では、図1の装置
から冷陰極1を取り外し、グリッド5が図1の冷陰極を
も兼ねるような構造になっている。こうした構成も可能
である。
FIG. 5 is a front sectional view of an optical evaporation monitor according to another embodiment of the present invention. The same members as those in FIG. 1 are denoted by the same reference numerals. In this embodiment, the cold cathode 1 is removed from the apparatus shown in FIG. 1, and the grid 5 has a structure also serving as the cold cathode shown in FIG. Such a configuration is also possible.

【0021】図6もこの発明の別の実施例の光学式蒸着
モニター装置の正面断面図を示し、この実施例では、更
に図5の装置から陽極棒4を取り外した構成を採用して
いる。この場合には、継鉄3の壁面が陽極16を兼ねる
ことになる。
FIG. 6 is a front sectional view of an optical vapor deposition monitor apparatus according to another embodiment of the present invention. In this embodiment, the configuration in which the anode rod 4 is further removed from the apparatus shown in FIG. 5 is employed. In this case, the wall surface of the yoke 3 also serves as the anode 16.

【0022】図7は、この発明の熱陰極型光学式蒸着モ
ニター装置の実施例の正面断面図である。磁石を設けて
いないので電子はマグネトロン走行しないのと、電子衝
撃に使用する電子を熱陰極19から取り出しているのと
の両者を除いては、動作は冷陰極型の装置と同様であ
る。なお、この実施例ではグリッド5とウエネルト電極
20を同電位としているが、個別の電源を用いて別々の
電位とすることもできる。さらに、電子源である熱陰極
19を前室と後室に各1個、合計2個用いてもよい。
FIG. 7 is a front sectional view of an embodiment of the hot cathode type optical evaporation monitor of the present invention. The operation is the same as that of the cold-cathode type device, except that the electrons do not travel in the magnetron because no magnet is provided, and the electrons used for electron impact are extracted from the hot cathode 19. In this embodiment, the grid 5 and the Wehnelt electrode 20 are set to the same potential, but they may be set to different potentials using individual power supplies. Further, a total of two hot cathodes 19, which are electron sources, may be used in the front chamber and the rear chamber, respectively.

【0023】図8は、熱陰極型と冷陰極型の複合型光学
式蒸着モニター装置の実施例の正面断面図である。前室
21で冷陰極型、後室22で熱陰極型の上述同様の動作
が行なわれる。またこの図において前、後室の冷陰極型
と熱陰極型を置き換えても同様の効果が得られる。
FIG. 8 is a front sectional view of an embodiment of a composite type optical vapor deposition monitor apparatus of a hot cathode type and a cold cathode type. The same operation as that of the cold cathode type in the front room 21 and the hot cathode type in the rear room 22 is performed. In this figure, the same effect can be obtained by replacing the cold cathode type and the hot cathode type in the front and rear chambers.

【0024】尚、上述は放電室を2室に分割した実施例
であったが、これを3室以上に分割してその最後の室を
後室としてその発光を検出するものでも効果は同じであ
る。最後の室以外はすべてをまとめて前室と考えること
ができる。
Although the above embodiment is an embodiment in which the discharge chamber is divided into two chambers, the same effect can be obtained by dividing the discharge chamber into three or more chambers and detecting the light emission of the last chamber as the rear chamber. is there. All but the last room can be considered as the front room.

【0025】[0025]

【発明の効果】この発明によれば、従来の励起光検出型
の光学式蒸着モニター装置では困難であった化合物、酸
化物等のモニターも可能となり、単一元素の検出におい
ても検出感度を向上することが出来る。
According to the present invention, it is possible to monitor compounds, oxides, and the like, which is difficult with the conventional optical-beam evaporation monitor of the excitation light detection type, thereby improving the detection sensitivity even in the detection of a single element. You can do it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の冷陰極型光学式蒸着モニター装置の
実施例の図で、(A)は正面断面図、(B)は平面断面
図である。
FIG. 1 is a diagram of an embodiment of a cold cathode type optical vapor deposition monitor device of the present invention, wherein (A) is a front sectional view and (B) is a plan sectional view.

【図2】従来の冷陰極放電を利用する光学式蒸着モニタ
ー装置の平面断面図である。
FIG. 2 is a plan sectional view of a conventional optical vapor deposition monitor device using cold cathode discharge.

【図3】従来の熱陰極放電を利用する光学式蒸着モニタ
ー装置の平面断面図である。
FIG. 3 is a plan sectional view of a conventional optical vapor deposition monitor device using hot cathode discharge.

【図4】酸素の発光スペクトルの図である。FIG. 4 is a diagram of an emission spectrum of oxygen.

【図5】この発明の別の実施例の光学式蒸着モニター装
置の正面断面図である。
FIG. 5 is a front sectional view of an optical evaporation monitor according to another embodiment of the present invention.

【図6】もこの発明の別の実施例の光学式蒸着モニター
装置の正面断面図である。
FIG. 6 is a front sectional view of an optical evaporation monitor according to another embodiment of the present invention.

【図7】熱陰極型のこの発明の別の実施例の光学式蒸着
モニター装置の正面断面図である。
FIG. 7 is a front sectional view of a hot cathode type optical vapor deposition monitor device according to another embodiment of the present invention.

【図8】冷陰極と熱陰極複合型のこの発明の別の実施例
の光学式蒸着モニター装置の正面断面図である。
FIG. 8 is a front sectional view of a cold cathode / hot cathode combined type optical vapor deposition monitor device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、1a、1b:冷陰極、 2:永久磁石、
3:継鉄 4a、4b:陽極棒、 5:グリッド 6、6a、6b、6c:絶縁石、7:磁力線、
8:電気力線 9:蒸発物質、 10:励起光、 1
1:光学窓 12、12a、12b、120a、120b:蒸気窓 13:冷陰極と陽極間に電界を与えるための電源 14:グリッドに電圧を印加するための電源、
15:光学系導入管 16:陽極、 17:外壁、
18:電子 19:フィラメント(熱陰極)、20:ウエネルト電極 21:放電室の前室、 22:放電室の後室、
23:電子加速用陽極
1, 1a, 1b: cold cathode, 2: permanent magnet,
3: Yoke 4a, 4b: anode rod, 5: grid 6, 6a, 6b, 6c: insulating stone, 7: magnetic field line,
8: line of electric force 9: evaporating substance, 10: excitation light, 1
1: optical window 12, 12a, 12b, 120a, 120b: vapor window 13: power supply for applying an electric field between cold cathode and anode 14: power supply for applying voltage to the grid,
15: optical system introduction tube 16: anode, 17: outer wall,
18: electron 19: filament (hot cathode), 20: Wehnelt electrode 21: front chamber of discharge chamber, 22: rear chamber of discharge chamber,
23: Anode for electron acceleration

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 放電室内で電子衝撃により蒸発物質を励
起し、この励起された蒸発物質が基底状態に戻る際に発
生する励起発光の強度を検出することにより該蒸発物質
の蒸発速度を測定する光学式蒸着モニター装置におい
て、該放電室の内部に負の電位を印可するグリッドを設
けて、このグリッドで該放電室を蒸気の進行方向につき
前室と後室の二室に分割し、該後室で発生させる励起発
光を検出に用いることを特徴とする光学式蒸着モニター
装置。
1. An evaporation rate of an evaporating substance is measured by exciting an evaporating substance by an electron impact in a discharge chamber and detecting an intensity of an excited luminescence generated when the excited evaporating substance returns to a ground state. In the optical vapor deposition monitor device, a grid for applying a negative potential is provided inside the discharge chamber, and the grid is divided into two chambers, a front chamber and a rear chamber, with respect to the traveling direction of vapor by the grid. An optical vapor deposition monitor device, wherein excitation light emitted in a chamber is used for detection.
【請求項2】 該電子衝撃に使用する電子を冷陰極放電
により発生させることを特徴とする請求項1に記載の光
学式蒸着モニター装置。
2. The optical vapor deposition monitor device according to claim 1, wherein electrons used for the electron impact are generated by cold cathode discharge.
【請求項3】 該電子衝撃に使用する電子を熱陰極によ
り発生させることを特徴とする請求項1に記載の光学式
蒸着モニター装置。
3. The optical vapor deposition monitor according to claim 1, wherein electrons used for the electron impact are generated by a hot cathode.
【請求項4】 該電子衝撃に使用する電子を冷陰極放電
と熱陰極の両者で発生させることを特徴とする請求項1
に記載の光学式蒸着モニター装置。
4. The method according to claim 1, wherein the electrons used for the electron impact are generated by both a cold cathode discharge and a hot cathode.
2. The optical vapor deposition monitor device according to 1.
JP00068092A 1992-01-07 1992-01-07 Optical evaporation monitor Expired - Fee Related JP3199807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00068092A JP3199807B2 (en) 1992-01-07 1992-01-07 Optical evaporation monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00068092A JP3199807B2 (en) 1992-01-07 1992-01-07 Optical evaporation monitor

Publications (2)

Publication Number Publication Date
JPH05179444A JPH05179444A (en) 1993-07-20
JP3199807B2 true JP3199807B2 (en) 2001-08-20

Family

ID=11480474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00068092A Expired - Fee Related JP3199807B2 (en) 1992-01-07 1992-01-07 Optical evaporation monitor

Country Status (1)

Country Link
JP (1) JP3199807B2 (en)

Also Published As

Publication number Publication date
JPH05179444A (en) 1993-07-20

Similar Documents

Publication Publication Date Title
EP0103586B1 (en) Sputter initiated resonance ionization spectrometry
JP4176159B2 (en) Environmentally controlled SEM using magnetic field for improved secondary electron detection
US3541372A (en) Microwave plasma light source
US5164594A (en) Charged particle extraction arrangement
US4896035A (en) High mass ion detection system and method
Tarr et al. Observation of direct excitation of high-orbital-angular-momentum high-Rydberg states by threshold-energy electron collisions
Hanne et al. Study of exchange excitation in mercury by means of polarized electrons. I. Experiment
US4476392A (en) Photoelectron source for use in a gas chromatograph detector and mass spectrometer ion source
JPH0586020B2 (en)
EP0329461B1 (en) Mass spectrometer
JP3199807B2 (en) Optical evaporation monitor
Zapesochnyi et al. Experimental investigation of the excitation of Ar II and Kr II in electron-ion collisions
US20090039252A1 (en) Mass spectrometer
Shimizu et al. Characteristics of the beam line at the Tokyo electron beam ion trap
JP2627420B2 (en) Fast atom beam source
CN113013015B (en) Emission current measurement for instrument-to-instrument repeatability
JP2545940B2 (en) Mass spectrometer
Tsurubuchi et al. Comparison between Crossed-Beam and Target-Gas Methods for Study on Optical Excitation Functions in Electron-Impact of H2O
Lehr et al. Separation of neutral versus cationic dissociation processes in an ultracompact double time-of-flight spectrometer: first results on CH3I
Barofsky et al. Molecular sims with a liquid metal field ion point source
US20230245878A1 (en) Mass spectrometer
JPS61263039A (en) Mass spectrometer
JP2001059826A (en) Analyzing method of minute region by secondary ion mass analyzing method
JPS62188941A (en) Sensor for monitoring vacuum evaporation
JPH0622109B2 (en) Secondary ion mass spectrometer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010605

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees