JP3185351B2 - Positive electrode of metal-halogen battery - Google Patents

Positive electrode of metal-halogen battery

Info

Publication number
JP3185351B2
JP3185351B2 JP12092592A JP12092592A JP3185351B2 JP 3185351 B2 JP3185351 B2 JP 3185351B2 JP 12092592 A JP12092592 A JP 12092592A JP 12092592 A JP12092592 A JP 12092592A JP 3185351 B2 JP3185351 B2 JP 3185351B2
Authority
JP
Japan
Prior art keywords
positive electrode
layer
activated carbon
specific surface
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12092592A
Other languages
Japanese (ja)
Other versions
JPH05314992A (en
Inventor
明彦 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP12092592A priority Critical patent/JP3185351B2/en
Publication of JPH05314992A publication Critical patent/JPH05314992A/en
Application granted granted Critical
Publication of JP3185351B2 publication Critical patent/JP3185351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金属−ハロゲン電池、例
えば亜鉛−臭素電池の正極電極に係り、特に活性炭素繊
維を用いた正極活性層に関する。
The present invention relates to a positive electrode of a metal-halogen battery, for example, a zinc-bromine battery, and more particularly to a positive electrode active layer using activated carbon fibers.

【0002】[0002]

【従来の技術】金属−ハロゲン電池、例えば亜鉛−臭素
電池の正極は、カーボンプラスチックから成る電極基板
とその表面に形成した活性層とからなる。活性層には従
来から活性炭素繊維が電極基板に熱圧着して用いられて
いる。これら活性炭素繊維は、形態としてはクロス、フ
ェルト、ペーパー等があり、いずれのものも使用可能で
ある。活性炭素繊維自体の比表面積はその賦活のされ方
で大小が決まり、賦活が多いほど比表面積は大きくなっ
ている。電池の正極特性としては、正極活性層となる活
性炭素繊維の比表面積が大きいほど優れた特性を示すの
が一般的である。
2. Description of the Related Art The positive electrode of a metal-halogen battery, for example, a zinc-bromine battery, comprises an electrode substrate made of carbon plastic and an active layer formed on the surface thereof. Activated carbon fibers are conventionally used for the active layer by thermocompression bonding to an electrode substrate. These activated carbon fibers may be in the form of cloth, felt, paper, or the like, and any of them can be used. The specific surface area of the activated carbon fiber itself is determined by its activation method, and the specific surface area increases as the activation increases. As for the positive electrode characteristics of a battery, it is common that the larger the specific surface area of the activated carbon fiber to be the positive electrode active layer, the better the characteristics.

【0003】しかしながら比表面積が大きく、賦活の度
合いが大きい活性炭素繊維は、機械強度が低下したり繊
維径が細くなるため繊維が破壊して脱落することがあ
る。また電解液により繊維同士が密着して活性点が少な
くなるというデメリットも認められている。すなわち比
表面積の大きい活性炭素繊維のみで構成される正極活性
層はそれ本来の特徴を十分発揮されずに用いられている
ケースが多かった。
[0003] However, activated carbon fibers having a large specific surface area and a high degree of activation may be broken and fall off because the mechanical strength is reduced or the fiber diameter is reduced. In addition, a disadvantage that fibers are brought into close contact with each other due to the electrolyte and the number of active points is reduced is also recognized. That is, in many cases, the positive electrode active layer composed only of the activated carbon fiber having a large specific surface area is used without sufficiently exhibiting its original characteristics.

【0004】従来、電解液の浸透が良く且つ電池の反応
に関して有効な活性点を生かすため、例えば特願平3−
248706号に記載の正極電極のように、正極活性層
を異なる繊維径及び比表面積を有する複数の活性炭素繊
維の積層体とすることが提案されている。この正極電極
は図3に示すように、熱圧着により電極基板2と一体成
形される正極活性層1を、異なる繊維径及び比表面積を
有する複数の活性炭素繊維の積層体とし、各層の繊維径
を、第1層の活性炭素繊維径>第2層の活性炭素繊維径
>第3層の活性炭素繊維径になるように構成し、且つ各
層の比表面積を、第1層の活性炭素繊維の比表面積<第
2層の活性炭素繊維の比表面積<第3層の活性炭素繊維
の比表面積になるように構成したものである。
[0004] Conventionally, in order to make use of active points which have good electrolyte penetration and are effective in battery reaction, for example, Japanese Patent Application No. Hei.
As in the positive electrode described in Japanese Patent No. 248706, it has been proposed that the positive electrode active layer be a laminate of a plurality of activated carbon fibers having different fiber diameters and specific surface areas. As shown in FIG. 3, in this positive electrode, a positive electrode active layer 1 integrally formed with an electrode substrate 2 by thermocompression bonding is a laminate of a plurality of activated carbon fibers having different fiber diameters and specific surface areas. Is configured so that the activated carbon fiber diameter of the first layer> the activated carbon fiber diameter of the second layer> the activated carbon fiber diameter of the third layer, and the specific surface area of each layer is set to the value of the activated carbon fiber of the first layer. The specific surface area <the specific surface area of the activated carbon fibers of the second layer <the specific surface area of the activated carbon fibers of the third layer.

【0005】[0005]

【発明が解決しようとする課題】図3の正極電極は、電
解液中の活物質である臭素の浸透が良いと同時に活性点
も減少しないように繊維径の異なる活性炭繊維を層状に
配列しており、それら活性炭繊維の分散及びバインダー
としてカーボンペーストを使用していた。
The positive electrode shown in FIG. 3 is formed by arranging activated carbon fibers having different fiber diameters in layers so that bromine, which is an active material in an electrolytic solution, is well penetrated and active points are not reduced. Therefore, carbon paste was used as a dispersion of the activated carbon fibers and a binder.

【0006】カーボンペーストは使用上容易であり、分
散材としても妥当であるが、成形して得られた正極表面
処理層は、機械強度が弱く、電解液の浸透時間が長期に
渡ると臭素による腐食も加わり、繊維の脱落や繊維層間
隔の増加が起こって、しだいに活性力が低下するという
欠点がある。
The carbon paste is easy to use and is suitable as a dispersant. However, the positive electrode surface treatment layer obtained by molding has low mechanical strength. In addition to corrosion, there is a drawback that the fibers fall off and the spacing between the fiber layers increases, and the activity gradually decreases.

【0007】また図3の正極電極はヒートプレスによる
一体成形を行っているので、繊維間隙を閉塞するまで高
密度になってしまうという欠点がある。
Further, since the positive electrode of FIG. 3 is integrally formed by heat press, there is a disadvantage that the density becomes high until the fiber gap is closed.

【0008】本発明は上記の点に鑑みてなされたもので
その目的は、電解液の浸透が良く且つ電池の反応に関し
て有効な活性点を生かすことができるとともに、接着強
度を高めて1000サイクル以上の長寿命化を図った金
属−ハロゲン電池の正極電極を提供することにある。
The present invention has been made in view of the above points, and its object is to make it possible to make use of active sites which have good penetration of an electrolytic solution and are effective with respect to the reaction of a battery, and which have an increased adhesive strength and can be used for 1000 cycles or more. It is an object of the present invention to provide a positive electrode of a metal-halogen battery which has a longer life.

【0009】[0009]

【課題を解決するための手段】本発明は、カーボンプラ
スチックから成る電極基板と、前記電極基板に重置され
る複数の活性炭素繊維の正極活性層であって、該複数の
活性炭素繊維の繊維径および比表面積を、前記基板側か
n番目(nは正の整数)の層の繊維径がn+1番目の
層の繊維径よりも小さく、且つ前記基板側からn番目の
層の比表面積がn+1番目の層の比表面積よりも大きく
なるように構成した正極活性層とを、カーボンペースト
に前記電極基板と同一組成のカーボンプラスチック成形
用粉末混合物を添加したものをバインダーとして用い、
加熱乾燥させて一体成形したことを特徴としている。
According to the present invention, there is provided an electrode substrate made of carbon plastic, and a positive electrode active layer of a plurality of activated carbon fibers superposed on the electrode substrate. The fiber diameter of the n-th layer from the substrate side (n is a positive integer) is smaller than the fiber diameter of the n + 1-th layer from the substrate side, and the specific surface area of the n-th layer from the substrate side is n + 1 The positive electrode active layer configured to be larger than the specific surface area of the second layer, using a carbon paste and a powder mixture for carbon plastic molding having the same composition as the electrode substrate as a binder, using as a binder,
It is characterized by being dried by heating and integrally molded.

【0010】[0010]

【作用】繊維径の異なる活性炭素繊維層はバインダー
の、例えばポリエチレンおよびカーボンブラックを混合
したカーボンペースト液によく分散され、且つ密着性が
増す。従来のようなヒートプレスによる一体成形ではな
いので、繊維間隙を閉塞するまで高密度にならず、電解
液の浸透に対しては十分スムーズな繊維層の配列を保持
させる。正極活性層と電極基板の接触が良くなり、寿命
が増す。
The activated carbon fiber layers having different fiber diameters are well dispersed in a binder, for example, a carbon paste liquid in which polyethylene and carbon black are mixed, and the adhesion is increased. Since it is not the integral molding by the conventional heat press, the density is not increased until the fiber gap is closed, and the arrangement of the fiber layers is sufficiently smooth for the permeation of the electrolyte. The contact between the positive electrode active layer and the electrode substrate is improved, and the life is increased.

【0011】前記正極活性層のうち、電極基板から最も
離れた最上段の活性層は、比表面積が最も小さい反面、
活性炭素繊維の径は最も大きい。このため繊維間隙が大
きいため電解液が浸透しやすくぬれ性が高い。また前記
最上段の活性層から電極基板に近ずくにつれて各層の比
表面積は段階的に大きく、活性炭素繊維の径は段階的に
小さくなる。このため電解液が浸入しやすく充放電時の
反応性が高い。
Among the positive electrode active layers, the uppermost active layer farthest from the electrode substrate has the smallest specific surface area,
The diameter of the activated carbon fiber is the largest. For this reason, since the fiber gap is large, the electrolyte easily penetrates and the wettability is high. The specific surface area of each layer gradually increases as the uppermost active layer approaches the electrode substrate, and the diameter of the activated carbon fiber gradually decreases. Therefore, the electrolyte easily penetrates, and the reactivity at the time of charge and discharge is high.

【0012】このように正極活性層は、従来のように比
表面積の大きい活性炭素繊維のみの単層構造ではなく、
繊維径および比表面積の異なる数種類の活性炭素繊維を
段階的に積層しているので、従来のように活性炭素繊維
が破壊したり、繊維同志が密着して活性点が少なくなる
ようなことはない。
[0012] As described above, the positive electrode active layer is not a single layer structure composed of only the activated carbon fiber having a large specific surface area as in the related art.
Since several types of activated carbon fibers with different fiber diameters and specific surface areas are laminated stepwise, the activated carbon fibers do not break down as in the past, or the active points are reduced due to the close contact between the fibers. .

【0013】[0013]

【実施例】以下図面を参照しながら本発明の一実施例を
説明する。本発明では、分散剤及びバインダーとして使
用しているカーボンペーストに、さらにその効果を増加
させるため、電極基板のカーボンプラスチックと同一組
で相様性のあるポリエチレンとカーボンブラックの混
合物を少量添加させ、図3と同様に活性炭素繊維層を電
極基板上に段階的に配置した後、ヒートプレスで熱圧着
せず、熱風乾燥機または電気炉で130℃程度で加熱乾
燥させ一体化する方法を講じた。
An embodiment of the present invention will be described below with reference to the drawings. In the present invention, in order to further increase the effect of the carbon paste used as the dispersant and the binder, the same set as the carbon plastic of the electrode substrate is used.
After adding a small amount of a mixture of synthetic and similar polyethylene and carbon black, and arranging the activated carbon fiber layer stepwise on the electrode substrate in the same manner as in FIG. Alternatively, a method of heating and drying at about 130 ° C. in an electric furnace to integrate them was adopted.

【0014】このような方法によれば繊維径の異なる活
性炭素繊維層はバインダーの、例えばポリエチレンおよ
びカーボンブラックを混合したカーボンペースト液によ
く分散され、且つ密着性が増す。従来のようなヒートプ
レスによる一体成形ではないので、繊維間隙を閉塞する
まで高密度にならず、電解液の浸透に対しては十分スム
ーズな繊維層の配列を保持させる状況となる。
According to such a method, the activated carbon fiber layers having different fiber diameters are well dispersed in a binder, for example, a carbon paste liquid in which polyethylene and carbon black are mixed, and the adhesion is increased. Since it is not the integral molding by the conventional heat press, the density is not increased until the fiber gap is closed, and the arrangement of the fiber layers is sufficiently smooth for the permeation of the electrolyte.

【0015】正極活性層1は電極基板2に最も近接する
第3層に比表面積の大きい活性炭素繊維を配し、電解液
と接する方向に従って比表面積の小さい、且つ繊維径と
しては大きい活性炭素繊維で構成される層を配するもの
である。この構造の正極活性層1は、第1層の比表面積
は小さいが繊維径が大きいため繊維間隙が大きく電解液
が浸透し易いためにぬれ性が高く、第2層から第3層へ
と電極基板2に近づくに従って繊維間隙が小さくなる
が、従来の1層構造のものに比べると段階的であるた
め、比表面積が大きくなっていく割には電解液が浸入し
易く、反応性が高いという特徴を持つものである。
In the positive electrode active layer 1, activated carbon fibers having a large specific surface area are arranged in a third layer closest to the electrode substrate 2, and activated carbon fibers having a small specific surface area in the direction of contact with the electrolyte and having a large fiber diameter. Is provided. In the positive electrode active layer 1 having this structure, the specific surface area of the first layer is small, but the fiber diameter is large, the fiber gap is large, and the electrolyte is easily penetrated, so that the wettability is high. Although the fiber gap becomes smaller as approaching the substrate 2, it is gradual as compared with the conventional one-layer structure, so that although the specific surface area increases, the electrolyte easily penetrates and the reactivity is high. It has characteristics.

【0016】次に本発明の具体的な実施例を述べる。図
1において、電極基板2にカーボンプラスチック電極
(ポリエチレン/カーボンブラック/グラファイト=5
0/15/35重量比)を用いる。そして正極活性層1
には、次の3タイプの繊維状活性炭を用いる。即ちタイ
プA−10(繊維径14μm、比表面積1000m2
g)を第1層に、タイプA−15(繊維径12μm、比
表面積1500m2/g)を第2層に、タイプA−20
(繊維径11μm、比表面積2000m2/g)を第3
層に各々用いる。
Next, a specific embodiment of the present invention will be described. In FIG. 1, a carbon plastic electrode (polyethylene / carbon black / graphite = 5) is formed on an electrode substrate 2.
0/15/35 weight ratio). And the positive electrode active layer 1
The following three types of fibrous activated carbon are used. That is, type A-10 (fiber diameter 14 μm, specific surface area 1000 m 2 /
g) in the first layer, type A-15 (fiber diameter 12 μm, specific surface area 1500 m 2 / g) in the second layer, type A-20
(Fiber diameter 11 μm, specific surface area 2000 m 2 / g)
Used for each layer.

【0017】これら第1〜第3層の繊維状活性炭を図示
のように段階的に配置し、カーボンペースト液に電極基
板2と同一組成のポリエチレン、カーボンブラック及び
グラファイトの粉末混合物を分散させ、泥状にしたもの
をバインダー3として用いて成形し、熱風乾燥機で約1
30℃で加熱乾燥させ一体化した。
The fibrous activated carbons of the first to third layers are arranged stepwise as shown in the figure, and a powder mixture of polyethylene, carbon black and graphite having the same composition as the electrode substrate 2 is dispersed in a carbon paste solution. The mixture was molded as a binder 3 using a hot air drier for about 1 hour.
It was dried by heating at 30 ° C. and integrated.

【0018】この電極を(A)とし、比較のためバイン
ダーにカーボンペーストのみを使用し、ヒートプレスで
一体化した従来方法の電極を(B)として特性を検討し
た。これら電極(A)及び電極(B)をそれぞれ正極と
して電池を構成し、30℃、電流密度36mA/cm2
で3時間充電し、同電流密度で放電させる条件で加速寿
命テストを行った。その結果エネルギー効率とサイクル
数の関係は図2のように示される。従来の電極(B)で
は800サイクル程度で電極特性が低下したが、電極
(A)では正極活性層と電極基板との接触が良くサイク
ル数が増加した。
The characteristics of this electrode were evaluated as (A), and for comparison, the characteristics of the conventional electrode integrated with a heat press using only carbon paste as a binder were examined as (B). A battery was constructed using these electrodes (A) and (B) as positive electrodes, respectively, at 30 ° C. and a current density of 36 mA / cm 2.
, And an accelerated life test was performed under the conditions of discharging at the same current density. As a result, the relationship between the energy efficiency and the number of cycles is shown in FIG. In the conventional electrode (B), the electrode characteristics deteriorated after about 800 cycles, but in the electrode (A), the contact between the positive electrode active layer and the electrode substrate was good and the number of cycles increased.

【0019】尚前記実施例では正極活性層1をタイプA
−10、タイプA−15、タイプA−20の3層構造に
しているが、これに限らず異なる繊維径および比表面積
を有する他の活性炭素繊維を用いて多層構造にしても良
い。
In the above embodiment, the positive electrode active layer 1 is of type A
Although it has a three-layer structure of -10, type A-15, and type A-20, the present invention is not limited to this, and a multi-layer structure using other activated carbon fibers having different fiber diameters and specific surface areas may be used.

【0020】[0020]

【発明の効果】以上のように本発明によれば、カーボン
ペーストに電極基板と同一組成のカーボンプラスチック
成形用粉末混合物を添加したものをバインダーとし、電
極基板と、繊維径および比表面積の異なる種類の活性炭
素繊維で2層以上段階的に配置して構成した正極活性層
とを、加熱乾燥させて一体成形したので、従来の電極よ
りも正極活性層と電極基板との接着強度が増加し、また
従来のようにヒートプレスを行わないため、活性点の減
少もない長寿命な正極電極が得られる。
As described above, according to the present invention, carbon paste obtained by adding a powder mixture for forming a carbon plastic having the same composition as an electrode substrate to a carbon paste is used as a binder. Since the positive electrode active layer formed by arranging two or more layers of activated carbon fibers in a stepwise manner is heated and dried and integrally molded, the adhesive strength between the positive electrode active layer and the electrode substrate is increased as compared with a conventional electrode, Further, since heat pressing is not performed as in the related art, a long-life positive electrode having no decrease in active points can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す正極電極の断面図。FIG. 1 is a cross-sectional view of a positive electrode showing one embodiment of the present invention.

【図2】従来の電池と本発明の正極電極を用いた電池
の、エネルギー効率とサイクル数の関係を示す特性図。
FIG. 2 is a characteristic diagram showing the relationship between energy efficiency and the number of cycles between a conventional battery and a battery using the positive electrode of the present invention.

【図3】従来の亜鉛−臭素電池の正極電極の一例を示す
断面図。
FIG. 3 is a sectional view showing an example of a positive electrode of a conventional zinc-bromine battery.

【符号の説明】[Explanation of symbols]

1…正極活性層 2…電極基板 3…バインダー層 DESCRIPTION OF SYMBOLS 1 ... Positive electrode active layer 2 ... Electrode substrate 3 ... Binder layer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 カーボンプラスチックから成る電極基板
と、前記電極基板に重置される複数の活性炭素繊維の正
極活性層であって、該複数の活性炭素繊維の繊維径およ
び比表面積を、前記基板側からn番目(nは正の整数)
の層の繊維径がn+1番目の層の繊維径よりも小さく、
且つ前記基板側からn番目の層の比表面積がn+1番目
の層の比表面積よりも大きくなるように構成した正極活
性層とを、カーボンペーストに前記電極基板と同一組成
のカーボンプラスチック成形用粉末混合物を添加したも
のをバインダーとして用い、加熱乾燥させて一体成形し
たことを特徴とする金属−ハロゲン電池の正極電極。
1. An electrode substrate made of carbon plastic, and a positive electrode active layer of a plurality of activated carbon fibers superposed on the electrode substrate, wherein the fiber diameter and specific surface area of the plurality of activated carbon fibers are determined by the substrate. Nth from the side (n is a positive integer)
Layer is smaller than the fiber diameter of the (n + 1) th layer,
And a positive electrode active layer configured such that the specific surface area of the n-th layer from the substrate side is larger than the specific surface area of the (n + 1) -th layer. A positive electrode for a metal-halogen battery, wherein the positive electrode is formed by heating and drying to form an integral body, using a binder to which the compound (1) is added.
JP12092592A 1992-05-14 1992-05-14 Positive electrode of metal-halogen battery Expired - Fee Related JP3185351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12092592A JP3185351B2 (en) 1992-05-14 1992-05-14 Positive electrode of metal-halogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12092592A JP3185351B2 (en) 1992-05-14 1992-05-14 Positive electrode of metal-halogen battery

Publications (2)

Publication Number Publication Date
JPH05314992A JPH05314992A (en) 1993-11-26
JP3185351B2 true JP3185351B2 (en) 2001-07-09

Family

ID=14798382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12092592A Expired - Fee Related JP3185351B2 (en) 1992-05-14 1992-05-14 Positive electrode of metal-halogen battery

Country Status (1)

Country Link
JP (1) JP3185351B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4266699B2 (en) * 2002-12-02 2009-05-20 三菱レイヨン株式会社 Porous electrode substrate for polymer electrolyte fuel cell and method for producing the same

Also Published As

Publication number Publication date
JPH05314992A (en) 1993-11-26

Similar Documents

Publication Publication Date Title
CA1204472A (en) Sheet-shaped polymer secondary battery of layer built type
ITTO940099A1 (en) LEAD-ACID BIPOLAR BATTERY.
CN109167099B (en) High-safety battery and preparation method thereof
US4740434A (en) Surface treated electrodes applicable to zinc-halogen secondary batteries
JP3347439B2 (en) Polymer solid electrolyte lithium secondary battery and method of manufacturing the same
JP2019536230A (en) Electrode assembly and lithium secondary battery including the same
JP3185351B2 (en) Positive electrode of metal-halogen battery
KR100274892B1 (en) Lithium secondary battery
US20020177037A1 (en) Method for producing a separator/electrode assembly for electrochemical elements
US3490952A (en) Dry cell battery
JP3028869B2 (en) Positive electrode of metal-halogen battery
JPH10106627A (en) Lithium battery
JP3168777B2 (en) Zinc-bromine battery electrodes
JPH0445937B2 (en)
JPH056775A (en) Manufacture of solid secondary battery
EP0136099B1 (en) Plastics electrode secondary battery
JP2732442B2 (en) Manufacturing method of solid state secondary battery
JPH0722030A (en) Positive electrode active material layer forming method
JPH0315167A (en) Solid state secondary battery
JPS6381763A (en) Enclosed type alkaline storage battery
JPH07169507A (en) Polymer solid electrolytic battery
US4304270A (en) Process for manufacturing of battery plates
JPH0713178Y2 (en) Zinc bromide battery electrode
JPH0414466B2 (en)
JPS6293867A (en) Vitreous carbon composite electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees