JPS6293867A - Vitreous carbon composite electrode - Google Patents

Vitreous carbon composite electrode

Info

Publication number
JPS6293867A
JPS6293867A JP60233452A JP23345285A JPS6293867A JP S6293867 A JPS6293867 A JP S6293867A JP 60233452 A JP60233452 A JP 60233452A JP 23345285 A JP23345285 A JP 23345285A JP S6293867 A JPS6293867 A JP S6293867A
Authority
JP
Japan
Prior art keywords
electrode
composite
carbon
bromine
vitreous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60233452A
Other languages
Japanese (ja)
Inventor
Akihiko Hirota
広田 明彦
Takashi Hashimoto
敬史 橋本
Toshinori Fujii
藤井 利宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP60233452A priority Critical patent/JPS6293867A/en
Publication of JPS6293867A publication Critical patent/JPS6293867A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To aim at improvements in bromine resistance and a discharge potential characteristic, by setting dense vitreous carbon down to an electrode substrate, and layering a C-C composite on the surface via a bonding agent before burning. CONSTITUTION:Dense, bromine unpenetrative vitreous carbon is used as an electrode substrate and, after a C-C composite is layered on this surface with carbon paste having conductivity as a bonding agent, burned at a high temperature of 800-1,000 deg.C in an inert gas ambience inside an electric furnace or the like. In case of a vitreous carbon composite electrode where a porous C-C composite is joined on a surface of the dense vitreous carbon to be obtained in this way, there is bromine resistance, and an electrochemical active action of the C-C composite covering the electrode surface at the bromine side is added, so that it has an excellent characteristic exceeding the conventional vitreous carbon electrode, and additionally, owing to its inherent dense quality, it is utilizable even as a bipolar electrode.

Description

【発明の詳細な説明】 A産業上の利用分野 本発明は、亜鉛−臭素電池等において、特に正極電極と
して適用される電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention relates to an electrode that is particularly applied as a positive electrode in zinc-bromine batteries and the like.

B発明の概要 本発明は、亜鉛−臭素電池等のM極の基板としてビトラ
スカーボンを用い、これに電極としての表面活性を付与
するためその表面にカーボン系接着剤を介してC−Cコ
ンポジット(炭素繊維と合成jI4脂を積層し、不活性
ガス雰囲気の高温で焼成したもの)を積層した後、不活
性ガス雰囲気の例えば電気炉中で焼成することによって
得られた耐臭素性に優れかつ放電電位特性の侵れた電極
に関するものである。
B Summary of the invention The present invention uses vitrus carbon as a substrate for the M pole of a zinc-bromine battery, etc., and in order to impart surface activity as an electrode to the carbon, a C-C composite is bonded to the surface via a carbon-based adhesive. (carbon fiber and synthetic JI4 resin are laminated and fired at high temperature in an inert gas atmosphere) and then fired in an inert gas atmosphere, for example in an electric furnace. This relates to an electrode with deteriorated discharge potential characteristics.

C従来の技術 亜鉛−臭素電池の電極として、特開昭59−96662
号公報に示すようにカーボンプラスチック等を電極基板
とし、その表面に炭素繊維をヒートプレス等により接合
した炭素繊維接合iff極は、炭素m維の持っている電
気化学的活性性が付与されることが知られている。
C. Conventional technology As an electrode for zinc-bromine batteries, Japanese Patent Application Laid-Open No. 59-96662
As shown in the publication, the carbon fiber bonded IF electrode, in which carbon plastic or the like is used as an electrode substrate and carbon fibers are bonded to the surface by heat press or the like, is endowed with the electrochemical activity that carbon fibers have. It has been known.

また、ビトラスカーボンもこの種の電)蓋として利用で
きるが、その主たる用途は電気炉等におけろ電極材料と
して開発されたものであって、カーボンメーカー、鉄鋼
メーカー、非金属材料メーカー等から市販されている。
Vitrous carbon can also be used as this type of electric cap, but its main use was as an electrode material in electric furnaces, etc., and it has been widely used by carbon manufacturers, steel manufacturers, non-metal material manufacturers, etc. It is commercially available.

このビトラスカーボンを罹鉛−臭素電池の電極として用
いた場合は、耐臭素性が擾れ、かつ電気伝導性が良いの
で、それらの点では都合がよいけれども、正極即ち臭素
極としてはビトラスカーボンだけでは反応性に問題があ
り、何らかの表面処理等の対策を施すことが必要であっ
た。
When this vitrus carbon is used as an electrode for a leaded-bromine battery, it has poor bromine resistance and good electrical conductivity, so it is convenient from these points of view, but as a positive electrode, that is, a bromine electrode, vitrus carbon is used as an electrode. Carbon alone has a problem with reactivity, and it is necessary to take some kind of surface treatment or other countermeasures.

D発明が解決(7ようとする問題点 そこで、このビトラスカーボンHmの正極側の表面処理
対策として、例えばビトラスカーボン自体を多孔化する
方法、電気めっき等の手段により電極表面の凹凸を増や
して反応面積を広げる方法、他物質からなる表面処理材
料を貼付ける方法などが考えられるけれども、これらの
いずれの方法でも実用化できるだけ有効な方法は未だ開
発されていない。
D invention solves the problem (7) Therefore, as a countermeasure for surface treatment of the positive electrode side of this Vitrus Carbon Hm, for example, by making Vitrus Carbon itself porous or by means such as electroplating, the unevenness of the electrode surface is increased. Possible methods include expanding the reaction area by using a wafer, and applying surface treatment materials made of other substances, but none of these methods have yet been developed to be effective enough to put them into practical use.

また、先に説明したカーボンプラスチックを電極基板と
し、正極側の表面に炭素繊維を接合した電極においては
、活性層である炭素′ta維がビートプレス法やインジ
エクシシンモールド法による電極枠体の際の金型開閉時
の圧力に耐丸難く、繊維自体が破壊されたり、長時間の
充放電において炭素繊維が電極表面から脱落する等の1
−ラブルが生じている。
In addition, in the electrode described above in which carbon plastic is used as the electrode substrate and carbon fibers are bonded to the surface of the positive electrode side, the carbon'ta fibers as the active layer are formed in the electrode frame by the beat press method or the indie excisine mold method. It is difficult to withstand the pressure when the mold is opened and closed, and the fiber itself may be destroyed, or the carbon fiber may fall off the electrode surface during long charging and discharging.
- There is a problem.

E I!i題点を解決するための手段 本発明は、上述の従来技術における諸問題を解決するた
めになされたものであって、緻密質て臭素不浸透のビト
ラスカーボンを電極基板として用い、これの表面に導電
性を有するカーボンペースI・を接着剤としてC−Cコ
ンポジットを積層した後、電気炉などの炉内で不活性ガ
ス雰囲気中800〜1000℃の高温で焼成することに
よって得られる繊密質なビトラスカーボンの表面に多孔
質なC−Cコンポジットが接合されているビ1−ラスカ
ーボン複合電極である。
E I! Means for Solving the Problem The present invention has been made to solve the problems in the prior art described above, and uses dense bromine-impermeable vitrus carbon as an electrode substrate. A dense material obtained by laminating a C-C composite using carbon paste I, which has conductivity on the surface, as an adhesive, and then firing it at a high temperature of 800 to 1000°C in an inert gas atmosphere in an electric furnace or other furnace. This is a vitrus carbon composite electrode in which a porous C-C composite is bonded to the surface of quality vitrus carbon.

この場合に用いるC−Cコンポジットは、例えば日本軽
金属試作品PP”444等で代表されるものであり、亜
鉛−臭素電池の電池用導電物及び炭化処理の焼成に有利
なポリオレフィン系、ポリビニル系等のポリマーと、導
電性付与のための黒鉛粉末又はカーボンブラック(ケッ
チェン、ファーネス等)および炭素繊維で形成したシー
トを層状に配置し、加熱により熱可塑性のポリマーを加
熱溶融して炭素製品に含浸または結合して一体化処理の
後、不活性ガス中でポリマーの炭化のため500〜30
00℃で数時間〜−昼夜焼成して得られた多孔質の炭素
質複合材料である。
The C-C composite used in this case is typified by Nippon Light Metal's prototype PP"444, and is made of polyolefin, polyvinyl, etc., which are advantageous for conducting materials for zinc-bromine batteries and for firing during carbonization. A sheet made of a polymer, graphite powder or carbon black (Ketjen, Furnace, etc.) for imparting conductivity, and carbon fiber is arranged in a layered manner, and the thermoplastic polymer is heated and melted to impregnate or impregnate the carbon product. 500-30 for carbonization of the polymer in an inert gas after the bonding and integration process.
This is a porous carbonaceous composite material obtained by firing at 00°C for several hours to day and night.

そして、このC−Cコンポジットは、原料として用いる
炭素繊維の種類(PAN系、活性炭質。
This C-C composite is made from the types of carbon fibers used as raw materials (PAN type, activated carbonaceous.

P I CH系で紡糸されたものなど)、目付呈、織り
方(クロス状2ニツト状など)などによって多孔質の度
合いを変化させることが可能である。とりわけ本発明が
対象とする亜鉛−臭素電池の電極に有効なC−Cコンポ
ジットの形態は、BET法による比表面積・3 m’ 
/ g以上、多孔度はXi小角散乱法及びIrg圧入法
で0.1〜10’nmの孔径を有するものが0.3c+
n’/g以−Fある乙とが望よ()い。
It is possible to change the degree of porosity by changing the texture (such as those spun with P I CH system), the texture, the weaving method (cross-shaped, two-knit shape, etc.), etc. In particular, the form of the C-C composite that is effective for electrodes of zinc-bromine batteries, which is the object of the present invention, has a specific surface area of 3 m' by the BET method.
/g or more, the porosity is 0.3c+ with a pore diameter of 0.1 to 10'nm by Xi small-angle scattering method and Irg intrusion method.
I wish there was more than n'/g.

例えば、活性炭質の炭素繊維(東洋紡製造KF−Mシリ
ーズ、日本カイノール社製造ACF。
For example, activated carbon fibers (KF-M series manufactured by Toyobo, ACF manufactured by Nippon Kynor Co., Ltd.).

ACC,ACN、ACPCリンズなど)を使用し、ポリ
オレフィン系樹脂粉末とのカーボンブラックの混合成形
薄板又はその粉砕物とで層状に積重ね、不活性ガス雰囲
気の炉で500〜2500℃まで10℃7m1nから1
0℃/hの昇温範囲で樹脂の加熱溶融含浸と共に焼成す
ると、炭素繊維の目付による空隙のみでなく、活性炭が
本来持っている微細孔も残される状態で上記のようなC
−Cコンボレッ)・が成形される。
ACC, ACN, ACPC Linds, etc.), stacked in layers with mixed molded thin plates of carbon black with polyolefin resin powder or crushed products thereof, and heated from 10℃ to 7m1n to 500 to 2500℃ in an inert gas atmosphere furnace. 1
When the resin is heated and melted and impregnated and fired at a temperature increase range of 0°C/h, not only the voids due to the basis weight of the carbon fibers but also the fine pores inherent in activated carbon are left behind.
-C combore) is formed.

F作 用 以上の構成になる本発明のC−Cコンボシソ1−を接合
したビトラスカーボン複合電極にあっては、耐臭素性が
あり、かつ臭素側電極表面を覆っているC−Cコンポジ
ットの電気化学的な活性作用が加わるために、従来のビ
トラスカーボン電極を上回る優れた特性を有し、併せて
本来有する緻密質によってバイポーラ電極としても利用
することができる。
The vitrus carbon composite electrode bonded with the C-C combo 1- of the present invention having the above structure has bromine resistance, and the C-C composite electrode covering the bromine side electrode surface has bromine resistance. Because of the addition of electrochemical activation, it has superior properties over conventional vitrus carbon electrodes, and due to its inherently dense nature, it can also be used as a bipolar electrode.

G発明の実施例 (a)実施例1 電極基板として東北協和カーボン株式会社製造の待炭λ
!F−306−3と株式会社神戸製鋼所製造のGCR−
101とを用い、表面活性層に口軽技研のC−Cコンポ
ジットPM−1と日本カイノール株式会社製造の活性炭
素繊維入CC−507−15を用いて、それぞれ電極■
 (待炭MF−308−3+PM−1” 、電極■(待
炭MF−306−3十八CC−507−15)、電極1
[(GCR−101+PM−1)及び電極111/ (
GCR−101十人CC−507−15)を、同一条件
(Arガス雰囲気で1000℃、1時間)で焼成した。
Examples of the G invention (a) Example 1 Machi charcoal λ manufactured by Tohoku Kyowa Carbon Co., Ltd. as an electrode substrate
! F-306-3 and GCR- manufactured by Kobe Steel, Ltd.
101, and the surface active layer was made of Kuchigaru Giken's C-C composite PM-1 and activated carbon fiber-containing CC-507-15 manufactured by Nippon Kynol Co., Ltd., respectively.
(Machitan MF-308-3+PM-1", Electrode ■ (Machitan MF-306-318 CC-507-15), Electrode 1
[(GCR-101+PM-1) and electrode 111/ (
GCR-101 Junin CC-507-15) was fired under the same conditions (1000° C. for 1 hour in an Ar gas atmosphere).

なお、接着剤にはカーボンペーストを用いた。Note that carbon paste was used as the adhesive.

これらの電極r−主電極の各電極からそれぞれダンベル
10個をとり、5個は初期の曲げ強度及び比抵抗を測定
し、残りの5個は3 mol/l ZnBr2十3+o
l/I Br2の高Br2濃度電液中に30日間浸漬し
た後、それぞれ曲げ強度及び比抵抗を測定した。
10 dumbbells were taken from each electrode of these r-main electrodes, 5 were used to measure the initial bending strength and specific resistance, and the remaining 5 were 3 mol/l ZnBr2+3+o.
After being immersed in a high Br2 concentration electrolyte of l/I Br2 for 30 days, the bending strength and specific resistance were measured.

次に、上記電iI〜■をそれぞれ10cm角で2枚ずつ
とり、それぞれハーフセルを構成し、上記と同一組成の
電解液を用いて50 a+A/cIjの高電流密度で一
定電流を外部電源から流し、30日後に酸化側の電極1
〜■を取出して上記と同様に曲げ強度と比抵抗を測定し
t二1つその結果を第1表に示す。
Next, take two 10 cm square pieces of each of the above electrodes iI to ■ to form a half cell, and use an electrolytic solution with the same composition as above to supply a constant current at a high current density of 50 a+A/cIj from an external power source. , after 30 days, electrode 1 on the oxidized side
-■ were taken out and their bending strength and specific resistance were measured in the same manner as above, and the results are shown in Table 1.

この第1表から明らかなように’tc−cコンボンット
を接合させた電極■及び電極■は、曲げ強度が浸漬及び
通電実験後もあまり変化がないが、炭素繊維を接合させ
た電極■及び電極■は、変化が比較的大きい。この違い
は、接合されている表置処理材の強度に依存するものと
考えられる。一方、比抵抗値は炭素繊維を接合させたも
のの方が若干低くなっているが、通電するとC−Cコン
ポジットを接合させたものも低下するので有利である。
As is clear from Table 1, the bending strength of electrodes ■ and electrodes to which 'tc-c composites are bonded does not change much even after immersion and energization experiments, but electrodes to which carbon fibers are bonded and electrodes ■The change is relatively large. This difference is thought to depend on the strength of the surface-treated materials being joined. On the other hand, although the specific resistance value is slightly lower in the case where carbon fibers are bonded, it is advantageous because when electricity is applied, the value also decreases in the case where the C-C composite is bonded.

(b)実施例2 亜鉛−臭素電池用電極としての正極特性(臭素側)を検
討するために、比較例の電極A(ビI−ラスカーボンG
CR−101のみ)及び同じく比較例の電1B(C−C
コンポジット口軽技研製PP−444のみ)と、本発明
実施例(前記電極Aに用いたビトラスカーボン0CR−
101と前記電極Bに用いたC−CコンポジットPP−
444を接きした複合電極、接合条件は上記実施鋼重と
同一)の電極Cについて、3mol/l ZnBr2+
0.3 mol/l Br2の電解液中25℃にあける
充放電過電圧を測定した。その結果を図に示す。
(b) Example 2 In order to examine the positive electrode characteristics (bromine side) as an electrode for a zinc-bromine battery, electrode A of a comparative example (B-I-Ruscarbon G
CR-101 only) and Comparative Example Electric 1B (C-C
Composite Kuchikaru Giken PP-444 only) and Example of the present invention (Vitrus Carbon 0CR- used for the electrode A)
101 and the C-C composite PP- used for the electrode B
3 mol/l ZnBr2+
The charge/discharge overvoltage was measured in an electrolytic solution of 0.3 mol/l Br2 at 25°C. The results are shown in the figure.

図から明らかなように、比較例の電極Aは比抵抗値が低
く導電性の良い電極であるが、表面活性が小さいため過
電圧は充放電共大きい。これに対し比較例の電極(B)
は多孔性であるため表面活性が大きく、前記電極Aに比
べ過電圧はかなり小さい。一方、本発明実施例の電極C
1,を前記電極Aと電極Bのそれぞれの長所を併せ持ち
、過電圧はA及びBよりさらに小さくなっている。
As is clear from the figure, electrode A of the comparative example has a low specific resistance value and good conductivity, but the overvoltage is large in both charging and discharging because the surface activity is small. In contrast, electrode (B) of comparative example
Since electrode A is porous, its surface activity is large, and its overvoltage is considerably smaller than that of electrode A. On the other hand, electrode C of the embodiment of the present invention
1, has the respective advantages of the electrodes A and B, and the overvoltage is smaller than that of electrodes A and B.

第1表 ■(発明の詳細 な説明したように、本発明によれば、電極基板としてビ
トラスカーボンを用い、その表面にC−Cコンポジッ)
−を接合することによって、長時間電fpJV、液中で
電気化学反応を行なっても強度的に強い電極となり長寿
命な電極が得られる。又導電性も電解液で十分エージン
グすると良くなる。さらに、電気化学的な活性性が構成
物単体の電極より大きいものとなるので電池の過電圧を
低下することができる。
Table 1 ■ (As described in detail, according to the present invention, vitrus carbon is used as an electrode substrate, and a C-C composite is formed on the surface thereof)
By bonding -, even if an electrochemical reaction is performed in a liquid for a long period of time, the electrode becomes strong and has a long life. Furthermore, the electrical conductivity is improved by sufficient aging with an electrolytic solution. Furthermore, since the electrochemical activity is greater than that of an electrode composed of a single component, the overvoltage of the battery can be reduced.

また、接合も電気炉等で800〜1000℃で不活性ガ
ス雰囲気中で焼成することにより行われるので安定かつ
容易に行うことができる。
Furthermore, since bonding is performed by firing in an electric furnace or the like at 800 to 1000° C. in an inert gas atmosphere, it can be performed stably and easily.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明実施例の電極と比較例の電極との充放電過電
圧を示す線図である。
The figure is a diagram showing the charging/discharging overvoltages of the electrode of the example of the present invention and the electrode of the comparative example.

Claims (1)

【特許請求の範囲】[Claims] 緻密質のビトラスカーボンを電極基板とし、その表面に
接着剤を介してC−Cコンポジットを積層した後焼成し
てなるビトラスカーボン複合電極。
A vitrus carbon composite electrode is made by using dense vitrus carbon as an electrode substrate, laminating a C-C composite on the surface of the electrode substrate via an adhesive, and then firing it.
JP60233452A 1985-10-21 1985-10-21 Vitreous carbon composite electrode Pending JPS6293867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60233452A JPS6293867A (en) 1985-10-21 1985-10-21 Vitreous carbon composite electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60233452A JPS6293867A (en) 1985-10-21 1985-10-21 Vitreous carbon composite electrode

Publications (1)

Publication Number Publication Date
JPS6293867A true JPS6293867A (en) 1987-04-30

Family

ID=16955259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60233452A Pending JPS6293867A (en) 1985-10-21 1985-10-21 Vitreous carbon composite electrode

Country Status (1)

Country Link
JP (1) JPS6293867A (en)

Similar Documents

Publication Publication Date Title
US5348817A (en) Bipolar lead-acid battery
US4758473A (en) Stable carbon-plastic electrodes and method of preparation thereof
US8399134B2 (en) Lead acid battery including a two-layer carbon foam current collector
JPS60175376A (en) Conductive plate for lead storage battery and method of producing same
US20030180610A1 (en) Electrochemically activable layer or film
JPS60167263A (en) Sole electrode plate
CN1314011A (en) Carbon based electrodes
JP2002541633A (en) Porous electrode or partition used for non-aqueous battery and method for producing the same
US3556855A (en) Battery with a grid of metal coated fibres and resin
US3328202A (en) Composite electrode
AU597918B2 (en) Surface treated electrodes applicable to zinc-halogen secondary batteries
JP3347439B2 (en) Polymer solid electrolyte lithium secondary battery and method of manufacturing the same
JPS6293867A (en) Vitreous carbon composite electrode
KR100870604B1 (en) Methods for producing a separator/electrode assembly for electrochemical elements
JP3185351B2 (en) Positive electrode of metal-halogen battery
JP3152990B2 (en) Manufacturing method of polarized electrode
JP3168777B2 (en) Zinc-bromine battery electrodes
JP4790205B2 (en) Battery electrode
JPH0582713B2 (en)
JPH0445937B2 (en)
JPH0757766A (en) Lead-acid battery
JPS62128451A (en) Vitreous carbon composite electrode
JPH0358149B2 (en)
JPS62229661A (en) Surface-treated electrode by carbon fiber
JPS6398960A (en) Porous carbon plastic electrode