JP3191156B2 - Method of manufacturing cylinder liner from hypereutectic aluminum-silicon alloy - Google Patents

Method of manufacturing cylinder liner from hypereutectic aluminum-silicon alloy

Info

Publication number
JP3191156B2
JP3191156B2 JP16573899A JP16573899A JP3191156B2 JP 3191156 B2 JP3191156 B2 JP 3191156B2 JP 16573899 A JP16573899 A JP 16573899A JP 16573899 A JP16573899 A JP 16573899A JP 3191156 B2 JP3191156 B2 JP 3191156B2
Authority
JP
Japan
Prior art keywords
cylinder liner
alloy
liner
casting
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16573899A
Other languages
Japanese (ja)
Other versions
JP2000042709A (en
Inventor
フランツ・リユツケルト
ペーテル・シユトツケル
Original Assignee
ダイムラークライスラー・アクチエンゲゼルシヤフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイムラークライスラー・アクチエンゲゼルシヤフト filed Critical ダイムラークライスラー・アクチエンゲゼルシヤフト
Publication of JP2000042709A publication Critical patent/JP2000042709A/en
Application granted granted Critical
Publication of JP3191156B2 publication Critical patent/JP3191156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/004Thixotropic process, i.e. forging at semi-solid state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えばドイツ連邦共
和国特許出願公開第19523484号明細書から公知
のように、請求項1の上位概念に記載の過共晶アルミニ
ウム−珪素合金から内燃機関用シリンダライナを製造す
る方法に関する。
The invention relates to a cylinder liner for an internal combustion engine from a hypereutectic aluminum-silicon alloy according to the preamble of claim 1, as is known, for example, from DE-A-195 23 484. To a method for producing

【0002】内燃機関用シリンダライナは、ピストンリ
ング及び局部的に生じる高い温度により、強い摩擦負荷
にさらされる。従ってこの面が耐摩耗性及び耐熱性の材
料から成っていることが必要である。
[0002] Cylinder liners for internal combustion engines are subjected to high frictional loads due to the piston rings and the locally generated high temperatures. Therefore, it is necessary that this surface be made of a wear-resistant and heat-resistant material.

【0003】[0003]

【従来の技術】過共晶AlSi合金例えばGK−Al−
17Cu4Mgから鋳造シリンダブロツクを製造するこ
とは公知であるが、鋳造技術的理由から珪素含有量が最
大20重量%に制限される。鋳造法の別の欠点として、
溶湯の凝固中に30〜80μmの比較的大きい寸法を持
つ珪素一次粒子が折出せしめられる。このような鋭い縁
の珪素粒子はピストンリングの摩耗を生じる。従ってピ
ストンリングに対する珪素粒子の接触面が、機械的加工
により平らにされる。それから電気工学的処理が行わ
れ、珪素粒子の間のアルミニウム基質が少し引込められ
るので、珪素粒子が支持骨格としてシリンダ面から僅か
突出する。このように製造されるシリンダ面の欠点は、
一方では高い製造費であり、他方では珪素粒子の不完全
な分布及び例えば気孔、収縮孔及び高度の材料不良品の
原因となる酸化物介在物の強い摩耗を防止するため、シ
リンダライナとピストンリングとの間に比較的厚い油膜
を形成せねばならない。それにより高められる有害物質
放出及び高められる油消費が生じる。
2. Description of the Related Art Hypereutectic AlSi alloys such as GK-Al-
The production of cast cylinder blocks from 17Cu4Mg is known, but for casting technical reasons the silicon content is limited to a maximum of 20% by weight. Another disadvantage of the casting method is that
During the solidification of the melt, silicon primary particles having relatively large dimensions of 30 to 80 μm are deposited. Such sharp-edged silicon particles cause wear of the piston ring. Therefore, the contact surface of the silicon particles with the piston ring is flattened by mechanical processing. An electrical process is then performed, which slightly retracts the aluminum substrate between the silicon particles, so that the silicon particles slightly project from the cylinder surface as a support framework. Disadvantages of the cylinder surface manufactured in this way are:
Cylinder liners and piston rings are used to prevent high production costs on the one hand, and imperfect distribution of silicon particles and strong abrasion of oxide inclusions, for example, causing pores, shrinkage holes and highly defective materials. , A relatively thick oil film must be formed. This results in increased pollutant emissions and increased oil consumption.

【0004】ライナ材料としての過共晶AlSi合金の
利点を利用できるようにするため、これらの合金は均質
に分布したできるだけ多数の微粒珪素粒子を持っていな
ければならない。鋳造技術的に実現不可能なAl合金
は、公知のように粉末治金法により製造することができ
る。この種の方法に吹付け圧縮が続く。国際出願公開W
O87/03012から、中空円筒いわゆる管素材の吹
付け圧縮(噴霧圧縮とも称される)が公知である。合金
の所望の性質を得るため、珪素と高金合化されるAl合
金溶湯が化され、窒素噴流中において1秒当たり約1
000°Cの冷却速度で冷却される。部分的にまだ溶融
している粉末粒子は、縦軸線の周りに水平に回転する同
じ種類の材料又は普通のアルミニウム材料製の担体管へ
吹付けられる(噴霧される)。担体管は、この過程中そ
の縦軸線の方向に吹付け噴流の下を移動せしめられる。
担体管の両方の運動方向の重畳により、担体管の内径を
持つ円筒状管が生じる。外形は方法パラメータから得ら
れる。
In order to be able to take advantage of the hypereutectic AlSi alloys as liner materials, these alloys must have as large a number of finely divided silicon particles as are homogeneously distributed. An Al alloy that cannot be realized by casting technology can be manufactured by a powder metallurgy method as is known. This type of method is followed by spray compression. International Application Publication W
From O87 / 03012, spray compression (also called spray compression) of hollow cylinders, so-called tube blanks, is known. To obtain the desired properties of the alloy, Al alloy melt is silicon and Kokingoka are atomization, about per second in a nitrogen jet in 1
It is cooled at a cooling rate of 000 ° C. The powder particles, which are still partially molten, are sprayed (sprayed) onto a carrier tube made of the same type of material or of a common aluminum material, which rotates horizontally about a longitudinal axis. The carrier tube is moved under the spray jet in the direction of its longitudinal axis during this process.
The superposition of both directions of movement of the carrier tube results in a cylindrical tube having the inner diameter of the carrier tube. The outline is obtained from the method parameters.

【0005】吹付け圧縮の際回転する管の代わりとし
て、冷却するが部分的にはまだ流動性の粉末粒子が回転
する皿へ吹付けられ、皿の回転軸線に対して対称なほぼ
円形の粉末粒子粗塊が皿上に軸線方向へ徐々に成長す
。この過程中に皿は下方へ動かされる。両方の運動の
重畳により、通常15〜40cmの直径で約1〜2.5
mの長さを持つ円筒状素材が生じる。冷却ガス噴流中に
おける溶融したAlSi合金滴の高い冷却温度のため、
吹付け圧縮される素材の大部分に過飽和状態が残る。他
方吹付け圧縮過程中に、例えば珪素一次結晶及び金属間
相のような微粒の一次粒子が、マグネシウムと珪素との
合金相(MgSi)、鉄アルミナイド等に応じて形成
される。この硬質粒子のため、吹付け圧縮により製造さ
れる合金はライナ材料として適している。
As an alternative to a tube rotating during spray compression, cooled, but still partially free, powder particles are sprayed onto a rotating dish, approximately symmetrical about the axis of rotation of the dish.
Circular powder particles gradually grow axially on the plate
You . During this process the dish is moved downward. The superposition of both movements usually results in a diameter of about 15-40 cm, about 1-2.
A cylindrical material having a length of m is produced. Due to the high cooling temperature of the molten AlSi alloy drops in the cooling gas jet,
Most of the material to be spray-compressed remains supersaturated. On the other hand, during the spray compression process, fine primary particles such as silicon primary crystals and intermetallic phases are formed according to the alloy phase of magnesium and silicon (Mg 2 Si), iron aluminide and the like. Due to these hard particles, alloys produced by spray compression are suitable as liner materials.

【0006】しかし素材の初期肉厚に応じて、種々の方
法を介する変形により、必要な最終寸法になるまで肉厚
を減少せねばならない。中実円柱をまず管に形成し、ラ
イナ素材となるように加工せねばならない。押出し成形
により安価にライナを最終寸法にするため、高い成形速
度及び高い成形圧力が必要である。しかしこのように押
出し成形困難な合金では、目標とする小さい肉厚に変形
する際、高い成形速度が断面の裂開を生じる可能性のあ
ることがわかった。
However, depending on the initial thickness of the material, the wall thickness must be reduced to the required final dimensions by deformation via various methods. A solid cylinder must first be formed into a tube and processed into a liner material. High molding speeds and high molding pressures are required to make the liner final dimensions inexpensively by extrusion. However, it has been found that in such an alloy which is difficult to be extruded, a high molding speed may cause a cross-section to cleave when deformed to a target small wall thickness.

【0007】最初にあげたドイツ連邦共和国特許出願公
開第19523484号明細書は、中実円柱素材を管状
半製品に変形することに関連して、押出し成形及び回転
据え込みのほかに揺変成形についても述べている。いず
れにせよ最初にあげた種類の方法では、断面がライナ素
材に等しい管がまず製造される。しかしこれらの管か
ら、長さが所望のライナ素材に等しい個々の部分が切断
される。公知の方法は、吹付け圧縮される素材から鋳込
み準備のできたライナ素材への中間段階のため、複雑か
つ高価である。
[0007] DE-A-195 23 484, mentioned at the outset, relates to the deformation of solid cylindrical blanks into tubular semi-finished products in addition to extrusion and rotary upsetting as well as shaking. Also states. In any case, the first type of method first produces a tube whose cross section is equal to the liner blank. However, from these tubes individual sections are cut which are equal in length to the desired liner blank. The known method is complicated and expensive because of the intermediate stage from spray-compressed material to liner material ready for casting.

【0008】[0008]

【発明が解決しようとする課題】本発明の基礎になって
いる課題は、シリンダライナ用の薄肉素材の製造方法を
安価に構成することである。
An object underlying the present invention is to provide a low-cost method for producing a thin material for a cylinder liner.

【0009】本発明によれば、この課題は請求項1の特
徴によって解決される。吹付け圧縮された出発材料をダ
イカスト法で引続き処理することにより、ただ1つの処
理段階で安価にライナ素材が製造される。更に層流流れ
において揺変温度範囲でダイカストすることにより、高
い変形速度にもかかわらず、形成されるライナ壁の裂開
の危険を回避することができる。それにより不用品の割
合を減少でき、このことがライナ素材の製造費に同様に
有利な影響を及ぼす。
According to the invention, this object is solved by the features of claim 1. Subsequent processing of the spray-compressed starting material in a die-casting process results in inexpensive production of the liner material in a single processing step. Furthermore, the risk of tearing of the formed liner wall can be avoided, despite the high deformation rate, by die-casting in the laminar flow in the fluctuating temperature range. Thereby, the proportion of rejects can be reduced, which also has an advantageous effect on the production costs of the liner material.

【0010】揺変温度範囲での変形中に二次粒子特にS
i過飽和合金から付加的なSi結晶が形成され、吹付け
圧縮の際形成される一次粒子特にSi一次結晶が、有利
な成長過程及び時効化過程を行う。
During the deformation in the thixotropic temperature range, the secondary particles, especially S
Additional Si crystals are formed from the i supersaturated alloy, and the primary particles formed during the spray compression, especially the Si primary crystals, perform an advantageous growth and aging process.

【0011】種々の実施例に基いて、本発明を以下に説
明する。
The present invention will be described below based on various embodiments.

【0012】[0012]

【実施例】第1実施例によれば、重量%で次の組成を持
つ合金Iが使用される。 珪素 15〜40%、なるべく約27% マグネシウム 0.25〜2.5%、なるべく約1.5% 亜鉛 4〜15%、なるべく約9% 鉄 0〜1%、なるべく約0.5% マンガン 0.1〜1%、なるべく約0.6% 残りはアルミニウム。
According to a first embodiment, an alloy I having the following composition by weight is used. Silicon 15 to 40%, preferably about 27% Magnesium 0.25 to 2.5%, preferably about 1.5% Zinc 4 to 15%, preferably about 9% Iron 0 to 1%, preferably about 0.5% Manganese 0 0.1-1%, preferably about 0.6% The balance is aluminum.

【0013】Al合金Iは、約830°の溶湯の温度で
酸素のない雰囲気中で霧化され、窒素により約4m
kg金属のガス/金属比で冷却され、その際1秒当たり
約1000°Cの冷却速度が得られる。その際飛行段階
中に粒子の約80%が凝固し、基板表面へ当たる際まだ
流動性の残りの滴は粒子複合体の製造に利用される。粉
末粒子又は粉末滴は回転する皿上へ吹付けられ、この皿
上で250mmの直径を持つ粗塊が成長する。吹付けの
際溶湯は微細に霧化され、合金小滴又は粒子がかなり狭
く区分される3〜50μmの範囲の粒径分布で形成され
る。溶湯から成長する粗塊に形成される珪素一次結晶は
典型的には0.1〜10μmの大きさを持ち、例えばM
Siのような金属間層で若干小さい粒径を持ってい
る。この微粒性により、吹付け圧縮される合金内におけ
る硬質粒子の細かく分散した分布及び引続く処理のため
の均質な材料が生じる。
The Al alloy I is atomized in an oxygen-free atmosphere at a temperature of the molten metal of about 830 °, and about 4 m 3 /
Cooling is performed at a gas / metal ratio of kg metal, with a cooling rate of about 1000 ° C. per second being obtained. About 80% of the particles solidify during the flight phase, and the remaining droplets, which are still flowable when hitting the substrate surface, are used for the production of the particle composite. The powder particles or droplets are sprayed onto a rotating dish, on which a coarse mass having a diameter of 250 mm grows. During spraying, the melt is finely atomized and formed with a particle size distribution in the range of 3 to 50 μm in which the alloy droplets or particles are fairly narrowly divided. The primary silicon crystal formed in a coarse lump grown from the molten metal typically has a size of 0.1 to 10 μm.
Intermetallic layers such as g 2 Si have a slightly smaller grain size. This fineness results in a finely dispersed distribution of the hard particles in the alloy being spray-compressed and a homogeneous material for subsequent processing.

【0014】素材を押出し成形して管にし、これらの管
からシリンダライナを形成すること自体は当業者に公知
である。本発明によれば、押出し成形される材料が揺変
状態にある温度範囲で方法が適用される。500〜60
0°Cの動作温度は、AISi合金のそれぞれの組成に
関係している。この動作温度で合金は固相線と液相線と
の間にある。一部流動性の粗塊部分又は管部分は機械的
に安定であり、まだ取扱われる。これらの条件のもとで
変形力は小さく、高い成形速度が得られる。この過程中
に一次珪素形成の完全な変化が行われる。0.1〜10
μmの粒径分布から1〜100μmの粒径へ成長する一
次粒子の一般的な粗大化が行われるが、2〜10μmの
比率が圧倒的に優勢である。もっと大きいSi結晶の形
成は主として粒界範囲で行われる。
Extrusion of blanks into tubes and forming cylinder liners from these tubes is known per se to those skilled in the art. According to the invention, the method is applied in a temperature range in which the material to be extruded is in a thixotropic state. 500-60
The operating temperature of 0 ° C. is related to the respective composition of the AISi alloy. At this operating temperature, the alloy is between the solidus and liquidus. The partially flowable lump or tube section is mechanically stable and is still handled. Under these conditions, the deformation force is small and a high molding speed can be obtained. During this process, a complete change in primary silicon formation takes place. 0.1-10
The general coarsening of primary particles that grows from a particle size distribution of μm to a particle size of 1 to 100 μm takes place, but a ratio of 2 to 10 μm is predominantly dominant. The formation of larger Si crystals occurs mainly in the grain boundary range.

【0015】吹付け圧縮される粗塊の揺変性押出し成形
により、肉厚は必要に応じてライナ素材に必要な肉厚ま
で減少される。そのため中空前方押出し成形又は中空後
方押出し成形により、製造すべき薄肉管より少し大きい
体積を持つ管部分を加工することができる。特に小さい
肉厚が必要な場合、切削加工によっても管部分を所望の
再加工寸法にすることができる。シリンダライナの素材
を製造するため、押出し成形された管が必要に応じて切
断される。その際例えば扇形片が切取られる。
By thixotropic extrusion of the spray compacted coarse mass, the wall thickness is reduced, if necessary, to the wall thickness required for the liner material. For this reason, the hollow front extrusion or the hollow rear extrusion can process a pipe portion having a slightly larger volume than the thin-walled pipe to be manufactured. When a particularly small wall thickness is required, the pipe portion can be set to a desired rework size even by cutting. The extruded tube is cut as needed to produce the cylinder liner material. In this case, for example, a sector is cut off.

【0016】空気流中にかどばった硬質粒子を持つ噴流
により、ライナの外側に、流し込み中に溶融過程従って
ライナと周りの鋳物との金属結合を改善する表面状態が
生じる。
The jet with the hard particles loose in the air stream creates a surface condition outside the liner that improves the melting process and thus the metallurgical bond between the liner and the surrounding casting during casting.

【0017】ライナ素材を製造する別の実施例は、部材
の公知の揺変鋳造である。しかしこの場合本発明によれ
ば、前もって吹付け圧縮される過共晶の材料が、後述す
る特別な合金から成る棒形状で使用される。これらの棒
は、ダイカスト機においてそれぞれ1つの″シヨツト″
のため必要な循環材料を含む所望の鋳造部品重量に応じ
て必要であるように、質量の同じ小片に分けられる。こ
の吹付け圧縮されて分けられた出発材料から、ダイカス
トに類似の過程において、揺変温度範囲で直接シリンダ
ライナ素材が鋳造され、その際1つ″シヨツト″におい
て複数のライナ素材を経済的に同時に鋳造することがで
きる。揺変性材料は通常層流流れ状態で鋳型へ押込ま
れ、それにより鋳型はガスを含むことなしに充填され
る。この方法の利点は次の通りである。1つの動作サイ
クルで同時に4つ又は6つのライナを製造できるダイカ
スト工具の使用により、経済的に複数のシリンダライナ
を同時に製造することができる。その際僅かな変形力し
か生じない。方法は安価である。気孔及び収縮孔なしの
ライナが生じる。成形工具における鋳造によってライナ
素材を製造するため、鋳造と同時にライナ素材の外側を
溝、微細なひだ、ワツフル構造等により構造化すること
ができる。ライナ素材の外側のこのような構造化は、後
でライナの周りにクランクケース用鋳造材料を流し込む
際、ライナの金属的結合にとって有利である。即ち表面
構造の多くの尖端により、溶融開始にとって好ましい個
所が生じる。更にこのような構造により、ライナ素材の
外側と周囲の鋳造材料とのからみ合い部が形成される。
揺変鋳造過程において、金属間相AlCu又はMg
Si及び珪素一次結晶の位置変化が行われる。これらの
金属間相及び結晶は主として粒界範囲に設けられ、約2
〜30μmの初期粒径から100μmまでの粒径スペク
トルを持つ最終状態への粒径成長を受け、たいていの粒
子の大きさが約30μmの範囲にある。
Another embodiment of making liner blanks is the known wobbled casting of components. In this case, however, according to the invention, the hypereutectic material, which is previously spray-compressed, is used in the form of a bar made of a special alloy, as described below. Each of these bars is one "shot" on the die casting machine.
Are divided into equal pieces of the same mass as required depending on the desired cast part weight, including the required circulating material. From this spray-compressed and separated starting material, in a process analogous to die-casting, a cylinder liner blank is cast directly in a fluctuating temperature range, with a plurality of liner blanks being economically simultaneously produced in one "shot". Can be cast. The thixotropic material is usually forced into the mold in a laminar flow condition, whereby the mold is filled without gas. The advantages of this method are as follows. The use of a die casting tool that can produce four or six liners simultaneously in one cycle of operation makes it possible to economically produce multiple cylinder liners simultaneously. In this case, only slight deformation forces occur. The method is cheap. A liner without porosity and shrinkage holes results. Since the liner material is manufactured by casting in a forming tool, the outside of the liner material can be structured by grooves, fine folds, waffle structure, and the like at the same time as casting. Such structuring outside the liner blank is advantageous for the metallic bonding of the liner when casting the crankcase casting material around the liner later. That is, the many points of the surface structure provide a favorable location for the onset of melting. In addition, such a structure forms an entanglement between the outside of the liner blank and the surrounding casting material.
In the rocking casting process, the intermetallic phase Al 2 Cu or Mg 2
The position of the primary crystal of Si and silicon is changed. These intermetallic phases and crystals are mainly provided in the grain boundary range,
Following particle size growth from an initial particle size of 3030 μm to a final state with a particle size spectrum of up to 100 μm, most particles are in the range of about 30 μm.

【0018】特に前述したように、クランクケース用鋳
造材料をシリンダライナの周りに流し込む(ダイカスト
)際における付加的なからみ合いのため、外側輪郭が
浮彫り状に構造化される隆起及び凹所を持つ表面を持つ
ように、この外側輪郭を形成することができる。
[0018] In particular, as described above, casting for the crankcase
For additional entanglement during pouring of the building material around the cylinder liner (die-casting method ) , the outer contour has a surface with raised and recessed structures that are structured in relief. Can be formed.

【0019】このように所望の再加工寸法にされるシリ
ンダライナ素材の周りに、よく鋳造可能なAl合金から
成るクランクケース用鋳造材料が流し込まれ、そのため
従来のダイカスト法のほかに他の種々の類似の鋳造方法
例えばしぼり出し鋳造法又はダイカスト過程のために準
備される出発材料を使用して揺変温度範囲におけるダイ
カストも原理的に適している。シリンダライナの周りに
クランクケースを鋳造するため、ダイカスト工具が開か
れて、シリンダライナが案内ピン上へはめられる。ダイ
カスト工具が閉じられ、クランクケース用材料がダイカ
スト工具内へ流し込まれる。
[0019] around the cylinder liner material is the desired reworked dimensioned Thus, the incorporated investment casting material crankcase consisting of well-castable Al alloy, therefore in addition to various other conventional die casting Similar casting methods, such as squeeze casting or die-casting in the fluctuating temperature range using the starting materials prepared for the die-casting process, are also suitable in principle. For casting the crankcase around the cylinder liner, open the die casting tool, shea Rindaraina is fitted onto the guide pin. The die casting tool is closed and the crankcase material is poured into the die casting tool.

【0020】充填過程は1秒以下に行われる。急速な冷
却及び案内ピンを介してシリンダライナを温度調節又は
冷却する可能性のため、ダイカスト材料の溶湯がシリン
ダライナに有害な影響を及ぼすのを防止することができ
る。
The filling process takes less than one second. Due to the rapid cooling and the possibility of regulating or cooling the cylinder liner via the guide pins, it is possible to prevent the melt of die-cast material from having a detrimental effect on the cylinder liner.

【0021】この温度範囲では生じる変形力は小さく保
たれる。鋳型及び溶湯のこの動作温度では、合金の改善
された金属結合が行われ、即ちシリンダライナ材料と鋳
造材料との間のほぼ全境界範囲において溶融開始が行わ
れる。それにより残留気孔なしにライナの介在物なしの
結合が生じる。
In this temperature range, the resulting deformation force is kept small. At this operating temperature of the mold and the melt, an improved metallurgical bonding of the alloy takes place, i.e. the onset of melting takes place in almost the entire boundary region between the cylinder liner material and the casting material. This results in a bondless inclusion of the liner without residual porosity.

【0022】クランクケースへのシリンダライナの鋳込
み後、シリンダライナがまだ必要な面特にシリンダ面を
切削加工される。例えば穴の前旋削及び精密旋削及び一
段又は二段のホーニングによるこれらの加工過程は公知
である。しかし本発明によるシリンダライナ材料では、
表面損傷を生じることになる微小収縮孔又は気孔が存在
しないことが有利である。
After the cylinder liner is cast into the crankcase, the surface where the cylinder liner is still needed, especially the cylinder surface, is cut. These machining processes, for example by pre-turning and precision turning of holes and one or two-stage honing, are known. However, with the cylinder liner material according to the invention,
Advantageously, there are no micro-shrinkage pores or pores that would cause surface damage.

【0023】この機械的続行加工に続いて、Si結晶及
び金属間相から成る粒子が化学的方法で露出せしめられ
る。これは公知のように苛性ソーダ水溶液によるエツチ
ングによって行われる。4〜5%の苛性ソーダ水溶液に
より約50°Cで約30秒〜1分間処理することによ
り、Si結晶及び金属間粒子が露出せしめられる。こう
して得られるシリンダライナのシリンダ面は次の粗さパ
ラメータを持っている。 平均化された山−谷高さRz=2〜5μm 個々の最大山−谷高さRmax=5μm 芯の山−谷高さRh=0.5〜2.5μm 減少した尖頭高さRpk=0.1〜0.5μm 減少した溝深さRvk=0.3〜0.8μm (概念Rz及びRmaxはDIN4768Blatt1
に従ってまた概念Rk,Rph及びRvkはDIN47
76に従って解すべきである。
Subsequent to this mechanical continuation, particles consisting of Si crystals and intermetallic phases are exposed in a chemical manner. This is performed in a known manner by etching with an aqueous solution of caustic soda. By treating with a 4-5% aqueous solution of caustic soda at about 50 ° C. for about 30 seconds to 1 minute, the Si crystals and intermetallic particles are exposed. The cylinder surface of the cylinder liner thus obtained has the following roughness parameters: Averaged peak-to-valley height Rz = 2-5 μm Individual maximum peak-to-valley height Rmax = 5 μm Core peak-to-valley height Rh = 0.5-2.5 μm Reduced peak height Rpk = 0 0.1 to 0.5 μm Reduced groove depth Rvk = 0.3 to 0.8 μm (Concepts Rz and Rmax are DIN4768 Blatt1
And also the concepts Rk, Rph and Rvk are DIN 47
76.

【0024】別の実施例によれば、次の合金IIが溶融
され、吹付け圧縮される。 Si 15〜40%重量%、なるべく17重量% Mg 0.5〜2.5重量%、なるべく1.5重量% 残りはAl。
According to another embodiment, the following alloy II is melted and spray-compressed. Si 15 to 40% by weight, preferably 17% by weight Mg 0.5 to 2.5% by weight, preferably 1.5% by weight The balance is Al.

【0025】この合金の吹付け圧縮過程中更に粒子噴射
器により、シリンダライナの摩擦表面特性を改善する酸
化物セラミツクAl粒子が、露化された合金小滴
に混合される。Alの量は1〜5重量%なるべく
3%である。2〜400μmの粒径分布の多数のこれら
の粒子は商業的に得られるので、その添加が合金面の摩
擦特性の多数の調節可能性を与える。本発明によるシリ
ンダライナを製造する別の方法段階は、大体において第
1実施例におけるのと同じであり、即ちこうして形成さ
れる出発材料は、揺変押出し成形法又は揺変層流ダイカ
スト法において引続き加工される。
During the spray-compression process of the alloy, furthermore, oxide ceramic Al 2 O 3 particles, which improve the friction surface properties of the cylinder liner, are mixed with the exposed alloy droplets by means of a particle injector. The amount of Al 2 O 3 is 1 to 5% by weight as much as possible 3%. Since a large number of these particles with a particle size distribution of 2 to 400 μm are obtained commercially, their addition gives a great deal of control over the friction properties of the alloy surface. The further method steps for producing the cylinder liner according to the invention are largely the same as in the first embodiment, i.e. the starting material thus formed is subsequently used in a thixotropic extrusion process or a thixotropic laminar flow die casting process. Processed.

【0026】本発明による方法は、シリンダライナ用の
材料を寸法に合わせて成形できるという利点を持ってい
る。薄肉層の通常の加熱押出し成形の際及び通常のダイ
カスト法の際の高い費用が、成形圧力及び成形速度に関
しても製品の質及び経済性に関しても、上述した製造法
により回避される。
The method according to the invention has the advantage that the material for the cylinder liner can be shaped to size. The high costs involved in the usual hot extrusion of thin-walled layers and in the usual die-casting processes, both in terms of molding pressure and molding speed as well as in terms of product quality and economy, are avoided by the above-mentioned production process.

【0027】念のため、同様にシリンダライナの製造に
適した更に2つの別の合金III及びIVを説明する。
合金IIIは重量%で次の組成を持っている。 珪素 23.0〜28.0%、なるべく約25% マグネシウム 0.8〜2.0%、なるべく約1.2% 銅 3.0〜4.5%、なるべく約3.9% 鉄 最大0.25% マンガン、ニツケル及び亜鉛それぞれ最大0.01% 残りはアルミニウム。
As a precautionary note, two further alloys III and IV are also described, which are likewise suitable for the production of cylinder liners.
Alloy III has the following composition by weight: Silicon 23.0-28.0%, preferably about 25% Magnesium 0.8-2.0%, preferably about 1.2% Copper 3.0-4.5%, preferably about 3.9% Iron max. 25% Manganese, nickel and zinc each at a maximum of 0.01% The balance is aluminum.

【0028】合金IVは重量%で次の組成を持ってい
る。 珪素 23.0〜28.0%、なるべく約25% マグネシウム 0.8〜2.0%、なるべく約1.2% 銅 3.0〜4.5%、なるべく約3.9% 鉄 1.0〜1.4% ニツケル 1.0〜5.0% マンガン及び亜鉛それぞれ最大0.01% 残りはアルミニウム。
Alloy IV has the following composition by weight: Silicon 23.0-28.0%, preferably about 25% Magnesium 0.8-2.0%, preferably about 1.2% Copper 3.0-4.5%, preferably about 3.9% Iron 1.0 ~ 1.4% Nickel 1.0 ~ 5.0% Manganese and zinc up to 0.01% each The balance is aluminum.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // C22C 21/02 C22C 21/02 (56)参考文献 特開 平9−19757(JP,A) 特開 昭62−161464(JP,A) 特表 昭63−501803(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 17/00 B22D 23/00 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI // C22C 21/02 C22C 21/02 (56) References JP-A-9-19757 (JP, A) JP-A-62-161464 (JP, A) Special table 63-501803 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 17/00 B22D 23/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 過共晶アルミニウム−珪素合金からシリ
ンダライナ用素材を製造する方法であって、溶融した合
金を吹付け圧縮法でまず微粒の出発材料となるように処
理し、それから合金の揺変状態を利用してシリンダライ
ナ用素材を製造する方法において、出発材料を必要に応
じてシリンダライナのそれぞれのダイカスト過程に適し
た同じ質量の小片に分け、これらの小片を層流ダイカス
ト法で合金の揺変状態でシリンダライナ用表材に原始成
し、シリンダライナの少なくとも4つの素材を一緒
に、層流ダイカストの過程において同時に製造すること
を特徴とする、シリンダライナの製造方法。
1. A method for producing a cylinder liner material from a hypereutectic aluminum-silicon alloy, wherein a molten alloy is first treated by a spray compression method so as to be a fine starting material, and then the alloy is shaken. In the method of manufacturing a cylinder liner material using the abnormal state, the starting material is divided into small pieces having the same mass suitable for each die casting process of the cylinder liner as necessary, and these small pieces are alloyed by a laminar flow die casting method. Primarily molded into a cylinder liner surface material in a rocking state, and at least four cylinder liner materials are joined together.
In, wherein the producing simultaneously in the course of the laminar flow die casting method for manufacturing a cylinder liner.
JP16573899A 1998-05-12 1999-05-11 Method of manufacturing cylinder liner from hypereutectic aluminum-silicon alloy Expired - Fee Related JP3191156B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19820976A DE19820976A1 (en) 1998-05-12 1998-05-12 Spray compacted and shaped hypereutectic aluminum-silicon alloy cylinder liner blank for an internal combustion engine crankcase
DE19820976.2 1998-05-12

Publications (2)

Publication Number Publication Date
JP2000042709A JP2000042709A (en) 2000-02-15
JP3191156B2 true JP3191156B2 (en) 2001-07-23

Family

ID=7867346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16573899A Expired - Fee Related JP3191156B2 (en) 1998-05-12 1999-05-11 Method of manufacturing cylinder liner from hypereutectic aluminum-silicon alloy

Country Status (2)

Country Link
JP (1) JP3191156B2 (en)
DE (1) DE19820976A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101838521B1 (en) * 2017-08-03 2018-03-14 유한책임회사 샤워트리 Roof-top tent for vehicles using sunroof
CN110273087A (en) * 2019-06-25 2019-09-24 昆明理工大学 Regulate and control the method for hypereutectic aluminum-silicon alloy casting overall performance
KR200490955Y1 (en) * 2017-10-20 2020-03-02 문병인 Prefabricated roof tent for vehicle

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10053663A1 (en) * 2000-10-28 2002-05-08 Leybold Vakuum Gmbh Mechanical kinetic vacuum pump with rotor and shaft
DE10110769C1 (en) * 2001-03-07 2002-10-17 Federal Mogul Nuernberg Gmbh Production of a thixotropic pre-material used in the manufacture of pistons for internal combustion engines comprises introducing a solid super eutectic aluminum-silicon alloy into an extruder
DE10150999C2 (en) * 2001-10-16 2003-08-07 Peak Werkstoff Gmbh Method of profiling the outer peripheral surface of cylinder liners
DE10221674B4 (en) * 2002-05-16 2005-01-27 Audi Ag Method for producing a cylinder housing and cylinder housing
DE10221673C5 (en) * 2002-05-16 2008-12-04 Audi Ag Cylinder liner for pouring into a cylinder housing
WO2004002658A1 (en) * 2002-06-26 2004-01-08 Yamaha Hatsudoki Kabushiki Kaisha Method and device for vacuum die casting of aluminum alloy, and aluminum alloy product
DE112005000002B4 (en) * 2004-03-08 2013-12-24 Peak Werkstoff Gmbh Cylinder liner
DE102005004486B4 (en) * 2005-01-31 2011-05-05 Peak Werkstoff Gmbh Bushing for pouring into an engine block
DE102005043193A1 (en) * 2005-09-09 2007-03-15 Ks Aluminium-Technologie Ag Cylinder crankcase for motor vehicles
DE102005047435A1 (en) * 2005-09-30 2007-04-05 Ks Aluminium-Technologie Ag Method for manufacturing a cylinder crank housing for an internal combustion engine involves thixocasting or rheocasting super eutectic aluminium silicon alloy
CN101970142B (en) 2008-01-14 2014-05-28 韩国生产技术研究院 Forming device for thixoextrusion and method thereof
DE102010053029A1 (en) * 2010-12-02 2012-06-06 Peak-Werkstoff Gmbh Method for manufacturing hollow-cylinder-shaped component e.g. bushing used for crank case of combustion engine, involves forming functional layer and support layer on tubular substrate through spray-compacting process
DE102012015405B4 (en) * 2012-08-03 2014-07-03 Federal-Mogul Burscheid Gmbh Cylinder liner and method for its production
DE102015216224A1 (en) * 2015-08-25 2017-03-02 Volkswagen Aktiengesellschaft Mold with integrated core bearing bolts and method of making a cast component
DE102015216452A1 (en) 2015-08-27 2017-03-16 Volkswagen Aktiengesellschaft Tool and Kokillengießverfahren for producing a cylinder crankcase
US10113504B2 (en) 2015-12-11 2018-10-30 GM Global Technologies LLC Aluminum cylinder block and method of manufacture
CN109290543A (en) * 2018-09-10 2019-02-01 佛山峰合精密喷射成形科技有限公司 A method of producing high-intensitive near net-shaped metal parts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895941A (en) * 1973-10-01 1975-07-22 Ford Motor Co Aluminum silicon alloys
JPH0556372A (en) * 1991-08-27 1993-03-05 Toshiba Corp Television receiver using dsp
DE9422167U1 (en) * 1994-10-28 1999-05-12 Daimler Chrysler Ag Cylinder liner made of a hypereutectic aluminum / silicon alloy cast into a crankcase of a reciprocating piston engine
DE19523484C2 (en) * 1995-06-28 2002-11-14 Daimler Chrysler Ag Method for producing a cylinder liner from a hypereutectic aluminum / silicon alloy for casting into a crankcase of a reciprocating piston machine and cylinder liner produced thereafter
FR2744384B1 (en) * 1996-02-01 1998-03-20 Pechiney Aluminium TICKET AND METAL LOPIN FOR SEMI-SOLID FORMING

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101838521B1 (en) * 2017-08-03 2018-03-14 유한책임회사 샤워트리 Roof-top tent for vehicles using sunroof
KR200490955Y1 (en) * 2017-10-20 2020-03-02 문병인 Prefabricated roof tent for vehicle
CN110273087A (en) * 2019-06-25 2019-09-24 昆明理工大学 Regulate and control the method for hypereutectic aluminum-silicon alloy casting overall performance

Also Published As

Publication number Publication date
JP2000042709A (en) 2000-02-15
DE19820976A1 (en) 1999-11-25

Similar Documents

Publication Publication Date Title
JP3191156B2 (en) Method of manufacturing cylinder liner from hypereutectic aluminum-silicon alloy
KR100267451B1 (en) Process for manufacturing thin pipes
KR100304479B1 (en) Coatings consisting of microporous aluminum / silicon alloys
US4804034A (en) Method of manufacture of a thixotropic deposit
KR100304463B1 (en) Coating for reciprocating engine cylinder
JP3664315B2 (en) Method of manufacturing cylinder liner for internal combustion engine using hypereutectic AlSi alloy
US7144441B2 (en) Process for producing materials reinforced with nanoparticles and articles formed thereby
EP1124660B2 (en) A cylinder crank case, method for the manufacture of a cylinder liner therefor and method for the production of the cylinder crank case with said cylinder liners
JP3582794B2 (en) Method of manufacturing cylinder liner for internal combustion engine using hypereutectic AlSi alloy
US5045110A (en) Aluminium-strontium master alloy
CN102994784A (en) Method for phase structure in refined hypereutectic aluminum-silicon alloy by strong magnetic field composited with alterant
DE10253319B3 (en) Method for producing a sputtering target from an Si-based alloy, and the use of the sputtering target
EP0864660B1 (en) Piston for internal combustion engine and method for producing same
US5205986A (en) Aluminium-strontium master alloy and process of making the alloy
CN1358584A (en) Method for making aluminium alloy board used in bearing
EP0892075B1 (en) Method of manufacturing a piston from an aluminium alloy.
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
KR19990088161A (en) Heat treated, spray formed superalloy articles and method of making the same
JP2003343343A (en) Metallic cylindrical body and method of manufacture
JP4544507B2 (en) Al-Si eutectic alloy, casting made of Al alloy, Al alloy for casting, and production method thereof
JP4155423B2 (en) Manufacturing method of forged piston and forged molding material
JPH0471609B2 (en)
JPH0121856B2 (en)
JPH0663567B2 (en) Aluminum piston
JPH10219378A (en) Stock for forged piston

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees