JPH0229959B2 - NETSUKOKANKI - Google Patents

NETSUKOKANKI

Info

Publication number
JPH0229959B2
JPH0229959B2 JP6193381A JP6193381A JPH0229959B2 JP H0229959 B2 JPH0229959 B2 JP H0229959B2 JP 6193381 A JP6193381 A JP 6193381A JP 6193381 A JP6193381 A JP 6193381A JP H0229959 B2 JPH0229959 B2 JP H0229959B2
Authority
JP
Japan
Prior art keywords
heat
heat recovery
heated
exhaust gas
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6193381A
Other languages
Japanese (ja)
Other versions
JPS57175886A (en
Inventor
Takaaki Noda
Koichiro Kanefuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP6193381A priority Critical patent/JPH0229959B2/en
Publication of JPS57175886A publication Critical patent/JPS57175886A/en
Publication of JPH0229959B2 publication Critical patent/JPH0229959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 本発明は熱交換器、特に加熱炉、熱処理炉等に
おいて発生する排ガスの熱を回収する熱交換器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger, and particularly to a heat exchanger for recovering heat from exhaust gas generated in a heating furnace, heat treatment furnace, or the like.

一般に加熱炉、熱処理炉等においては排ガスを
通して失われる熱エネルギーは膨大である。従つ
て排ガスの流路中に熱交換器を設置し、この排ガ
スを熱交換器内を通した空気に伝達させ、この加
熱された空気をバーナの一次空気又は被熱物の予
熱用に使用することによつて、排ガスの熱を有効
に利用することは従来から普通に行われていると
ころである。
Generally, in heating furnaces, heat treatment furnaces, etc., a huge amount of thermal energy is lost through exhaust gas. Therefore, a heat exchanger is installed in the flow path of the exhaust gas, the exhaust gas is transferred to the air passed through the heat exchanger, and this heated air is used for the primary air of the burner or for preheating the object to be heated. In particular, it has been conventional practice to effectively utilize the heat of exhaust gas.

しかしこのような熱交換器によつて熱回収効率
を高めようとすると、従来では熱交換器における
伝熱面積を広くすることだけを考えていたので、
設備が大型化し、製作コストがかかり、スペース
も要するなどの問題が生じていた。従つて熱エネ
ルギー価格が増々高騰している今日では熱回収効
率が良く、しかも小型で、設備費も余り掛からな
いような熱交換器が富に要望されている。
However, when trying to increase heat recovery efficiency with such a heat exchanger, conventional methods only focused on widening the heat transfer area in the heat exchanger.
Problems such as increased equipment size, increased production costs, and space requirements arose. Therefore, as the price of thermal energy continues to rise, there is a strong demand for heat exchangers that have good heat recovery efficiency, are small in size, and require little equipment cost.

本発明はこのような点に鑑みて為されたもので
あり、次に本発明の一実施例を第1図について説
明する。1は排ガスの流路、2は該流路1を塞ぐ
ように、かつ排ガスの貫流方向に湾曲させて張設
した通気性固体である。ここに通気性固体とは金
属やセラミツク等の耐熱材料を網状、ハニカム
状、繊維状、多孔質状等を有する形状に形成され
た固体を指称する。3は前記通気性固体2の流入
側に所定の間隔を置いて、前記通気性固体2に囲
繞されるように設置された熱回収管である。該熱
回収管3の内部にはセラミツク材料等から成る適
宜大きさの耐熱性を有する粒体4,4……が充填
されている。
The present invention has been made in view of these points, and next, one embodiment of the present invention will be described with reference to FIG. Reference numeral 1 denotes a passage for exhaust gas, and numeral 2 denotes an air-permeable solid which is curved and stretched in the flow direction of the exhaust gas so as to close the passage 1. Here, the term "breathable solid" refers to a solid formed from a heat-resistant material such as metal or ceramic into a shape having a net shape, a honeycomb shape, a fibrous shape, a porous shape, or the like. Reference numeral 3 denotes a heat recovery pipe installed on the inflow side of the breathable solid 2 at a predetermined interval so as to be surrounded by the breathable solid 2. The inside of the heat recovery tube 3 is filled with heat-resistant granules 4, .

而して前記熱回収管3内を貫流する炉内循環用
の空気等の被加熱流体は該熱回収管3の一端に開
設された入口5より熱回収管3内へ導かれ、前記
粒体4,4……間に存する隙間6を貫流した後、
該熱回収管3の他端に開設された出口7より該熱
回収管3外へ送出されるように形成されている。
The fluid to be heated, such as air for circulation in the furnace, flowing through the heat recovery pipe 3 is guided into the heat recovery pipe 3 through an inlet 5 provided at one end of the heat recovery pipe 3, and the granules are 4, 4... After passing through the gap 6 existing between,
The heat recovery tube 3 is configured to be sent out from an outlet 7 provided at the other end of the heat recovery tube 3 .

本発明は上記したような構成から成るものであ
るから、流路1内を図中矢印の方向へ流れる排ガ
スは、該流路1内に設置された通気性固体2を通
過するに際して該通気性固体を高温に加熱する。
そして排ガス自体は該通気性固体2に熱を奪われ
て、温度を下げて外部へ流出される。その場合通
気性固体2は流入側の方が流出側よりも高温に加
熱されるので、通気性固体2の流入側に設置され
た熱回収管3へ向けてより多くの輻射熱エネルギ
ーを放射する。
Since the present invention has the above-described configuration, the exhaust gas flowing in the direction of the arrow in the flow path 1 passes through the air permeable solid 2 installed in the flow path 1. Heating the solid to a high temperature.
Then, the exhaust gas itself is deprived of heat by the breathable solid 2, lowers its temperature, and flows out to the outside. In this case, the inflow side of the breathable solid 2 is heated to a higher temperature than the outflow side, so that more radiant heat energy is radiated toward the heat recovery pipe 3 installed on the inflow side of the breathable solid 2.

而して、通気性固体2より熱回収管3へ向けて
放射された輻射熱は該熱回収管3の外面から内面
へ向かつて伝達される。この時熱回収管3内に被
加熱流体を貫流させると、該被加熱流体は該熱回
収管3の内面へ伝達された前記通気性固体2によ
り放射された輻射熱によつて暖められるほか、該
熱回収管3の内面へ伝達された輻射熱が粒体4,
4……を暖め該粒体4,4……同士の熱伝達が生
じることにより、或いは輻射熱で一度暖められた
被加熱流体と粒体4,4……との熱伝達により、
更には熱回収管3内における被加熱流体の乱流或
いは蛇行的通過によつて、輻射熱が粒体4,4…
…の全部に亘つて熱伝達されるから、被加熱流体
は熱回収管3の内側周辺部のみでなく、中心部を
貫流するに至るまで全体に亘つて暖められる。
Thus, the radiant heat radiated from the breathable solid 2 toward the heat recovery tube 3 is transferred from the outer surface to the inner surface of the heat recovery tube 3. At this time, when the fluid to be heated is made to flow through the heat recovery pipe 3, the fluid to be heated is heated by the radiant heat radiated by the breathable solid 2 transferred to the inner surface of the heat recovery pipe 3. The radiant heat transferred to the inner surface of the heat recovery pipe 3 is transferred to the particles 4,
By heating 4... and causing heat transfer between the particles 4, 4..., or by heat transfer between the heated fluid once warmed by radiant heat and the particles 4, 4...,
Furthermore, due to the turbulent flow or meandering passage of the fluid to be heated in the heat recovery pipe 3, the radiant heat is transferred to the particles 4, 4...
Since the heat is transferred throughout the heat recovery tube 3, the heated fluid is heated not only at the inner periphery of the heat recovery tube 3, but also throughout the heat recovery tube 3 until it flows through the center.

一方流路1内を貫流する排ガスは前記通気性固
体2中へ流入する前に熱回収管3の周囲を通過す
るが、この時にも排ガスの熱が熱回収管3の外面
から内面に向かつて伝達される。従つて被加熱流
体は通気性固体2から放射される輻射熱と排ガス
から直接熱回収管3へ伝達される熱の両方を回収
できるものである。
On the other hand, the exhaust gas flowing through the flow path 1 passes around the heat recovery tube 3 before flowing into the air permeable solid 2, but at this time too, the heat of the exhaust gas is directed from the outer surface to the inner surface of the heat recovery tube 3. communicated. Therefore, the fluid to be heated can recover both the radiant heat emitted from the breathable solid 2 and the heat transferred directly from the exhaust gas to the heat recovery pipe 3.

第2図は本発明の他の実施例を示したもので、
図において熱回収管3内は途中まで隔壁8によつ
て二つの室9a,9bに仕切られている。そして
被加熱流体は入口5により該熱回収管3内の室9
aと室9bの夫々を貫流した後、出口7より該熱
回収管3外へ送出されるように形成されているも
のである。
FIG. 2 shows another embodiment of the present invention,
In the figure, the inside of the heat recovery tube 3 is partitioned halfway into two chambers 9a and 9b by a partition wall 8. The fluid to be heated is then introduced into the chamber 9 in the heat recovery pipe 3 through the inlet 5.
After passing through each of the chambers 9a and 9b, the heat is sent out from the outlet 7 to the outside of the heat recovery pipe 3.

尚本発明はこの実施例に示した構成に把われる
ものではなく、例えば図示しないが熱回収管3の
外周にフインを突設すれば熱回収効率を更に向上
させることができる。また粒体4は必ずしも球状
にする必要性はなく熱回収管3内を被加熱流体が
有効に貫流できれば足りるから、角形或いは不定
形のものでもよい。また粒体4の大きさも特に限
定されるものではないし大小混合されたものであ
つても差し支えない。ただ熱回収管3内を貫流す
る被加熱流体による圧力損失が問題とされる場合
には、適宣なる一定の大きさの球状の粒体を選択
すれば熱回収管3内の隙間を該管内全域に亘り均
一に保つことができるので被加熱流体の通過をス
ムーズに行うことができる。また粒体4に使用す
る材料としてはセラミツク材料に限定されるもの
ではなく耐熱性の各種材料を使用できるものであ
る。
Note that the present invention is not limited to the configuration shown in this embodiment; for example, if fins (not shown) are provided protruding from the outer periphery of the heat recovery tube 3, the heat recovery efficiency can be further improved. Further, the particles 4 do not necessarily have to be spherical, and it is sufficient that the fluid to be heated can effectively flow through the heat recovery tube 3, so they may be square or irregularly shaped. Further, the size of the particles 4 is not particularly limited, and may be a mixture of sizes. However, if pressure loss due to the heated fluid flowing through the heat recovery tube 3 is a problem, selecting spherical particles of a certain size will reduce the gap in the heat recovery tube 3. Since it can be maintained uniformly over the entire area, the fluid to be heated can pass through smoothly. Further, the material used for the grains 4 is not limited to ceramic materials, and various heat-resistant materials can be used.

尚熱交換器の設置の形態としては被加熱流体が
排ガスの流通に対し、並向又は対向するように或
いは直交するように設置される。
The heat exchanger is installed so that the fluid to be heated is parallel to, opposite to, or perpendicular to the flow of exhaust gas.

以上説明したことから明らかなように本発明は
排ガスの流路に通気性固体を設け、その流入側で
該通気性固体に囲繞されるように熱回収管を設け
たので、排ガスが通過するに伴ない該通気性固体
が加熱され、該通気性固体から熱回収管に輻射熱
が放射され、排ガスとの直接の接触による伝熱の
みならず輻射による多量の熱エネルギーを熱回収
管内に吸収する。
As is clear from the above explanation, in the present invention, a breathable solid is provided in the exhaust gas flow path, and a heat recovery pipe is provided on the inflow side so as to be surrounded by the breathable solid. As a result, the air-permeable solid is heated, and radiant heat is radiated from the air-permeable solid to the heat recovery tube, and a large amount of thermal energy is absorbed into the heat recovery tube not only by heat transfer through direct contact with the exhaust gas but also by radiation.

更に熱回収管内に適宜大きさの粒体を充填し、
該各粒体間の隙間に被加熱流体を貫流させるもの
であるから、熱回収管内に吸収された熱は粒体を
介して被加熱流体へ効率良く伝達され、全体とし
て熱交換効率を極めて高いものに改善するもので
ある。
Furthermore, the heat recovery tube is filled with particles of an appropriate size,
Since the fluid to be heated flows through the gaps between the granules, the heat absorbed in the heat recovery tube is efficiently transferred to the fluid to be heated through the granules, resulting in extremely high heat exchange efficiency as a whole. It is something that improves things.

しかも比較的簡単な構造であつて、該熱交換器
の製造コストも低廉で済む等種々の利点を有する
ものである。
In addition, it has a relatively simple structure and has various advantages such as low manufacturing cost of the heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る熱交換器の一実施例を示
した縦断面図、第2図は本発明に係る熱交換器の
他の実施例を示した縦断面図である。 1……流路、2……通気性固体、3……熱回収
管、4,4……粒体、6……隙間。
FIG. 1 is a longitudinal cross-sectional view showing one embodiment of the heat exchanger according to the present invention, and FIG. 2 is a longitudinal cross-sectional view showing another embodiment of the heat exchanger according to the present invention. 1... Channel, 2... Air permeable solid, 3... Heat recovery tube, 4, 4... Particles, 6... Gap.

Claims (1)

【特許請求の範囲】[Claims] 1 排ガスの流路に通気性固体を設けると共に、
該通気性固体の流入側で該通気性固体に囲繞され
るように熱回収管を設け、該熱回収管内にセラミ
ツク材料等の適宜大きさの耐熱性を有する粒体を
充填し該各粒体間の隙間に被加熱流体を貫流せし
めるように構成してなることを特徴とする熱交換
器。
1 In addition to providing a breathable solid in the exhaust gas flow path,
A heat recovery pipe is provided on the inflow side of the air permeable solid so as to be surrounded by the air permeable solid, and the heat recovery pipe is filled with appropriately sized heat-resistant granules such as ceramic material. A heat exchanger characterized in that it is configured to allow a fluid to be heated to flow through a gap between the heat exchangers.
JP6193381A 1981-04-23 1981-04-23 NETSUKOKANKI Expired - Lifetime JPH0229959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6193381A JPH0229959B2 (en) 1981-04-23 1981-04-23 NETSUKOKANKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6193381A JPH0229959B2 (en) 1981-04-23 1981-04-23 NETSUKOKANKI

Publications (2)

Publication Number Publication Date
JPS57175886A JPS57175886A (en) 1982-10-28
JPH0229959B2 true JPH0229959B2 (en) 1990-07-03

Family

ID=13185465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6193381A Expired - Lifetime JPH0229959B2 (en) 1981-04-23 1981-04-23 NETSUKOKANKI

Country Status (1)

Country Link
JP (1) JPH0229959B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110875A (en) * 1984-11-01 1986-05-29 三菱油化エンジニアリング株式会社 Radiant heater

Also Published As

Publication number Publication date
JPS57175886A (en) 1982-10-28

Similar Documents

Publication Publication Date Title
US4479535A (en) Recuperative radiant tube
JPS61110875A (en) Radiant heater
JP2986982B2 (en) Small gas fired air heater
JPH0229959B2 (en) NETSUKOKANKI
JPH0159520B2 (en)
JPS5840A (en) Heat exchanger
JPS62288446A (en) Forced combustion type water heater not using heat absorbing fins
JPS6042246Y2 (en) radiation tube
JPS591918A (en) Heating device for promoting radiation
JPS5780184A (en) Waste gas utilizing heat exchanger
JPH05248309A (en) Thermal exchanger of external combustion engine
JPS5541363A (en) Heat exchanger
JPS54129553A (en) Fluid layer system rotary heat exchanger
JPS6135340Y2 (en)
JPH0619218B2 (en) Combustion air preheater for radiant tubes
JPH0434063B2 (en)
SU1267115A1 (en) Recuperator
SU1323824A1 (en) Radiation tubular recuperator
JPS586232A (en) Method and apparatus for recovering exhaust gas heat
JPS6176891A (en) Ceramic heat exchanger element
JPS5930961B2 (en) boiler
JPS61190294A (en) Heat exchanger
JPS55110884A (en) Heat pipe type heat exchanger
JPS5762396A (en) Heat exchanger
JPS5938514B2 (en) Cylindrical heat pipe air preheater