JP3187496B2 - Height sensor and air spring - Google Patents

Height sensor and air spring

Info

Publication number
JP3187496B2
JP3187496B2 JP00235592A JP235592A JP3187496B2 JP 3187496 B2 JP3187496 B2 JP 3187496B2 JP 00235592 A JP00235592 A JP 00235592A JP 235592 A JP235592 A JP 235592A JP 3187496 B2 JP3187496 B2 JP 3187496B2
Authority
JP
Japan
Prior art keywords
light
light emitting
measured
reflected
emitting elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00235592A
Other languages
Japanese (ja)
Other versions
JPH06201331A (en
Inventor
文雄 小川
則夫 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Stanley Electric Co Ltd
Original Assignee
Bridgestone Corp
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp, Stanley Electric Co Ltd filed Critical Bridgestone Corp
Priority to JP00235592A priority Critical patent/JP3187496B2/en
Priority to US07/997,870 priority patent/US5337137A/en
Priority to DE69309117T priority patent/DE69309117T2/en
Priority to EP93300084A priority patent/EP0551986B1/en
Publication of JPH06201331A publication Critical patent/JPH06201331A/en
Application granted granted Critical
Publication of JP3187496B2 publication Critical patent/JP3187496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/15Fluid spring
    • B60G2202/152Pneumatic spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/11Mounting of sensors thereon
    • B60G2204/111Mounting of sensors thereon on pneumatic springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/14Photo or light sensitive means, e.g. Infrared

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Fluid-Damping Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高さセンサ及び空気ばね
に係り、特に、自動車、電車その他の車両の高さを光学
的に検出する車高センサ、レベルセンサ、距離センサ等
の高さセンサ及びこの高さセンサを内蔵した車両用空気
ばね、産業機械や建物等の防振・除振・免震用空気ばね
等の空気ばねに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a height sensor and an air spring, and more particularly to a height sensor such as a vehicle height sensor, a level sensor, and a distance sensor for optically detecting the height of an automobile, a train, or another vehicle. The present invention also relates to an air spring for a vehicle incorporating this height sensor, and an air spring such as an air spring for anti-vibration, vibration isolation and seismic isolation of industrial machines and buildings.

【0002】[0002]

【従来の技術】従来より、空気ばねに内蔵可能な高さセ
ンサとして、磁気式センサ、超音波式センサ、光反射式
センサなどが提案されている。しかし、磁気式センサ
は、空気ばねの構造によっては、空気ばねのストローク
が制限され、超音波センサは、コストが高いといった問
題がある。また、多くの光反射式センサは、これらの問
題が少ない反面、光反射板が汚れ、光反射率が大きく変
化した場合に、測定結果が変化し精度が確保できないと
いう問題がある。
2. Description of the Related Art Conventionally, magnetic sensors, ultrasonic sensors, light reflection sensors, and the like have been proposed as height sensors that can be incorporated in an air spring. However, the magnetic sensor has a problem that the stroke of the air spring is limited depending on the structure of the air spring, and the ultrasonic sensor is expensive. In addition, many light reflection sensors have few of these problems, but have a problem that when the light reflection plate is soiled and the light reflectance largely changes, the measurement result changes and accuracy cannot be secured.

【0003】このため、本発明者は、これらの問題点を
解消した高さセンサを既に提案している(特願平3−2
00453号)。この高さセンサは、図1に示すよう
に、第1の発光素子10及び第2の発光素子12から成
る一対の発光素子を備えている。第1の発光素子10及
び第2の発光素子12は被測定面14から異る距離離れ
た位置に配置されており、各々交互に発光される。第1
の発光素子10の被測定面14からの距離をx、第1の
発光素子10と第2の発光素子12との高さ方向の間隔
(オフセット量)をX0 、第1の発光素子10の発光光
度をC1,第2の発光素子12の発光光度をC2、被測
定面14の反射率をRとすると、第1の発光素子10を
発光させたときの受光素子16の出力E1は(1)式の
ようになる。また、第2の発光素子12を発光させたと
きの受光素子16の出力E2は(2)式に示すようにな
る。
For this reason, the present inventor has already proposed a height sensor which solves these problems (Japanese Patent Application No. 3-2).
No. 00453). As shown in FIG. 1, the height sensor includes a pair of light emitting elements including a first light emitting element 10 and a second light emitting element 12. The first light emitting element 10 and the second light emitting element 12 are arranged at different distances from the surface 14 to be measured, and emit light alternately. First
The distance between the first light emitting element 10 and the second light emitting element 12 in the height direction (offset amount) is X 0 , the distance between the first light emitting element 10 and the second light emitting element 12 is X 0 , Assuming that the luminous intensity is C1, the luminous intensity of the second light-emitting element 12 is C2, and the reflectance of the measured surface 14 is R, the output E1 of the light-receiving element 16 when the first light-emitting element 10 emits light is (1 ) Further, the output E2 of the light receiving element 16 when the second light emitting element 12 emits light is as shown in the equation (2).

【0004】[0004]

【数1】 (Equation 1)

【0005】[0005]

【数2】 (Equation 2)

【0006】ここで、出力E1と出力E2との比をとる
と(3)式に示すようになり、出力の比E1/E2は被
測定面14の反射率Rの影響を受けなくなる。
The ratio between the output E1 and the output E2 is given by the following equation (3). The output ratio E1 / E2 is not affected by the reflectance R of the surface 14 to be measured.

【0007】[0007]

【数3】 (Equation 3)

【0008】したがって、被測定面14の反射率Rが汚
れ等によって変化し、出力E1、E2が図2に示すよう
に低下した場合であっても、出力の比E1/E2を用い
ることによって被測定面14の汚れによる影響を防止す
ることができる。そこでこの高さセンサでは、対数変換
回路、フィルタ及び整流回路を備えた信号処理回路18
を設け、第1の発光素子10、第2の発光素子12を交
互に発光させ、被測定面14で反射された光を受光する
と共に受光量に応じた信号を出力する受光素子16から
出力される信号を対数変換回路によって対数変換する。
対数変換回路出力は、フィルタによって直流成分、すな
わち発光素子の発光周波数未満の信号成分が除去され
る。残った交流成分のピークからピークまでの値は、第
1の発光素子10を発光させたときに受光素子16から
出力された信号の対数変換値から第2の発光素子12を
発光させたときに受光素子16から出力された信号の対
数変換値を減算した値、即ち第1の発光素子10を発光
させたときに受光素子16から出力される信号と第2の
発光素子12を発光させたときに受光素子16から出力
される信号との比に対応する。従って、このフィルタ出
力を整流することによって第1の発光素子10から被測
定面14までの距離xに対応する信号を得ることができ
る。
Therefore, even if the reflectance R of the surface 14 to be measured changes due to dirt or the like and the outputs E1 and E2 decrease as shown in FIG. 2, the reflectance is obtained by using the output ratio E1 / E2. The influence of the contamination of the measurement surface 14 can be prevented. Therefore, in this height sensor, a signal processing circuit 18 including a logarithmic conversion circuit, a filter and a rectifier circuit is provided.
The first light-emitting element 10 and the second light-emitting element 12 emit light alternately, and receive light reflected by the surface to be measured 14 and output from the light-receiving element 16 that outputs a signal corresponding to the amount of received light. Logarithmic conversion by the logarithmic conversion circuit.
From the logarithmic conversion circuit output, a DC component, that is, a signal component lower than the emission frequency of the light emitting element is removed by the filter. The value from the peak of the remaining AC component to the peak is obtained when the second light emitting element 12 emits light from the logarithmic conversion value of the signal output from the light receiving element 16 when the first light emitting element 10 emits light. The value obtained by subtracting the logarithmic conversion value of the signal output from the light receiving element 16, that is, the signal output from the light receiving element 16 when the first light emitting element 10 emits light and when the second light emitting element 12 emits light Corresponds to the ratio to the signal output from the light receiving element 16. Therefore, a signal corresponding to the distance x from the first light emitting element 10 to the surface to be measured 14 can be obtained by rectifying the filter output.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
高さセンサでは、図1に示すように、1対の発光素子を
水平距離Lを隔てて配置しているため、1対の発光素子
から発光された光の照射領域が交わらない領域、すなわ
ち、図1の直線Aより上側の近距離領域では、受光素子
の受光量が急激に低下し、光反射板と発光素子との間の
距離を検出することが困難になる、という問題がある。
However, in the above-mentioned height sensor, as shown in FIG. 1, a pair of light emitting elements are arranged at a horizontal distance L, so that the light emitting element emits light from the pair of light emitting elements. In an area where the irradiated areas of the light do not intersect, that is, in a short distance area above the straight line A in FIG. 1, the amount of light received by the light receiving element rapidly decreases, and the distance between the light reflecting plate and the light emitting element is detected. There is a problem that it becomes difficult to do.

【0010】また、高さ方向にオフセット量Xo隔てて
1対の発光素子を配置する必要があるため、高さセンサ
の高さ方向の寸法が長くなり、高さセンサが大型にな
る、という問題がる。この問題を解決するには、オフセ
ット量Xoを小さくすれば良いが、オフセット量Xoに
よって光反射板の反射率の影響を防止しているため、オ
フセット量Xoを小さくすると精度が悪化する。
Further, since it is necessary to dispose a pair of light-emitting elements at an offset Xo in the height direction, the dimension of the height sensor in the height direction becomes long, and the height sensor becomes large. To In order to solve this problem, the offset amount Xo may be reduced. However, since the influence of the reflectance of the light reflecting plate is prevented by the offset amount Xo, the accuracy decreases when the offset amount Xo is reduced.

【0011】本発明は上記問題点を解決するために成さ
れたもので、近距離領域でも被測定面までの距離を検出
することができる高さセンサ及びこの高さセンサを利用
した空気ばねを提供することを第1の目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and there is provided a height sensor capable of detecting a distance to a surface to be measured even in a short distance area and an air spring using the height sensor. The primary purpose is to provide.

【0012】また、本発明は高さ方向の寸法が小さくか
つ測定精度が良好な高さセンサ及びこの高さセンサを利
用した空気ばねを提供することを第2の目的とする。
It is a second object of the present invention to provide a height sensor having a small dimension in the height direction and good measurement accuracy, and an air spring using the height sensor.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、被測定面から離れた位置に配置さ
れた第1及び第2の発光素子と、三角錐状に形成される
と共にその第1乃至第3の側面が反射面で構成され、
記第1及び第2の発光素子から発光された光の一方を
1の側面で反射し、その第1の反射面から被測定面まで
の光路と光が反射されなかった発光素子から被測定面ま
での光路同士が接近若しくは略一致し、または、前記第
1及び第2の発光素子から発光された光をそれぞれ第1
及び第2の側面で反射し、第1及び第2の側面から被測
定面までの光路同士が接近若しくは略一致する反射手段
と、前記第1及び第2の発光素子から発光されて被測定
面で反射された光を受光すると共に受光量に応じた信号
を出力する受光素子と、を含んで構成されている。
In order to achieve the above object, according to the first aspect of the present invention, there are provided first and second light emitting elements arranged at positions distant from a surface to be measured, and a triangular pyramid. To
In addition, the first to third side surfaces are constituted by reflection surfaces, and one of the light emitted from the first and second light emitting elements is transmitted to the first surface .
Reflected by the first side, the optical path with each other approaches or substantially coincident to the surface to be measured from the light emitting element optical path and the light is not reflected to the surface to be measured from the first reflecting surface thereof, or the first
The light emitted from the first and second light emitting elements is first
A reflecting means which is reflected by the second side surface and whose optical paths from the first and second side surfaces to the surface to be measured approach or substantially coincide with each other; and a surface to be measured which is emitted from the first and second light emitting elements. And a light receiving element that receives the light reflected by the light emitting element and outputs a signal corresponding to the amount of received light.

【0014】また、上記目的を達成するために請求項2
の発明は、ばね上側部材及びばね下側部材の一方に反射
板が取り付けられ、ばね上側部材及びばね下側部材の他
方に第1及び第2の発光素子と該第1及び第2の発光素
子から発光されて反射板で反射された光を受光すると共
に受光量に応じた信号を出力する受光素子とが取り付け
られた空気ばねにおいて、三角錐状に形成されると共に
その第1乃至第3の側面が反射面で構成され、前記第1
及び第2の発光素子から発光された光の一方を第1の側
面で反射し、その第1の反射面から被測定面までの光路
と光が反射されなかった発光素子から被測定面までの光
同士が接近若しくは略一致し、または、前記第1及び
第2の発光素子から発光された光をそれぞれ第1及び第
2の側面で反射し、第1及び第2の側面から被測定面ま
での光路同士が接近若しくは略一致する反射手段を設け
たことを特徴とする。
[0014] In order to achieve the above object , the present invention provides a second aspect.
According to the invention, the reflector is attached to one of the sprung member and the unsprung member, and the first and second light emitting elements and the first and second light emitting elements are arranged on the other of the sprung member and the unsprung member. A light receiving element that receives light reflected from the reflector and light emitted from the light receiving element and outputs a signal corresponding to the amount of received light is formed in a triangular pyramid shape.
The first to third side surfaces are constituted by reflection surfaces, and the first
And one of the lights emitted from the second light emitting element to the first side.
And reflected by the surface, the optical path with each other approaches or substantially coincident to the surface to be measured from the light emitting element optical path and the light is not reflected to the surface to be measured from the first reflecting surface thereof, or, the first and
The light emitted from the second light emitting element is transmitted to the first and the second light emitting elements, respectively.
A reflecting means is provided which reflects light from the second side surface and makes the optical paths from the first and second side surfaces to the measured surface approach or substantially coincide with each other.

【0015】上記目的を達成するために請求項3の発明
は、被測定面から略同一の距離を有し、略同一の平面上
に配置された第1及び第2の発光素子と、三角錐状に形
成されると共にその第1乃至第3の側面が反射面で構成
され、前記第1及び第2の発光素子から発光された光の
一方を第1の側面で反射し、その第1の反射面から被測
定面までの光路と光が反射されなかった発光素子から被
測定面までの光路同士が接近若しくは略一致し、また
は、前記第1及び第2の発光素子から発光された光をそ
れぞれ第1及び第2の側面で反射し、第1及び第2の側
面から被測定面までの光路同士が接近若しくは略一致す
る第1の反射手段と、第1及び第2の発光素子と略同一
の平面上に配置され、第1の発光素子から被測定面まで
の光路長と第2の発光素子から被測定面までの光路長と
の間に光路差が生じるように、第1及び第2の発光素子
から発光された光の少なくとも一方を反射する第2の
射手段と、前記第1及び第2の発光素子から発光されて
被測定面で反射された光を受光すると共に受光量に応じ
た信号を出力する受光素子と、を含んで構成されてい
る。
[0015] The invention of claim 3 in order to achieve the above object, have substantially the same distance from the measured surface, the first and second light-emitting element arranged on substantially the same plane, a triangular pyramid Shape
And the first to third side surfaces are constituted by reflection surfaces.
Of the light emitted from the first and second light emitting elements.
One is reflected by the first side surface, and the measurement is performed from the first reflection surface.
The light path to the fixed surface and the light-emitting elements
The optical paths to the measurement surface approach or nearly match,
Receives light emitted from the first and second light emitting elements.
The first and second sides reflect at the first and second sides, respectively.
The optical paths from the surface to the surface to be measured are close to or nearly coincide with each other
A first reflecting means, and an optical path length from the first light emitting element to the surface to be measured and a light path length from the second light emitting element to the surface to be measured, which are arranged on substantially the same plane as the first and second light emitting elements. of so that the optical path difference between the optical path length occurs, and a second anti <br/> elevation means for reflecting at least one of light emitted from the first and second light-emitting element, the first and second A light-receiving element that receives light emitted from the second light-emitting element and reflected on the surface to be measured and outputs a signal corresponding to the amount of received light.

【0016】[0016]

【0017】[0017]

【作用】請求項1の発明は、被測定面から離れた位置に
配置された第1及び第2の発光素子を備えている。反射
手段は、三角錐状に形成され、その第1乃至第3の側面
が反射面で構成されている。この反射手段は、第1及び
第2の発光素子から発光された光の少なくとも一方を
1の側面で反射し、その第1の側面から被測定面までの
光路と光が反射されなかった発光素子から被測定面まで
の光路、または、第1及び第2の発光素子から発光され
た光をそれぞれ第1及び第2の側面で反射し、第1及び
第2の側面から被測定面までの光路同士が接近または略
一致するようにする。このように、反射手段は、三角錐
状に形成されているため、高さ方向の寸法が小さくなっ
ています。また、第1の側面から被測定面までの光路と
光が反射されなかった発光素子から被測定面までの光
路、または、第1及び第2の発光素子から発光された光
をそれぞれ第1及び第2の側面で反射し、第1及び第2
の側面から被測定面までの光路同士が接近または略一致
されているため、第1の発光素子から発光された光の照
射領域と第2の発光素子から発光された光の照射領域と
が交わる領域が広くなり、発光素子から近距離の領域で
も被測定面を検出することができる。上記第1及び第2
の発光素子から発光されて被測定面で反射された光は、
受光素子によって受光され、この受光量に応じた信号が
出力される。そして、この受光量に応じた信号から被測
定面までの距離を検出することができる。
According to the first aspect of the present invention, there are provided first and second light emitting elements arranged at positions away from the surface to be measured. The reflecting means is formed in a triangular pyramid shape, and has first to third side surfaces.
Are constituted by reflection surfaces. This reflecting means reflects at least one of the light emitted from the first and second light emitting elements to the first light emitting element .
The light is reflected from the first side surface and the light path from the first side surface to the surface to be measured and the light path from the light emitting element to which the light is not reflected to the surface to be measured, or the light is emitted from the first and second light emitting devices.
Reflected light at the first and second sides, respectively,
The optical paths from the second side surface to the surface to be measured approach or substantially coincide with each other. Thus, the reflecting means is a triangular pyramid
Shape, the height dimension is reduced.
I am. Also, an optical path from the first side surface to the surface to be measured and an optical path from the light emitting element where light is not reflected to the surface to be measured, or light emitted from the first and second light emitting devices
Are reflected by the first and second side surfaces, respectively, and the first and second
Since the optical paths from the side surface to the surface to be measured are close to or substantially coincide with each other, the irradiation area of the light emitted from the first light emitting element and the irradiation area of the light emitted from the second light emitting element intersect with each other. The area is widened, and the surface to be measured can be detected even in an area at a short distance from the light emitting element. The above first and second
The light emitted from the light emitting element and reflected by the surface to be measured is
The light is received by the light receiving element, and a signal corresponding to the amount of received light is output. Then, the distance to the surface to be measured can be detected from the signal corresponding to the amount of received light.

【0018】請求項2の発明の空気ばねでは、ばね上側
部材及びばね下側部材の一方に反射板が取付けられ、ば
ね上側部材及びばね下側部材の他方に第1及び第2の発
光素子と該第1及び第2の発光素子から発光されて反射
板で反射された光を受光すると共に受光量に応じた信号
を出力する受光素子とが取付けられている。この空気ば
ねには、請求項1の発明と同様に、三角錐状に形成され
ると共にその第1乃至第3の側面が反射面で構成され、
前記第1及び第2の発光素子から発光された光の一方を
第1の側面で反射し、その第1の反射面から被測定面ま
での光路と光が反射されなかった発光素子から被測定面
までの光路同士が接近若しくは略一致し、または、前記
第1及び第2の発光素子から発光された光をそれぞれ第
1及び第2の側面で反射し、第1及び第2の側面から被
測定面までの光路同士が接近若しくは略一致する反射手
段が設けられている。従って、第1の発光素子から発光
された光の照射領域と第2の発光素子から発光された光
の照射領域とが交わる領域が広くなり、発光素子から近
距離の領域でも被測定面を検出することができる。
In the air spring according to the second aspect of the present invention, the reflector is attached to one of the sprung member and the unsprung member, and the first and second light emitting elements are mounted on the other of the sprung member and the unsprung member. A light receiving element for receiving light emitted from the first and second light emitting elements and reflected by the reflector and outputting a signal corresponding to the amount of received light is mounted. This air spring is formed in a triangular pyramid shape as in the first aspect of the invention.
And the first to third side surfaces are constituted by reflection surfaces,
One of the light emitted from the first and second light emitting elements is
Reflected by the first aspect, the optical path with each other approaches or substantially coincident to the surface to be measured from the light emitting element optical path and the light is not reflected to the surface to be measured from the first reflecting surface thereof, or the
The light emitted from the first and second light emitting elements is
Reflecting means is provided for reflecting light at the first and second side surfaces and for causing optical paths from the first and second side surfaces to the measured surface to approach or substantially coincide with each other. Therefore, the area where the irradiation area of the light emitted from the first light emitting element and the irradiation area of the light emitted from the second light emitting element intersect becomes wider, and the surface to be measured is detected even in an area at a short distance from the light emitting element. can do.

【0019】請求項3の高さセンサでは、請求項1の発
明と同様に、三角錐状に形成されると共にその第1乃至
第3の側面が反射面で構成され、前記第1及び第2の発
光素子から発光された光の一方を第1の側面で反射し、
その第1の反射面から被測定面までの光路と光が反射さ
れなかった発光素子から被測定面までの光路同士が接近
若しくは略一致し、または、前記第1及び第2の発光素
子から発光された光をそれぞれ第1及び第2の側面で反
射し、第1及び第2の側面から被測定面までの光路同士
が接近若しくは略一致する第1の反射手段を設けてい
る。さらに、第1及び第2の発光素子と略同一の平面上
に配置され、第1の発光素子から被測定面までの光路長
と第2の発光素子から被測定面までの光路長との間に光
路差が生じるように、第1及び第2の発光素子から発光
された光の少なくとも一方を反射する第2の反射手段を
設けている。これにより、第1の発光素子から発光され
た光の照射領域と第2の発光素子から発光された光の照
射領域とが交わる領域が広くなり、発光素子から近距離
の領域でも被測定面を検出することができる。さらに、
高さセンサの高さ方向の寸法を小さくして、センサのス
ペースを小さくすることができる。また、光路差は、本
発明者が既に提案している発明のオフセット量に対応す
るため、被測定面の反射率の変化による影響を防止する
ことができる。
In the height sensor according to the third aspect, the height sensor according to the first aspect is provided.
Like Ming, it is formed in a triangular pyramid shape and its first through
The third side surface is constituted by a reflection surface, and the first and second light sources are provided.
One of the lights emitted from the optical element is reflected by the first side surface,
The optical path from the first reflecting surface to the surface to be measured and light are reflected.
The optical paths from the light emitting element that was not detected to the surface to be measured are close to each other
Or substantially the same, or the first and second light emitting elements
The light emitted from the element is reflected by the first and second sides, respectively.
Light paths from the first and second side surfaces to the surface to be measured
Is provided with first reflecting means which approach or substantially coincide with each other.
You. Furthermore, on the same plane as the first and second light emitting elements
And the optical path length from the first light emitting element to the surface to be measured
Light between the second light emitting element and the optical path length from the surface to be measured.
Light is emitted from the first and second light emitting elements so that a path difference occurs.
A second reflecting means for reflecting at least one of the reflected light
Provided. Thereby, light is emitted from the first light emitting element.
Of light emitted from the second light-emitting element
The area that intersects with the light-emitting area becomes wider,
The surface to be measured can be detected even in the region of. further,
Reduce the height dimension of the height sensor to
The pace can be reduced. The optical path difference is
It corresponds to the offset amount of the invention already proposed by the inventor.
To prevent the effects of changes in the reflectance of the surface to be measured
be able to.

【0020】[0020]

【0021】[0021]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。本実施例は本発明の高さセンサを車高センサ
として用い、この車高センサを車両用空気ばねに内蔵さ
せたものである。
Embodiments of the present invention will be described below in detail with reference to the drawings. In this embodiment, the height sensor of the present invention is used as a vehicle height sensor, and this vehicle height sensor is built in a vehicle air spring.

【0022】図3に示すように、車体20と振動受け側
の板ばね21との間には空気ばね24が設けられてい
る。この空気ばね24の近傍にはショックアブソーバ2
2が設けられている。空気ばね24には車高センサ34
が内蔵されており、この車高センサ34は車高を制御す
る制御回路38に接続されている。この空気ばねによれ
ば、車高センサ34で検出された車高に基づいて空気ば
ね内の空気圧を調節することにより車高やばね定数を調
節することができる。
As shown in FIG. 3, an air spring 24 is provided between the vehicle body 20 and the leaf spring 21 on the vibration receiving side. The shock absorber 2 is located near the air spring 24.
2 are provided. The air spring 24 has a vehicle height sensor 34.
The vehicle height sensor 34 is connected to a control circuit 38 for controlling the vehicle height. According to this air spring, the vehicle height and the spring constant can be adjusted by adjusting the air pressure in the air spring based on the vehicle height detected by the vehicle height sensor 34.

【0023】図4に示すように、空気ばね24は、略円
筒状のゴムスリーブ28を備えている。ゴムスリーブ2
8の一端部は、ばね上側部材であるエンドキャップ26
の周囲にかしめられている。ゴムスリーブ28の他端側
には、ゴムスリーブ28内に進入可能なピストン30が
設けられており、ゴムスリーブ28の他端部はばね下側
部材である押え金具32によってピストン30に取り付
けられている。これによって、ゴムスリーブ28内に密
閉された空間が形成されている。またエンドキャップ2
6にはゴムスリーブ28内の空気圧を調節するための導
管25がエンドキャップ26を貫通して設けられてい
る。エンドキャップ26の裏面には車高センサ34が取
り付けられている。また、押え金具32の車高センサ3
4と対向する位置には反射板36が取り付けられてい
る。なお、車高センサ34と反射板36の取付位置を逆
にしてもよい。
As shown in FIG. 4, the air spring 24 has a rubber sleeve 28 having a substantially cylindrical shape. Rubber sleeve 2
8 has an end cap 26 serving as a sprung-up member.
Is crimped around. The other end of the rubber sleeve 28 is provided with a piston 30 which can enter the rubber sleeve 28. The other end of the rubber sleeve 28 is attached to the piston 30 by a holding member 32 which is a unsprung member. I have. As a result, a closed space is formed in the rubber sleeve 28. End cap 2
6 is provided with a conduit 25 for adjusting the air pressure in the rubber sleeve 28 through the end cap 26. A vehicle height sensor 34 is attached to the back surface of the end cap 26. In addition, the vehicle height sensor 3
A reflection plate 36 is attached at a position facing 4. The mounting positions of the vehicle height sensor 34 and the reflection plate 36 may be reversed.

【0024】車高センサ34は、図5、6に示すよう
に、底面と45°の角度を成す3つの反射面r1、r
2、r3を備えた三角錐状の反射部材64を備えてい
る。この反射部材は、請求項1に記載した反射手段又は
請求項3に記載した第1の反射手段に相当するもので、
三角錐状の樹脂部品に金属めっきを施すことにより形成
されている。一つの反射面r1に対向するように第1の
発光素子10が配置されおり、他の反射面r2に対向す
るようにミラー66が配置され、このミラー66に光を
照射するように、第2の発光素子12が配置されてい
る。このミラー66は、請求項3に記載した第2の反射
手段に相当するもので、発光素子10、12から発光さ
れた光に光路差を生じさせる。発光素子10、12は同
一水面上に位置している。第1の発光素子10から発光
された光は反射面r1で反射されて90°方向が変化さ
れ、紙面と直交する方向に反射される。また、第2の発
光素子12から発光された光はミラー66で反射されて
方向が変化された後反射面r2で反射されて90°方向
が変化され紙面と直交する方向に反射される。これによ
って、発光素子10、12を水平方向に隔てて配置して
も発光素子10から発光されて反射面r1で反射された
光の光路と、発光素子12から発光されて反射面r2で
反射された光の光路とが接近することになる。なお、こ
れらの光路が略一致するようにしてもよい。また、発光
素子12から発光された光をミラー66で反射させて反
射面r2に照射しているため、発光素子10から反射面
r1までの光路長D1と発光素子12から反射面r2ま
での光路長D2=d1+d2との間に光路差D=D2−
D1が生ずる。ただし、d1は発光素子12からミラー
66までの光路長、d2はミラー66から反射面r2ま
での光路長である。この光路差Dは、図1のオフセット
量Xoに相等するものである。この光路差Dは小スペー
ス内でも大きくすることができるため、センサ精度を向
上することができる。
As shown in FIGS. 5 and 6, the vehicle height sensor 34 has three reflecting surfaces r1 and r which form an angle of 45 ° with the bottom surface.
2, a triangular pyramid-shaped reflecting member 64 having r3 is provided. This reflecting member is the reflecting means according to claim 1 or
It corresponds to the first reflecting means according to claim 3 ,
It is formed by applying metal plating to a triangular pyramid-shaped resin part. The first light emitting element 10 is arranged so as to face one reflecting surface r1, the mirror 66 is arranged so as to face the other reflecting surface r2, and the second light emitting element 10 is so arranged as to irradiate the mirror 66 with light. Are arranged. The mirror 66 is configured to perform the second reflection according to claim 3.
It generates an optical path difference in the light emitted from the light emitting elements 10 and 12. The light emitting elements 10 and 12 are located on the same water surface. The light emitted from the first light emitting element 10 is reflected by the reflection surface r1, is changed in the 90 ° direction, and is reflected in a direction perpendicular to the paper surface. Further, the light emitted from the second light emitting element 12 is reflected by the mirror 66, the direction of which is changed, and then reflected by the reflection surface r2, the direction is changed by 90 °, and reflected in the direction perpendicular to the paper surface. As a result, even when the light emitting elements 10 and 12 are arranged horizontally apart from each other, the light path of the light emitted from the light emitting element 10 and reflected by the reflecting surface r1 and the light emitted by the light emitting element 12 and reflected by the reflecting surface r2 are reflected. The light path of the reflected light approaches. In addition, these optical paths may be made to substantially coincide. Further, since the light emitted from the light emitting element 12 is reflected by the mirror 66 and radiated to the reflecting surface r2, the optical path length D1 from the light emitting element 10 to the reflecting surface r1 and the optical path length from the light emitting element 12 to the reflecting surface r2. The optical path difference D = D2− between the length D2 = d1 + d2
D1 occurs. Here, d1 is the optical path length from the light emitting element 12 to the mirror 66, and d2 is the optical path length from the mirror 66 to the reflection surface r2. This optical path difference D is equivalent to the offset amount Xo in FIG. Since the optical path difference D can be increased even in a small space, sensor accuracy can be improved.

【0025】反射部材64の反射面r3に対向するよう
に、ミラー68が配置され、このミラー68に対向する
ように受光素子16が配置されている。ミラー68と受
光素子16との間には集光レンズ70及び所定の絞り板
72が配置されている。
A mirror 68 is arranged so as to face the reflecting surface r3 of the reflecting member 64, and the light receiving element 16 is arranged so as to face the mirror 68. A condenser lens 70 and a predetermined diaphragm plate 72 are arranged between the mirror 68 and the light receiving element 16.

【0026】この車高センサ34によれば、反射部材6
4の反射面r1、r2で反射された光は反射板36に照
射され、反射板36で反射された後、反射面r3で反射
され、ミラー68、集光レンズ70及び絞り板72を介
して受光素子16に受光される。
According to the vehicle height sensor 34, the reflection member 6
The light reflected by the reflecting surfaces r1 and r2 of No. 4 is applied to the reflecting plate 36, reflected by the reflecting plate 36, reflected by the reflecting surface r3, and passed through the mirror 68, the condenser lens 70 and the aperture plate 72. The light is received by the light receiving element 16.

【0027】図7に示すように、第1の発光素子10、
第2の発光素子12の各々にはドライブ回路40、ドラ
イブ回路42が接続されている。ドライブ回路40、4
2にはセンサが要求される測定周期から計算された時分
割駆動周波数で発振する発振器44が接続されている。
このため、第1の発光素子10、第2の発光素子12は
発振器44によってドライブ回路40、ドライブ回路4
2を介して時分割駆動周波数で交互に発光される。この
ドライブ回路40、42及び発振器44は発光コントロ
ール回路を構成する。
As shown in FIG. 7, the first light emitting element 10,
A drive circuit 40 and a drive circuit 42 are connected to each of the second light emitting elements 12. Drive circuit 40, 4
2 is connected to an oscillator 44 that oscillates at a time-sharing drive frequency calculated from a required measurement period of the sensor.
For this reason, the first light emitting element 10 and the second light emitting element 12 are driven by the oscillator 44 into the drive circuit 40 and the drive circuit 4.
The light is alternately emitted at the time-division driving frequency via 2. The drive circuits 40 and 42 and the oscillator 44 constitute a light emission control circuit.

【0028】受光素子16は、対数変換器46、発振器
44の時分割駆動周波数未満のカットオフ周波数を有す
るハイパスフィルタ48を介して全波整流回路50に接
続されている。対数変換器46、ハイパスフィルタ48
及び全波整流回路50は受光信号処理回路を構成する。
The light receiving element 16 is connected to a full-wave rectifier circuit 50 via a logarithmic converter 46 and a high-pass filter 48 having a cut-off frequency lower than the time division driving frequency of the oscillator 44. Logarithmic converter 46, high-pass filter 48
The full-wave rectifier circuit 50 constitutes a light receiving signal processing circuit.

【0029】以下本実施例の動作を説明する。発振器4
4は、ドライブ回路40、42を介して第1の発光素子
10、第2の発光素子12を交互に発光させる。第1の
発光素子10、第2の発光素子12から発光された光は
反射部材64を介して反射板36に照射され、反射板3
6で反射されて受光素子16に受光される。受光素子1
6は受光量に応じたレベルの信号を出力し、この信号は
対数変換器46によって対数変換される。図8の曲線A
は対数変換器46の出力波形を示すものである。対数変
換器46出力はハイパスフィルタ48によって発振器4
4の時分割駆動周波数未満の成分、すなわち直流成分が
除去され、図8の曲線Bに示すように交流成分のみにな
る。この交流成分のピークからピークまでの値(振幅の
2倍)は、第1の発光素子10出力と第2の発光素子1
2出力との比E1/E2の対数になる。全波整流回路5
0は、ハイパスフィルタ48出力を全波整流し、直流に
変換する。したがって、この全波整流回路50出力は車
高センサ34から反射板36までの高さ、即ち車高を表
すことになる。
The operation of this embodiment will be described below. Oscillator 4
Reference numeral 4 alternately causes the first light emitting element 10 and the second light emitting element 12 to emit light via the drive circuits 40 and 42. Light emitted from the first light emitting element 10 and the second light emitting element 12 is applied to the reflecting plate 36 via the reflecting member 64, and
The light is reflected by 6 and received by the light receiving element 16. Light receiving element 1
6 outputs a signal of a level corresponding to the amount of received light, and this signal is logarithmically converted by a logarithmic converter 46. Curve A in FIG.
Shows the output waveform of the logarithmic converter 46. The output of the logarithmic converter 46 is supplied to the oscillator 4 by a high-pass filter 48.
The component below the time-division driving frequency of No. 4, that is, the DC component is removed, leaving only the AC component as shown by the curve B in FIG. The value of the AC component from peak to peak (twice the amplitude) is determined by the output of the first light emitting element 10 and the second light emitting element 1
It is the logarithm of the ratio E1 / E2 with the two outputs. Full-wave rectifier circuit 5
0 performs full-wave rectification on the output of the high-pass filter 48 and converts it to DC. Therefore, the output of the full-wave rectifier circuit 50 indicates the height from the vehicle height sensor 34 to the reflector 36, that is, the vehicle height.

【0030】本実施例によれば、発光コントロール回路
及び受光信号処理回路をアナログ回路によりシンプルに
構成したことにより、センサと一体に組み込むことが可
能となる。このため、メンテナンス性が向上し、小スペ
ース化を図ることができ、取り付け工程の削減を行うこ
とができる。なお、受光信号処理回路は、制御回路38
内に設けてもよい。
According to the present embodiment, since the light emission control circuit and the light reception signal processing circuit are simply constituted by analog circuits, it becomes possible to integrate them with the sensor. For this reason, the maintainability is improved, the space can be reduced, and the number of mounting steps can be reduced. The light-receiving signal processing circuit includes a control circuit 38.
It may be provided inside.

【0031】次に第1実施例の変形例を図9を参照して
説明する。この変形例は、全波整流回路50に代えて半
波整流回路52及びローパスフィルタ54を設けたもの
である。この変形例によれば、ハイパスフィルタ48出
力は半波整流回路52によって半波整流され、ローパス
フィルタ54によって平滑化され第1実施例と同様の車
高信号が得られる。
Next, a modification of the first embodiment will be described with reference to FIG. In this modification, a half-wave rectifier circuit 52 and a low-pass filter 54 are provided instead of the full-wave rectifier circuit 50. According to this modification, the output of the high-pass filter 48 is half-wave rectified by the half-wave rectifier circuit 52 and smoothed by the low-pass filter 54 to obtain the same vehicle height signal as in the first embodiment.

【0032】次に図10を参照して本発明の第2実施例
を説明する。本実施例は第1実施例のハイパスフィルタ
48、全波整流回路50に代えてサンプルホールド回路
と引算回路とを用いたものである。対数変換器46は第
1のサンプルホールド回路58、第2のサンプルホール
ド回路60に接続されている。第1のサンプルホールド
回路58、第2のサンプルホールド回路60は引算回路
62に接続されている。また発振器44は第1の発光素
子10、第2の発光素子12を交互に発光させるのに同
期して第1のサンプルホールド回路58、第2のサンプ
ルホールド回路60で信号がホールドされるように制御
する。
Next, a second embodiment of the present invention will be described with reference to FIG. This embodiment uses a sample-hold circuit and a subtraction circuit in place of the high-pass filter 48 and the full-wave rectifier circuit 50 of the first embodiment. The logarithmic converter 46 is connected to a first sample and hold circuit 58 and a second sample and hold circuit 60. The first sample and hold circuit 58 and the second sample and hold circuit 60 are connected to a subtraction circuit 62. In addition, the oscillator 44 controls the first sample and hold circuit 58 and the second sample and hold circuit 60 to hold a signal in synchronization with the first light emitting element 10 and the second light emitting element 12 alternately emitting light. Control.

【0033】以下本実施例の作用を説明する。発振器4
4は、第1の発光素子10、第2の発光素子12を交互
に発光させるのに同期して第1のサンプルホールド回路
58、第2のサンプルホールド回路60に第1の発光素
子10を発光したときに対数変換器46から出力される
信号、第2の発光素子12を発光させたときに対数変換
器46から出力される信号が各々ホールドされるように
制御する。第1のサンプルホールド回路58、第2のサ
ンプルホールド回路60出力は図11のC、Dに示すよ
うになる。引算回路62は第1のサンプルホールド回路
58出力と第2のサンプルホールド回路60出力との差
を演算し、図11に示す信号Eを出力する。この信号E
は第1実施例と同様に車高を表している。
The operation of this embodiment will be described below. Oscillator 4
Reference numeral 4 indicates that the first sample-and-hold circuit 58 and the second sample-and-hold circuit 60 emit light from the first light-emitting element 10 in synchronization with the first light-emitting element 10 and the second light-emitting element 12 emitting light alternately. The control is performed such that the signal output from the logarithmic converter 46 at the time of performing the operation and the signal output from the logarithmic converter 46 when the second light emitting element 12 emits light are held. The outputs of the first sample and hold circuit 58 and the second sample and hold circuit 60 are as shown in FIGS. The subtraction circuit 62 calculates the difference between the output of the first sample and hold circuit 58 and the output of the second sample and hold circuit 60, and outputs a signal E shown in FIG. This signal E
Represents the vehicle height as in the first embodiment.

【0034】上記では本発明の高さセンサを車高センサ
として用いた例について説明したが、本発明の高さセン
サは、車両用バックセンサ、レベルセンサ、工作機械の
位置センサ等として利用することもできる。また、上記
では2つの反射面によって発光素子から発光された光を
反射する例について説明したが、図12に示すように、
第1の発光素子10の照射方向と第2の発光素子12の
照射方向とが直交するように1対の発光素子を配置し、
ミラー74によって一方の発光素子から発光された光を
反射してもよい。更に、上記では三角錐状の反射部材を
用いたが、通常のミラーを用いるようにしてもよい。ま
た、上記では発光素子を交互に発光させたが、異る波長
の光を発光する発光素子を用いて同時に発光させてもよ
い。この場合には、反射板で反射した光を波長毎に分離
し、2つの受光素子で受光する。
In the above, an example in which the height sensor of the present invention is used as a vehicle height sensor has been described. However, the height sensor of the present invention may be used as a back sensor for vehicles, a level sensor, a position sensor of a machine tool, and the like. Can also. In the above description, an example in which light emitted from the light emitting element is reflected by the two reflecting surfaces has been described. However, as shown in FIG.
A pair of light emitting elements are arranged such that the irradiation direction of the first light emitting element 10 and the irradiation direction of the second light emitting element 12 are orthogonal to each other;
The light emitted from one light emitting element may be reflected by the mirror 74. Furthermore, although a triangular pyramid-shaped reflecting member is used in the above description, a normal mirror may be used. In the above description, the light-emitting elements emit light alternately, but light-emitting elements that emit light of different wavelengths may be emitted simultaneously. In this case, the light reflected by the reflection plate is separated for each wavelength and received by two light receiving elements.

【0035】以上説明したように本実施例によれば、小
スペースのセンサケース内で大きな光路差、すなわちオ
フセット量を確保することができるため、センサの精度
が向上する。また、近距離での測定不能領域を小さくす
ることができ、測定レンジが長くなると共に近・中距離
での測定精度が向上する。
As described above, according to the present embodiment, a large optical path difference, that is, an offset amount can be ensured in the sensor case in a small space, so that the accuracy of the sensor is improved. In addition, the unmeasurable area at a short distance can be reduced, so that the measurement range is extended and the measurement accuracy at a short / medium distance is improved.

【0036】更に、センサを自動車用空気ばね内の車体
側エンドキャップに取付け、空気ばねのばね下側のピス
トン部、又はこれに取付けられた反射板に光を照射する
様に、空気ばねに取付けることで耐震条件が緩和され、
結果として信頼性が向上する。また、泥水や路面からの
石はねからも保護される。
Further, the sensor is mounted on the body-side end cap in the air spring for a vehicle, and is mounted on the air spring so as to irradiate light to a piston portion below the spring of the air spring or a reflector attached thereto. This eases the seismic requirements,
As a result, reliability is improved. It is also protected from muddy water and stones from the road.

【0037】更に、従来の外付センサと異なり、頑丈で
完全防水となる様なケースを必要とせず、例えば、樹脂
性ケースで十分である。この為、軽量小型、低コスト化
が図れる。
Further, unlike a conventional external sensor, a case that is sturdy and completely waterproof is not required. For example, a resin case is sufficient. For this reason, light weight, small size, and low cost can be achieved.

【0038】空気ばね内のセンサは、空気ばね組立時に
容易に空気ばね内に取付可能であり、他の外付センサの
様に、車への取付工数が不要であり、また、取付後の調
整も不要となり、総合的にエアサスペンションのコスト
の低減が可能になる。
The sensor in the air spring can be easily mounted in the air spring at the time of assembling the air spring. Unlike other external sensors, the man-hour for mounting on the vehicle is unnecessary, and adjustment after mounting is performed. Is also unnecessary, and the cost of the air suspension can be reduced comprehensively.

【0039】また、一般産業機械の領域においても、低
コストな光式変位計を提供できる。特に、防振・除振・
免震目的で、空気ばね支持を必要としている設備に対し
て、センサ外付化の必要が無い空気ばねを提供可能とな
り産業上の利用にも十分供せられる。
Further, even in the field of general industrial machinery, a low-cost optical displacement meter can be provided. In particular, anti-vibration, anti-vibration,
For equipment that requires an air spring support for the purpose of seismic isolation, it is possible to provide an air spring that does not require an external sensor, which is sufficient for industrial use.

【0040】更に、自動車走行時の路面高さ検出にも、
外光変化の影響を取り除く工夫、例えば、発光強度を変
調し、受光回路に変調光強度のみを検出するフィルタを
取付ければ(一般に行なわれている)、路面反射率変化
の影響を受けない路面高さセンサとすることも可能であ
る。また、これにより低コストな光学式変位計として一
般産業機械向け変位計も実現できる。
Further, for detecting the height of a road surface when driving a car,
If a device that removes the influence of the external light change, for example, a filter that modulates the light emission intensity and detects only the modulated light intensity is installed in the light receiving circuit (which is generally performed), the road surface that is not affected by the change in the road surface reflectance can be used. It is also possible to use a height sensor. This also makes it possible to realize a displacement meter for general industrial machinery as a low-cost optical displacement meter.

【0041】[0041]

【発明の効果】以上説明したように請求項1の発明によ
れば、近距離でも被測定面までの距離を検出することが
できる測定レンジが長い高さセンサを提供することがで
きる。
As described above, according to the first aspect of the present invention, it is possible to provide a height sensor having a long measuring range capable of detecting the distance to the surface to be measured even at a short distance.

【0042】更に、請求項2の発明によれば、近距離で
も被測定面までの距離を検出することができる高さセン
サを備えた空気ばねを提供することができる。
Further, according to the second aspect of the present invention, it is possible to provide an air spring having a height sensor capable of detecting the distance to the surface to be measured even at a short distance.

【0043】また、請求項3の発明によれば近距離でも
被測定面までの距離を検出することができ、反射面等の
汚れに影響されることなく距離を検出することができる
小型の高さセンサを提供することができる。
According to the third aspect of the present invention , even at a short distance
A small height sensor capable of detecting the distance to the surface to be measured and detecting the distance without being affected by dirt on the reflection surface or the like can be provided.

【0044】[0044]

【0045】これらの空気ばねを車両用に使用すること
で、センサが外部からの石はね、泥、水などから防護さ
れるため故障の少ない信頼性の高い空気ばねシステムを
提供することができる。
By using these air springs for vehicles, it is possible to provide a highly reliable air spring system with few failures since the sensor is protected from stone splashes, mud, water, etc. from the outside. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】発光素子をオフセットさせて配置した高さセン
サの原理を説明するための概略図である。
FIG. 1 is a schematic diagram for explaining the principle of a height sensor in which light emitting elements are arranged offset.

【図2】図1の高さセンサの発光素子出力と高さとの関
係を示す線図である。
FIG. 2 is a diagram showing a relationship between a light emitting element output and a height of the height sensor of FIG. 1;

【図3】空気ばねを車両に取り付けた状態を示す概略図
である。
FIG. 3 is a schematic view showing a state where an air spring is attached to a vehicle.

【図4】空気ばねの断面図である。FIG. 4 is a sectional view of an air spring.

【図5】高さセンサの概略図である。FIG. 5 is a schematic diagram of a height sensor.

【図6】図5の高さセンサの側面図である。FIG. 6 is a side view of the height sensor of FIG. 5;

【図7】第1実施例の高さセンサと信号処理回路のブロ
ック図である。
FIG. 7 is a block diagram of a height sensor and a signal processing circuit according to the first embodiment.

【図8】図7の各部の波形を示す線図である。FIG. 8 is a diagram showing waveforms at various parts in FIG. 7;

【図9】第1実施例の変形例を示すブロック図である。FIG. 9 is a block diagram showing a modification of the first embodiment.

【図10】第2実施例を示すブロック図である。FIG. 10 is a block diagram showing a second embodiment.

【図11】図10の各部の波形を示す線図である。FIG. 11 is a diagram showing waveforms at various parts in FIG. 10;

【図12】発光素子の他の配置例を示す概略図である。FIG. 12 is a schematic view showing another example of the arrangement of the light emitting elements.

【符号の説明】[Explanation of symbols]

20 車体 34 車高センサ 36 反射板 64 反射部材 66,68 ミラー Reference Signs List 20 vehicle body 34 vehicle height sensor 36 reflecting plate 64 reflecting member 66, 68 mirror

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−107709(JP,A) 特開 平3−134509(JP,A) 特開 昭63−259403(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-107709 (JP, A) JP-A-3-134509 (JP, A) JP-A-63-259403 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) G01B 11/00-11/30

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定面から離れた位置に配置された第
1及び第2の発光素子と、 三角錐状に形成されると共にその第1乃至第3の側面が
反射面で構成され、前記第1及び第2の発光素子から発
光された光の一方を第1の側面で反射し、その第1の反
射面から被測定面までの光路と光が反射されなかった発
光素子から被測定面までの光路同士が接近若しくは略一
致し、または、前記第1及び第2の発光素子から発光さ
れた光をそれぞれ第1及び第2の側面で反射し、第1及
び第2の側面から被測定面までの光路同士が接近若しく
は略一致する反射手段と、 前記第1及び第2の発光素子から発光されて被測定面で
反射された光を受光すると共に受光量に応じた信号を出
力する受光素子と、 を含む高さセンサ。
A first light-emitting element disposed at a position distant from a surface to be measured; and a triangular pyramid-shaped first to third side surface formed of a reflective surface. One of the light emitted from the first and second light emitting elements is reflected by the first side surface, and the light path from the first reflection surface to the surface to be measured and the light from the light emitting device whose light is not reflected to the surface to be measured Or the light paths approaching or substantially coincide with each other, or the light emitted from the first and second light emitting elements is reflected by the first and second side surfaces, respectively, and measured from the first and second side surfaces. A reflection unit whose optical paths to the surface approach or substantially coincide with each other; and a light receiving unit that receives light emitted from the first and second light emitting elements and reflected by the surface to be measured and outputs a signal corresponding to the amount of received light. A height sensor comprising: an element;
【請求項2】 ばね上側部材及びばね下側部材の一方に
反射板が取り付けられ、ばね上側部材及びばね下側部材
の他方に第1及び第2の発光素子と該第1及び第2の発
光素子から発光されて反射板で反射された光を受光する
と共に受光量に応じた信号を出力する受光素子とが取り
付けられた空気ばねにおいて、 三角錐状に形成されると共にその第1乃至第3の側面が
反射面で構成され、前記第1及び第2の発光素子から発
光された光の一方を第1の側面で反射し、その第1の反
射面から被測定面までの光路と光が反射されなかった発
光素子から被測定面までの光路同士が接近若しくは略一
致し、または、前記第1及び第2の発光素子から発光さ
れた光をそれぞれ第1及び第2の側面で反射し、第1及
び第2の側面から被測定面までの光路同士が接近若しく
は略一致する反射手段を設けたことを特徴とする空気ば
ね。
2. A reflection plate is attached to one of the sprung member and the unsprung member, and first and second light emitting elements and the first and second light emitting elements are mounted on the other of the sprung member and the unsprung member. A light receiving element for receiving light emitted from the element and reflected by the reflecting plate and outputting a signal corresponding to the amount of received light, the triangular pyramid-shaped air spring and the first to third parts thereof. Is formed by a reflection surface, and one of the lights emitted from the first and second light emitting elements is reflected by the first side surface, and an optical path and light from the first reflection surface to the surface to be measured are formed. The optical paths from the unreflected light emitting element to the surface to be measured approach or substantially coincide with each other, or the light emitted from the first and second light emitting elements is reflected by the first and second side surfaces, respectively, Optical paths from the first and second side surfaces to the surface to be measured Air spring, characterized in that a reflecting means for approaching or substantially coincide.
【請求項3】 被測定面から略同一の距離を有し、略同
一の平面上に配置された第1及び第2の発光素子と、三角錐状に形成されると共にその第1乃至第3の側面が
反射面で構成され、前記第1及び第2の発光素子から発
光された光の一方を第1の側面で反射し、その第1の反
射面から被測定面までの光路と光が反射されなかった発
光素子から被測定面までの光路同士が接近若しくは略一
致し、または、前記第1及び第2の発光 素子から発光さ
れた光をそれぞれ第1及び第2の側面で反射し、第1及
び第2の側面から被測定面までの光路同士が接近若しく
は略一致する第1の反射手段と、 第1及び第2の発光素子と略同一の平面上に配置され、
第1の発光素子から被測定面までの光路長と第2の発光
素子から被測定面までの光路長との間に光路差が生じる
ように、第1及び第2の発光素子から発光された光の少
なくとも一方を反射する第2の反射手段と、 前記第1及び第2の発光素子から発光されて被測定面で
反射された光を受光すると共に受光量に応じた信号を出
力する受光素子と、 を含む高さセンサ。
3. The first and second light-emitting elements having substantially the same distance from the surface to be measured and arranged on substantially the same plane, and the first to third light-emitting elements formed in a triangular pyramid shape. Side of
The first and second light emitting elements are composed of a reflection surface.
One of the light beams is reflected by the first side surface, and the first light is reflected by the first side surface.
The optical path from the launch surface to the surface to be measured and the source where light was not reflected
The optical paths from the optical element to the surface to be measured are close or almost
Or light is emitted from the first and second light emitting elements.
The reflected light is reflected by the first and second side surfaces, respectively.
The optical paths from the second side to the surface to be measured are close to each other
Are disposed on substantially the same plane as the first reflecting means and the first and second light-emitting elements, which substantially coincide with each other;
Light was emitted from the first and second light emitting elements such that an optical path difference was generated between the optical path length from the first light emitting element to the surface to be measured and the optical path length from the second light emitting element to the surface to be measured. A second reflecting means for reflecting at least one of the light; a light receiving element for receiving light emitted from the first and second light emitting elements and reflected on the surface to be measured and outputting a signal corresponding to the amount of received light And a height sensor comprising:
JP00235592A 1992-01-09 1992-01-09 Height sensor and air spring Expired - Fee Related JP3187496B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP00235592A JP3187496B2 (en) 1992-01-09 1992-01-09 Height sensor and air spring
US07/997,870 US5337137A (en) 1992-01-09 1992-12-29 Height sensor and air spring device incorporating the same
DE69309117T DE69309117T2 (en) 1992-01-09 1993-01-07 Air spring containing a distance sensor
EP93300084A EP0551986B1 (en) 1992-01-09 1993-01-07 Height sensor and air spring device incorporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00235592A JP3187496B2 (en) 1992-01-09 1992-01-09 Height sensor and air spring

Publications (2)

Publication Number Publication Date
JPH06201331A JPH06201331A (en) 1994-07-19
JP3187496B2 true JP3187496B2 (en) 2001-07-11

Family

ID=11526965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00235592A Expired - Fee Related JP3187496B2 (en) 1992-01-09 1992-01-09 Height sensor and air spring

Country Status (4)

Country Link
US (1) US5337137A (en)
EP (1) EP0551986B1 (en)
JP (1) JP3187496B2 (en)
DE (1) DE69309117T2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029357B2 (en) * 1993-04-05 2000-04-04 三菱電機株式会社 Dirt detection device for distance measuring device
US5859692A (en) * 1997-05-16 1999-01-12 Rochester Gauges, Inc. Height sensor and air spring apparatus incorporating the same in the air chamber
DE19729274A1 (en) * 1997-07-09 1999-01-14 Wabco Gmbh Method for changing the height of at least one area of a vehicle body
US7275607B2 (en) 1999-06-04 2007-10-02 Deka Products Limited Partnership Control of a personal transporter based on user position
ES2162733B1 (en) * 1999-06-16 2003-04-01 Univ Madrid Carlos Iii DISPLACEMENT SENSOR FOR A SHOCK ABSORBER.
JP2004511379A (en) * 2000-05-25 2004-04-15 ザ ホランド グループ,インコーポレイテッド Height control system and sensor therefor
KR100418615B1 (en) * 2001-03-22 2004-02-11 기아자동차주식회사 Air spring auxiliary system for vehicle
US6655215B2 (en) * 2001-06-15 2003-12-02 Honeywell International Inc. Inverse corner cube for non-intrusive three axis vibration measurement
WO2004007264A1 (en) 2002-07-12 2004-01-22 Deka Products Limited Partnership Control of a transporter based on attitude
DE102004038239A1 (en) * 2004-08-05 2006-03-16 Vibracoustic Gmbh & Co. Kg Air spring with integrated optical level sensor
JP4580737B2 (en) * 2004-11-22 2010-11-17 株式会社ブリヂストン Air spring
US7490817B2 (en) * 2005-01-04 2009-02-17 Bfs Diversified Products Llc Distance indicating system and method
US7364144B2 (en) 2005-04-27 2008-04-29 Bfs Diversified Products, Llc Sensing and communication system and method
WO2006130492A1 (en) * 2005-05-28 2006-12-07 Bfs Diversified Products Air spring assembly with localized signal processing, system and method utilizing same, as well as operating module therefor
US7420462B2 (en) * 2006-01-23 2008-09-02 Bfs Diversified Products, Llc Air spring distance indicating system and method
US7733239B2 (en) * 2006-05-08 2010-06-08 Bfs Diversified Products, Llc Distance determining system and method
DE102008033820B4 (en) 2008-07-19 2015-06-25 Audi Ag Motor vehicle with active suspension
CA2764155C (en) 2009-06-01 2014-02-25 Firestone Industrial Products Company, Llc Height control module, gas spring assembly and method
KR101091515B1 (en) * 2009-09-14 2011-12-08 대성전기공업 주식회사 Remote touch pad device of vehicle and control method of the same
US8868294B2 (en) 2012-09-28 2014-10-21 Firestone Industrial Products Company, Llc Adjustable hysteresis circuit for control of air suspension
TWI543751B (en) * 2013-12-20 2016-08-01 緯創資通股份有限公司 Height measuring apparatus and method thereof
CN104180756B (en) * 2014-08-27 2017-02-15 国家电网公司 Method for measuring relative displacement of butt-joint pieces through laser displacement sensors
EP3006891B1 (en) * 2014-10-10 2019-04-03 Torque and More (TAM) GmbH Air spring with a distance measurement arrangement using infrared
US10926756B2 (en) 2016-02-23 2021-02-23 Deka Products Limited Partnership Mobility device
US11399995B2 (en) 2016-02-23 2022-08-02 Deka Products Limited Partnership Mobility device
US10908045B2 (en) 2016-02-23 2021-02-02 Deka Products Limited Partnership Mobility device
MX2018010241A (en) 2016-02-23 2019-06-06 Deka Products Lp Mobility device control system.
DK4043982T3 (en) 2016-04-14 2024-01-29 Deka Products Lp USER CONTROL DEVICE FROM A CARRIER
CN106627633A (en) * 2016-12-09 2017-05-10 中车长春轨道客车股份有限公司 Photoelectric secondary-suspension height monitoring and adjusting device and air spring structure with device
USD846452S1 (en) 2017-05-20 2019-04-23 Deka Products Limited Partnership Display housing
EP3803736A1 (en) 2018-06-07 2021-04-14 DEKA Products Limited Partnership System and method for distributed utility service execution
DE102021214579A1 (en) * 2021-12-17 2023-06-22 Contitech Ag air spring arrangement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2591330B1 (en) * 1985-12-11 1990-02-02 Crouzet Sa OPTOELECTRONIC POSITION AND MOVEMENT SENSOR
US4752799A (en) * 1986-07-07 1988-06-21 Honeywell Inc. Optical proximity sensing optics
FR2615279B1 (en) * 1987-05-11 1990-11-02 Commissariat Energie Atomique DISPLACEMENT SENSOR WITH OFFSET FIBER OPTICS
JPH0616087B2 (en) * 1987-09-22 1994-03-02 スタンレー電気株式会社 Photoelectric detector
US4817922A (en) * 1987-10-23 1989-04-04 The Goodyear Tire & Rubber Company Airspring height sensor
US4798369A (en) * 1987-11-03 1989-01-17 The Firestone Tire & Rubber Company Ultrasonic air spring system
EP0419082B1 (en) * 1989-09-21 1996-04-17 Stanley Electric Corporation Optical distance gauging apparatus
JP3069408B2 (en) * 1991-08-09 2000-07-24 株式会社ブリヂストン Height sensor and air spring

Also Published As

Publication number Publication date
DE69309117D1 (en) 1997-04-30
EP0551986A1 (en) 1993-07-21
JPH06201331A (en) 1994-07-19
EP0551986B1 (en) 1997-03-26
DE69309117T2 (en) 1997-07-03
US5337137A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
JP3187496B2 (en) Height sensor and air spring
US5229829A (en) Height sensor and air cushion
KR101638273B1 (en) Optoelectronic sensor device, particularly laser scanner, with an adapted receiving unit for optimized reception level reduction
US20100060885A1 (en) Method and device for performing optical suspension measurement
US8345096B2 (en) Sensor and apparatus for vehicle height measurement
US6275145B1 (en) Apparatus to help prevent temporary blinding of drivers
JPH11304407A (en) Vehicle height sensor and device for adjusting optical axis of headlight for vehicle
JPH03500814A (en) Device for recognizing road conditions
JPH1068635A (en) Optical position detector
US20210293942A1 (en) Method of calculating distance-correction data, range-finding device, and mobile object
DE50111185D1 (en) Automotive air spring system with ultrasonic measuring arrangement
FR2769085B1 (en) DEVICE FOR ADJUSTING THE ALIGNMENT OF A RADAR FOR AUTOMOBILES
ITRM950740A1 (en) GLASSES FOR THE BLIND AND DEAF-BLIND, EQUIPPED WITH SENSORS ABLE TO REVEAL OBSTACLES AND INDICATE THE DISTANCE
JP2004021774A (en) Mobile working robot
JPS61260113A (en) Detector for tilt angle of plane
JP3132178B2 (en) Vehicle reflection measurement device
JPH08160123A (en) Structure for installing reflection type photoelectric sensor and structure for fitting cover
JPH0721409B2 (en) Optical distance detector
JPS622526Y2 (en)
JPH04481Y2 (en)
JP3203795B2 (en) Obstacle detection device for vehicles
JPH0533922Y2 (en)
RU2044264C1 (en) Optical displacement transmitter
JPS60163350U (en) Raindrop detector for vehicles
CN110275216A (en) Photoelectric sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees