JP3217675B2 - Copper smelting method - Google Patents

Copper smelting method

Info

Publication number
JP3217675B2
JP3217675B2 JP33100395A JP33100395A JP3217675B2 JP 3217675 B2 JP3217675 B2 JP 3217675B2 JP 33100395 A JP33100395 A JP 33100395A JP 33100395 A JP33100395 A JP 33100395A JP 3217675 B2 JP3217675 B2 JP 3217675B2
Authority
JP
Japan
Prior art keywords
coke
slag
particle size
furnace
unburned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33100395A
Other languages
Japanese (ja)
Other versions
JPH08209261A (en
Inventor
進 赤木
孝悦 藤井
正俊 前田
義昭 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP33100395A priority Critical patent/JP3217675B2/en
Publication of JPH08209261A publication Critical patent/JPH08209261A/en
Application granted granted Critical
Publication of JP3217675B2 publication Critical patent/JP3217675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は銅の乾式製錬法に関
するものであり、さらに詳しく述べるならば、炭材の添
加方法を改良した自溶炉による銅の乾式製錬法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for the dry smelting of copper, and more particularly to a method for the dry smelting of copper in a flash smelting furnace with an improved method of adding a carbonaceous material.

【0002】銅製錬操業においては、装入原料中のFe
の一部が過酸化を受けスラグ中にマグネタイト(Fe3
4 )が生成する。このFe34 は炉底や炉壁にコー
ティング層として析出して炉耐火物の保護層となる反
面、Fe34 の生成量が多いとコーティング層は過剰
に厚くなって炉内容積を減少させるとともに、遂にはス
ラグやマットのタップホールを埋めてタップ操業を困難
とならしめるに到る。更に炉内のスラグ層とマット層と
の間に半溶融の固相、いわゆる「中間層」を形成してス
ラグとマットの分離を阻害したり、スラグの粘性を著し
く高くしてスラグ中に懸垂しそして損失するCu量を増
加させる等種々のトラブルを引き起こす。この為、Fe
34 を低く抑えることが銅製錬の効率的安定操業にと
って重要である。
[0002] In a copper smelting operation, Fe
Part of the steel is subjected to peroxidation and magnetite (Fe 3
O 4 ) is produced. This Fe 3 O 4 is deposited as a coating layer on the furnace bottom and the furnace wall and serves as a protective layer for the furnace refractory. On the other hand, when the amount of Fe 3 O 4 generated is large, the coating layer becomes excessively thick and the furnace internal volume becomes large. At the same time, tapping holes in slag and mats are eventually filled, making tapping difficult. Furthermore, a semi-solid phase, a so-called “intermediate layer”, is formed between the slag layer and the mat layer in the furnace to inhibit the separation of the slag and the mat, and the slag is suspended in the slag by increasing its viscosity significantly. And causes various troubles such as an increase in the amount of Cu lost. For this reason, Fe
It is important to keep 3 O 4 low for efficient and stable operation of copper smelting.

【0003】[0003]

【従来の技術】銅の自溶炉製錬において、排出スラグ中
の含銅品位を低下させかつ燃料費の低減を図るために銅
精鉱とともに粉コークスまたは粉コークスと微粉炭を重
油と共に自溶炉に吹き込むことが公知である(特開昭5
8−221241号公報)。この公報の説明によると、
自溶炉では冶金反応が急激であり、酸化雰囲気であるた
めに鉄の過酸化物であるマグネタイト(Fe34 )が
多く生成し、これを含有するスラグの表面を覆う未燃焼
の粉コークスがマグネタイトと反応しマグネタイトを還
元し、スラグ中の銅品位が低下する。さらに、前掲特開
昭58−221241号公報によると好ましい方法とし
て、自溶炉の反応塔における粉コークスの添加は、未燃
粉コークスがセットラ内の溶体の全面を均一に覆うよう
にするのが好ましいこと;コークスの粒度に関してコー
クスや微粉炭はマグネタイトの還元率が低下するため
に、16メッシュ(1mm)〜325メッシュ(44μ
m)の粒度分布がよいこと;炭材は揮発分が高いものが
よいことなどの記載がある。
2. Description of the Related Art In copper smelting furnace smelting, coke fine coke or coke fine powder and pulverized coal are co-melted with heavy oil together with copper concentrate in order to lower the copper content in discharged slag and reduce fuel cost. It is known to blow into a furnace (JP-A-5
8-222241). According to the description in this publication,
In the flash smelting furnace, the metallurgical reaction is rapid, and because of the oxidizing atmosphere, a large amount of magnetite (Fe 3 O 4 ), which is a peroxide of iron, is generated, and the unburned coke powder that covers the surface of the slag containing it Reacts with magnetite to reduce magnetite, and the copper quality in slag decreases. Further, according to the above-mentioned Japanese Patent Application Laid-Open No. 58-221241, as a preferred method, the addition of coke breeze in the reaction tower of the flash smelting furnace should be such that unburned powder coke uniformly covers the entire surface of the solution in the setter. Preferable; coke and pulverized coal have a mesh size of 16 mesh (1 mm) to 325 mesh (44 μm) because coke and pulverized coal have a reduced magnetite reduction rate.
m) that the particle size distribution is good; that the carbonaceous material has a high volatile content.

【0004】本出願人が所属する佐賀関製錬所では下記
粒度分布の粉コークスを自溶炉において使用し、スラグ
中のマグネタイトが2〜4%となり、スラグ表面に浮遊
している未燃粉コークスがマグネタイトの一部を還元し
ていることを考察した(「非鉄製錬と省エネルギー」非
鉄製錬技術とエネルギーに関する研究委員会編、自溶炉
における粉コークスの使用、社団法人 日本鉱業会昭和
60年(1985)発行)。
At the Sagaseki smelter to which the present applicant belongs, coke breeze having the following particle size distribution is used in a flash smelting furnace, the magnetite in the slag becomes 2 to 4%, and the unburned powder floating on the slag surface. We considered that coke reduced a part of magnetite ("Non-ferrous smelting and energy saving" Research Committee on Non-ferrous smelting technology and energy, use of coke breeze in flash furnace, Japan Mining Association Showa) 1960 (1985).

【0005】[0005]

【表1】 粉コークスの種類 A B C 10mmオーバー 0 0 0 粒 5 〜10mm 6 6 5 度 3 〜5mm 4 5 9 分 1 〜3mm 16 25 21 布 0.15〜1mm 42 50 55 (%) 0.15mmアンダー 32 14 10 合 計 100 100 100 成 F.C. 85 85 85 分 揮発分 1 1 2 (%) 灰分他 14 14 13 発熱量(kcal/kg) 6,800 6,800 7,000 [Table 1] Types of coke breeze ABC 10mm over 0000 grains 5-10mm 66 5 degrees 3-5mm 45 9 minutes 1-3mm 16 25 21 cloth 0.15-1mm 42 50 55 (%) 0.15mm under 32 14 10 total 100 100 100 C. 85 85 85 minutes Volatile content 1 1 2 (%) Ash content etc. 14 14 13 Calorific value (kcal / kg) 6,800 6,800 7,000

【0006】以上説明したように、自溶炉を用いた銅製
錬操業では、上述のFe34 の過剰生成によるトラブ
ルを防止する目的で反応塔において粉コークス、微粉コ
ークス、微粉炭等の炭材をFe34 の還元剤として装
入することが現在では広く行われている。
As described above, in the copper smelting operation using a flash furnace, in order to prevent the above-mentioned trouble due to excessive production of Fe 3 O 4 , coal such as coke breeze, pulverized coke and pulverized coal is used in a reaction tower. At present, charging a material as a reducing agent for Fe 3 O 4 is widely performed.

【0007】即ち、従来自溶炉の反応塔では熱補償用の
補助燃料として重油、粉コークス、微粉炭等を添加燃焼
させているが、粉コークスや微粉炭の場合には反応塔で
の未燃分の一部が反応塔下の溶体中に入ってFe34
を還元する為、熱補償の目的に加え、Fe34 の有効
な還元手段として反応塔で粉コークスや微粉炭が添加さ
れている。
That is, conventionally, heavy oil, coke breeze, pulverized coal, etc. are added and burned as auxiliary fuel for heat compensation in the reaction tower of the flash smelting furnace. A portion of the fuel enters the solution below the reaction tower and becomes Fe 3 O 4
Coke and pulverized coal are added to the reaction tower as an effective means for reducing Fe 3 O 4 in addition to the purpose of heat compensation in order to reduce the amount of Fe.

【0008】[0008]

【発明が解決しようとする課題】炭材を添加して自溶炉
で行う銅の乾式製錬法において、炭材の添加方法が不適
切で還元過剰となると、炉耐火物のコーティング層が無
くなって耐火物の溶損が激しくなり炉から湯洩れを招
き、炉内にメタル相が生成して炉底レンガの目地に浸透
しレンガを隆起し、不純物がメタル相へ分配してスラグ
相への分配を低下し、更には未燃の炭材が排熱ボイラー
まで飛来してボイラー内で燃焼しボイラー操業を著しく
阻害する等の種々の弊害を引き起こす。
In the dry smelting method of copper in a flash smelting furnace by adding a carbon material, if the method of adding the carbon material is inappropriate and excessive reduction occurs, the coating layer of the furnace refractory disappears. The refractory material becomes severely damaged, causing molten metal to leak from the furnace, and a metal phase is formed in the furnace and penetrates the joints of the bottom furnace bricks to raise the bricks, and the impurities are distributed to the metal phase and are transferred to the slag phase. The distribution is reduced, and unburned carbonaceous materials fly to the exhaust heat boiler and burn in the boiler, causing various adverse effects such as significantly impairing the operation of the boiler.

【0009】特開昭58−221241号公報や本出願
人が所属する製錬所からの先記の技術報告書で説明され
ているように未燃焼粉コークスがスラグ溶面を被覆する
程存在すると、過剰に溶体上に滞留することにより平衡
酸素分圧を極端に低下させ強力な還元雰囲気を炉内に形
成させる。このような強還元雰囲気では、炉耐火物コー
ティング層の消滅による耐火物の溶損、メタル相の生成
による炉底レンガの隆起、不純物のスラグへの除去率の
低下といったトラブルが起こることが多い。また、大量
に生成した未燃の炭材はボイラーまでキャリーオーバー
され、これが排熱ボイラーでアフターバーンするトラブ
ルも発生する。
As described in JP-A-58-221241 and the above-mentioned technical report from the smelter to which the present applicant belongs, if unburned powder coke is present enough to cover the slag surface. By excessively staying on the solution, the equilibrium oxygen partial pressure is extremely lowered, and a strong reducing atmosphere is formed in the furnace. In such a strongly reducing atmosphere, troubles such as erosion of the refractory due to disappearance of the furnace refractory coating layer, elevation of the furnace bottom brick due to generation of a metal phase, and reduction in the removal rate of impurities to slag often occur. In addition, a large amount of unburned carbon material is carried over to the boiler, which may cause after-burning in the exhaust heat boiler.

【0010】したがって、本発明は、自溶炉反応塔で添
加する粉コークス等炭材によりFe34 の還元効果を
得るには炭材の未燃分が必要である反面その未燃分が炉
内に多量に滞留すると上記トラブルを引き起こすという
二律背反現象を克服することにより、良好な還元効果を
得かつ上記各種銅溶製操業上のトラブルを解消できる銅
の乾式製錬法を提供することを目的とする。
Accordingly, the present invention requires the unburned carbon material to obtain the effect of reducing Fe 3 O 4 by the carbon material such as coke breeze added in the flash smelting furnace reaction tower. By overcoming the trade-off phenomena of causing the above troubles when a large amount of steel stays in the furnace, to provide a copper dry smelting method capable of obtaining a good reduction effect and eliminating the above troubles in various copper melting and melting operations. Aim.

【0011】上記目的を達成する本発明に係る方法は、
白溶炉の反応塔に炭材を添加して銅を乾式製錬する方法
において、前記炭材を、100μmアンダーの粒度が該
炭材全体に対して65重量%以上で、且つ100μmか
ら44μmの粒度が該炭材に対して25重量%(以下、
粒度を表す百分率は特に断らない限り重量%である)以
上である粒度を有しかつ固定炭素含有率が80重量
以下、固定炭素含有率は重量%である以上とする
式製錬方法であり、また好ましくは、前記炭材を石油コ
ークスのバーナー燃焼時に発生する未燃・集塵カーボン
粉(所謂PCカーボン)とする銅の乾式製錬法である。
A method according to the present invention for achieving the above object is as follows.
In a method of dry-smelting copper by adding a carbon material to a reaction tower of a white-melting furnace, the carbon material has a particle size of under 100 μm of 65% by weight or more based on the entire carbon material, and 100 μm to 44 μm. Particle size is 25% by weight based on the carbon material (hereinafter, referred to as
Percentages representing particle size are by weight unless otherwise specified) and have a fixed carbon content of 80% by weight
( Hereinafter, the fixed carbon content is% by weight ) is a dry smelting method in which the carbon material is unburned and dust-collected carbon generated during burning of petroleum coke by a burner. This is a dry smelting method for copper as powder (so-called PC carbon).

【0012】以下、本発明の構成を詳しく説明する。以
下、炭材として粉コークスの例について主として説明す
るが、この説明はその他の炭材についても該当するもの
と理解されたい。本発明者等は、未燃粉コークスによる
スラグ中Fe34 の還元は、(a)従来考察されてい
たようにスラグ浴面に浮上滞留する粉コークスが炉内酸
素分圧を下げ強還元雰囲気を形成することによる還元、
及び(b)スラグ中に侵入した粉コークスがスラグ浴面
に浮上する間における接触還元の2つの機構があること
に着目し解明した。
Hereinafter, the configuration of the present invention will be described in detail. Hereinafter, an example of coke breeze as a carbon material will be mainly described, but it should be understood that this description also applies to other carbon materials. The present inventors have reported that the reduction of Fe 3 O 4 in slag by unburned powder coke is carried out by (a) as previously considered, powder coke floating and remaining on the slag bath surface reduces the oxygen partial pressure in the furnace and strongly reduces it. Reduction by forming an atmosphere,
And (b) clarified by focusing on the fact that there are two mechanisms of catalytic reduction while the coke breeze invading the slag floats on the slag bath surface.

【0013】上記(a)、(b)の2つの還元反応機構
のうちどれが活発化するかは粉コースク等の炭材の粒度
により大きく影響されることがわかった。すなわち、大
凡100μmより粗い炭材はその未燃分の粒度が大であ
るため(b)による接触還元速度は小さく(a)が主体
となる。一方本発明範囲に粉コークスの粒度を微細化し
特定すると、以下詳しく説明するように(b)が活発化
する。
It has been found that which one of the two reduction reaction mechanisms (a) and (b) is activated is greatly affected by the particle size of the carbonaceous material such as powdered causk. That is, since the carbon material coarser than about 100 μm has a large particle size of the unburned portion, the catalytic reduction speed according to (b) is small and (a) is mainly used. On the other hand, when the particle size of the coke breeze is refined and specified in the range of the present invention, (b) is activated as described in detail below.

【0014】本発明は上述のように粉コークスの粒度を
従来より微細にすることを特徴とするものであるので、
微細粒子にした場合の反応塔内での燃焼について考察し
た結果を説明する。反応塔で添加された炭材の燃焼速度
は反応塔内の雰囲気酸素分圧、粒子温度、ガス流速等に
影響される。これら要因の反応塔内における変化を計算
モデル(自溶炉モデル)により予測した例を図1に示す
が、反応塔内の酸素分圧は炭材とともに装入される自燃
性の銅精鉱の量が圧倒的に多いためこの燃焼により支配
され反応塔下部に向かって急激に低下することが分か
る。なお、図中PO2 は酸素分圧、Up/Ugはそれぞ
れ粒子/ガス流速(m/sec)、Tpは粒子温度
(K)、tpは粒子落下時間(sec)である。そこで
図2に示す3種類の粒度分布の粉コークスについて反応
塔内における燃焼挙動につき検討した。図2において各
粉コークスの粒度分布は次のとおりである。
The present invention is characterized in that the particle size of the coke breeze is made finer than before, as described above.
The result of considering combustion in the reaction tower when the particles are made into fine particles will be described. The burning rate of the carbonaceous material added in the reaction tower is affected by the atmospheric oxygen partial pressure in the reaction tower, the particle temperature, the gas flow rate, and the like. FIG. 1 shows an example in which the change in these factors in the reaction tower is predicted by a calculation model (flash furnace model). The oxygen partial pressure in the reaction tower is determined by the amount of spontaneous copper concentrate charged together with the carbonaceous material. Since the amount is overwhelmingly large, it can be seen that the amount is dominated by this combustion and drops sharply toward the lower part of the reaction tower. In the figure, PO 2 is the oxygen partial pressure, Up / Ug is the particle / gas flow rate (m / sec), Tp is the particle temperature (K), and tp is the particle falling time (sec). Thus, combustion behavior in the reaction tower of three types of coke breeze having a particle size distribution shown in FIG. 2 was examined. In FIG. 2, the particle size distribution of each coke breeze is as follows.

【0015】[0015]

【表2】 100μmアンダー 100μm〜44μm 粉コークス1 78% 63% 粉コークス2 49% 41% 粉コークス3 7% 5% [Table 2] 100 μm under 100 μm to 44 μm coke fine 1 78% 63% coke fine 2 49% 41% coke fine 37 % 5%

【0016】図2に示す3種の粒度分布の異なる粉コー
クスの反応塔内における燃焼率を図1に示した各種要因
の挙動をベースに次式で予測した結果を表3に示す。燃
焼後の炭材粒子の粒径は次式で計算できる。 r=ro −(Mc/ρc)×kt×C(O2 )×θ r :炭材粒子の燃焼後半径 (m) ro :炭材粒子の初期半径 (m) Mc:炭素の分子量 0.012kg/mol ρc:炭材粒子の密度 1,000kg/m3 kt:総括反応速度定数(m/hr) C(O2 ):酸素濃度(mol/Nm3 ) θ :反応時間(hr) 総括反応速度定数(kt)は製錬化学工学演習(鞭巌編
著、昭和49年1月15日、養賢堂発行、第1版)第2
5〜31頁、特に28〜31頁の計算方法により求め
た。この計算方法は焼結過程における炭素粒子の燃焼速
度を推算するためのものであり、単一炭素粒子、灰分層
による最初の外径保持、灰分層内の拡散抵抗無視可能
(すなわち、ガス境膜内拡散抵抗と化学反応抵抗のみを
考える)の仮定を措いているが、これらの仮定は自溶炉
内における炭素粒子燃焼推算においても実際に妥当であ
ると考えられる。なお粒径(r)の式は前掲製錬化学工
学演習第30頁による。
Table 3 shows the results of predicting the combustion rates of the three types of coke breeze having different particle size distributions shown in FIG. 2 in the reaction tower based on the behavior of various factors shown in FIG. The particle size of the carbon material particles after combustion can be calculated by the following equation. r = r o - (Mc / ρc) × kt × C (O 2) × θ r: post-combustion of the carbonaceous material particle radius (m) r o: initial radius of carbonaceous material particles (m) Mc: Molecular weight of carbon 0 .012 kg / mol ρc: density of carbon material particles 1,000 kg / m 3 kt: overall reaction rate constant (m / hr) C (O 2 ): oxygen concentration (mol / Nm 3 ) θ: reaction time (hr) Reaction rate constant (kt) is based on Refining Chemical Engineering Exercise (Edited by Washigan, January 15, 1974, published by Yokendo, 1st edition), 2nd edition
It was determined by the calculation method of pages 5 to 31, especially pages 28 to 31. This calculation method is for estimating the burning rate of carbon particles in the sintering process. It is a single carbon particle, the initial outer diameter is retained by the ash layer, and the diffusion resistance in the ash layer is negligible (ie, gas barrier film). Although only the internal diffusion resistance and the chemical reaction resistance are considered), these assumptions are considered to be actually valid in the estimation of carbon particle combustion in the flash smelting furnace. The formula of the particle size (r) is based on the above-mentioned smelting chemical engineering practice page 30.

【0017】[0017]

【表3】 反応塔内における粉コークスの燃焼率予測結果(単位:%) 反応塔内における燃焼率 計算値 測定値 粉コークス1 74 55〜80 粉コークス2 59 40〜67 粉コークス3 17 10〜30 Table 3 Result of predicting combustion rate of coke breeze in the reaction tower (unit:%) Calculation value of combustion rate in the reaction tower Measured value coke breeze 1 74 55-80 coke breeze 59 40-67 coke breeze 3 17 10 30

【0018】表3には反応塔側壁の最下端部に設置した
サンプリング用孔から採取した反応塔内落下物の炭素分
析値から求めた燃焼率測定値と計算値とを併せて示して
いるが両者とも良く一致しており、これより添加粉コー
クスの粒度分布が粗い程燃焼率は低くなり未燃分が多く
なることが分かった。このようにモデルによる計算値と
測定値は良く一致していたので、次に計算モデルによ
り、反応塔内で未燃となり炉内に残るコークスの粒度分
布ついて考察した。
Table 3 also shows the measured and calculated values of the burnup rate obtained from the carbon analysis values of the falling objects in the reactor taken from the sampling holes installed at the lowermost end of the side wall of the reactor. Both of them are in good agreement with each other, indicating that the coarser the particle size distribution of the added coke powder, the lower the combustion rate and the higher the unburned content. As described above, the calculated value obtained by the model and the measured value were in good agreement with each other. Next, the particle size distribution of coke unburned in the reaction tower and remaining in the furnace was considered by the calculation model.

【0019】図3及び図4は、それぞれ、この計算モデ
ルにより予測した3種の粉コークスの反応塔最下端部に
おける未燃粉コークスの累積重量率及び粒度別重量率を
示す。
FIG. 3 and FIG. 4 show the cumulative weight ratio of unburned powder coke and the weight ratio by particle size of the three types of coke flour at the lowermost end of the reaction tower predicted by this calculation model, respectively.

【0020】図3において、累積重量率50%の粒径で
比較すると、粉コークス1の場合燃焼前(図2)後(図
3。燃焼後は燃焼前に対応する粉コークス番号に’を付
けて表示)で65μmが30μm程度となり、粉コーク
ス2では同様に100μmが70μmとなるが500μ
mと粒度の粗い粉コークス3では粒度分布は殆ど変化し
ない。
In FIG. 3, comparing the particle diameters with a cumulative weight percentage of 50%, in the case of coke breeze 1 before combustion (FIG. 2) and after (FIG. In the case of coke breeze 2, 100 μm becomes 70 μm similarly, but 500 μm
The particle size distribution hardly changes in the coke breeze powder 3 having a coarse particle size of m.

【0021】又図4に示される粒度別の重量率でみる
と、粉コークス1’の場合燃焼後40μm以下の微細な
粒子の割合がおよそ55%と粉コークス2’の場合の2
倍以上に増加し、粉コークス3’では300μm以上の
粗い粒子の割合が70%以上となることが予測される。
In terms of the weight ratio by particle size shown in FIG. 4, the proportion of fine particles of 40 μm or less after combustion is about 55% in the case of coke breeze 1 ′ and 2% in the case of coke breeze 2 ′.
It is expected that the ratio of coarse particles of 300 μm or more in the coke breeze 3 ′ will be 70% or more.

【0022】図3、図4を参照して説明したように一定
粒径以下の微細な粉コークスを反応塔内で燃焼させる
と、微細粉の割合がより高くなり、以下説明するように
マグネタイトの還元率を高めることができる。
As described with reference to FIGS. 3 and 4, when fine coke powder having a certain particle size or less is burned in the reaction tower, the ratio of the fine powder becomes higher, and as described below, the proportion of magnetite is reduced. The reduction rate can be increased.

【0023】即ち、Fe34 含有率が一定の値となる
よう調整し溶解したスラグに、予め篩別し粒度分布が図
3の粉コークス1’および2’になるように調整した粉
コークスを添加し、粉コークス粒度のFe34 の還元
速度に及ぼす影響をルツボ試験により調査した結果を図
5に示す。図5より粉コークス1’の如く粒度の細かい
ものは粉コークス2’の粒度のものと比較してFe3
4 の還元速度は著しく速いことが分かる。
That is, slag that has been adjusted and melted so that the content of Fe 3 O 4 has a constant value has been sieved in advance, and the coke breeze has been adjusted so that the particle size distribution is 1 ′ and 2 ′ in FIG. FIG. 5 shows the results of an investigation of the effect of the coke breeze particle size on the reduction rate of Fe 3 O 4 by the crucible test. As shown in FIG. 5, the fine particle size such as coke fine 1 ′ is compared with the fine particle size of coke fine 2 ′ in Fe 3 O.
It can be seen that the reduction rate of 4 is remarkably fast.

【0024】以上の検討結果から、未燃粉コークスによ
るスラグ中Fe34 の還元には先記の如くスラグ中に
侵入した粉コークスがスラグ浴面に浮上する間における
接触還元(b)と、スラグ浴面に浮上滞留する粉コーク
スが炉内酸素分圧を下げ強還元雰囲気を形成することに
よる還元(a)の2つの機構があり、未燃分コークスの
粒度を細かくする、即ち粉コークス1(図2)の如き粒
度分布を持つ炭材を反応塔で添加して前者の機構(b)
による還元比率を高めることにより、その量を少なくし
ても生成した微細な未燃分によりスラグ中のFe34
を有効に還元できる上、未燃分の生成量は僅かでセット
ラ内のスラグ浴面上に未燃粉滞留することはほとんど無
いため先述のような過剰還元に起因する問題や排熱ボイ
ラーのトラブルを排除することができることを見出し
た。欺くして、本発明者らはこれを確かめるべく実炉に
おいて後で詳述する実施例及び比較例に示す試験操業を
実施し、実際にその効果を確認することができた。
From the above examination results, the reduction of Fe 3 O 4 in the slag by the unburned powder coke is caused by the catalytic reduction (b) while the coke fine entering the slag floats on the slag bath surface as described above. There are two mechanisms of reduction (a) by reducing the oxygen partial pressure in the furnace and forming a strong reducing atmosphere by the coke breeze floating and staying on the slag bath surface, thereby reducing the particle size of the unburned coke. The former mechanism (b) is prepared by adding a carbon material having a particle size distribution as shown in FIG.
By increasing the reduction ratio of slag, even if the amount is reduced, the fine unburned matter generated causes Fe 3 O 4 in the slag to be reduced.
And the amount of unburned matter generated is small and there is almost no unburned powder remaining on the slag bath surface in the setter.Therefore, problems caused by excessive reduction as described above and troubles in the exhaust heat boiler Has been found that can be eliminated. By deceiving, the present inventors carried out test operations shown in Examples and Comparative Examples, which will be described in detail later, in an actual furnace to confirm this, and could actually confirm the effects thereof.

【0025】尚本発明においては炭材の65%以上、好
ましくは70%以上が100μmアンダーとなるように
粒度調整した。より好ましくは100μmアンダーが8
0%以上である。さらに、100μm〜44μmの粒度
分布が25%を下回ると、44μm未満の超微粒子が多
くなって、これは反応塔内で燃焼し、未燃分が残らない
ために、100μm〜44μmを25%以上とした。よ
り好ましくは、100μm〜44μmを40%以上であ
る。
In the present invention, the particle size was adjusted so that 65% or more, preferably 70% or more of the carbon material was under 100 μm. More preferably, 100 μm under is 8
0% or more. Further, when the particle size distribution of 100 μm to 44 μm is less than 25%, the number of ultrafine particles of less than 44 μm increases, which is burned in the reaction tower and no unburned matter remains. And More preferably, 100 μm to 44 μm is 40% or more.

【0026】次に炭材の組成についてであるが、市販の
粉コークスの分析値(%)の一例を次の表に示す。
Next, regarding the composition of the carbonaceous material, an example of the analysis value (%) of the commercially available coke breeze is shown in the following table.

【0027】[0027]

【表4】 固定炭素 全硫黄 揮発分 灰 分 粉コークス(A社製品) 87.9 0.55 1.7 10.5 粉コークス(B社製品) 93.8 1.06 1.8 4.4 微粉炭 (C社製品) 47.2 2.36 42.7 9.0 [Table 4] Fixed carbon Total sulfur Volatile ash Fine powder coke (product of Company A) 87.9 0.55 1.7 10.5 Coke powder (product of Company B) 93.8 1.06 1.8 4.4 Pulverized coal (C company product) 47.2 2.36 42.7 9.0

【0028】上記のように、粉コークスや微粉炭等の炭
材中の炭素は固定炭素と揮発分中の炭素からなるが、後
者は燃焼性が高く反応塔を落下する過程でほぼ完全燃焼
して未燃分として残らないため燃料分としては有効であ
るが還元剤としては不適である。即ち、反応塔で添加す
る還元剤としての炭材は固定炭素分は高く揮発分は低い
方が好適である。特に自溶炉への送風の酸素濃度を高め
ることにより銅精鉱の装入速度、即ち生産性を高める
と、必要となる補助燃料の量は減少するため、燃焼性の
高い揮発成分を含む微粉炭を使用する場合には還元に必
要な未燃炭素の量が激減することとなり、還元効果が殆
ど得られないという状況に到る。例えば、揮発成分と固
定炭素をそれぞれ約40%含有し、粒径約90μm以下
の微粉炭の場合は反応塔でほぼ完全に燃焼してしまい還
元に必要な未燃分が殆ど残らない。この観点で粉コーク
スと微粉炭を比較すると、一般に前者の揮発分は1〜5
%と低く固定炭素が80〜95%程度と高いのに対し、
後者は30〜40%の揮発分を含み固定炭素は40〜7
0%と低いため還元剤としては、固定炭素を80%以上
含有することが必要である。より好ましくは90%以上
である。
As described above, carbon in carbonaceous materials such as coke breeze and pulverized coal is composed of fixed carbon and carbon in volatile components. The latter has high flammability and is almost completely burned in the process of falling down the reaction tower. Since it does not remain unburned, it is effective as a fuel but is not suitable as a reducing agent. That is, it is preferable that the carbon material as the reducing agent added in the reaction tower has a high fixed carbon content and a low volatile content. In particular, if the concentration of copper concentrate, that is, the productivity, is increased by increasing the oxygen concentration of the air blown into the flash furnace, the amount of auxiliary fuel required will decrease. If charcoal is used, the amount of unburned carbon required for reduction will be drastically reduced, and a situation will be reached in which little reduction effect can be obtained. For example, in the case of pulverized coal containing about 40% each of a volatile component and fixed carbon and having a particle size of about 90 μm or less, it is almost completely burned in the reaction tower, and almost no unburned components required for reduction remain. From this viewpoint, when comparing coke breeze and pulverized coal, the volatile matter of the former is generally 1 to 5
% While the fixed carbon is as high as about 80-95%,
The latter contains 30-40% volatiles and the fixed carbon is 40-7
Since it is as low as 0%, it is necessary that the reducing agent contains 80% or more of fixed carbon. It is more preferably at least 90%.

【0029】尚この炭材の添加手段としては、銅精鉱や
溶剤といった主装入物に予め添加混合して精鉱バーナー
より装入してもよいし、反応塔頂部に専用バーナーを設
置し装入してもよい。また、自溶炉は、後述の図11に
示すオートクンプ式構造のものの他、インコ式自溶炉等
各種炉を使用することができる。また銅精鉱もフラッシ
ュスメルティングが可能な程度の硫黄を含有しておりか
つ有価金属として主として銅を含有するものであれば、
各種原料を使用することができる。
As a means for adding the carbonaceous material, the main charge such as copper concentrate and a solvent may be added and mixed in advance and charged from a concentrate burner, or a dedicated burner may be installed at the top of the reaction tower. May be charged. As the flash smelting furnace, various furnaces such as a parakeet type flash smelting furnace can be used in addition to the auto-kump type furnace shown in FIG. If the copper concentrate also contains enough sulfur to allow flash smelting and contains mainly copper as a valuable metal,
Various raw materials can be used.

【0030】[0030]

【作用】通常の自溶炉操業条件下においては、粒径が約
250μm程度以下の粉コークスはボイラーにキャリー
オーバーされると計算上予測される。そして、未燃粉コ
ークスは粒度が小さくなるほどキャリーオーバーされ易
いと思われるのに反し、実際には逆の結果が得られた。
この原因を究明したところ次の興味ある現象を見出し
た。
Under normal operating conditions of the flash smelting furnace, it is calculated by calculation that coke breeze having a particle size of about 250 μm or less is carried over to the boiler. In contrast, the unburned powder coke is considered to be liable to carry over as the particle size becomes smaller, but actually the opposite result was obtained.
After investigating the cause, the following interesting phenomenon was found.

【0031】図6〜9は実施例の操業試験中、反応塔側
壁の最下端部に設置したサンプリング用孔から採取した
反応塔内落下物を樹脂に埋め切断研摩した断面の光学顕
微鏡写真(倍率200倍)である。これらの写真により
未燃の微細な粉コークス粒子の多くは、反応熱により溶
融した溶融銅精鉱粒子に衝突して捕捉されているのが判
る。即ち、未燃粉コークスは高い確率で溶融した銅精鉱
粒子に衝突し捕捉されるので、キャリーオーバーされな
い。また、未燃粉コークスはスラグ液面を通り抜け液体
中に沈降し次に浮上する間に粉コークスとFe34
の接触還元が起こる。
FIGS. 6 to 9 show optical microscope photographs (magnifications) of sections cut and polished by embedding a fallen object in the reaction tower taken from a sampling hole installed at the lowermost end of the side wall of the reaction tower into a resin during the operation test of the example. 200 times). These photographs show that many of the unburned fine coke breeze particles collide with the molten copper concentrate particles melted by the heat of reaction and are captured. That is, the unburned powder coke collides with and is trapped by the molten copper concentrate particles with a high probability, and is not carried over. Further, the unburned coke passes through the slag liquid surface, settles in the liquid, and then comes into contact with the coke breeze and Fe 3 O 4 during floating.

【0032】しかし、本発明範囲外で粗粒になり未燃粉
の量が多くなると、粉コークスと銅粒子の衝突確率が低
くなり、ボイラーにキャリーオーバーされアフターバー
ンするものの量が相対的に増加する。
However, when the amount of unburned powder increases due to coarse particles outside the scope of the present invention, the probability of collision between the coke breeze and the copper particles decreases, and the amount of after-burn that is carried over by the boiler relatively increases. I do.

【0033】さらに、上記のような現象の他に、マット
中のAs、Sbがスラグ中に良好に移行し、過剰還元に
よるスラグへの分配率の極端な低下は無いことが分かっ
た。
Furthermore, in addition to the above-mentioned phenomena, it was found that As and Sb in the mat migrated favorably into the slag, and there was no extreme reduction in the distribution ratio to the slag due to excessive reduction.

【0034】[0034]

【実施例】【Example】

実施例1 図10に粒度分布を示す粉コークス4(いわゆるPCカ
ーボン)を重量添加率0.9%で精鉱バーナーを介して
図11に示す自溶炉反応塔に挿入した。図中、1は精鉱
バーナー、2は反応塔、3はセットラ、4はアップテー
ク、5はスラグ、6はマットである。
Example 1 Coke powder 4 (so-called PC carbon) having a particle size distribution shown in FIG. 10 was inserted into a flash furnace reactor shown in FIG. 11 through a concentrate burner at a weight addition rate of 0.9%. In the figure, 1 is a concentrate burner, 2 is a reaction tower, 3 is a settler, 4 is an uptake, 5 is a slag, and 6 is a mat.

【0035】試験操業の結果次の成績が確認された。ま
ず、還元効果を示す指標であるスラグのFe34 含有
率は3〜6%であり、中間層は形成されず、またスラグ
のCu品位は0.60%となった。又、AsとSbのス
ラグとマット間の分配係数の値はそれぞれ0.5および
1であった。ここで分配係数は、重量%で表した各元素
について、 As分配率=(As)slag/[As]matte Sb分配率=(Sb)slag/[Sb]matte である。
As a result of the test operation, the following results were confirmed. First, Fe 3 O 4 content of the slag, which is an index showing the reduction effect is 3-6%, the intermediate layer is not formed, and Cu quality of the slag was 0.60%. The values of the distribution coefficient between the slag of As and Sb and the mat were 0.5 and 1, respectively. Here, the distribution coefficient is As distribution ratio = (As) slag / [As] matte Sb distribution ratio = (Sb) slag / [Sb] matte for each element expressed in weight%.

【0036】操業試験中に原料の装入を中断し、その直
後に反応塔直下のセットラ内浴面上から採取したスラグ
中の炭素およびFe34 含有率(単位:%)を測定し
た結果を表5に示す。
The charging of the raw materials was interrupted during the operation test, and immediately after that, the carbon (Fe) 3 O 4 content (unit:%) in the slag collected from the bath surface in the settler immediately below the reaction tower was measured. Are shown in Table 5.

【0037】[0037]

【表5】スラグ採取場所 C Fe34 反応塔直下のセットラ部 0.14 4.60スラグホール出口の樋 0.02 4.19 Table 5 Slag sampling location Settler section immediately below C Fe 3 O 4 reaction tower 0.14 4.60 Gutter at slag hole outlet 0.02 4.19

【0038】表5では、反応塔直下のスラグには炭素含
有率で0.14%に相当する未燃粉コークスが入ってお
り、スラグ中のFe34 は既に4%台迄還元されてい
ることが確認された。
In Table 5, the slag immediately below the reaction tower contains unburned powder coke corresponding to a carbon content of 0.14%, and Fe 3 O 4 in the slag has already been reduced to the 4% level. It was confirmed that.

【0039】炉内観察結果、セットラ内の浴面上に浮遊
滞留している未燃粉コークスの存在は殆ど認められなか
った。操業良否を示す指標であるボイラーでのアフター
バーントラブルについて全く発生が無かった。又セット
ラ耐火物のコーティング層は比較例2の場合に比較して
かなり薄くなったものの、耐火物全面を均一に覆う状況
が維持されることが確認された。
As a result of observation in the furnace, almost no unburned powder coke floating and staying on the bath surface in the setter was recognized. There was no occurrence of afterburn trouble in the boiler, which is an indicator of the quality of operation. In addition, although the coating layer of the settler refractory was considerably thinner as compared with the case of Comparative Example 2, it was confirmed that the state of uniformly covering the entire surface of the refractory was maintained.

【0040】比較例1 図10中の粉コークス5で示す粒度の粉コークスを、銅
精鉱、溶剤等装入物にその重量率で1.5〜2.3%添
加し、精鉱バーナーを介して自溶炉反応塔に装入した。
試験操業の結果、スラグのFe34 含有率は2〜5%
と実施例1より低くなり、中間層もなかったが、耐火物
のコーティング層は極端に薄くなり一部レンガが露出し
て溶体と直接接触するに到った。又AsおよびSbのス
ラグとマット間の分配係数はそれぞれ約0.25および
0.5となった。この値は炭材未添加時の大凡4分の1
に低下したレベルであり、これらの元素のスラグ移行率
が減少した。更にはキャリーオーバーされた未燃分がボ
イラー内でアフターバーンし、ダスト除去操業を著しく
阻害した。尚原料の装入を中断し炉内を点検した結果、
未燃分コークスがセットラ内浴面上に多量に浮遊滞留し
ているのが観察された。
Comparative Example 1 Coke powder having a particle size indicated by coke powder 5 in FIG. 10 was added to a charge of copper concentrate, a solvent and the like at a weight ratio of 1.5 to 2.3%, and a concentrate burner was added. Through a flash smelting furnace.
As a result of the test operation, the slag Fe 2 O 4 content was 2 to 5%.
However, although there was no intermediate layer, there was no intermediate layer, but the coating layer of the refractory was extremely thin, and some bricks were exposed and came into direct contact with the solution. The distribution coefficients between the slag and the mat of As and Sb were about 0.25 and 0.5, respectively. This value is approximately one-fourth when no carbon material is added.
And the slag transfer rates of these elements decreased. Furthermore, the unburned portion carried over was afterburned in the boiler, which significantly impeded the dust removal operation. As a result of stopping the charging of raw materials and inspecting the furnace interior,
It was observed that a large amount of unburned coke floated and stayed on the bath surface in the settler.

【0041】比較例2 比較例1と同等の粒度をもつ粉コークス(図10の粉コ
ークス5)の重量添加率を0.9%に下げ、精鉱バーナ
を介して自溶炉反応塔に装入した。比較例1の場合と比
較してスラグのFe34 含有率は7〜10%に上昇
し、また中間層の厚さは100〜200mmの厚さでス
ラグ/マット間に存在するようになり、スラグのCu品
位(スラグロス)は凡そ0.05%高くなった。一方、
セットラ耐火物は全面に渡ってコーティング層で覆われ
るようになり、AsとSbのスラグ/マット間の分配係
数の値はそれぞれ約0.5、1と比較例1の場合より倍
増した。未燃粉コークスのボイラーでのアフターバーン
トラブルは殆どなくなったが、図10中粉コークス5の
粒度の粉コークスの内、右寄りの粗いものを使用した場
合には依然としてボイラーでのトラブルが発生した。尚
炉内を観察した結果、セットラ内の浴面上に浮遊滞留し
ている未燃コークスの量は比較例1に比べるとかなり少
なくなり、全面を覆う状態は認められなかった。上記実
施例1及び比較例1、2の試験結果を表6に対比して示
す。
Comparative Example 2 The weight addition rate of coke breeze having the same particle size as that of Comparative Example 1 (coke breeze 5 in FIG. 10) was reduced to 0.9%, and the coke breeze was loaded into a flash furnace reactor through a concentrate burner. Entered. Compared to the case of Comparative Example 1, the slag Fe 3 O 4 content increased to 7 to 10%, and the thickness of the intermediate layer became 100 to 200 mm between the slag and the mat. The slag Cu quality (slag loss) was increased by about 0.05%. on the other hand,
The settler refractory became covered with the coating layer over the entire surface, and the values of the distribution coefficient between the slag / mat of As and Sb were about 0.5 and 1, respectively, which was doubled from the case of Comparative Example 1. Although the afterburn trouble of the unburned coke boiler in the boiler almost disappeared, the trouble in the boiler still occurred when the coarse coke having the particle size of the coke fine 5 in FIG. 10 was used on the right side. In addition, as a result of observing the inside of the furnace, the amount of unburned coke floating and staying on the bath surface in the setter was considerably smaller than that in Comparative Example 1, and no state of covering the entire surface was observed. The test results of Example 1 and Comparative Examples 1 and 2 are shown in Table 6 in comparison.

【0042】[0042]

【表6】 実施例1 比較例1 比較例2 試験条件 使用炭材種 粉コークス5 粉コークス4 粉コークス4 炭材添加率(%) 0.9 1.5 〜2.3 0.9 マット中銅品位(%) 60〜61 60〜61 60〜61 試験結果 スラグ中のFe3O4 (%) 3〜6 2〜5 7〜10 中間層厚さ(mm) なし なし 100 〜200 スラグとマットの間の分配係数 As 0.5 0.25 0.5 Sb 1 0.5 1 スラグ中の銅ロス(%) 0.60 0.60 0.65 耐火物のコーティング 均一被覆 耐火物 均一被覆 の状況 一部露出 被覆厚大 ボイラーへの影響 アフター アフター アフター バーンなし バーンあり バーンほ 操業阻害 とんどなし [Table 6] Example 1 Comparative example 1 Comparative example 2 Test conditions Carbon material type used Coke powder 5 Coke powder 4 Coke powder 4 Carbon material addition rate (%) 0.9 1.5 to 2.3 0.9 Copper grade in mat (%) 60 to 61 60-61 60-61 test results Fe 3 O 4 (%) in the slag 3-6 2-5 7-10 partition coefficient between the intermediate layer thickness (mm) None None 100-200 slag and matte as 0.5 0.25 0.5 Sb 1 0.5 1 Copper loss in slag (%) 0.60 0.60 0.65 Refractory coating Uniform coating Refractory uniform coating Partially exposed Large coating thickness burn No impact after-after-after-burn of the boiler there is a burn ho operation inhibition Tondonashi

【0043】実施例2 実施例1の方法において、粉コークス(固定炭素率8
1.6%)の粒度を図10に示しまた下記の粒度分布と
し、重量添加率を0.9%とした他は実施例1と同じ方
法で自溶炉による銅製錬を行った。 粒度(μm) 累積重量率(%) +250 100 250/100 90 150/105 79 105/70 69 75/44 43 −44 43 (105〜44) 26 製錬の結果、未燃焼の炭材が湯面に浮かんでいたが、そ
の量は比較例よりは著しく少なく、操業上のトラブルも
なくかつ実施例1とほとんど同じ十分な還元力が得られ
た。
Example 2 In the method of Example 1, coke breeze (fixed carbon ratio: 8
(1.6%) is shown in FIG. 10, and the following particle size distribution is used, and copper smelting in a flash furnace is performed in the same manner as in Example 1 except that the weight addition rate is 0.9%. Grain size (μm) Cumulative weight ratio (%) +250 100 250/100 90 150/105 79 79 105/70 69 75/44 43 −44 43 (105-44) 26 As a result of smelting, unburned carbonaceous material is melted. However, the amount was remarkably smaller than that of the comparative example, and there was no operational trouble and the same sufficient reducing power as in Example 1 was obtained.

【0044】[0044]

【発明の効果】以上説明したように、特許請求の範囲に
記載した炭材を自溶炉反応塔で添加することにより、ス
ラグ中のFe34 の過剰生成による操業上のトラブル
を防止し、スラグに含まれて損失するCu量も低減する
と同時に、逆にFe34 の過剰還元による耐火物の溶
損、不純物のスラグ除去率の低下、更にはボイラートラ
ブルのない安定した自溶炉操業を達成することができ
る。
As described above, by adding the carbonaceous materials described in the claims in the reaction furnace of the flash smelting furnace, it is possible to prevent operational troubles due to excessive generation of Fe 3 O 4 in the slag. In addition, the amount of Cu contained and lost in the slag is reduced, and at the same time, refractory erosion due to excessive reduction of Fe 3 O 4 , reduction of slag removal rate of impurities, and a stable flash furnace without boiler trouble Operation can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各要因の反応塔内における変化を計算モデルに
より予測した例を示すグラフである。
FIG. 1 is a graph showing an example in which a change in each factor in a reaction tower is predicted by a calculation model.

【図2】燃焼率予測を行った粉コークスの粒度分布を示
すグラフである。
FIG. 2 is a graph showing the particle size distribution of coke breeze for which a combustion rate was predicted.

【図3】反応塔最下端部における未燃コークスの粒度分
布を示すグラフである。
FIG. 3 is a graph showing the particle size distribution of unburned coke at the lowermost end of the reaction tower.

【図4】反応塔最下端部における未燃コークスの粒度別
重量率を示すグラフである。
FIG. 4 is a graph showing the weight ratio of unburned coke by particle size at the lowermost end of the reaction tower.

【図5】ルツボ還元によるFe34 の還元試験結果を
示すグラフである。
FIG. 5 is a graph showing the results of a reduction test of Fe 3 O 4 by crucible reduction.

【図6】反応塔内落下物粒子の光学顕微鏡写真(200
倍)である。
FIG. 6 is an optical microscope photograph (200) of particles falling in a reaction tower.
Times).

【図7】反応塔内落下物粒子の光学顕微鏡写真(200
倍)である。
FIG. 7 is an optical microscope photograph (200
Times).

【図8】反応塔内落下物粒子の光学顕微鏡写真(200
倍)である。
FIG. 8 is an optical microscope photograph (200
Times).

【図9】反応塔内落下物粒子の光学顕微鏡写真(200
倍)である。
FIG. 9 is an optical microscope photograph (200
Times).

【図10】実施例で使用した粉コークスの粒度分布示す
グラフである。
FIG. 10 is a graph showing the particle size distribution of coke breeze used in Examples.

【図11】実施例で使用した自溶炉諸元を示す図であ
る。
FIG. 11 is a view showing specifications of a flash smelting furnace used in an example.

【符号の説明】[Explanation of symbols]

1 精鉱バーナー 2 反応塔 3 セットラ 4 アップテーク 5 スラグ 6 マット 1 Concentrate burner 2 Reaction tower 3 Settler 4 Uptake 5 Slag 6 Mat

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 義昭 大分県北海部郡佐賀関町大字関3の3382 番地 日鉱金属株式会社佐賀関製錬所内 (56)参考文献 特開 昭63−118026(JP,A) 実開 平5−45065(JP,U) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Yoshiaki Suzuki No. 3382, Seki 3, Saganoseki-machi, Sakaseki-cho, North Sea-gun, Oita Pref. A) Japanese Utility Model Hei 5-45065 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) C22B 1/00-61/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】白溶炉の反応塔に炭材を添加して銅を乾式
製錬する方法において、前記炭材を、100μmアンダ
ーの粒度が該炭材に対して65重量%以上で、且つ10
0μmから44μmの粒度が該炭材に対して25重量%
以上である粒度を有しかつ固定炭素含有率が80重量
以上とすることを特徴とする銅の乾式製錬方法。
1. A method for dry smelting copper by adding a carbon material to a reaction tower of a white smelting furnace, wherein the carbon material has a particle size of under 100 μm is 65% by weight or more based on the carbon material, and 10
Particle size of 0 μm to 44 μm is 25% by weight based on the carbonaceous material.
It has the above particle size and the fixed carbon content is 80% by weight .
A dry smelting method for copper characterized by the above.
【請求項2】 前記炭材を石油コークスのバーナー燃焼
時に発生する未燃・集塵カーボン粉とする請求項1記載
の銅の乾式製錬法。
2. The method for dry smelting copper according to claim 1, wherein said carbon material is unburned and dust-collected carbon powder generated during burner combustion of petroleum coke.
JP33100395A 1994-12-08 1995-11-27 Copper smelting method Expired - Fee Related JP3217675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33100395A JP3217675B2 (en) 1994-12-08 1995-11-27 Copper smelting method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-330439 1994-12-08
JP33043994 1994-12-08
JP33100395A JP3217675B2 (en) 1994-12-08 1995-11-27 Copper smelting method

Publications (2)

Publication Number Publication Date
JPH08209261A JPH08209261A (en) 1996-08-13
JP3217675B2 true JP3217675B2 (en) 2001-10-09

Family

ID=26573530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33100395A Expired - Fee Related JP3217675B2 (en) 1994-12-08 1995-11-27 Copper smelting method

Country Status (1)

Country Link
JP (1) JP3217675B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8382879B2 (en) 2008-06-02 2013-02-26 Pan Pacific Copper Co., Ltd. Copper smelting method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5749546B2 (en) * 2011-03-23 2015-07-15 Jx日鉱日石金属株式会社 Method for removing bottom deposits of iron and tin-containing copper processing furnaces
JP2016035114A (en) * 2015-12-17 2016-03-17 オウトテック オサケイティオ ユルキネンOutotec Oyj Method for controlling floating matter in floating melting furnace, floating melting furnace, and concentrate burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8382879B2 (en) 2008-06-02 2013-02-26 Pan Pacific Copper Co., Ltd. Copper smelting method

Also Published As

Publication number Publication date
JPH08209261A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
US4396424A (en) Method for recovering useful metals from dust discharged from metal refining metallurgical furnace
BRPI0609774A2 (en) methods for processing a steel furnace powder and material containing iron and volatile metals, and for operating a channel induction furnace
US5912401A (en) Pyrometallurgical smelting method of copper
US20070266824A1 (en) Using a slag conditioner to beneficiate bag house dust from a steel making furnace
US5662730A (en) Method for pyrometallurgical smelting of copper
US5728193A (en) Process for recovering metals from iron oxide bearing masses
JP3217675B2 (en) Copper smelting method
JP2002544391A (en) Method for reducing nonferrous metal components of slag generated during production of nonferrous metals in floating blast furnace
Bugayev et al. Iron and steel production
US6887298B1 (en) Method and equipment for smelting non-ferrous metal sulphides in a suspension smelting furnace in order to produce matte of a high non-ferrous metal content and disposable slag
KR100205090B1 (en) Treatment method of zinc-contained dust and its apparatus
JP2000204405A (en) Operation of blast furnace
JP3336167B2 (en) Electric furnace dust treatment method
JP2005126732A (en) Smelting-reduction method for material containing metallic oxide, and smelting-reduction apparatus
JPWO2020116643A1 (en) Charcoal material and charcoal method using it
EP0832988B1 (en) Method of treating zinc-containing substance and apparatus therefor
JP2712877B2 (en) Operating method of flash smelting furnace
JP2861483B2 (en) Dry smelting of zinc and lead
WO1997012066A1 (en) Chromium ore smelting reduction process
JP3171066B2 (en) Blast furnace operation method
JPH06248366A (en) Reduction furnace for zinc and lead and its operating method
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
RU2114927C1 (en) Method of pyrometallurgical processing of lead-containing materials and furnace for method embodiment
JP2921374B2 (en) Blast furnace operation method
Shen et al. Sintering pot test of manganese ore with addition of manganese furnace dust

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140803

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees