JP3185242B2 - Operating method of flash furnace - Google Patents

Operating method of flash furnace

Info

Publication number
JP3185242B2
JP3185242B2 JP11780491A JP11780491A JP3185242B2 JP 3185242 B2 JP3185242 B2 JP 3185242B2 JP 11780491 A JP11780491 A JP 11780491A JP 11780491 A JP11780491 A JP 11780491A JP 3185242 B2 JP3185242 B2 JP 3185242B2
Authority
JP
Japan
Prior art keywords
glue
particles
copper
concentrate
settler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11780491A
Other languages
Japanese (ja)
Other versions
JPH04323331A (en
Inventor
芳 秋 森
木 浩 二 続
田 泰 裕 次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11780491A priority Critical patent/JP3185242B2/en
Publication of JPH04323331A publication Critical patent/JPH04323331A/en
Application granted granted Critical
Publication of JP3185242B2 publication Critical patent/JP3185242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、銅またはニッケル硫化
物鉱石からその金属の製錬中間物であるマットを生産す
るための自熔製錬炉の操業方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a flash smelting furnace for producing a mat which is an intermediate for smelting a metal from copper or nickel sulfide ore.

【0002】[0002]

【従来の技術】硫化精鉱を原料とする自熔炉と呼ばれる
自熔製錬炉は他の熔錬炉に比較して多くの利点を有する
反面多くの欠点も持っている。その欠点の一つに以下の
ものがある。
2. Description of the Related Art A flash smelting furnace called a smelting furnace using a sulfide concentrate as a raw material has many advantages as compared with other smelting furnaces, but also has many disadvantages. One of the disadvantages is as follows.

【0003】自熔炉の主原料である精鉱は、通常、平均
粒経50μm程度の微細な粒子であり、これがフラック
スや補助燃料や反応用空気とともに精鉱バーナーより反
応塔内に吹き込まれ、反応塔内で昇温され、反応して融
体となり、セトラーに落下し、セトラーでかわとからみ
とに分離される。この落下の途中で精鉱粒子等は相互に
衝突し、肥大化することが知られている(資源・素材学
会誌 Vol.106, No14,pp 873-879) 。しかし、セトラー
に落下する粒子の中に依然として元の粒経のまま落下す
るものも多く存在することも知られている。これらの微
細な粒子はからみ中に分散し、セトラーでのからみとか
わとの分離性を低下させる。セトラーでのかわとからみ
との分離はかわとからみとの比重差によるが、からみ中
に分散された微細なかわ粒子は比重差のみによっては容
易に分離せず、セトラー及び引き続きからみ中のかわを
分離すべく設けられた錬かん炉での数時間のセトリング
を経てもなお、かなりのかわ粒子が沈降分離せず、から
みとともに炉外に排出される。この排出されたからみ
は、通常水砕がらみとして外販あるいは棄却処分される
ため、からみ中のかわ、すなわち銅分はそのまま銅の損
失となる。
[0003] The concentrate, which is the main raw material of the flash smelting furnace, is usually fine particles having an average particle diameter of about 50 µm, which are blown into the reaction tower from a concentrate burner together with a flux, an auxiliary fuel, and reaction air. The temperature is raised in the tower, reacts and becomes a melt, falls into a settler, and is separated into a glue and a knot by the settler. It is known that concentrate particles and the like collide with each other during the fall and become enlarged (Journal of Japan Society for Resources and Materials Vol.106, No14, pp 873-879). However, it is also known that among the particles that fall on the settler, there are many particles that still fall with the original particle diameter. These fine particles disperse in the entanglement and reduce the separability of entanglement and glue in the settler. The separation between glue and glue in the settler depends on the specific gravity difference between glue and glue, but fine glue particles dispersed in the glue do not easily separate only by the difference in specific gravity, and the glue between the settler and the glue in the glue is not easily separated. Even after several hours of settling in a smelting furnace provided for separation, considerable glue particles do not settle out and are discharged out of the furnace with entanglement. Since the entangled waste is usually sold or rejected as entanglement, the glue in the entanglement, that is, the copper content, is directly lost copper.

【0004】[0004]

【発明が解決しようとする課題】従来の自熔炉・錬かん
炉による操業にあっては、上記からみ中の微細なかわの
分離方法として有効なものはなく、からみ中の銅品位は
0.6%程度とならざるを得なかった。本発明の目的
は、自熔炉のセトラーあるいは錬かん炉内のからみ中に
懸垂しているかわの粒子の沈降を促進し、銅のロスの低
減を可能とする操業方法の提供にある。
In the conventional operation using a flash smelting furnace or a smelting furnace, there is no effective method for separating fine glue in the above-described entanglement, and the copper grade in the entanglement is 0.6%. %. SUMMARY OF THE INVENTION An object of the present invention is to provide an operation method capable of promoting the sedimentation of the particles of the glue suspended in the settler of the flash smelting furnace or the encrusting furnace and reducing the loss of copper.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する本発
明の方法は、反応塔と、該反応塔の頂部に設けられた精
鉱バーナーと、反応塔の下部に一端を接続して設けたセ
トラーと、セトラーの他端に接続して設けた排煙道とを
有する自熔炉の操業方法において、該精鉱バーナーに精
鉱、繰り返し煙灰、フラックスなどと共に粒経0.1〜
0.5mmの固ヒを供給するものである。
According to a method of the present invention for solving the above-mentioned problems, a reaction column, a concentrate burner provided at the top of the reaction column, and one end connected to a lower portion of the reaction column are provided. In a method for operating a flash smelting furnace having a settler and a flue gas duct connected to the other end of the settler, the concentrate burner includes concentrate, repetitive smoke ash, flux, etc.
This is to supply a 0.5 mm solid bar.

【0006】添加する固ヒとは、銅製錬の通常の操業で
生成するものであり、レードルに付着・凝固したかわで
ある。
[0006] The hardener to be added is produced by a normal operation of copper smelting, and is a glue adhered and solidified on a ladle.

【0007】[0007]

【作用】本発明において、固ヒを使用するのは、固ヒが
自熔炉内で生成するかわと同じであり自熔炉の操業管理
項目の一つであるかわ品位を変化させないからである。
また、固ヒは科学的に安定であり、反応塔内で吸熱を伴
う分解反応を起こさず、容易に熱バランスがとれるから
である。通常この固ヒはブロック状であるため、使用に
際しては粉砕する。
In the present invention, the reason for using solid barbecue is that it is the same as the glue produced in the flash furnace and does not change the glue quality, which is one of the operation control items of the flash furnace.
In addition, solid hardener is scientifically stable, does not cause a decomposition reaction involving endothermic reaction in the reaction tower, and can easily balance heat. Normally, this solid bar is in the form of a block, and is crushed before use.

【0008】添加する固ヒの粒経が余りに小さいとから
み中の懸垂かわ粒子の沈降促進効果が現れず、逆に余り
に大きいと反応塔内で溶解せずにセトラー内の熔体表面
上に落下し、未溶解物として堆積することになる。この
ため、固ヒの粒度は添加量にもよるが0.1〜0.5m
mとする事が必要である。
[0008] If the particle size of the solid wax added is too small, the effect of accelerating the settling of the suspended glue particles in the entanglement does not appear. Conversely, if it is too large, it does not dissolve in the reaction tower and drops on the surface of the melt in the settler. And deposit as undissolved matter. For this reason, the grain size of the hard bar depends on the amount added, but is 0.1 to 0.5 m.
m is required.

【0009】生成するからみに対して3%以上の固ヒを
添加すれば上記沈降促進効果が現れるが、より好ましく
は5%以上が望ましい。固ヒの添加量が多くなると、熱
バランスをとるために多量の補助燃料を精鉱バーナーよ
り炉内に吹き込まざるを得なくなる。これは、反応塔内
の熱負荷量と生成排ガス量の増加をもたらし、結果的に
精鉱処理量を減少させることになる。よって、固ヒの添
加量の上限は精鉱組成、精鉱溶解量、排ガス処理系統の
能力などから総合的に決定しなければならず、一概に決
定できない。
[0009] The addition of 3% or more of the solids to the entanglement produces the above effect of promoting sedimentation, but more preferably 5% or more. When the addition amount of solid arsenic increases, a large amount of auxiliary fuel must be blown into the furnace from the concentrate burner in order to balance heat. This results in an increase in the heat load and the amount of generated exhaust gas in the reaction tower, and consequently reduces the concentrate processing amount. Therefore, the upper limit of the addition amount of solid must be comprehensively determined from the concentrate composition, the concentrate dissolution amount, the capacity of the exhaust gas treatment system, and the like, and cannot be determined unconditionally.

【0010】なお、本発明の方法において、固ヒの変わ
りにこれに相当する含銅原料を用いることも可能であ
る。また、粗粒状あるいは塊状の含銅原料を精鉱バーナ
ーではなく、反応塔の天井よりシュート等によって反応
塔内に散布する方法も考えられるが、このような方法は
含銅原料の急速な溶解のみではなく、結果としてではあ
るが、煙灰発生量の低減効果とにおいて本願方法に劣
る。
[0010] In the method of the present invention, it is also possible to use a copper-containing raw material corresponding to this instead of solid hardener. In addition, a method of spraying the coarse-grained or lump copper-containing raw material into the reaction tower by a chute or the like from the ceiling of the reaction tower instead of the concentrate burner may be considered, but such a method is only for rapid dissolution of the copper-containing raw material. However, as a result, the method of the present invention is inferior in the effect of reducing the amount of generated smoke ash.

【0011】[0011]

【実施例】以下、実施例を用いて本発明をさらに説明す
る。
The present invention will be further described below with reference to examples.

【0012】(検討例1)アルミナ製タンマン管(T−
6)に凝固した自熔炉からみ200gを2〜3mm程度
に粉砕し、装入し、不活性雰囲気中で室温から1200
℃まで約2時間で昇温し、その後、それぞれ10、4
0、70、130、250分間静置し、ついで、急冷し
た。
(Study Example 1) Alumina tanman tube (T-
6) 200 g of the solidified self-melting furnace pulverized to about 2 to 3 mm, charged, and placed in an inert atmosphere from room temperature to 1200
℃ in about 2 hours, then 10, 4
The mixture was allowed to stand for 0, 70, 130, and 250 minutes, and then rapidly cooled.

【0013】凝固したからみを、タンマン管ごと深さ方
向に、幅1cmで切り出し、層状の試料片を得た。得た
試料片の最低部と最上部とを除き、中間部を5層に区分
し、下から第1層、第2層、第3層、第4層、第5層と
した。そして、これらの各層の銅分を分析した。得られ
た結果を表1に示した。
[0013] The solidified tang was cut out in a depth of 1 cm together with the Tamman tube to obtain a layered sample piece. Except for the lowest part and the uppermost part of the obtained sample piece, the intermediate part was divided into five layers, and the first part, the second layer, the third layer, the fourth layer, and the fifth layer were formed from the bottom. Then, the copper content of each of these layers was analyzed. The results obtained are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】からみ中の銅分はかわ粒子の懸垂によるも
のと化学的な溶解によるものとの和と考えられるが、本
実験条件においては、化学的な溶解による銅分が高さ方
向で変化しているとは考えられないので、表1に示した
銅分の分布状況はそのまま懸垂している銅分の分布状況
とみなし得る。
The copper content in the entanglement is considered to be the sum of the suspension of the glue particles and the chemical dissolution, but under the conditions of this experiment, the copper content due to the chemical dissolution changes in the height direction. Therefore, the distribution of copper shown in Table 1 can be regarded as the distribution of suspended copper.

【0016】一方、からみ中のかわ粒子の沈降速度は、
一般に次式で示される。 v=(2/3)*[g(ρms)/ηs]*(D/2)2*(ηsm)/(2ηs+3ηm) ここで、それぞれ v :沈降速度 (cm/Sec) g :重力加速度 (cm/Sec2) ρm :かわの密度 (g/cm3) ρs :からみの密度 (g/cm3) D :かわの粒経 (cm) ηm :かわの粘性 (poise) ηs :からみの粘性 (poise) である。
On the other hand, the sedimentation velocity of the glue particles in the entanglement is
Generally, it is expressed by the following equation. v = (2/3) * [g (ρ m −ρ s ) / η s ] * (D / 2) 2 * (η s + η m ) / (2η s + 3η m ) where v: Sedimentation velocity (cm / Sec) g: Gravitational acceleration (cm / Sec 2 ) ρm: Density of glue (g / cm 3 ) ρs: Density of entanglement (g / cm 3 ) D: Particle diameter of glue (cm) ηm: The viscosity of the glue (poise) ηs is the viscosity of pouring.

【0017】今、はじめにからみ中にかわ粒子が均一に
分散し、全てのかわ粒子が上記式に従い一様に沈降して
いくとすれば、からみ中の銅品位はセトリング時間にか
かわらず、常に底層部の方が上層部より高くなり、ま
た、上〜底層部までを平均すれば、セトリング時間が長
くなればなるほど銅分は低下するはずである。
Now, assuming that the glue particles are uniformly dispersed in the leash at first, and that all the glue particles are settled uniformly according to the above equation, the copper quality in the leash is always constant regardless of the settling time. Is higher than the upper layer, and if the average of the upper layer to the lower layer is averaged, the longer the settling time, the lower the copper content should be.

【0018】ところが、表1では、セトリング時間40
分までは上記のような傾向が明らかであるのに対し、セ
トリング時間が70分以上となると、1〜5層までほぼ
一定であり、銅分はほぼ一定であり、セトリング時間と
の関係は見いだせない。また、これらのからみをブロム
・メタノール法により確認したところ0.3%程度の銅
分がかわ粒子として存在していることがわかった。
However, in Table 1, the settling time 40
However, when the settling time is 70 minutes or more, the copper content is almost constant, the copper content is almost constant, and the relationship with the settling time can be found. Absent. Further, when these entanglements were confirmed by the bromo-methanol method, it was found that about 0.3% of copper was present as glue particles.

【0019】このことは、セトリング時間70分で一定
粒経以上のかわ粒子は沈降し、残った微細なかわ粒子は
上記式に従わず、からみ中に残存することを示してい
る。なお、本検討例で、タンマン管内の熔体の深さは約
7cmである。これを用いて、上記式に従い70分で沈
降する粒子の大きさを求めると、おおむね100μmと
なる。よって、100μmに満たない微細な粒子は上記
の式に従った挙動を示さず、長時間のセトリングを経て
もなおからみ中に存在していることになる。
This indicates that the glue particles having a certain size or more are settled at the settling time of 70 minutes, and the remaining fine glue particles do not obey the above formula and remain in the entanglement. In this example, the depth of the melt in the Tamman tube is about 7 cm. Using this, the size of the particles that settle out in 70 minutes according to the above equation is approximately 100 μm. Therefore, fine particles having a particle size of less than 100 μm do not exhibit the behavior according to the above equation, and are still present in the wrinkle after a long settling.

【0020】(検討例2)アルミナ製タンマン管(T−
6)に水砕がらみ200gを装入し、その表面に表2に
示した荒く粉砕した固ヒ20gを添加し、脱酸処理した
高純度Ar雰囲気中で1200℃まで昇温し、その後、
それぞれ1200℃で0、1、2時間保持した。その後
タンマン管を炉外に取り出し、急冷した。凝固後、から
み中の懸垂かわ量をブロム・メタノール法で定量した。
(Study Example 2) Alumina tanman tube (T-
Into 6), 200 g of water granulation was charged, and 20 g of coarsely ground solid copper shown in Table 2 was added to the surface, and the temperature was raised to 1200 ° C. in a deoxidized high-purity Ar atmosphere.
Each was kept at 1200 ° C. for 0, 1, and 2 hours. Thereafter, the Tamman tube was taken out of the furnace and quenched. After coagulation, the amount of suspended glue in the lees was determined by the bromethanol method.

【0021】[0021]

【表2】 [Table 2]

【0022】又、比較のために同様の検討実験を固ヒを
添加せずに、保持時間を0、1、2、3、4時間として
行った。結果を表3に示した。
For the purpose of comparison, similar examination experiments were carried out with no addition of solid arsenic and with holding times of 0, 1, 2, 3, and 4 hours. The results are shown in Table 3.

【0023】[0023]

【表3】 [Table 3]

【0024】表3より、粗粒の固ヒをからみ上面に添加
することにより懸垂かわ量が低下し、且つ保持時間に対
する懸垂かわ量の低下の程度が著しくなっていることが
わかる。
From Table 3, it can be seen that the addition of the coarse grained hard rice to the entangled surface lowers the amount of suspended mold, and the degree of decrease in the amount of suspended mold with respect to the holding time is remarkable.

【0025】検討例1と検討例2とを併せ考慮すると、
からみ表面に添加した粗大かわ粒子がからみ中を沈降す
る際に、沈降速度の差により微細な懸垂かわ粒子を吸収
し、からみ中に浮遊する微細かわ粒子の減少をもたらし
たものと推定できる。
Considering Study Example 1 and Study Example 2 together,
It is presumed that when the coarse glue particles added to the surface of the entanglement settle down in the entanglement, fine suspended glue particles were absorbed by the difference in sedimentation speed, and the fine glue particles floating in the entanglement were reduced.

【0026】以上の知見より、からみ中に懸垂している
かわ粒子を減少させるためには、該懸垂かわ粒子の粒経
を100μm以上とすることが有効であり、又粗大なか
わ粒子を前記微細なかわ粒子の吸着材としてからみ表面
に添加することが有効であることがわかる。
From the above findings, it is effective to reduce the size of the suspended glue particles to 100 μm or more in order to reduce the glue particles suspended in the entanglement. It can be seen that it is effective to add the glue particles to the leech surface as an adsorbent.

【0027】(実施例1)内径が1.5m、セトラー湯
面から反応塔天井までの高さが3.5mの反応塔と、煉
瓦内径が1.5m、セトラー部の長さ5.25mのセト
ラー部と排煙道とからなる小型試験用自熔炉を用い、C
u 30.4%、Fe 27.0%、S31.8%、S
iO2 4.6%の銅精鉱を79重量部、SiO2 8
5%のフラックスを9重量部、Cu 20.5%、Fe
13.1%、S 9.4%、SiO2 6.9%の煙
灰12重量部とからなる乾鉱に、粒度+0.1〜0.5
mmが80%を占めるように粉砕したCu 60.0
%、Fe 11.7%、S23.0%の固ヒを乾鉱に対
して1.5%となるように添加し、表4に示す条件で3
日間の操業を行った。なお、Case2の固ヒの添加量
は乾鉱の2.5%であり、Case3のそれは5%であ
る。また、比較例として固ヒを添加せずに試験を行っ
た。得られた結果を表4に併せて示した。
Example 1 A reaction tower having an inner diameter of 1.5 m and a height from the settler surface to the ceiling of the reaction tower of 3.5 m, and a brick having an inner diameter of 1.5 m and a settler portion length of 5.25 m were prepared. Using a small test flash furnace consisting of a settler section and a flue gas,
u 30.4%, Fe 27.0%, S31.8%, S
79 parts by weight of 4.6% copper concentrate of iO2, SiO2 8
9% by weight of 5% flux, 20.5% Cu, Fe
A dry mine consisting of 13.1%, S 9.4%, SiO2 6.9% fume ash and 12 parts by weight has a particle size of +0.1 to 0.5.
Cu 60.0 crushed so that mm occupies 80%
%, Fe 11.7%, and S23.0% were added so as to be 1.5% with respect to the dry mine.
Days of operation. In addition, the addition amount of solid arsenic of Case 2 is 2.5% of dry mine, and that of Case 3 is 5%. Further, as a comparative example, a test was performed without adding hard copper. The obtained results are also shown in Table 4.

【0028】[0028]

【表4】 [Table 4]

【0029】表4より本発明の有効性が小型自熔炉を用
いたベンチスケールテストでも裏付けられている。ま
た、副次的な効果として煙灰発生率の低下が挙げられ
る。これは、反応塔中で粗大かわ粒子への微細な精鉱等
の粒子の付着が促進されるためと思われる。
From Table 4, the effectiveness of the present invention is supported by a bench scale test using a small flash furnace. A secondary effect is a reduction in the rate of smoke ash generation. This is presumably because the adhesion of particles such as fine concentrate to the coarse glue particles in the reaction tower is promoted.

【0030】[0030]

【発明の効果】本発明の方法において、精鉱バーナーに
精鉱等と共に供給された粗粒の固ヒまたは含銅原料は反
応塔内で精鉱及び補助燃料の燃焼ガスと炉壁から熱を受
け、熔融してセトラー部のからみ表面に落下し、比較的
大きなかわ粒子を形成する。このかわ粒子は微細なかわ
粒子を吸収しながら沈降し、からみ層の下のかわ層に到
達する。このため、からみ中の懸垂かわ量を低減するこ
とができる。また、反応塔内での粒子の衝突に際し、よ
り大きなかわ粒子が存在するために、微細な粒子をより
大きな粒子に吸収することが可能となり、この結果、煙
灰発生率の低減も可能となる。
In the method of the present invention, the coarse solid copper or copper-containing raw material supplied to the concentrate burner together with the concentrate, etc., removes heat from the combustion gas of the concentrate and auxiliary fuel and the furnace wall in the reaction tower. Receiving, melting and dropping on the surface of the settler, forming relatively large glue particles. These glue particles settle while absorbing fine glue particles, and reach the glue layer below the leech layer. For this reason, the amount of suspended glue during entangling can be reduced. In addition, at the time of collision of particles in the reaction tower, since larger glue particles are present, fine particles can be absorbed by larger particles, and as a result, the smoke ash generation rate can be reduced.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−13543(JP,A) 特開 平3−183733(JP,A) 特公 昭64−96624(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-13543 (JP, A) JP-A-3-183733 (JP, A) JP-B 64-96624 (JP, B2) (58) Field (Int.Cl. 7 , DB name) C22B 1/00-61/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応塔と、該反応塔の頂部に設けられ
た精鉱バーナーと、反応塔の下部に一端を接続して設け
たセトラーと、セトラーの他端に接続して設けた排煙道
とを有する自熔炉の操業方法において、該精鉱バーナー
に精鉱、繰り返し煙灰、フラックスなどと共に粒経0.
1〜0.5mmの固ヒを供給することを特徴とする自熔
炉の操業方法。
1. A reaction tower, a concentrate burner provided at the top of the reaction tower, a settler provided by connecting one end to a lower part of the reaction tower, and a smoke exhaust provided by connecting to the other end of the settler. In a method for operating a flash smelting furnace having a path, the concentrate burner has a grain size of 0.3% together with concentrate, repeated smoke and flux.
A method for operating a flash smelting furnace, characterized in that a solid solder of 1 to 0.5 mm is supplied.
JP11780491A 1991-04-23 1991-04-23 Operating method of flash furnace Expired - Fee Related JP3185242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11780491A JP3185242B2 (en) 1991-04-23 1991-04-23 Operating method of flash furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11780491A JP3185242B2 (en) 1991-04-23 1991-04-23 Operating method of flash furnace

Publications (2)

Publication Number Publication Date
JPH04323331A JPH04323331A (en) 1992-11-12
JP3185242B2 true JP3185242B2 (en) 2001-07-09

Family

ID=14720692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11780491A Expired - Fee Related JP3185242B2 (en) 1991-04-23 1991-04-23 Operating method of flash furnace

Country Status (1)

Country Link
JP (1) JP3185242B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7653475B2 (en) 2006-02-28 2010-01-26 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and control method of internal combustion engine
US9309825B2 (en) 2010-03-24 2016-04-12 Robert Bosch Gmbh Method and device for adapting adaptation values for the control of injectors in an engine system having multiple injection types

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7653475B2 (en) 2006-02-28 2010-01-26 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and control method of internal combustion engine
US9309825B2 (en) 2010-03-24 2016-04-12 Robert Bosch Gmbh Method and device for adapting adaptation values for the control of injectors in an engine system having multiple injection types

Also Published As

Publication number Publication date
JPH04323331A (en) 1992-11-12

Similar Documents

Publication Publication Date Title
JPH02204320A (en) Silicon powder and continuous making thereof
US4428768A (en) Process for the recovery of platinum group metals from refractory ceramic substrates
JP2009507636A (en) Metallurgical slag processing
JP2001506315A (en) Direct reduction of metal oxide nodules
US2776132A (en) Cement manufacture
US4764216A (en) Method of converting particles liberated in chemical or physical processes into a harmless form by mixing with a molten silicate-containing material
JP3185242B2 (en) Operating method of flash furnace
US5567225A (en) Method of making pig iron with zinc recovery
SE459339B (en) REFINING MATERIAL FOR METAL AND PROCEDURES FOR ITS PREPARATION
SE406479B (en) PROCEDURE FOR PYROMETALLURGICAL TREATMENT OF FINE-GRAIN SOLID MATERIALS
PL193050B1 (en) Method of reducing non-ferrous metal content in slag in a non-ferrous metal manufacturing process occuring in a fluidized-bed smelting furnace
JP2018513921A (en) Method for producing iron-silicon-aluminum alloy
JP4191033B2 (en) Method for removing coatings on metal-coated scrap pieces
JPH0880437A (en) Aluminum,calcium and copper-containing silicon alloy for synthesizing alkyl or aryl halogenosilane
US5882443A (en) Strontium-aluminum intermetallic alloy granules
JP2023019519A (en) Method for recovering platinum group metals
US2031947A (en) Process for the refining of alloys
JP2001517734A (en) Method of adjusting temperature peaks and / or increasing throughput in a continuous top blown copper converter
JPH01149912A (en) Method for charging exhaust gas dust in smelting reduction furnace
US4022614A (en) Method of refining aluminum-silicon alloys
Lanzerstorfer Air classification of dust from steel converter secondary de-dusting for zinc enrichment
JPS6265958A (en) Method for roughly granulating copper slag
JP3217675B2 (en) Copper smelting method
JP2004124147A (en) Method for operating converter
JPH06145749A (en) Method for reducing ore by circulating fluidized bed

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees