JP3197073B2 - Solar heat receiver - Google Patents

Solar heat receiver

Info

Publication number
JP3197073B2
JP3197073B2 JP26728692A JP26728692A JP3197073B2 JP 3197073 B2 JP3197073 B2 JP 3197073B2 JP 26728692 A JP26728692 A JP 26728692A JP 26728692 A JP26728692 A JP 26728692A JP 3197073 B2 JP3197073 B2 JP 3197073B2
Authority
JP
Japan
Prior art keywords
fluid
heat
solar heat
temperature
heat receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26728692A
Other languages
Japanese (ja)
Other versions
JPH06117705A (en
Inventor
治夫 嵐
康弘 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26728692A priority Critical patent/JP3197073B2/en
Publication of JPH06117705A publication Critical patent/JPH06117705A/en
Application granted granted Critical
Publication of JP3197073B2 publication Critical patent/JP3197073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、太陽熱によって流体を
加熱して太陽熱を利用するための太陽熱受熱器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar heat receiver for heating a fluid by solar heat and utilizing the solar heat.

【0002】[0002]

【従来の技術】太陽熱発電や太陽熱を利用した化学プラ
ント等で太陽熱を利用するため、太陽熱によって流体を
加熱する従来の装置として本出願人は先に特願平2−1
10119号を提案した。この装置では、図10,図1
1に示すように、反射板13によって集光した太陽光を
多孔質セラミック製円筒6の表面上に受けてこれを加熱
し、このセラミックス中に被加熱気体を流して、太陽熱
から輻射で加熱された多孔質セラミックスから気体が対
流伝熱により加熱されるようにしたものである。
2. Description of the Related Art In order to utilize solar heat in solar thermal power generation or a chemical plant utilizing solar heat, the present applicant has previously filed Japanese Patent Application No. 2-1 as a conventional apparatus for heating a fluid by solar heat.
No. 10119 was proposed. In this apparatus, FIGS.
As shown in FIG. 1, sunlight condensed by the reflector 13 is received on the surface of the porous ceramic cylinder 6 and is heated, and a gas to be heated is caused to flow through the ceramic and is heated by radiation from solar heat. The gas is heated from the porous ceramics by convection heat transfer.

【0003】多孔質セラミックスは気孔率が80から9
9%と高く、気体との間の熱伝達率が大きく、少ない温
度差で大きな熱流速が生じ気体を少ない伝熱面積で容易
に加熱できる。この多孔質セラミックスを石英ガラス製
の円筒容器9内に設置し、多孔質セラミックスと石英ガ
ラスとの間に加熱する前の冷たい気体を流し、多孔質セ
ラミックスで加熱された後の気体は多孔質セラミックス
内を通って流れ、断熱構造の配管を通って集熱器外部に
取り出される。
[0003] Porous ceramics have a porosity of 80 to 9
As high as 9%, the heat transfer coefficient between the gas and the gas is large, a large heat flow rate is generated with a small temperature difference, and the gas can be easily heated with a small heat transfer area. This porous ceramic is placed in a cylindrical container 9 made of quartz glass, a cool gas before heating is flowed between the porous ceramic and the quartz glass, and the gas heated by the porous ceramic is a porous ceramic. It flows through the inside and is taken out of the heat collector through the pipe of the heat insulation structure.

【0004】このように構成された太陽熱受熱器におい
ては、反射板13をもつ太陽光集光器で集光され、集熱
器の多孔質セラミックス円筒6表面に受けた光は集中度
に分布を持つため、集中度が高い部分は温度が高くなり
大きな温度分布が生じる。多孔質セラミックスにおける
温度と流体通過圧力損失との関係は一般に次の式で表さ
れる。
[0004] In the solar heat receiver configured as described above, light collected by the solar collector having the reflector 13 and received on the surface of the porous ceramic cylinder 6 of the heat collector has a concentrated distribution. Therefore, the temperature is high in the portion where the concentration is high, and a large temperature distribution is generated. The relationship between the temperature and the pressure loss through the fluid in a porous ceramic is generally expressed by the following equation.

【0005】[0005]

【数1】 (Equation 1)

【0006】ここでCは抵抗係数、Aは通過通路断面積
である。このC、Aは気体が流れる通路の形状に依存す
る定数で、γとVは次のとおり温度によって変化する変
数である。
Here, C is a resistance coefficient, and A is a cross-sectional area of the passage. C and A are constants depending on the shape of the passage through which gas flows, and γ and V are variables that change with temperature as follows.

【0007】[0007]

【数2】 (Equation 2)

【0008】ここに添字0の付いた値は標準状態での値
である。このように多孔質セラミックスにおいては、通
過する流体の圧力損失は温度が高いほど大きくなる。
[0008] Here, the values with the subscript 0 are the values in the standard state. As described above, in the porous ceramics, the pressure loss of the passing fluid increases as the temperature increases.

【0009】従って、前記したように多孔質セラミック
ス円筒6に太陽光の集中度の分布によって温度分布が生
じると、温度の高いところで流体の通過圧力損失が大き
くなり、多孔質セラミックス円筒6を流れる被加熱流体
流量は温度が高い所ほど少なくなる分布が生じる。
Therefore, as described above, when a temperature distribution occurs in the porous ceramic cylinder 6 due to the distribution of the degree of concentration of sunlight, the pressure loss of fluid passing through a high temperature becomes large, and the flow through the porous ceramic cylinder 6 increases. There is a distribution in which the heating fluid flow rate decreases as the temperature increases.

【0010】このため、多孔質セラミックス円筒6を通
過したあとの気体温度は流体温度と流量の積に比例する
ために流量が多い温度が低い部分の流体温度に近くな
り、最高温度部分と加熱後の流体温度の間に大きな差が
生じる。
For this reason, the gas temperature after passing through the porous ceramic cylinder 6 is proportional to the product of the fluid temperature and the flow rate, so that the gas temperature is close to the fluid temperature of the portion where the flow rate is high and the temperature is low. There is a large difference between the fluid temperatures.

【0011】仮に1700℃の耐熱性を有する多孔質セ
ラミックスを用いた場合、セラミックスの最高温度と加
熱後の流体温度の差が1000℃あれば多孔質セラミッ
クスは1700℃に加熱されているにも拘らず700℃
以上に気体を加熱することはできない。
If a porous ceramic having a heat resistance of 1700 ° C. is used, if the difference between the maximum temperature of the ceramic and the fluid temperature after heating is 1000 ° C., the porous ceramic is heated to 1700 ° C. 700 ℃
The gas cannot be heated any more.

【0012】[0012]

【発明が解決しようとする課題】本発明は、前記したよ
うに多孔質セラミックスからなる集熱器に対する光の集
中度に分布があることから生ずる流体に対する通過圧力
損失のため流体の加熱効率が低下しているのを改善し、
多孔質セラミックスの加熱温度近くまで流体を加熱でき
るようにした太陽熱受熱器を提供することを課題として
いる。
SUMMARY OF THE INVENTION As described above, according to the present invention, the heating efficiency of the fluid is reduced due to the passing pressure loss to the fluid caused by the distribution of the concentration of light on the collector made of porous ceramics. To improve
It is an object of the present invention to provide a solar heat receiver that can heat a fluid to a temperature close to the heating temperature of porous ceramics.

【0013】また、本発明は、構造簡単な太陽熱受熱器
によって多孔質セラミックスの耐熱温度近くまで流体を
加熱することができるようにすることを課題としてい
る。
Another object of the present invention is to make it possible to heat a fluid to near the heat-resistant temperature of porous ceramics by using a solar heat receiver having a simple structure.

【0014】[0014]

【課題を解決するための手段】本発明は、表面に太陽光
輻射を受けて加熱された多孔質セラミックスに被加熱流
体を流して同流体を加熱するようにした太陽熱受熱器に
おける前記した課題を解決するため、集熱器となる多孔
質セラミックスをその多孔度及び厚さの少なくともいづ
れか一方を変えた複数個の部分で構成し、それを前記
体に対する通過抵抗受光強度に反比例した構造に配置
する。
SUMMARY OF THE INVENTION The present invention is directed to a solar heat receiver in which a fluid to be heated is caused to flow through porous ceramics heated by receiving solar radiation on the surface thereof to heat the fluid. to solve, and comprises a plurality of portions with different least Izure or other of its porosity and thickness of porous ceramic as a heat collector, it the flow resistance is received light intensity with respect to the flow <br/> body Place in inverse proportion structure .

【0015】また、本発明においては、受熱器を構成す
る多孔質セラミックスの受光面を凹面形に形成すると共
にその周縁から底部に向かって多孔度及び厚さの少なく
ともいづれか一方を変えることによって前記流体に対す
る通過抵抗を小さくした構成をも採用する。
Further, in the present invention, the light receiving surface of the porous ceramics constituting the heat receiver is formed in a concave shape, and at least one of the porosity and the thickness is changed from the peripheral edge toward the bottom to change the fluid. Also, a configuration in which the passage resistance with respect to is reduced.

【0016】また、本発明においては、上記集熱器を構
成する多孔質セラミックスをそれぞれ多孔度及び厚さの
少なくともいづれか一方が異なる複数個の部分で構成し
た構造をも採用する。
[0016] In the present invention, one either at least porous ceramics respectively porosity and thickness is adopted a structure in which composed of different plural portions constituting the heat collector.

【0017】[0017]

【作用】本発明では、太陽熱受熱器を構成する多孔質セ
ラミックスの流体通過抵抗を太陽光の集光度分布に反比
例して、集光度の高い部分ほど通過抵抗を低くしてある
ので、太陽光の集中度が高く輻射熱流速の高い部分に多
くの気体が流れ、高温の流体を多く得られる。
According to the present invention, since the fluid passage resistance of the porous ceramics constituting the solar heat receiver is inversely proportional to the distribution of the light concentration of sunlight, the passage resistance is lower at a portion having a higher concentration of sunlight. A large amount of gas flows in a portion where the degree of concentration is high and the radiant heat flow rate is high, and a large amount of high temperature fluid is obtained.

【0018】逆に太陽光の集中度が低い部分は、通過抵
抗を高くするので通過する気体流量が少なくなり、この
部分を通過する気体温度は高くなる。このように温度分
布が少ない加熱気体を混合するので温度の変化は少な
く、加熱後の気体温度と多孔質セラミックスの温度の差
は少なくなる。このため多孔質セラミックスの耐熱温度
近くまで気体を加熱することができるようになる。
Conversely, in a portion where the concentration of sunlight is low, the passage resistance is increased, so that the flow rate of gas passing therethrough decreases, and the temperature of the gas passing through this portion increases. Since the heating gas having a small temperature distribution is mixed as described above, the change in temperature is small, and the difference between the gas temperature after heating and the temperature of the porous ceramics is small. Therefore, the gas can be heated to a temperature close to the heat resistant temperature of the porous ceramic.

【0019】また、本発明によって受熱器を構成する多
孔質セラミックスの受光面を凹面形にし、その周縁から
底部に向かって流体の通過抵抗を小さくした構成を採用
したものでは加熱された多孔質セラミックスからの熱放
射が外部に漏れにくく放射損失を少なくして効率良い流
体加熱を行うことができる。
Further, according to the present invention, the light receiving surface of the porous ceramic constituting the heat receiver is made concave, and the resistance to the passage of the fluid from the periphery to the bottom is reduced. The heat radiation from the hardly leaks to the outside, the radiation loss can be reduced, and the fluid can be efficiently heated.

【0020】[0020]

【実施例】以下、本発明による太陽熱受熱器を図示した
実施例に基づいて具体的に説明する。先ず、図1に示す
第1実施例について説明する。図1において、図10,
図11に示した従来の装置と同じ部分には同じ符号を付
してあり、その説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A solar heat receiver according to the present invention will be specifically described below with reference to the illustrated embodiments. First, a first embodiment shown in FIG. 1 will be described. In FIG. 1, FIG.
The same parts as those of the conventional apparatus shown in FIG. 11 are denoted by the same reference numerals, and description thereof will be omitted.

【0021】図1に示す太陽熱受熱器において、気体入
口40から石英ガラス管9に入った冷気体は集光された
太陽熱で加熱された多孔質セラミックス円筒6を通過し
てアルミナ管7、断熱材71で構成された通路を通って
気体出口41より装置外へ排出される。
In the solar heat receiver shown in FIG. 1, the cold gas entering the quartz glass tube 9 from the gas inlet 40 passes through the porous ceramic cylinder 6 heated by the condensed solar heat and the alumina tube 7 and the heat insulating material. The gas is discharged to the outside of the device from the gas outlet 41 through the passage constituted by 71.

【0022】多孔質セラミックスは分割された7つの部
分61〜67から構成されており、これら7つの部分6
1〜67の通過抵抗は図2に示す各部分61〜67にお
ける太陽光の集中度に反比例するように表1のように気
孔径が調整されている。
The porous ceramic is composed of seven divided parts 61 to 67.
The pore diameters are adjusted as shown in Table 1 so that the passage resistances 1 to 67 are inversely proportional to the concentration of sunlight in the portions 61 to 67 shown in FIG.

【0023】[0023]

【表1】 [Table 1]

【0024】なお、表1において、通過抵抗比とは、多
孔質セラミックスの最小通過抵抗を1とした場合の各部
の通過抵抗を示している。多孔質セラミックスを表1に
示すような通過抵抗の異なる7つの部分から構成した場
合、質量流量は図3に示すようになる。このため多孔質
セラミックスの温度はほぼ一定となり、セラミックスの
耐熱温度付近まで気体を加熱することが可能になる。
In Table 1, the passage resistance ratio indicates the passage resistance of each part when the minimum passage resistance of the porous ceramic is set to 1. When the porous ceramic is composed of seven portions having different passage resistances as shown in Table 1, the mass flow rate is as shown in FIG. For this reason, the temperature of the porous ceramics becomes substantially constant, and it becomes possible to heat the gas to near the heat resistant temperature of the ceramics.

【0025】次に図4及び図5に示した第2実施例につ
いて説明する。なお、図4及び図5において図1に示し
た装置と同等の部分には同じ符号を付してあり、それら
についての説明は省略する。図4及び図5において、集
熱部は断熱材71で断熱された構造のアルミナ管7の内
部に設けられたキャビティ型の多孔質セラミックス16
で構成される。
Next, a second embodiment shown in FIGS. 4 and 5 will be described. In FIGS. 4 and 5, the same parts as those of the apparatus shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. 4 and 5, the heat collecting portion is a cavity-type porous ceramic 16 provided inside an alumina tube 7 having a structure insulated by a heat insulating material 71.
It consists of.

【0026】多孔質セラミックス16は第1本体10に
Oリング110、押えリング111を締め付け金具11
2で取り付けられた石英ガラス9で覆われている。第2
本体20は内面に断熱材72が取り付けられ、第1本体
10及び、アルミナ管7とOリング210、押えリング
211、212をボルト213で締め付けることにより
接続されている。
The porous ceramic 16 is formed by fastening an O-ring 110 and a holding ring 111 to the first main body 10.
2 covered with quartz glass 9 attached. Second
The heat insulating material 72 is attached to the inner surface of the main body 20, and the first main body 10 and the alumina pipe 7 are connected to the alumina pipe 7 by tightening the O-ring 210 and the holding rings 211 and 212 with bolts 213.

【0027】気体入口40から石英ガラス管9内に入っ
た冷気体は集光された太陽熱で加熱された多孔質セラミ
ックス16を通過してアルミナ管7、断熱材71で構成
された通路を通って気体出口41より装置外へ排出され
る。多孔質セラミックス16は図5に示すように分割さ
れた7つの部分161〜167からできている。
The cold gas that has entered the quartz glass tube 9 from the gas inlet 40 passes through the porous ceramics 16 heated by the condensed solar heat, passes through the alumina tube 7, and passes through the passage formed by the heat insulating material 71. The gas is discharged from the device through the gas outlet 41. The porous ceramic 16 is made up of seven parts 161 to 167 divided as shown in FIG.

【0028】多孔質セラミックスを7つの部分から構成
した場合、太陽光の集中比は図6に示すようになる。各
部分161〜167における通過抵抗は図7に示す太陽
光の集中度に反比例するように表2のように気孔径、厚
さが調整されている。
When the porous ceramic is composed of seven parts, the concentration ratio of sunlight is as shown in FIG. The pore diameter and thickness are adjusted as shown in Table 2 so that the passage resistance in each of the portions 161 to 167 is inversely proportional to the concentration of sunlight shown in FIG.

【0029】[0029]

【表2】 [Table 2]

【0030】このため多孔質セラミックスの温度はほぼ
一定となり、セラミックスの耐熱温度付近まで気体を加
熱することが可能になる。また凹面形の多孔質セラミッ
クスでできたキャビティ内面で受光するので、加熱され
た多孔質セラミックスからの熱放射が外部に漏れにく
く、放射損失が少なくなる。
For this reason, the temperature of the porous ceramic becomes substantially constant, and it becomes possible to heat the gas to near the heat-resistant temperature of the ceramic. Further, since the light is received by the inner surface of the cavity made of the concave porous ceramics, heat radiation from the heated porous ceramics hardly leaks to the outside and radiation loss is reduced.

【0031】以上、本発明による太陽熱受熱器を図示し
た実施例について具体的に説明したが、本発明はこれら
の実施例に制限されるものではない。例えば、実施例で
は多孔質セラミックスの流体に対する通過抵抗を変える
ために多孔度を変えているが、多孔度に代え、又は多孔
度に加え多孔質セラミックスの厚みを変えて流体に対す
る通過抵抗を変えてもよい。
Although the embodiments of the solar heat receiver according to the present invention have been specifically described above, the present invention is not limited to these embodiments. For example, in the embodiment, the porosity is changed in order to change the passage resistance of the porous ceramic to the fluid, but instead of the porosity, or by changing the thickness of the porous ceramic in addition to the porosity, the passage resistance to the fluid is changed. Is also good.

【0032】[0032]

【発明の効果】添付図8は多孔質セラミックスの流量制
御を行わない従来型受熱器の受熱器表面温度分布(多孔
質セラミックス表面)と、本発明による流量制御を行っ
た受熱器の温度分布を同じ受熱ガス温度で比較したもの
である。本発明によるものでは、流量制御によって表面
温度が均一化され最高温度が1700℃から1300℃
へ低下している。
FIG. 8 shows the temperature distribution of the surface of a conventional heat receiver without controlling the flow rate of the porous ceramics (the surface of the porous ceramics) and the temperature distribution of the heat receiver with the flow rate control according to the present invention. It is a comparison at the same heat receiving gas temperature. According to the present invention, the surface temperature is made uniform by the flow rate control, and the maximum temperature is from 1700 ° C. to 1300 ° C.
Has declined.

【0033】添付図9は流量制御による受熱器の受熱効
率の変化を示す。流量制御による改良で受熱効率の向上
が見られる。これは受熱器からの熱損失が受熱面放射損
失によるものが支配的で、最高受熱面温度の低下によっ
て放射損失が低下するためである。
FIG. 9 shows a change in the heat receiving efficiency of the heat receiver by the flow rate control. Improvement of heat receiving efficiency is seen by the improvement by the flow control. This is because the heat loss from the heat receiver is mainly caused by the radiation loss on the heat receiving surface, and the radiation loss is reduced by lowering the maximum heat receiving surface temperature.

【0034】また、本発明に従って多孔質セラミックス
の受光面を凹面形に形成すると共にその周縁から底部に
向かって多孔度及び厚さの少なくともいづれか一方を変
えることによって前記流体に対する通過抵抗を小さくし
て構成すれば前記した効果に加え多孔質セラミックスか
らの熱放射が外部に漏れにくく、更に効率良い流体加熱
を行うことができる。
Further, according to the present invention, the light receiving surface of the porous ceramics is formed in a concave shape, and at least one of the porosity and the thickness is changed from the peripheral edge toward the bottom to reduce the passage resistance to the fluid. With this configuration, in addition to the above-described effects, heat radiation from the porous ceramics hardly leaks to the outside, and more efficient fluid heating can be performed.

【0035】更にまた、本発明によって多孔質セラミッ
クスをそれぞれ多孔度及び厚さの少なくともいづれか一
方が異なる複数個の部分で構成したものは、製造が簡単
である。
Further, according to the present invention, when the porous ceramic is constituted by a plurality of portions having at least one of different porosity and thickness, the production is simple.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による太陽熱受熱器の縦断
面図。
FIG. 1 is a longitudinal sectional view of a solar heat receiver according to a first embodiment of the present invention.

【図2】図1の装置における多孔質セラミックスの表面
の太陽光の集中度を示すグラフ。
FIG. 2 is a graph showing the concentration of sunlight on the surface of a porous ceramic in the apparatus of FIG.

【図3】図1の装置における多孔質セラミックスの気体
の質量流量を示すグラフ。
FIG. 3 is a graph showing a mass flow rate of gas of porous ceramics in the apparatus of FIG.

【図4】本発明の第2実施例による太陽熱受熱器の縦断
面図。
FIG. 4 is a longitudinal sectional view of a solar heat receiver according to a second embodiment of the present invention.

【図5】図4の装置における多孔質セラミックスの拡大
断面図。
FIG. 5 is an enlarged sectional view of a porous ceramic in the apparatus of FIG.

【図6】図4の装置における多孔質セラミックスの表面
の太陽光の集中度を示すグラフ。
6 is a graph showing the degree of concentration of sunlight on the surface of a porous ceramic in the apparatus shown in FIG.

【図7】図4の装置における多孔質セラミックスの気体
の質量流量を示すグラフ。
FIG. 7 is a graph showing a mass flow rate of gas of porous ceramics in the apparatus of FIG.

【図8】本発明による受熱器の表面温度分布を示すグラ
フ。
FIG. 8 is a graph showing a surface temperature distribution of a heat receiver according to the present invention.

【図9】本発明による受熱器の受熱効率を示すグラフで
ある。
FIG. 9 is a graph showing the heat receiving efficiency of the heat receiver according to the present invention.

【図10】従来の受熱器の縦断面図。FIG. 10 is a longitudinal sectional view of a conventional heat receiver.

【図11】従来の太陽熱受熱器の全体構成を示す縦断面
図である。
FIG. 11 is a longitudinal sectional view showing the entire configuration of a conventional solar heat receiver.

【符号の説明】[Explanation of symbols]

6 多孔質セラミックス円筒 7 アルミナ管 9 石英ガラス管 10 本体 16 キャビティ製の多孔質セラミックス 61〜67 円筒7を構成する多孔質セラミック
ス部分 161〜167 キャビティ型を構成する多孔質セラ
ミックス部分
Reference Signs List 6 Porous ceramic cylinder 7 Alumina tube 9 Quartz glass tube 10 Main body 16 Porous ceramic made of cavity 61-67 Porous ceramic portion forming cylinder 7 161-167 Porous ceramic portion forming cavity type

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−219470(JP,A) 特開 平4−9549(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24J 2/48 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-219470 (JP, A) JP-A-4-9549 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F24J 2/48

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面に太陽光輻射を受けて加熱された多
孔質セラミックスに被加熱流体を流して同流体を加熱す
るようにした太陽熱受熱器において、前記多孔質セラミ
ックスをその多孔度及び厚さの少なくともいづれか一方
を変えた複数個の部分で構成し、それを前記流体に対す
る通過抵抗受光強度に反比例した構造に配置したこと
を特徴とする太陽熱受熱器。
1. A solar heat receiver in which a fluid to be heated is caused to flow through porous ceramics which is heated by receiving solar radiation on the surface thereof, and heats the fluid. A solar heat receiver comprising a plurality of portions in which at least one of them is changed , and arranged in a structure in which the passage resistance to the fluid is inversely proportional to the received light intensity.
【請求項2】 表面に太陽光輻射を受けて加熱された多
孔質セラミックスに被加熱流体を流して同流体を加熱す
るようにした太陽熱受熱器において、前記多孔質セラミ
ックスの受光面を凹面形に形成すると共にその周縁から
底部に向かって多孔度及び厚さの少なくともいづれか一
方を変えることによって前記流体に対する通過抵抗を小
さく構成したことを特徴とする太陽熱受熱器。
2. A solar heat receiver in which a fluid to be heated is caused to flow through porous ceramics heated by receiving solar radiation on the surface thereof to heat the fluid, the light receiving surface of the porous ceramics being concave. A solar heat receiver characterized by being formed and having at least one of a porosity and a thickness changed from a peripheral edge toward a bottom to reduce the passage resistance to the fluid.
【請求項3】 前記多孔質セラミックスをそれぞれ多孔
度及び厚さの少なくともいづれか一方が異る複数個の部
分で構成したことを特徴とする請求項2に記載の太陽熱
受熱器。
3. The solar heat receiver according to claim 2, wherein said porous ceramic is constituted by a plurality of portions each having at least one of different porosity and thickness.
JP26728692A 1992-10-06 1992-10-06 Solar heat receiver Expired - Fee Related JP3197073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26728692A JP3197073B2 (en) 1992-10-06 1992-10-06 Solar heat receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26728692A JP3197073B2 (en) 1992-10-06 1992-10-06 Solar heat receiver

Publications (2)

Publication Number Publication Date
JPH06117705A JPH06117705A (en) 1994-04-28
JP3197073B2 true JP3197073B2 (en) 2001-08-13

Family

ID=17442724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26728692A Expired - Fee Related JP3197073B2 (en) 1992-10-06 1992-10-06 Solar heat receiver

Country Status (1)

Country Link
JP (1) JP3197073B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511866B1 (en) * 2001-07-12 2003-01-28 Rjr Polymers, Inc. Use of diverse materials in air-cavity packaging of electronic devices
DE10143613C1 (en) * 2001-09-06 2003-05-22 Deutsch Zentr Luft & Raumfahrt solar receiver
GB2501713A (en) * 2012-05-01 2013-11-06 Gideon Sta Wan Kukard Solar heat exchanger utilising graphene foam
JP2017048926A (en) * 2013-12-20 2017-03-09 イビデン株式会社 Heat collection receiver

Also Published As

Publication number Publication date
JPH06117705A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
EP0867916A3 (en) Thermal processing apparatus
US5322116A (en) Very high temperature heat exchanger
JP3197073B2 (en) Solar heat receiver
TW451048B (en) Ultra-high-temperature heat treatment apparatus
JPH0345311B2 (en)
US4905665A (en) Device for converting solar energy into process heat
US4681995A (en) Heat pipe ring stacked assembly
CN100560482C (en) Carbon nanotube preparing apparatus and preparation method
Figus et al. Investigation and analysis of a porous evaporator for a capillary pump loop
CN211147282U (en) Crystal silicon solar cell sintering furnace structure
JPS59125396A (en) Heat exchanger
CN213856101U (en) Heating device and purifying equipment
CN209292215U (en) Devitrified glass crystallization roller kilns
JPH02192592A (en) Vacuum heat treatment furnace
JP3300083B2 (en) Water tube evaporator with vertical drum
JPS6042246Y2 (en) radiation tube
JPS61143613A (en) Radiant burner
JPS5947840B2 (en) heat transfer converter
RU2070227C1 (en) Air heater of blast furnace
JPS63137420A (en) Heating furnace
SU553865A1 (en) Solar energy heat exchanger
JP2873392B2 (en) Radiant tube burner
JPH0229959B2 (en) NETSUKOKANKI
RU2009409C1 (en) Hot-blast stove gas heater
JP2001284032A (en) Exothermic device and its using method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010508

LAPS Cancellation because of no payment of annual fees