JP3192074B2 - Ignition device for internal combustion engine - Google Patents

Ignition device for internal combustion engine

Info

Publication number
JP3192074B2
JP3192074B2 JP34031695A JP34031695A JP3192074B2 JP 3192074 B2 JP3192074 B2 JP 3192074B2 JP 34031695 A JP34031695 A JP 34031695A JP 34031695 A JP34031695 A JP 34031695A JP 3192074 B2 JP3192074 B2 JP 3192074B2
Authority
JP
Japan
Prior art keywords
current
combustion engine
internal combustion
igbt
ignition device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34031695A
Other languages
Japanese (ja)
Other versions
JPH09177647A (en
Inventor
太加志 伊藤
克明 深津
登 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP34031695A priority Critical patent/JP3192074B2/en
Priority to KR1019960072355A priority patent/KR100436868B1/en
Publication of JPH09177647A publication Critical patent/JPH09177647A/en
Application granted granted Critical
Publication of JP3192074B2 publication Critical patent/JP3192074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】ワンチップタイプ内燃機関用
点火装置に関する。
The present invention relates to an ignition device for a one-chip type internal combustion engine.

【0002】[0002]

【従来の技術】従来の技術には、例えば特開平2−13656
3 号公報に記載されたものがある。これは電流制限回路
をバイポーラトランジスタ増幅回路またはバイポーラト
ランジスタ差動回路で構成し、検出部は抵抗素子による
電位差のみでの検出となっていた。
2. Description of the Related Art Conventional techniques include, for example, Japanese Patent Application Laid-Open No.
There is the one described in No. 3. In this method, the current limiting circuit is constituted by a bipolar transistor amplifying circuit or a bipolar transistor differential circuit, and the detection unit detects only the potential difference by the resistance element.

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術では、
電流制限回路をバイポーラトランジスタ増幅回路または
バイポーラトランジスタ差動回路で構成しているため、
IGBTとワンチップに集積するにはアイソレイション
または接合形構造が必要であり、素子面積及びマスク枚
数増加等により製造工程が複雑になり不利であった。ま
た、検出部は抵抗素子による電位差のみでの検出である
ため、温度による検出レベルへの影響に対して考慮され
ていなかった。
In the above prior art,
Since the current limiting circuit is composed of a bipolar transistor amplifier circuit or bipolar transistor differential circuit,
In order to integrate the IGBT with the IGBT on one chip, an isolation or junction type structure is required, and the manufacturing process becomes complicated due to an increase in the element area and the number of masks, which is disadvantageous. In addition, since the detection unit detects only the potential difference by the resistance element, no consideration is given to the influence of the temperature on the detection level.

【0004】本発明の目的は、コンパクトで生産性の良
内燃機関用点火装置を提供することにある。
An object of the present invention is to provide a compact and high productivity.
And an ignition device for an internal combustion engine.

【0005】[0005]

【課題を解決するための手段】上記目的は、内燃機関用
電子制御装置から出力される点火制御信号に応じて点火
コイルに流れる一次電流を通電・遮断制御するスイッチ
ング素子と、前記スイッチング素子を流れる電流を制限
する電流制限回路とを備え、前記スイッチング素子が絶
縁ゲート形バイポーラトランジスタで構成された内燃機
関用点火装置において、前記電流制限回路は自己分離形
N−MOSトランジスタで構成され、前記絶縁ゲート形
バイポーラトランジスタと前記自己分離形N−MOSト
ランジスタとが共通の半導体基板に形成されワンチップ
化されたことにより達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide an engine for an internal combustion engine.
Ignition according to the ignition control signal output from the electronic control unit
A switch that controls the energization / cutoff of the primary current flowing through the coil
Current flowing through the switching element and the switching element
A current limiting circuit for controlling the switching element.
Internal combustion engine composed of edge-gate bipolar transistors
In the Seki igniter, the current limiting circuit is a self-separating type.
An N-MOS transistor, the insulated gate type
Bipolar transistor and the self-isolating N-MOS transistor
Transistor and one chip formed on a common semiconductor substrate
Is achieved by

【0006】[0006]

【発明の実施の形態】 電流制限回路を自己分離形N−M
OSトランジスタ回路で構成することにより、IGBT
のチップの中に容易に作り込むことができ、コンパクト
な点火装置を供給することができる。 又、電流制限回路
部にダイオードを設けることにより、検出回路の温度依
存性を少なくできるため、信頼性の高い点火装置を達成
することができる。高精度で、高信頼性な電流制限機能
を持ったIGBT点火装置がワンチップで可能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A current limiting circuit is a self-isolation type NM
By using an OS transistor circuit, the IGBT
Easy to build in a chip, compact
It is possible to supply a simple ignition device. In addition, by providing a diode in the current limiting circuit, the temperature dependency of the detection circuit can be reduced, so that a highly reliable ignition device can be achieved. Highly accurate and reliable current limiting function
IGBT igniter with a single chip is possible.

【0007】[0007]

【0008】図1に、通常の点火システムの構成例を示
す。1はECU、2は点火装置、3は点火コイル、4は
点火プラグを示す。ECU1の出力段は、PNPトラン
ジスタ9,NPNトランジスタ10,抵抗11より構成
され、CPU8により算出された適正な点火タイミング
でトランジスタ9,10をON,OFFし、点火装置に
HIGH,LOWのパルスを出力する。点火装置2は、
パワートランジスタ5、とハイブリッドIC13に実装
された電流検出用負荷6,電流制御回路7、および入力
抵抗12より構成され、ECU1の出力信号がLOW→
HIGHでパワートランジスタ5は通電を開始し、HI
GH→LOWで遮断することによりパワートランジスタ
5のコレクタ部に300〜400Vの高電圧を発生す
る。
FIG . 1 shows a configuration example of a normal ignition system. 1 denotes an ECU, 2 denotes an ignition device, 3 denotes an ignition coil, and 4 denotes an ignition plug. The output stage of the ECU 1 includes a PNP transistor 9, an NPN transistor 10, and a resistor 11, and turns on and off the transistors 9, 10 at an appropriate ignition timing calculated by the CPU 8, and outputs HIGH and LOW pulses to the ignition device. I do. The ignition device 2
It comprises a power transistor 5, a current detection load 6, a current control circuit 7, and an input resistor 12 mounted on the hybrid IC 13, and the output signal of the ECU 1 is LOW →
When HIGH, the power transistor 5 starts energizing, and HI
By cutting off from GH to LOW, a high voltage of 300 to 400 V is generated at the collector of the power transistor 5.

【0009】図2に、本発明のワンチップ点火装置の構
成を表す内部等価回路を示す。14は点火コイル、15
は点火コイル14の1次コイルに流れる1次電流を通
電,遮断する主回路を構成するメインIGBT、16は
1次電流を検知する電流検出用のサブIGBTである。
17は1次電流を検知する電流検知回路、17は電流検
知回路、18はゲート電圧を制御して1次電流を設定値
に制限する電流制限回路、19は入力抵抗である。20
は、メインIGBT15,サブIGBT16,電流検知回路17,電
流制限回路18,入力抵抗19をワンチップに集約した
ICである。図1の通常のシステムに対しパワートラン
ジスタ、電流検出用負荷、電流制御回路は同一ワンチッ
プ上の集積回路で構成されている。
FIG. 2 shows an internal equivalent circuit representing the configuration of the one-chip ignition device of the present invention. 14 is an ignition coil, 15
Is a main IGBT constituting a main circuit for energizing and interrupting the primary current flowing through the primary coil of the ignition coil 14, and 16 is a current detecting sub-IGBT for detecting the primary current.
17 is a current detection circuit for detecting a primary current, 17 is a current detection circuit, 18 is a current limiting circuit for controlling a gate voltage to limit the primary current to a set value, and 19 is an input resistor. 20
Is an IC in which the main IGBT 15, the sub IGBT 16, the current detecting circuit 17, the current limiting circuit 18, and the input resistor 19 are integrated into one chip. The power transistor, the current detection load, and the current control circuit in the normal system shown in FIG. 1 are constituted by integrated circuits on the same one chip.

【0010】図3に、本発明請求項1の一実施例の点火
システム構成を示す。
FIG. 3 shows the configuration of an ignition system according to an embodiment of the present invention.

【0011】点火装置入力段には入力抵抗26が設けら
れている。パワートランジスタ21はエンハンスメント
形n−チャンネルMOSゲートトランジスタとPNPバ
イポーラトランジスタを組み合わせたIGBTであり、
主回路を構成するメインIGBT及び1次電流を検知する電
流検出用のサブIGBTで構成され、メインIGBTと
サブIGBTは1000:1〜10000:1の比で分
けられている。電流検出用負荷素子22はサブIGBT
のエミッタとGND間に設けられ、拡散抵抗によりワン
チップの中で構成されている。例えば、前記比が100
0:1の場合、メインIGBTに8Aが流れるとサブI
GBTに8mAの電流が流れる。検出電圧を0.8Vと
すると、0.8(V)/0.008(A)=100(Ω)
であるため拡散抵抗を100Ωに設定する。また同じ条
件で、前記メインとサブの比が10000:1の場合は
拡散抵抗を1kΩに設定すればよい。この比率と抵抗値
は任意に設定出来る。図7にIGBT55内で構成される拡散
抵抗57の例を示す。
An input resistor 26 is provided at the input stage of the ignition device. The power transistor 21 is an IGBT combining an enhancement type n-channel MOS gate transistor and a PNP bipolar transistor,
It is composed of a main IGBT constituting a main circuit and a sub-IGBT for current detection for detecting a primary current, and the main IGBT and the sub-IGBT are separated at a ratio of 1000: 1 to 10000: 1. The current detection load element 22 is a sub-IGBT
Are provided between the emitter and the GND, and are formed in one chip by a diffusion resistor. For example, if the ratio is 100
In the case of 0: 1, when 8A flows through the main IGBT, the sub I
A current of 8 mA flows through the GBT. Assuming that the detection voltage is 0.8 V, 0.8 (V) /0.008 (A) = 100 (Ω)
Therefore, the diffusion resistance is set to 100Ω. Further, under the same conditions, when the ratio of the main and the sub is 10000: 1, the diffusion resistance may be set to 1 kΩ. The ratio and the resistance value can be set arbitrarily. FIG. 7 shows an example of the diffusion resistor 57 formed in the IGBT 55.

【0012】電流制御回路の入力段は抵抗27でプルア
ップされたダイオード28,29の順方向電圧によりバ
イアス電圧がかけられている。N−MOSトランジスタ
23のゲートスレッシュホールド電圧と電流検出用負荷
素子22の温度係数に対してダイオードの順方向電圧の
温度係数が零になるように設定することにより、電流と
検出電圧の関係はつねに一定となり温度係数をもたない
電流検出を可能としている。
A bias voltage is applied to an input stage of the current control circuit by a forward voltage of diodes 28 and 29 pulled up by a resistor 27. By setting the temperature coefficient of the forward voltage of the diode to be zero with respect to the gate threshold voltage of the N-MOS transistor 23 and the temperature coefficient of the load element 22 for current detection, the relationship between the current and the detected voltage is always constant. The current detection is constant and does not have a temperature coefficient.

【0013】一例を上げると、一般的に拡散抵抗は20
00〜3000ppm の正の温度係数をもっているため、
たとえば抵抗の温度係数を2500ppm と考え、検出レ
ベルを0.8±0.2V(0.6〜1.0V)とすると、電
流検出回路において100℃温度が上がった場合、抵抗
値は25%変化するため電流に対応した検出電圧は1.
0Vとなり+0.2V上がることになる。これと対照的
にダイオードは一般的に−2mV/℃という負の温度係
数をもっているため、100℃の温度変化があると−2
mV×100=−0.2V となり抵抗の温度係数をキャ
ンセルすることができる。本例においてはN−MOSト
ランジスタのスレッシュホールド電圧の温度特性も考慮
してダイオード28,29を2直で構成している。前記
ダイオードはポリシリコンで構成され、図8にIGBT58上
に形成したポリシリコンダイオード59の例を示す。
As an example, the diffusion resistance is generally 20
Because it has a positive temperature coefficient of 00-3000 ppm,
For example, assuming that the temperature coefficient of the resistor is 2500 ppm and the detection level is 0.8 ± 0.2 V (0.6 to 1.0 V), when the temperature of the current detection circuit rises by 100 ° C., the resistance value changes by 25%. The detection voltage corresponding to the current is 1.
It becomes 0V and rises by + 0.2V. In contrast, diodes generally have a negative temperature coefficient of -2 mV / ° C, so that a temperature change of 100 ° C will
mV × 100 = −0.2 V, and the temperature coefficient of the resistance can be canceled. In this example, the diodes 28 and 29 are configured in two lines in consideration of the temperature characteristics of the threshold voltage of the N-MOS transistor. The diode is made of polysilicon, and FIG. 8 shows an example of a polysilicon diode 59 formed on the IGBT 58.

【0014】従来のバイポーラトランジスタでは、電流
検出後ミラー積分回路等を設けて一巡伝達ゲインを下げ
ることにより非飽和時の発振現象をおさえる構成をとっ
ていた。IGBTイグナイタにミラー積分回路を設けた
例を図5に示す。MOS差動増幅器で構成した電流制限
回路及び抵抗43とコンデンサ44によりミラー積分回
路を構成している。しかしIGBT内に構成したMOS
トランジスタ増幅回路ならびにMOS差動増幅回路で
は、ゲインの低い増幅回路を構成することにより一巡伝
達ループゲインの位相余有を持たせることに重点をおき
非飽和時の発振現象を低減することを実現できる。図9
にIGBT動作を表す波形の一例を示す。IGBTに点
火信号が入力され、IGBTがONし、コレクタ電流が
流れるとIGBTのコレクタ・エミッタ間電圧は上昇す
る。コレクタ電流が電流制限値になった時点でIGBT
が不飽和状態になり、電流が一定に制御される。この電
流制御は点火コイルの一次インダクタンスによる二次遅
れとIGBTの増幅率の関係で、不飽和制御された時点
で電流が発振する事があり、フィードバックループの一
巡周波数応答解析を行い、十分なゲイン余裕があること
を確認することが重要である。図10にフィードバック
ループの一端を解放した状態での一巡伝達の位相・ゲイ
ン周波数応答の一例を示す。
In a conventional bipolar transistor, a mirror integration circuit or the like is provided after current detection to reduce the loop transfer gain so as to suppress the oscillation phenomenon at the time of non-saturation. FIG. 5 shows an example in which a Miller integration circuit is provided in an IGBT igniter. A current limiting circuit composed of a MOS differential amplifier and a Miller integrating circuit are composed of the resistor 43 and the capacitor 44. However, MOS configured in IGBT
In the transistor amplifier circuit and the MOS differential amplifier circuit, it is possible to reduce the oscillation phenomenon at the time of non-saturation by emphasizing giving the phase margin of the loop transmission loop gain by configuring an amplifier circuit having a low gain. . FIG.
Shows an example of a waveform representing the IGBT operation. When an ignition signal is input to the IGBT and the IGBT is turned on and a collector current flows, the collector-emitter voltage of the IGBT rises. When the collector current reaches the current limit value, the IGBT
Becomes unsaturated, and the current is controlled to be constant. In this current control, due to the relationship between the secondary delay due to the primary inductance of the ignition coil and the amplification factor of the IGBT, the current may oscillate when the unsaturated control is performed. It is important to make sure you can afford it. FIG. 10 shows an example of the phase / gain frequency response of the loop transmission with one end of the feedback loop released.

【0015】発振が起こる条件としては、ゲインが0d
B以上で位相が180°遅れた場合であるが、前記N−
MOS電流制限回路をミラー積分回路構成にすると遅れ
が大きくなり発振に対しての余有が少なくなってしまう
為、ワンチップ化には図4の構成の方が有利である。
The condition under which oscillation occurs is that the gain is 0d
In the case where the phase is delayed by 180 ° above B, the N-
If the MOS current limiting circuit is configured as a Miller integrating circuit, the delay increases and the margin for oscillation is reduced, so that the configuration of FIG. 4 is more advantageous for one-chip implementation.

【0016】電流制御回路部は自己分離形N−MOSト
ランジスタ23で構成されているためIGBTを構成す
るPNPN半導体構造の中で容易に作り込むことが可能
となっている。図6にその構造を示す。IGBT50は半導体
のPNPNの4層構成からなる。コレクタ51に電源の
正電圧、エミッタ52に電源の負電圧を接続し、酸化膜
により絶縁されたゲート53に十分な正の電圧を印加す
ることにより空乏層にNチャンネルが形成され、コレク
タからエミッタに電流が流れる。自己分離形N−MOS
トランジスタ49はIGBTのPベース層の中にN層形
成し、そこからソース,ドレイン端子を引き出し、その
間に酸化膜で絶縁したゲート端子を設けた構造となって
いる。ここで説明しているN−MOSトランジスタはエ
ンハンスメント形とディプリッション形の両方を想定す
る。
Since the current control circuit section is constituted by the self-isolation type N-MOS transistor 23, it can be easily formed in the PNPN semiconductor structure forming the IGBT. FIG. 6 shows the structure. The IGBT 50 has a four-layer structure of semiconductor PNPN. A positive voltage of a power supply is connected to a collector 51, a negative voltage of a power supply is connected to an emitter 52, and a sufficient positive voltage is applied to a gate 53 insulated by an oxide film to form an N channel in a depletion layer. Current flows through Self-isolation type N-MOS
The transistor 49 has a structure in which an N layer is formed in a P base layer of an IGBT, source and drain terminals are drawn therefrom, and a gate terminal insulated with an oxide film is provided therebetween. The N-MOS transistor described here assumes both an enhancement type and a depletion type.

【0017】接合分離形でトランジスタを構成した場合
を図7に示す。トランジスタを形成するためにP−サブ
ストレート56を設け、その中にPNP、あるいはNP
Nトランジスタを形成する構造であるが、この構造はI
GBTの基本構造からかけ離れてしまい、マスク枚数が
増加するだけではなくP・N構造が4層以上となるため
製造上ならびに機能上問題が多い。
FIG. 7 shows a case where a transistor is formed by a junction separation type. A P-substrate 56 is provided to form a transistor, and a PNP or NP is provided therein.
In this structure, an N transistor is formed.
Since it is far from the basic structure of the GBT, not only the number of masks increases but also the P / N structure has four or more layers, so that there are many problems in manufacturing and functions.

【0018】図4に他の実施例を示す。上述した実施例
と同様に、パワートランジスタ30はIGBTで、主回
路を構成するメインIGBT及び1次電流を検知する電
流検出用のサブIGBTからなり、電流検出用負荷素子
31はサブIGBTのエミッタとGND間に設けられ
る。負荷素子はワンチップのなかで拡散抵抗により構成
される。
FIG. 4 shows another embodiment. Similarly to the above-described embodiment, the power transistor 30 is an IGBT, and includes a main IGBT constituting a main circuit and a sub-IGBT for detecting a primary current, and a load element 31 for detecting current is connected to an emitter of the sub-IGBT. It is provided between GND. The load element is constituted by a diffusion resistor in one chip.

【0019】電流制御回路部はN−MOSトランジスタ
32と33,抵抗34,35,36で差動回路構成とな
っている。本実施例のN−MOSトランジスタも請求項
1の実施例と同様に自己分離形であるため、IGBTを
構成するPNPN半導体構造の中でつくりこまれる。差
動基準電圧を抵抗37,38で設定し、電流制御回路入
力段は抵抗39でプルアップされたダイオード40の順
方向電圧によりバイアス電圧がかけられている。差動回
路基準電圧と電流検出用負荷素子22の温度係数に対し
てダイオードの順方向電圧の温度係数が零になるように
設定することにより、負荷素子22による電圧降下はつ
ねに一定となり温度係数をもたない電流検出を可能とし
ている。動作原理は請求項1の例で説明したとおりであ
るが電流制限回路を差動回路で構成しているためN−M
OSトランジスタのスレッシュホールド電圧の温度特性
の影響がないためダイオード40一個で温度係数をキャ
ンセル出来る。
The current control circuit has a differential circuit configuration composed of N-MOS transistors 32 and 33 and resistors 34, 35 and 36. Since the N-MOS transistor of the present embodiment is also of the self-isolation type, as in the first embodiment, it is fabricated in the PNPN semiconductor structure constituting the IGBT. A differential reference voltage is set by resistors 37 and 38, and a bias voltage is applied to the input stage of the current control circuit by a forward voltage of a diode 40 pulled up by a resistor 39. By setting the temperature coefficient of the forward voltage of the diode to be zero with respect to the differential circuit reference voltage and the temperature coefficient of the current detection load element 22, the voltage drop due to the load element 22 is always constant and the temperature coefficient is reduced. This enables uninterrupted current detection. The principle of operation is as described in the example of claim 1, but since the current limiting circuit is constituted by a differential circuit, N-M
Since the temperature characteristics of the threshold voltage of the OS transistor are not affected, the temperature coefficient can be canceled by one diode 40.

【0020】[0020]

【発明の効果】本発明によれば、コンパクトで生産性の
良い内燃機関用点火装置を実現することが出来る。
According to the present invention, compact and productive
A good internal combustion engine ignition device can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】通常の点火装置の構成。FIG. 1 is a configuration of a normal ignition device.

【図2】本発明の要点を示す内部等価回路。FIG. 2 is an internal equivalent circuit showing the gist of the present invention.

【図3】本発明の請求項1を説明する回路の一実施例。FIG. 3 shows an embodiment of a circuit according to claim 1 of the present invention.

【図4】請求項2を説明する回路の一実施例。FIG. 4 shows an embodiment of a circuit according to claim 2;

【図5】電流制限回路にミラー積分回路を設けた例。FIG. 5 is an example in which a Miller integrating circuit is provided in a current limiting circuit.

【図6】IGBTに集積した自己分離形N−MOSトラ
ンジスタの一実施例。
FIG. 6 shows an embodiment of a self-isolation type N-MOS transistor integrated in an IGBT.

【図7】IGBTに集積した接合分離形トランジスタの
一実施例。
FIG. 7 shows an embodiment of a junction isolation transistor integrated in an IGBT.

【図8】IGBTに集積した拡散抵抗とポリシリコンダ
イオードの一実施例。
FIG. 8 shows an embodiment of a diffusion resistor and a polysilicon diode integrated in the IGBT.

【図9】電流制限の動作を説明する波形例。FIG. 9 is a waveform example for explaining a current limiting operation.

【図10】一巡周波数応答特性の例。FIG. 10 is an example of a loop frequency response characteristic.

【符号の説明】 1…ECU、2…点火装置、3,14…点火コイル、4
…点火プラグ、5…パワートランジスタ、6,22,3
1…電流検出用負荷、7,18…電流制限回路、8…C
PU、9…PNPトランジスタ、10…NPNトランジ
スタ、11,12,19,26,27,34,35,3
6,37,38,39,43,47…抵抗、13…ハイ
ブリッドIC基板、15…メインIGBT、16…サブ
IGBT、17…電流検知回路、20…ワンチップイグナイ
タ、21,30,48,50,55,59…IGBT、
23,32,33,42,49…自己分離形N−MOS
トランジスタ、28,29,40…ダイオード、44…
コンデンサ、51…コレクタ端子、52…ゲート端子、
53…エミッタ端子、54…接合分離形トランジスタ、
56…P−サブストレート、57…拡散抵抗、59…ポ
リシリコンダイオード。
[Description of Signs] 1 ... ECU, 2 ... Ignition device, 3,14 ... Ignition coil, 4
... Spark plug, 5 ... Power transistor, 6,22,3
1 ... Current detection load, 7, 18 ... Current limiting circuit, 8 ... C
PU, 9: PNP transistor, 10: NPN transistor, 11, 12, 19, 26, 27, 34, 35, 3
6, 37, 38, 39, 43, 47: resistor, 13: hybrid IC board, 15: main IGBT, 16: sub
IGBT, 17: current detection circuit, 20: one-chip igniter, 21, 30, 48, 50, 55, 59: IGBT,
23, 32, 33, 42, 49 ... Self-isolation type N-MOS
Transistors, 28, 29, 40 ... diodes, 44 ...
Capacitor, 51: Collector terminal, 52: Gate terminal,
53 ... emitter terminal, 54 ... junction separated type transistor,
56 ... P-substrate, 57 ... Diffusion resistor, 59 ... Polysilicon diode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉浦 登 茨城県ひたちなか市大字高場2520番地 株式会社 日立製作所 自動車機器事業 部内 (56)参考文献 特開 平5−164031(JP,A) 特開 平2−136563(JP,A) 特開 昭52−114833(JP,A) 特開 平4−143458(JP,A) 特表 平3−500673(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02P 3/04 301 H01F 38/12 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Noboru Sugiura 2520 Takahiro, Hitachinaka-shi, Ibaraki Pref. Hitachi, Ltd. Automotive Equipment Division (56) References JP-A-5-164031 (JP, A) JP-A Heisei 2-136563 (JP, A) JP-A-52-114833 (JP, A) JP-A-4-143458 (JP, A) JP-A-3-500673 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F02P 3/04 301 H01F 38/12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関用電子制御装置から出力される点
火制御信号に応じて点火コイルに流れる一次電流を通電
・遮断制御するスイッチング素子と、 前記スイッチング素子を流れる電流を制限する電流制限
回路とを備え、 前記スイッチング素子が絶縁ゲート形バイポーラトラン
ジスタで構成された 内燃機関用点火装置において、 前記電流制限回路自己分離形N−MOSトランジスタ
で構成され、 前記絶縁ゲート形バイポーラトランジスタと前記自己分
離形N−MOSトランジスタとが共通の半導体基板に形
成されワンチップ化されたことを特徴とする内燃機関用
点火装置。
A switching element for controlling the supply and cutoff of a primary current flowing through an ignition coil according to an ignition control signal output from an electronic control unit for an internal combustion engine; and a current limiting circuit for limiting a current flowing through the switching element. wherein the switching element is an insulated gate type bipolar Trang
In the ignition device for an internal combustion engine including a resistor , the current limiting circuit includes a self-isolation type N-MOS transistor, and the insulated gate bipolar transistor and the self-isolation type N-MOS transistor are provided on a common semiconductor substrate. An ignition device for an internal combustion engine , which is formed and integrated into one chip .
【請求項2】請求項1において、 前記絶縁ゲートバイポーラトランジスタに流れる電流を
検出する電流検出用負荷と、 前記電流検出用負荷と前記自己分離形N−MOSトラン
ジスタとの間に設けられ、前記電流検出用負荷と反対の
温度係数を有するダイオードとを備えたことを特徴とす
内燃機関用点火装置。
2. The current detecting load according to claim 1, wherein said current detecting load is provided between said current detecting load and said self-isolating N-MOS transistor, and said current detecting load is provided for detecting a current flowing through said insulated gate bipolar transistor. A diode having a temperature coefficient opposite to that of the load for detection .
Ignition device for an internal combustion engine that.
【請求項3】前記電流制限回路は自己分離形N−MOS
差動増幅回路で構成されていることを特徴とする内燃機
関用点火装置。
3. The current limiting circuit according to claim 2, wherein said current limiting circuit is a self-isolating N-MOS.
An ignition device for an internal combustion engine, comprising a differential amplifier circuit.
JP34031695A 1995-12-27 1995-12-27 Ignition device for internal combustion engine Expired - Lifetime JP3192074B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34031695A JP3192074B2 (en) 1995-12-27 1995-12-27 Ignition device for internal combustion engine
KR1019960072355A KR100436868B1 (en) 1995-12-27 1996-12-26 Ignition Device for Internal Combustion Engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34031695A JP3192074B2 (en) 1995-12-27 1995-12-27 Ignition device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09177647A JPH09177647A (en) 1997-07-11
JP3192074B2 true JP3192074B2 (en) 2001-07-23

Family

ID=18335786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34031695A Expired - Lifetime JP3192074B2 (en) 1995-12-27 1995-12-27 Ignition device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3192074B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682593A2 (en) 2012-07-03 2014-01-08 Fuji Electric Co., Ltd. Ignition device with single chip for internal combustion engine
US9719479B2 (en) 2014-07-11 2017-08-01 Fuji Electric Co., Ltd. Ignition control device for internal combustion engine
US9893055B2 (en) 2013-09-11 2018-02-13 Fuji Electric Co., Ltd. Semiconductor device including an insulated gate bipolar transistor and a circuit configured to control the insulated gate bipolar transistor provided on the same semiconductor substrate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741963C1 (en) * 1997-09-23 1999-03-11 Siemens Ag Device for suppressing undesired ignition in petrol engine
JP3756691B2 (en) * 1999-03-18 2006-03-15 株式会社日立製作所 Resin-sealed electronic device for internal combustion engine
JP3866880B2 (en) * 1999-06-28 2007-01-10 株式会社日立製作所 Resin-sealed electronic device
US20040069289A1 (en) * 2001-01-24 2004-04-15 Takashi Ito Ignition device of internal combustion engine
JP2014013796A (en) * 2012-07-03 2014-01-23 Fuji Electric Co Ltd One-chip igniter, and internal combustion engine ignition device
JP2014013798A (en) * 2012-07-03 2014-01-23 Fuji Electric Co Ltd One-chip igniter, and internal combustion engine ignition device
JP2014013797A (en) * 2012-07-03 2014-01-23 Fuji Electric Co Ltd One-chip igniter, and internal combustion engine ignition device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682593A2 (en) 2012-07-03 2014-01-08 Fuji Electric Co., Ltd. Ignition device with single chip for internal combustion engine
US9447767B2 (en) 2012-07-03 2016-09-20 Fuji Electric Co., Ltd. Single chip igniter and internal combustion engine ignition device
US9893055B2 (en) 2013-09-11 2018-02-13 Fuji Electric Co., Ltd. Semiconductor device including an insulated gate bipolar transistor and a circuit configured to control the insulated gate bipolar transistor provided on the same semiconductor substrate
US9719479B2 (en) 2014-07-11 2017-08-01 Fuji Electric Co., Ltd. Ignition control device for internal combustion engine

Also Published As

Publication number Publication date
JPH09177647A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
JP3917865B2 (en) Ignition device for internal combustion engine
US5775310A (en) Ignition device for an internal combustion engine
JP3192074B2 (en) Ignition device for internal combustion engine
US5559451A (en) Bicmos push-pull type logic apparatus with voltage clamp circuit and clamp releasing circuit
JPH0449287B2 (en)
US4755694A (en) Integrated circuit Darlington transistor power stage incorporating various circuit components integrated on the same substrate
US4701638A (en) Antisaturation circuit for integrated PNP transistor
KR100436868B1 (en) Ignition Device for Internal Combustion Engines
JP3019039B2 (en) Internal combustion engine ignition device
JP3250169B2 (en) Switch having a first switching element configured as a bipolar transistor
JP3179630B2 (en) Epitaxial tub bias structure and integrated circuit
US4096400A (en) Inductive load driving amplifier
JPS5910819Y2 (en) oscillation circuit
US5510744A (en) Control circuit for reducing ground and power bounce from an output driver circuit
JP2007214643A (en) Communication driver circuit
JP2690201B2 (en) Semiconductor integrated circuit
JPH08256019A (en) Operating current stabilizing circuit device of transistor
JP2910512B2 (en) Monolithic power amplifier integrated circuit
JP3979763B2 (en) Differential amplifier circuit
US6271694B1 (en) Monolithically integrated output stage
JPS5915508Y2 (en) protection circuit
JPH0419726B2 (en)
JPH05102810A (en) Delay pulse generating circuit
JPS6336145B2 (en)
JPH10200056A (en) Bipolar ic

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

EXPY Cancellation because of completion of term