JP3181761B2 - Method and apparatus for continuously forming functional deposited film - Google Patents
Method and apparatus for continuously forming functional deposited filmInfo
- Publication number
- JP3181761B2 JP3181761B2 JP19259893A JP19259893A JP3181761B2 JP 3181761 B2 JP3181761 B2 JP 3181761B2 JP 19259893 A JP19259893 A JP 19259893A JP 19259893 A JP19259893 A JP 19259893A JP 3181761 B2 JP3181761 B2 JP 3181761B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- film
- pressure
- chamber
- film forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、光起電力素子等の機能
性堆積膜を連続的に形成する形成方法及び堆積装置に係
わり、特に大面積の光起電力素子等の機能性堆積膜を基
体上に連続して形成する方法及び堆積装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forming method and a deposition apparatus for continuously forming a functional deposition film such as a photovoltaic element, and more particularly to a method for depositing a functional deposition film such as a large-area photovoltaic element. The present invention relates to a method for continuously forming a substrate and a deposition apparatus.
【0002】[0002]
【従来の技術】従来、基体上に光起電力素子等の機能性
堆積膜を形成させる場合において、各半導体の特性を向
上させるため、ゲート弁で完全に分離した成膜室を順次
通し、半導体を形成する三室分離型の堆積膜形成装置が
知られている。各成膜室を完全に分離したこの成膜室
は、不純物が混入しにくいという点では優れているもの
の生産性は、よくなかった。その為、帯状基体上に例え
ば光起電力素子等の半導体素子を形成するについて所定
の機能性堆積膜を連続的に成膜する装置として、帯状基
体を帯状基体収納容器から複数の反応容器に連続的に搬
送し、その際それぞれの反応容器において所定の半導体
膜を形成し、別の帯状基体収納容器内に収容するように
した連続成膜装置が提案されている。2. Description of the Related Art Conventionally, when a functional deposited film such as a photovoltaic element is formed on a substrate, in order to improve the characteristics of each semiconductor, the semiconductor is sequentially passed through a film forming chamber completely separated by a gate valve. Is known. Although the film forming chambers in which the respective film forming chambers were completely separated were excellent in that impurities were hardly mixed therein, the productivity was not good. For this reason, as a device for continuously forming a predetermined functional deposition film for forming a semiconductor element such as a photovoltaic element on a band-shaped substrate, the band-shaped substrate is continuously connected to a plurality of reaction vessels from the band-shaped substrate storage container. There has been proposed a continuous film forming apparatus in which a predetermined semiconductor film is formed in each reaction vessel at that time, and a predetermined semiconductor film is formed in each of the reaction vessels and housed in another strip-shaped substrate housing vessel.
【0003】例えば、特公昭62−36633号公報に
は、ロール・ツー・ロール(Roll to Rol
l)方式を採用した連続プラズマCVD法が開示されて
いる。この方法によれば、複数のグロー放電領域を設
け、所望の幅の十分に長い帯状の基板を前記複数のグロ
ー放電領域を順次貫通する経路に沿って配置し、基体を
その長手方向に連続的に搬送しながら前記各グロー放電
領域において所望の導電型の半導体を堆積形成して、半
導体接合を有する光起電力素子を連続的に形成すること
ができるとされている。尚、該明細書においては、各半
導体層形成時に用いる不純物ガスが他のグロー放電領域
へ拡散、混入するのを防止するのにガスゲートが用いら
れている。具体的には前記複数のグロー放電領域間をス
リット状の分離通路によって分離し、さらに該分離通路
に例えばAr,H2等の掃気用ガスの流れを形成する手
段が用いられている。[0003] For example, Japanese Patent Publication No. 62-36633 discloses a roll-to-roll system.
1) A continuous plasma CVD method employing the method is disclosed. According to this method, a plurality of glow discharge regions are provided, and a sufficiently long band-shaped substrate having a desired width is arranged along a path sequentially passing through the plurality of glow discharge regions, and the base is continuously formed in the longitudinal direction. It is described that a photoconductive element having a semiconductor junction can be continuously formed by depositing and forming a semiconductor of a desired conductivity type in each of the glow discharge regions while being transported. In this specification, a gas gate is used to prevent an impurity gas used for forming each semiconductor layer from diffusing and mixing into another glow discharge region. Specifically the plurality of inter glow discharge region is separated by a slit-shaped separation passageway, and further the separation passage, for example, Ar, means for forming a flow of scavenging gas such as H 2 is used.
【0004】しかしながらこの場合、かかるガスゲート
において各成膜室間に圧力差ある場合には、圧力の高い
成膜室から圧力の低い成膜室へ成膜ガスが混入しやすく
なるという問題点がある。However, in this case, if there is a pressure difference between the respective film forming chambers in such a gas gate, there is a problem that the film forming gas tends to be mixed into the film forming chamber having a high pressure from the film forming chamber having a low pressure. .
【0005】この問題点に対して、従来は、隣りあう成
膜室の圧力を合わせて圧力差をつくらないようにする、
あるいは米国特許4438723号明細書に開示されて
いるように、隣りあう成膜室からのガスの流入を防止す
るために成膜室の圧力を高くする等により対応してい
た。In order to solve this problem, conventionally, the pressures of the adjacent film forming chambers are adjusted so that a pressure difference is not created.
Alternatively, as disclosed in U.S. Pat. No. 4,438,723, a measure has been taken to increase the pressure in the film forming chamber in order to prevent gas from flowing in adjacent film forming chambers.
【0006】この装置は例えば、p,i,n型導電性を
有する半導体層(以下p型層,i型層,n型層と呼ぶこ
とがある)を帯状基体上に連続的に形成する連続成膜装
置であって、p型半導体層を形成する第1の反応容器、
i型半導体層を形成する第2の反応容器、n型半導体層
を形成する第3の反応容器からなり、第1の反応容器と
第2の反応容器の間、及び第2の反応容器と第3の反応
容器との間にp型半導体層を構成する元素及びn型半導
体層を構成する元素がそれぞれ第2の反応容器内に混入
するのを防ぐために分離手段を設け、第2の反応容器の
圧力を第1及び第3の反応容器のそれぞれの圧力よりも
高くして操作するというものである。該連続成膜装置を
使用すると連続的に組成の異なる複数の半導体層を帯状
基体上に積層することができる。前記分離手段は、隣接
する反応容器を隔離するため、隣接する反応容器の内圧
に所定の差を設け、それにより各反応容器に使用する原
料ガスの相互拡散を防止するというものである。ところ
がこの場合、該分離手段には帯状基体の通路が隣接する
反応容器に連通して設けられていて、該通路には不可避
的に内圧の高い反応容器の原料ガスは内圧の低い反応容
器に混入し、後者の反応容器中の内圧に変動をきたすば
かりでなく該反応容器中に生起するプラズマにも変動を
きたしてしまい、その結果、所望の堆積膜を形成するこ
とが難しくなるという問題点がある。In this device, for example, a semiconductor layer having p, i, and n-type conductivity (hereinafter sometimes referred to as a p-type layer, an i-type layer, and an n-type layer) is continuously formed on a strip-shaped substrate. A film forming apparatus, a first reaction vessel for forming a p-type semiconductor layer,
a second reaction vessel for forming an i-type semiconductor layer, a third reaction vessel for forming an n-type semiconductor layer, between the first reaction vessel and the second reaction vessel, and between the second reaction vessel and the second reaction vessel; Separating means for preventing the elements constituting the p-type semiconductor layer and the elements constituting the n-type semiconductor layer from being mixed into the second reaction vessel between the second reaction vessel and the second reaction vessel; Is operated at a pressure higher than the respective pressures of the first and third reaction vessels. With the use of the continuous film forming apparatus, a plurality of semiconductor layers having different compositions can be continuously laminated on the belt-like substrate. The separating means provides a predetermined difference in the internal pressure of the adjacent reaction vessels in order to isolate the adjacent reaction vessels, thereby preventing the mutual diffusion of the raw material gas used in each reaction vessel. However, in this case, the separation means is provided with a passage of the band-shaped substrate communicating with the adjacent reaction vessel, and the raw material gas of the reaction vessel having a high internal pressure is inevitably mixed into the passage in the reaction vessel having a low internal pressure. However, not only does the latter cause a change in the internal pressure in the reaction vessel, but also causes a change in the plasma generated in the reaction vessel. As a result, it is difficult to form a desired deposited film. is there.
【0007】上記米国特許第4,438,723号明細
書に記載の連続成膜装置におけるこれらの問題点を解決
する提案としてのガスゲート手段を備えた連続成膜装置
が、米国特許第4,462,332号明細書に開示され
ている。該装置は複数の反応容器(即ち、p型半導体層
形成用反応容器、i型半導体層形成用反応容器及びn型
半導体層形成用反応容器)を備えていて、隣り合う反応
容器間にはi型半導体層形成用反応容器に隣接してガス
ゲート手段が設けられている。このガスゲート手段は、
それぞれの反応容器に使用される成膜用の原料ガスが互
いに拡散するのを防止するものであるが、ゲートガスが
一方向のみより導入されて、p型またはn型半導体層形
成用反応容器方向に流れるようにした構造のものであ
る。また、当該連続成膜装置においては、前記ガスゲー
ト手段の帯状基体の通路には、該通路の上部壁にマグネ
ットが設けられていて、該マグネットにより帯状基体を
通路の上部壁に接触させて該通路のサイズを小さくする
ようにしている。A continuous film forming apparatus provided with a gas gate means as a proposal for solving these problems in the continuous film forming apparatus described in the above-mentioned US Pat. No. 4,438,723 is disclosed in US Pat. No. 4,462. , 332. The apparatus is provided with a plurality of reaction vessels (that is, a reaction vessel for forming a p-type semiconductor layer, a reaction vessel for forming an i-type semiconductor layer, and a reaction vessel for forming an n-type semiconductor layer), and i is provided between adjacent reaction vessels. A gas gate means is provided adjacent to the reaction container for forming the semiconductor layer. This gas gate means
Although it is intended to prevent the source gases for film formation used in each reaction vessel from diffusing from each other, a gate gas is introduced from only one direction, and is directed toward the reaction vessel for forming a p-type or n-type semiconductor layer. It has a flowing structure. In the continuous film forming apparatus, a magnet is provided on an upper wall of the passage in the band-shaped base of the gas gate means, and the band-shaped base is brought into contact with the upper wall of the passage by the magnet to form the passage. I try to make the size smaller.
【0008】この連続成膜装置によれば、米国特許第
4,438,723号に記載された連続成膜装置におけ
る上述した問題点の解決をある程度図れるものの、隣接
する反応容器に使用する原料ガスの相互拡散の防止を的
確に行うについてはガスゲート手段のコンダクタンス、
ゲートガスの流量等の関係するパラメータを的確に制御
する必要がある。即ち、例えば変換効率の高いpin接
合を有する半導体光電変換素子を作成する場合、p型及
びn型半導体層は比較的薄くし、i型半導体層はかなり
厚くする必要があり、p型及びn型半導体のそれぞれ
は、例えばRFプラズマCVD法により形成し、i型半
導体層は高速成膜が可能なマイクロ波プラズマCVD法
により形成することが行われる。この場合、i型半導体
形成用反応容器における成膜時の内圧はp型半導体形成
用反応容器及びn型半導体形成用反応容器のそれぞれに
おける成膜時の内圧に比べて大幅に低い。そのため、p
型半導体形成用反応容器及びn型半導体形成用反応容器
のそれぞれにおいて使用される不純物導入用原料ガスの
i型半導体形成用反応容器中への流入を防止することが
要求される。According to this continuous film forming apparatus, the above-mentioned problems in the continuous film forming apparatus described in US Pat. No. 4,438,723 can be solved to some extent, but the raw material gas used in the adjacent reaction vessel is used. To properly prevent mutual diffusion of gas, conductance of gas gate means,
It is necessary to accurately control related parameters such as the flow rate of the gate gas. That is, for example, when manufacturing a semiconductor photoelectric conversion element having a pin junction with high conversion efficiency, the p-type and n-type semiconductor layers need to be relatively thin, and the i-type semiconductor layer needs to be considerably thick. Each of the semiconductors is formed by, for example, an RF plasma CVD method, and the i-type semiconductor layer is formed by a microwave plasma CVD method capable of high-speed film formation. In this case, the internal pressure during film formation in the i-type semiconductor formation reaction vessel is significantly lower than the internal pressure during film formation in each of the p-type semiconductor formation reaction vessel and the n-type semiconductor formation reaction vessel. Therefore, p
It is required to prevent the source gas for impurity introduction used in each of the reaction vessel for forming the type semiconductor and the reaction vessel for forming the n-type semiconductor from flowing into the reaction vessel for forming the i-type semiconductor.
【0009】ところが、この要求を米国特許第4,43
8,723号に記載された連続成膜装置で満たすことは
極めて難しい。即ち、上述したように当該連続成膜装置
におけるガスゲート手段はi型半導体装置の両側に設け
られていてゲートガスはそれぞれのゲートガス手段から
p型半導体形成用反応容器及びn型半導体形成用反応容
器のそれぞれの方向に流れるようにしたもので、i型半
導体形成用反応容器の内圧がp型半導体形成用反応容器
及びn型半導体形成用反応容器の内圧よりも大幅に低い
場合にはガスの流れに逆流をもたらし、p型半導体形成
用反応容器及びn型半導体形成用反応容器のそれぞれに
おいて使用されるp型またはn型の不純物導入用原料ガ
スがi型半導体形成用反応容器中へ混入してしまう。[0009] However, US Pat.
It is extremely difficult to satisfy the requirements with the continuous film forming apparatus described in Japanese Patent No. 8,723. That is, as described above, the gas gate means in the continuous film forming apparatus is provided on both sides of the i-type semiconductor device, and the gate gas is supplied from each of the gate gas means to each of the p-type semiconductor forming reaction vessel and the n-type semiconductor forming reaction vessel. When the internal pressure of the i-type semiconductor forming reaction vessel is significantly lower than the internal pressures of the p-type semiconductor forming reaction vessel and the n-type semiconductor forming reaction vessel, the gas flows backward. And the p-type or n-type impurity introduction source gas used in each of the p-type semiconductor formation reaction vessel and the n-type semiconductor formation reaction vessel is mixed into the i-type semiconductor formation reaction vessel.
【0010】この問題を解決するについて特開平3−3
0419号公報には、ガスゲート手段を隣接する反応容
器間の中央部に設け、ゲートガスを上方から導入し下方
へ排気するようにする提案がなされている。この提案か
らする連続成膜装置は、RFプラズマCVD法によるp
型半導体形成用反応容器、マイクロ波プラズマCVD法
によるi型半導体形成用反応容器及びRFプラズマCV
D法によるn型半導体形成用反応容器からなり、該RF
プラズマCVD法によるp型半導体形成用反応容器とマ
イクロ波プラズマCVDによるi型半導体形成用反応容
器との間の中央部に前記ガスゲート手段を設け、また該
マイクロ波プラズマCVD法によるi型半導体形成用反
応容器と該RFプラズマCVD法によるn型半導体形成
用反応容器との間の中央部に前記ガスゲート手段を設け
たものである。[0010] To solve this problem, refer to Japanese Patent Laid-Open No. 3-3 / 1990.
Japanese Patent No. 0419 proposes that a gas gate is provided at a central portion between adjacent reaction vessels so that a gate gas is introduced from above and exhausted downward. The continuous film forming apparatus based on this proposal uses p-type RF plasma CVD.
Reactor for forming i-type semiconductor, reactor for forming i-type semiconductor by microwave plasma CVD method, and RF plasma CV
A reaction vessel for forming an n-type semiconductor by the method D;
The gas gate means is provided at a central portion between a reaction container for forming a p-type semiconductor by a plasma CVD method and a reaction container for forming an i-type semiconductor by microwave plasma CVD. The gas gate means is provided at a central portion between the reaction vessel and the reaction vessel for forming an n-type semiconductor by the RF plasma CVD method.
【0011】ところがこの連続成膜装置におけるこうし
たガスゲート手段であっても、該ガスゲート手段による
隣接する反応容器において使用される原料ガスの拡散を
防止するについての効果を十分に発揮せしめるについて
は該ガスゲート手段のスリット部分のコンダクタンスを
下げるか又は/及びゲートガスの流量を増大するように
する必要がある。ところが、このようにするについては
依然として解決されるべき問題点がある。即ち、スリッ
ト部分のコンダクタンスに関わる問題点については、ス
リット部分のコンダクタンスは、該スリット部分の形状
に支配され、該スリット部分の帯状基体の搬送方向に対
する長さに比例して下がり、帯状基体の厚み方向に対す
る高さの2乗に比例して上がる。However, even with such gas gate means in this continuous film forming apparatus, the gas gate means is required to sufficiently exert the effect of preventing the diffusion of the raw material gas used in the adjacent reaction vessel by the gas gate means. It is necessary to lower the conductance of the slit portion of the first electrode and / or to increase the flow rate of the gate gas. However, there is still a problem to be solved. That is, regarding the problem related to the conductance of the slit portion, the conductance of the slit portion is governed by the shape of the slit portion, and decreases in proportion to the length of the slit portion in the transport direction of the strip-shaped substrate, and the thickness of the strip-shaped substrate. It rises in proportion to the square of the height to the direction.
【0012】そして該スリットの帯状基体の幅方向に対
する寸ぷは、前記帯状基体の幅に基づくところ必要以上
に狭くはできない。ところで、該スリット部分のコンダ
クタンスを下げようとすると、前記帯状基体を搬送する
際、不可避的に該帯状基体が振動したり波打ったりする
問題が生起する。The dimension of the slit in the width direction of the strip-shaped base cannot be made smaller than necessary based on the width of the strip-shaped base. However, when the conductance of the slit portion is to be reduced, there arises a problem that the belt-like substrate inevitably vibrates or undulates when the belt-like substrate is transported.
【0013】このため該帯状基体の成膜面を該スリット
の壁面に接触されることなくして搬送するようにするに
は、該帯状基体の成膜面と該成膜面に対抗するスリット
の壁面との間に少なくとも約1mm程度またはそれ以上
のクリアランスを設ける必要がある。ところがこのよう
なクリアランスを設けるについては、おのずと限界があ
る。また、該スリット部分のコンダクタンスを下げるに
ついては該スリット部分を長くすることが考えられる
が、コンダクタンスはその長さに比例してしか下がらな
いので該スリット部分はいきおい長いものになってしま
い、その場合ガスゲート手段はかなり大がかりなものに
なってしまい、実用的ではない。またゲートガスの流量
に係わる問題については、ゲートガスの流量を増す場合
それに応じてゲートガスの各反応容器に流入する量が増
大する。その場合、各反応容器における成膜条件、例え
ば内圧、原料ガスの希釈率、プラズマの状態等に変動が
生じ、所望の堆積膜を形成することが難しくなる問題が
ある。この場合、こうした問題点を解決するについては
使用する排気装置の排気能力を増大することが考えられ
るが、そのようにするについては排気装置を大型化する
ことが必要とされる。従ってこの点についてもこの連続
成膜装置には改善すべき問題点がある。Therefore, in order to transport the film-forming surface of the band-shaped substrate without contacting the wall surface of the slit, the film-forming surface of the band-shaped substrate and the wall surface of the slit opposed to the film-forming surface are required. , A clearance of at least about 1 mm or more needs to be provided. However, there is naturally a limit in providing such a clearance. In order to reduce the conductance of the slit portion, it is conceivable to lengthen the slit portion.However, since the conductance decreases only in proportion to the length, the slit portion becomes extremely long, and in this case, The gas gate means is rather large and impractical. Regarding the problem related to the flow rate of the gate gas, when the flow rate of the gate gas is increased, the amount of the gate gas flowing into each reaction vessel increases accordingly. In this case, there is a problem that the film forming conditions in each reaction vessel, for example, the internal pressure, the dilution ratio of the raw material gas, the state of the plasma, and the like vary, and it is difficult to form a desired deposited film. In this case, in order to solve such a problem, it is conceivable to increase the exhaust capacity of the exhaust device to be used. However, to do so, it is necessary to increase the size of the exhaust device. Therefore, this point also has a problem to be improved in this continuous film forming apparatus.
【0014】[0014]
【発明が解決しようとする課題】本発明の目的は、従来
のロール・ツー・ロール法による光起電力素子の連続的
形成方法における前述した問題点を解決し、圧力の異な
るプロセスを、成膜室間の不純物ガスの相互混入を防ぎ
ながら、連続して行うことのできる生産性の高い光起電
力素子等の機能性堆積膜を連続的に形成する方法及び装
置を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems in the conventional method for continuously forming a photovoltaic element by a roll-to-roll method, and to carry out processes having different pressures. It is an object of the present invention to provide a method and an apparatus for continuously forming a functionally deposited film such as a photovoltaic element with high productivity which can be continuously performed while preventing impurity gases from intermixing between chambers.
【0015】[0015]
【課題を解決するための手段】本発明は、複数の成膜室
と該成膜室間を接続するガスゲートを通して帯状基板を
長手方向に連続的に移動させながら前記複数の成膜室に
おいて前記帯状基体上に各々の機能性堆積膜を堆積させ
る機能性堆積膜形成方法であって、掃気ガスの導入位置
を前記複数の成膜室であるpあるいはn型の導電性を有
する半導体形成用の高圧成膜室とi型の導電性を有する
半導体形成用の低圧成膜室とを接続するガスゲートの分
離通路の帯状基板の移動方向の中央よりも前記高圧成膜
室側に設け前記掃気ガスを導入することを特徴とする機
能性堆積膜形成方法である。SUMMARY OF THE INVENTION The present invention is directed to a method of manufacturing a semiconductor device, comprising the steps of: moving a strip substrate continuously in a longitudinal direction through a plurality of film forming chambers and a gas gate connecting the film forming chambers; What is claimed is: 1. A method for forming a functional deposition film, comprising depositing a respective functional deposition film on a substrate, wherein a scavenging gas introduction position is a p-type or n-type conductive film forming chamber.
High pressure film forming chamber for semiconductor formation and i-type conductivity
A functional deposition film formation, wherein the scavenging gas is introduced at a position closer to the high-pressure film formation chamber than a center of a strip-shaped substrate in a moving direction of a strip-shaped substrate connecting a gas gate connected to a low-pressure film formation chamber for forming a semiconductor. Is the way.
【0016】又、前記成膜室における堆積膜形成方法が
RFプラズマCVD法、またはマイクロ波プラズマCV
D法、またはスパッタリング法、またはイオンプレーテ
ィング法、または光CVD法、または熱CVD法、また
はMOCVD法、またはMBE法、または真空蒸着法、
または電子蒸着法である機能性堆積膜形成方法であり、
前記低抵抗半導体がpあるいはn型の導電性を有する半
導体であって、前記高抵抗半導体がi型導電性を有する
半導体である機能性堆積膜形成方法である。The method for forming a deposited film in the film forming chamber is RF plasma CVD or microwave plasma CV.
D method, or sputtering method, or ion plating method, or optical CVD method, or thermal CVD method, or MOCVD method, or MBE method, or vacuum evaporation method,
Or a functional deposited film forming method that is an electron vapor deposition method,
A method for forming a functional deposited film, wherein the low-resistance semiconductor is a semiconductor having p-type or n-type conductivity, and the high-resistance semiconductor is a semiconductor having i-type conductivity.
【0017】又、前記機能性堆積膜が光起電力素子であ
る機能性堆積膜形成方法である。Further, there is provided a method for forming a functional deposited film, wherein the functional deposited film is a photovoltaic element.
【0018】さらに、前記高圧成膜室と前記低圧成膜室
との圧力差が0.1Torr以上1.1Torr以下で
ある機能性堆積膜形成方法である。Further, there is provided a method for forming a functional deposited film, wherein a pressure difference between the high-pressure film forming chamber and the low-pressure film forming chamber is not less than 0.1 Torr and not more than 1.1 Torr.
【0019】又、前記高圧成膜室と前記低圧成膜室との
圧力差が0.2Torr以上1.0Torr以下である
機能性堆積膜形成方法である。Further, there is provided a method for forming a functional deposited film, wherein a pressure difference between the high-pressure film forming chamber and the low-pressure film forming chamber is not less than 0.2 Torr and not more than 1.0 Torr.
【0020】さらに、基板搬送方向のガスゲート全長に
対する掃気ガスを導入する点から高圧成膜室までの距離
比が0.1以上0.4以下である機能性堆積膜形成方
法。Further, a method for forming a functional deposited film, wherein a distance ratio from a point at which a scavenging gas is introduced to a total length of a gas gate in a substrate transfer direction to a high pressure film forming chamber is 0.1 or more and 0.4 or less.
【0021】又、本発明は複数の成膜室と、該複数の成
膜室を接続したスリット状の分離通路を有するガスゲー
トと、前記複数の成膜室と前記ガスゲートを通して帯状
基板を長手方向に連続的に移動させる搬送手段と、前記
ガスゲートに掃気ガスを導入するガス導入手段と、前記
複数の成膜室において前記帯状基体上に各々の機能性堆
積膜を堆積させる堆積手段と、を有し、前記複数の成膜
室がpあるいはn型の導電性を有する半導体形成用の高
圧成膜室とi型の導電性を有する半導体形成用の低圧成
膜室であって、前記掃気ガスの導入位置が前記ガスゲー
トの分離通路中央よりも前記高圧成膜室側に設けてある
ことを特徴とする機能性堆積膜堆積装置である。According to the present invention, a plurality of film forming chambers, a gas gate having a slit-shaped separation passage connecting the plurality of film forming chambers, and a belt-like substrate extending in the longitudinal direction through the plurality of film forming chambers and the gas gate are provided. Transport means for continuously moving, gas introduction means for introducing a scavenging gas to the gas gate, and deposition means for depositing each functional deposition film on the strip-shaped substrate in the plurality of film formation chambers, Wherein the plurality of film forming chambers are a high-pressure film forming chamber for forming a semiconductor having p-type or n-type conductivity and a low-pressure film forming chamber for forming a semiconductor having i-type conductivity ; A functional deposition film deposition apparatus characterized in that a position is provided on the high-pressure film formation chamber side of a center of the separation passage of the gas gate.
【0022】又、前記成膜室における堆積膜形成方法が
RFプラズマCVD法または、マイクロ波プラズマCV
D法または、スパッタリング法または、イオンプレーテ
ィング法または、光CVD法または、熱CVD法また
は、MOCVD法または、MBE法または、真空蒸着法
または、電子蒸着法である機能性堆積膜堆積装置であ
る。The method for forming a deposited film in the film forming chamber may be RF plasma CVD or microwave plasma CV.
It is a functional deposition film deposition apparatus that is a D method, a sputtering method, an ion plating method, an optical CVD method, a thermal CVD method, an MOCVD method, an MBE method, a vacuum evaporation method, or an electron evaporation method. .
【0023】[0023]
【0024】又、前記機能性堆積膜が光起電力素子であ
る機能性堆積膜堆積装置である。Further, there is provided a functional deposition film deposition apparatus wherein the functional deposition film is a photovoltaic element.
【0025】さらに、前記高圧成膜室と前記低圧成膜室
との圧力差が0.1Torr以上1.1Torr以下で
ある機能性堆積膜堆積装置である。Further, there is provided a functional film deposition apparatus wherein a pressure difference between the high-pressure film forming chamber and the low-pressure film forming chamber is 0.1 Torr or more and 1.1 Torr or less.
【0026】さらに、前記高圧成膜室と前記低圧成膜室
との圧力差が0.2Torr以上1.0Torr以下で
ある機能性堆積膜堆積装置である。Further, there is provided a functional film deposition apparatus wherein a pressure difference between the high-pressure film forming chamber and the low-pressure film forming chamber is 0.2 Torr or more and 1.0 Torr or less.
【0027】又、基板搬送方向のガスゲート全長に対す
る掃気ガスを導入する点から高圧成膜室までの距離比が
0.1以上0.4以下である機能性堆積膜堆積装置であ
る。Further, there is provided a functional deposition film deposition apparatus wherein a distance ratio from a point at which a scavenging gas is introduced to a total length of a gas gate in a substrate transfer direction to a high pressure film formation chamber is 0.1 or more and 0.4 or less.
【0028】[0028]
【作用】以下に図面を参照しながら本発明の作用、構成
を詳細に説明する。The operation and structure of the present invention will be described below in detail with reference to the drawings.
【0029】本発明は、図1に示すように、帯状基体1
05を長手方向に連続的に移動させながら、スリット状
の分離通路に掃気ガスの導入部を有すガスゲート103
によって接続された成膜室101、102を通過させ、
各々の成膜室でプラズマCVD法により帯状基体105
上に所望の導電型の半導体層を堆積して、半導体接合を
有する光起電力素子等を連続的に形成する機能性堆積膜
の連続的形成方法において、半導体接合を形成するi型
層の成膜室102と、i型層の成膜室より圧力の高いn
またはp型層の成膜室101とを接続するガスゲート1
03は、掃気ガスの導入管104をガスゲート103の
分離通路の中央よりもnまたはp型層の成膜室側に設
け、導入管104に掃気ガスを導入することにより、ガ
スゲートのガス分離性能を高め、i型層の成膜室102
へ成膜室101から不純物ガスが混入するのを効果的に
防止しようとしたものである。According to the present invention, as shown in FIG.
The gas gate 103 having a scavenging gas introduction portion in a slit-like separation passage while continuously moving
Through the film forming chambers 101 and 102 connected by
In each of the film forming chambers, the band-like substrate 105 is formed by a plasma CVD method.
In a method for continuously forming a functional deposition film in which a semiconductor layer of a desired conductivity type is deposited thereon and a photovoltaic element or the like having a semiconductor junction is continuously formed, the formation of an i-type layer for forming a semiconductor junction is performed. The film chamber 102 and n having a higher pressure than the film forming chamber for the i-type layer
Alternatively, a gas gate 1 for connecting the p-type layer to the film forming chamber 101
03, the scavenging gas introduction pipe 104 is provided on the n- or p-type layer film formation chamber side of the center of the separation passage of the gas gate 103, and the scavenging gas is introduced into the introduction pipe 104 to improve the gas separation performance of the gas gate. Enhanced, i-type layer deposition chamber 102
It is intended to effectively prevent impurity gas from being mixed from the film forming chamber 101.
【0030】ガスゲートが接続する二つの成膜室の圧力
が同じ場合、ガスゲート内の分離通路の圧力は掃気ガス
を導入すれば、必ず図2に示すように掃気ガス導入位置
において最大になる。図2が示すように掃気ガスをA→
B→Cと増加させると、掃気ガスの導入量に応じて掃気
ガス導入位置の圧力は高まり、掃気ガス導入位置から二
つの成膜室へのガスの流れが形成され、二つの成膜室の
ガスが相互に混入する事を防止することができる。When the pressures of the two film forming chambers connected to the gas gate are the same, the pressure of the separation passage in the gas gate always reaches the maximum at the scavenging gas introduction position as shown in FIG. 2 when the scavenging gas is introduced. As shown in FIG. 2, the scavenging gas is changed from A →
When increasing from B to C, the pressure at the scavenging gas introduction position increases in accordance with the scavenging gas introduction amount, and a gas flow from the scavenging gas introduction position to the two film formation chambers is formed. Gases can be prevented from being mixed with each other.
【0031】しかし、ガスゲートが接続する二つの成膜
室間に圧力差がある場合には、ガスゲート内の分離通路
の圧力は掃気ガスを導入した時に必ずしも掃気ガス導入
位置において最大にはならない。ガスゲート中の圧力分
布は掃気ガスの流量によって変わり、図3に示すよう
に、掃気ガスを流さない場合にはA、少量流す場合には
B、多量に流す場合にはCと変化し、掃気ガスが少ない
場合にはガスゲート内の分離通路の圧力は圧力差のある
成膜室のうち圧力の高い成膜室側の開口部で最大にな
る。However, when there is a pressure difference between the two film forming chambers connected to the gas gate, the pressure in the separation passage in the gas gate does not always reach the maximum at the scavenging gas introduction position when the scavenging gas is introduced. The pressure distribution in the gas gate changes depending on the flow rate of the scavenging gas. As shown in FIG. 3, the scavenging gas changes to A when no scavenging gas flows, B when a small amount of scavenging gas flows, and C when a large amount of scavenging gas flows. When the pressure is small, the pressure in the separation passage in the gas gate becomes maximum at the opening on the side of the film formation chamber having a high pressure among the film formation chambers having a pressure difference.
【0032】ガスゲートが接続する二つの成膜室間に圧
力差をつける前記の米国特許第4,438,723号明
細書に開示された方法でも掃気ガスを圧力差のある成膜
室のうち圧力の高い方の成膜室(以下、高圧成膜室と呼
ぶ)のガスゲート開口部に吹き付けているため、ガスゲ
ート内の分離通路の圧力は高圧成膜室側の開口部で最大
になる。In the method disclosed in the above-mentioned US Pat. No. 4,438,723, in which a pressure difference is provided between two film forming chambers connected to a gas gate, the scavenging gas is supplied to the pressure in the film forming chamber having a pressure difference. Is blown to the gas gate opening of the higher film forming chamber (hereinafter, referred to as a high-pressure film forming chamber), so that the pressure of the separation passage in the gas gate becomes maximum at the opening on the high-pressure film forming chamber side.
【0033】このようにガスゲートが接続する二つの成
膜室間に圧力差がある場合、ガスゲート内の圧力分布は
圧力差のない場合とは異なり、一通りではない。As described above, when there is a pressure difference between the two film forming chambers to which the gas gate is connected, the pressure distribution in the gas gate is different from the case where there is no pressure difference, and is not one.
【0034】そこで、本発明者らは成膜室間に圧力差が
ある場合について、図5に示す装置を用いてガスゲート
内の圧力分布とガス分離性能の関係を調べた。図5にお
いて501は高圧成膜室、502は圧力差のある成膜室
のうち圧力の低い方の成膜室(以下、低圧成膜室と呼
ぶ)、503はガスゲート、504は帯状基体、505
は圧力計、506四重極質量分析計、507はガス導入
管、508は排気管である。Therefore, the present inventors examined the relationship between the pressure distribution in the gas gate and the gas separation performance using the apparatus shown in FIG. 5 when there is a pressure difference between the film forming chambers. In FIG. 5, reference numeral 501 denotes a high-pressure film forming chamber; 502, a film forming chamber having a lower pressure among the film forming chambers having a pressure difference (hereinafter, referred to as a low-pressure film forming chamber); 503, a gas gate;
Denotes a pressure gauge, 506 a quadrupole mass spectrometer, 507 denotes a gas introduction pipe, and 508 denotes an exhaust pipe.
【0035】この装置において、低圧成膜室には成膜ガ
スの代わりにH2を200sccm、高圧成膜室には不
純物ガスの代わりにHeを200sccm導入してお
き、ガスゲートの掃気ガスとしてH2を用いガスゲート
上下のガス導入管から半分ずつ導入して、高圧成膜室か
ら低圧成膜室に流れ込むHe量を低圧成膜室に接続した
四重極質量分析計により測定した。低圧成膜室に流入す
るHe量が少ない程、低圧成膜室へ流入する不純物ガス
は少なくなることになり、成膜室間のガス分離性能が高
いと評価することができる。また、ガスゲート内の圧力
は掃気ガス導入部と各成膜室開口部に設けた圧力計によ
り測定した。尚、このとき低圧成膜室の圧力は5mTo
rrで一定とし、高圧成膜室の圧力は1Torr,0.
75Torrと変化させた。[0035] In this device, H 2 and H 2 in place of the deposition gas to the low pressure deposition chamber 200 sccm, the pressure deposition chamber leave 200 sccm introducing He instead of the impurity gas, as a scavenging gas for the gas gate And the amount of He flowing from the high-pressure film formation chamber into the low-pressure film formation chamber was measured by a quadrupole mass spectrometer connected to the low-pressure film formation chamber. The smaller the amount of He flowing into the low-pressure film formation chamber, the smaller the amount of impurity gas flowing into the low-pressure film formation chamber, and it can be evaluated that the gas separation performance between the film formation chambers is high. The pressure in the gas gate was measured by a scavenging gas introduction unit and a pressure gauge provided at the opening of each film forming chamber. At this time, the pressure in the low-pressure film forming chamber is 5 mTo
rr, and the pressure in the high-pressure film forming chamber is 1 Torr, 0.
It was changed to 75 Torr.
【0036】その結果、高圧成膜室から低圧成膜室への
不純物ガス流入量とガスゲート内の圧力の間に図6に示
すような関係があることを見出した。すなわち、掃気ガ
ス導入量を増加させて掃気ガス導入位置の圧力を高める
に従い、高圧成膜室から低圧成膜室への不純物ガス混入
量は減少し、掃気ガス導入位置の圧力が高圧成膜室側開
口部の圧力より高い領域では高圧成膜室から低圧成膜室
への不純物ガス流入量が急激に減少し、ガスゲートのガ
ス分離性能が急激に向上することを見出した。As a result, it has been found that there is a relationship as shown in FIG. 6 between the amount of impurity gas flowing from the high-pressure film forming chamber to the low-pressure film forming chamber and the pressure in the gas gate. That is, as the scavenging gas introduction amount is increased and the pressure at the scavenging gas introduction position is increased, the amount of impurity gas mixed from the high pressure film formation chamber into the low pressure film formation chamber is reduced, and the pressure at the scavenging gas introduction position is increased. It has been found that in a region higher than the pressure of the side opening, the flow rate of the impurity gas from the high-pressure film formation chamber to the low-pressure film formation chamber is rapidly reduced, and the gas separation performance of the gas gate is rapidly improved.
【0037】さらに、本発明者らがガスゲートへの掃気
ガス導入量を一定に保ちながら掃気ガスの導入位置をガ
スゲートの中央、高圧成膜室側、低圧成膜室側と変え
て、掃気ガス導入位置の圧力および低圧成膜室への不純
物ガス流入量を測定したところ、掃気ガス導入位置の圧
力は、図4に示すようにガスゲートの長さを変化させた
り掃気ガスの流量を変化させたりしなくても、掃気ガス
をガスゲートの中央よりも高圧成膜室側に導入すると掃
気ガス導入位置の圧力が高まり、低圧成膜室への不純物
ガス導入量が減少し、低圧成膜室側に導入すると掃気ガ
ス導入位置の圧力が下がり、低圧成膜室への不純物ガス
導入量が増加することを見出した。Further, the present inventors changed the introduction position of the scavenging gas to the center of the gas gate, the side of the high-pressure film forming chamber, and the side of the low-pressure film forming chamber while keeping the amount of the scavenging gas introduced into the gas gate constant. When the pressure at the position and the amount of the impurity gas flowing into the low-pressure film formation chamber were measured, the pressure at the scavenging gas introduction position changed the length of the gas gate and the flow rate of the scavenging gas as shown in FIG. Even if the scavenging gas is not introduced into the high pressure film forming chamber than the center of the gas gate, the pressure at the scavenging gas introduction position increases, the amount of impurity gas introduced into the low pressure film forming chamber decreases, and the scavenging gas is introduced into the low pressure film forming chamber. Then, it has been found that the pressure at the scavenging gas introduction position decreases, and the amount of impurity gas introduced into the low-pressure film formation chamber increases.
【0038】すなわち、従来ガスゲートの中央もしくは
i型層の成膜室側から導入していた掃気ガスを、nまた
はp型層の成膜室側から導入することにより、より少な
い掃気ガス導入量で、掃気ガス導入位置の圧力を高圧成
膜室側開口部の圧力より高くすることが可能になり、高
圧成膜室から低圧成膜室への不純物ガス流入量を効果的
に減少させられることを見出したのである。本発明はか
かる知見に基づいてなされたものである。That is, by introducing the scavenging gas, which has been introduced from the center of the gas gate or from the film forming chamber side of the i-type layer, from the film forming chamber side of the n or p-type layer, a smaller amount of scavenging gas can be introduced. In addition, the pressure at the scavenging gas introduction position can be made higher than the pressure at the opening on the high pressure film formation chamber side, and the amount of impurity gas flowing from the high pressure film formation chamber to the low pressure film formation chamber can be effectively reduced. I found it. The present invention has been made based on such findings.
【0039】前述のように、ガスゲートの接続する成膜
室間に大きな圧力差がある時に掃気ガスの導入位置によ
って掃気ガス導入位置を高圧の成膜室寄りにすることに
よって低圧の成膜室に流入する不純物ガスの量を減少さ
せられる原理を以下に説明する。As described above, when there is a large pressure difference between the film forming chambers to which the gas gates are connected, the scavenging gas introduction position is shifted toward the high pressure film forming chamber depending on the scavenging gas introduction position, so that the low pressure film forming chamber can be used. The principle by which the amount of inflowing impurity gas can be reduced will be described below.
【0040】尚、説明を簡単にするため、ガスゲートの
ガス分離通路の帯状基体の搬送方向に垂直な方向の断面
開口形状(スリット部の幅、高さ)は帯状基体の搬送方
向に対して一定であるものと仮定し、帯状基体の入って
いない状態を考える。In order to simplify the explanation, the cross-sectional opening shape (width and height of the slit portion) of the gas separation passage of the gas gate in a direction perpendicular to the transport direction of the strip-shaped substrate is constant in the transport direction of the strip-shaped substrate. Assume that no belt-like substrate is included.
【0041】(1)ガスゲートの接続する成膜室間に圧
力差のない場合をまず考える。このとき、掃気ガスを導
入しなければ成膜室間のガスの流れはガスゲートの分離
通路を介しての成膜ガスのわずかな拡散だけである。こ
のような状態でガスゲートに掃気ガスを導入すれば、導
入した掃気ガスは掃気ガス導入位置から各成膜室までの
分離通路のコンダクタンスに比例して分割され、各成膜
室へと流れ、成膜室間での成膜ガスの拡散を抑制する。(1) First, consider the case where there is no pressure difference between the film forming chambers to which the gas gate is connected. At this time, if no scavenging gas is introduced, the flow of gas between the film forming chambers is only a slight diffusion of the film forming gas through the separation passage of the gas gate. When the scavenging gas is introduced into the gas gate in such a state, the introduced scavenging gas is divided in proportion to the conductance of the separation passage from the scavenging gas introduction position to each of the film forming chambers, flows into each of the film forming chambers, and is formed. Suppress diffusion of a deposition gas between film chambers.
【0042】掃気ガスの流れにおいて不純物ガスを導入
する成膜室から真性半導体を形成する成膜室への不純物
ガスの拡散を抑制するのは、掃気ガス導入位置から不純
物ガスを導入する成膜室への流れである。In the flow of the scavenging gas, the diffusion of the impurity gas from the film formation chamber for introducing the impurity gas to the film formation chamber for forming the intrinsic semiconductor is suppressed by the film formation chamber for introducing the impurity gas from the scavenging gas introduction position. It is the flow to.
【0043】そして、この掃気ガス導入位置から不純物
ガスを導入する成膜室までの分離通路のコンダクタンス
が小さい程、掃気ガス導入位置から不純物ガスを導入す
る成膜室までの分離通路に流れる掃気ガス流量が多い
程、真性半導体を形成する成膜室への不純物ガスの拡散
量は減少する。そして掃気ガスをガスゲートの中央に導
入した時に不純物ガスの拡散量は最小になる。The smaller the conductance of the separation passage from the scavenging gas introduction position to the film formation chamber for introducing the impurity gas, the smaller the scavenging gas flowing in the separation passage from the scavenging gas introduction position to the film formation chamber for introducing the impurity gas. As the flow rate increases, the diffusion amount of the impurity gas into the film formation chamber for forming the intrinsic semiconductor decreases. When the scavenging gas is introduced into the center of the gas gate, the diffusion amount of the impurity gas is minimized.
【0044】例えば、帯状基体の搬送方向に対するガス
ゲートの全長に対するコンダクタンスをC、ガスゲート
に導入する掃気ガスの流量をQ、掃気ガスを導入する点
(導入口の中心点)を不純物ガスを導入する成膜室まで
の距離:真性半導体を形成する成膜室までの距離=x:
1−x(0≦x≦1)となる点とすると、コンダクタン
スは配管の長さに比例するので、掃気ガス導入位置から
不純物ガスを導入する成膜室へのコンダクタンスC’お
よび掃気ガス導入位置から不純物ガスを導入する成膜室
への掃気ガスを導入する成膜室への掃気ガス流量Q’は
次のようになる。For example, the conductance with respect to the entire length of the gas gate in the transport direction of the belt-shaped substrate is C, the flow rate of the scavenging gas introduced into the gas gate is Q, and the point at which the scavenging gas is introduced (the center point of the introduction port) is a point at which the impurity gas is introduced. Distance to film chamber: distance to film formation chamber for forming intrinsic semiconductor = x:
Assuming that 1−x (0 ≦ x ≦ 1), the conductance is proportional to the length of the pipe, and therefore, the conductance C ′ and the scavenging gas introduction position from the scavenging gas introduction position to the film formation chamber for introducing the impurity gas. The scavenging gas flow rate Q ′ to the film formation chamber for introducing the scavenging gas to the film formation chamber for introducing the impurity gas from below is as follows.
【0045】C’=C/x Q’=Q(1−x)C '= C / x Q' = Q (1-x)
【0046】掃気ガスの導入位置から不純物ガスを導入
する成膜室までの分離通路のコンダクタンスC’が小さ
い程、該分離通路の掃気ガス流量Q’の多い程、真性半
導体を形成する成膜室への不純物ガスの拡散量は減少す
るので、ガス分離性能はQ’/C’に比例すると考えて
も良い。ここで、The smaller the conductance C 'of the separation passage from the position where the scavenging gas is introduced to the film formation chamber where the impurity gas is introduced, and the larger the scavenging gas flow rate Q' of the separation passage, the larger the film formation chamber for forming an intrinsic semiconductor. Since the diffusion amount of the impurity gas into the gas decreases, the gas separation performance may be considered to be proportional to Q ′ / C ′. here,
【0047】[0047]
【数1】 でるので、Q’/c’はx=0.5(0≦x≦1)とな
る。(Equation 1) Therefore, Q ′ / c ′ is x = 0.5 (0 ≦ x ≦ 1).
【0048】すなわち、成膜室間に圧力差のない場合、
掃気ガスをガスゲートの中央に導入した時にガス分離性
能は最大になり、不純物ガスの拡散量は最小になる。That is, when there is no pressure difference between the film forming chambers,
When the scavenging gas is introduced into the center of the gas gate, the gas separation performance is maximized and the diffusion amount of the impurity gas is minimized.
【0049】また、成膜室間に圧力差のない場合、掃気
ガスは分離通路のコンダクタンスの比で分割され、各成
膜室へ流入するため、掃気ガス導入位置をガスゲート中
央よりも不純物ガスを導入するnまたはp型層の成膜室
側にすると、導入した掃気ガスの内、より多くがp型層
への成膜室へと流入することになる。ところが光起電力
素子においてnまたはp型層の膜厚はi型層の膜厚に比
べて約1/10であり、nまたはp型層の成膜室に導入
される原料ガス量はi型層の成膜室に導入される原料ガ
ス量に比べてかなり少なく、掃気ガスの流入量が増した
時に少量の原料ガスが流入した掃気ガスによって低濃度
に希釈されてしまうという問題があった。When there is no pressure difference between the film forming chambers, the scavenging gas is divided by the conductance ratio of the separation passage and flows into each of the film forming chambers. When the n-type or p-type layer to be introduced is on the film forming chamber side, more of the introduced scavenging gas flows into the film forming chamber for the p-type layer. However, in the photovoltaic element, the thickness of the n-type or p-type layer is about 1/10 of the thickness of the i-type layer, and the amount of the source gas introduced into the film formation chamber for the n-type or p-type layer is i-type. There is a problem in that the amount of the source gas introduced into the film formation chamber for the layer is considerably smaller than that of the source gas, and when the inflow of the scavenging gas increases, a small amount of the source gas is diluted to a low concentration by the scavenging gas flowing in.
【0050】以上のような理由で、従来ガスゲートの接
続する成膜室間にほとんど圧力差のない場合、掃気ガス
はガスゲートの中央あるいは中央よりも若干i型層の成
膜室側の位置に導入する必要があった。For the above reasons, when there is almost no pressure difference between the film formation chambers to which the conventional gas gate is connected, the scavenging gas is introduced to the center of the gas gate or to a position slightly closer to the i-type layer than the center. I needed to.
【0051】(2)次に成膜室間に大きな圧力差がある
場合を考える。このとき、掃気ガスを導入しなければ圧
力差によって高圧の成膜室の成膜ガスZはガスゲートの
分離通路を介して低圧の成膜室へと流入する。(2) Next, consider a case where there is a large pressure difference between the film forming chambers. At this time, if no scavenging gas is introduced, the pressure difference causes the deposition gas Z in the high-pressure deposition chamber to flow into the low-pressure deposition chamber via the separation passage of the gas gate.
【0052】そのため、高圧の成膜室が不純物ガスを導
入する成膜室で、低圧の成膜室が真性半導体の成膜室で
あるとき、真性半導体の成膜室には圧力差がないときの
拡散によるものに比べてはるかに大量の不純物ガスが混
入することになる。Therefore, when the high-pressure film formation chamber is a film formation chamber for introducing an impurity gas, the low-pressure film formation chamber is a film formation chamber for an intrinsic semiconductor, and when there is no pressure difference between the film formation chambers for the intrinsic semiconductor. A much larger amount of impurity gas will be mixed in than in the case of diffusion.
【0053】したがって、このように圧力差のある場
合、不純物ガスの混入を抑制するには、まずこのような
圧力差による不純物ガスの流入を止める必要がある。Therefore, when there is such a pressure difference, it is necessary to first stop the flow of the impurity gas due to such a pressure difference in order to suppress the mixing of the impurity gas.
【0054】圧力差のある成膜室間を接続するガスゲー
トに掃気ガスを導入するとガスゲート内の圧力分布は図
3のようになる。掃気ガスの導入量が少ないときには導
入した掃気ガスは全て低圧の成膜室へ流れてしまうが
(図中Bの状態)、導入量が増し、掃気ガス導入位置の
圧力が高圧の成膜室の圧力を超えると(図中Cの状態)
高圧の成膜室からの不純物ガスの流入が止まり(拡散は
残る)、高圧成膜室への掃気ガスの流れが生じる。掃気
ガスの導入量を増し掃気ガスの導入位置の圧力P’が高
圧側の成膜室の圧力PHと同じになったとき、成膜室間
において成膜ガスの流れは拡散だけになり、導入した掃
気ガスQは掃気ガス導入位置から低圧側の成膜室までの
ガスゲートの分離通路(コンダクタンスC''=C/(1
−x))を通って全て低圧側の成膜室へ流入する。When a scavenging gas is introduced into the gas gate connecting the film forming chambers having a pressure difference, the pressure distribution in the gas gate becomes as shown in FIG. When the amount of scavenging gas introduced is small, all of the introduced scavenging gas flows into the low-pressure film formation chamber (state B in the figure), but the amount of introduction increases and the pressure at the scavenging gas introduction position becomes high in the film formation chamber. When the pressure is exceeded (C in the figure)
The flow of the impurity gas from the high-pressure film formation chamber stops (diffusion remains), and the scavenging gas flows into the high-pressure film formation chamber. When the pressure P of the position of the introduction of scavenging gas increases the introduction amount of the scavenging gas' is the same as the pressure P H of the film forming chamber of the high pressure side, the flow of the deposition gas between the film forming chamber is the only diffusion, The introduced scavenging gas Q is separated from the scavenging gas introduction position by a gas gate separation passage (conductance C ″ = C / (1
-X)) all flow into the low pressure side film formation chamber.
【0055】したがって、Therefore,
【数2】 の関係が成り立つ(但し、PLは低圧側の成膜室の圧力
とする)。(Equation 2) Relationship holds (where, P L is the pressure in the deposition chamber of the low-pressure side).
【0056】これからxが小さい程掃気ガス導入位置の
圧力P’が高くなり、より少ない掃気ガスQで不純物ガ
スの混入を防げることがわかり、ガスゲートの中央より
も不純物ガスを導入し、圧力の高い成膜室に近い位置に
掃気ガスを導入することが有効であることがわかる。From this, it can be seen that the smaller the value of x, the higher the pressure P 'at the scavenging gas introduction position, and the smaller the scavenging gas Q, the more the impurity gas can be prevented from being mixed. It is found that it is effective to introduce a scavenging gas to a position close to the film formation chamber.
【0057】本発明において、ガスゲートの分離通路の
中央よりもnまたはp型層の成膜室側の位置とは、分離
通路のi型層の成膜室とnまたはp型層の成膜室との中
間位置から、nまたはp型層の成膜室への開口部までの
間の位置をさすが、不純物ガスのi型層の成膜室への混
入を防ぐには分離通路内にnまたはp型層の成膜室への
掃気ガスの流れを形成する必要があるため、掃気ガス導
入位置はnまたはp型層の成膜室側開口端からは少し離
すほうが好ましい。また、前述したようにガスゲートの
接続する成膜室間に圧力差がほとんどない場合には掃気
ガスはガスゲートの中央から導入するのが好ましく、圧
力差が大きい場合には不純物ガスを導入する高圧の成膜
室側に寄せたほうが好ましい。In the present invention, the position of the n- or p-type layer on the film forming chamber side of the center of the separation passage of the gas gate means the i-type layer forming chamber and the n or p-type layer forming chamber of the separation passage. From the intermediate position to the opening of the n-type or p-type layer to the film formation chamber. In order to prevent the impurity gas from entering the i-type layer into the film formation chamber, n or p is set in the separation passage. Since it is necessary to form a flow of the scavenging gas into the film formation chamber of the p-type layer, it is preferable that the scavenging gas introduction position is slightly separated from the opening end of the n or p-type layer on the film formation chamber side. Further, as described above, when there is almost no pressure difference between the film forming chambers connected to the gas gate, it is preferable to introduce the scavenging gas from the center of the gas gate. It is preferable to bring it to the film forming chamber side.
【0058】従って、掃気ガスの最適導入位置はガスゲ
ートの接続する成膜室の圧力によってガスゲート中央か
ら高圧の成膜室側開口端近傍までの範囲で変化する。Therefore, the optimum introduction position of the scavenging gas changes in the range from the center of the gas gate to the vicinity of the high-pressure film forming chamber side opening end depending on the pressure of the film forming chamber to which the gas gate is connected.
【0059】そこで本発明者らは成膜室間に大きな圧力
差がある場合について、図5に示す装置を用いて導入す
る掃気ガス流量を変えずに掃気ガス導入位置を変化さ
せ、ガスゲートの掃気ガス導入位置と低圧側成膜室への
不純物ガス混入量の関係を調べた。Therefore, the present inventors changed the scavenging gas introduction position without changing the scavenging gas flow introduced using the apparatus shown in FIG. The relationship between the gas introduction position and the amount of impurity gas mixed into the low-pressure side film formation chamber was examined.
【0060】尚、この装置において、低圧成膜室には成
膜ガスの代わりにH2を200sccm、高圧成膜室に
は不純物ガスの代わりにHeを200sccm導入して
おき、ガスゲートの掃気ガスとしてH2を用いガスゲー
ト上下のガス導入管から半分ずつ導入して高圧成膜室か
ら低圧成膜室に流れ込むHe量を低圧成膜室に接続した
四重極質量分析計により測定した。尚、このとき低圧成
膜室の圧力はマイクロ波CVD法に適した圧力領域の5
mTorr、高圧成膜室の圧力は高周波CVD法に適し
た圧力領域の1Torrとした。In this apparatus, 200 sccm of H 2 was introduced into the low-pressure deposition chamber instead of the deposition gas, and 200 sccm of He was introduced into the high-pressure deposition chamber instead of the impurity gas. The amount of He introduced into the low-pressure film formation chamber from the high-pressure film formation chamber by introducing H 2 from the gas introduction pipes above and below the gas gate by half was measured by a quadrupole mass spectrometer connected to the low-pressure film formation chamber. At this time, the pressure of the low-pressure film forming chamber is set to 5 in a pressure range suitable for the microwave CVD method.
mTorr and the pressure in the high-pressure film forming chamber were set to 1 Torr in a pressure range suitable for the high-frequency CVD method.
【0061】その結果、掃気ガス導入位置を前述のxで
表したとき、xに対して低圧側成膜室への不純物ガスの
混入量は図10に示すように変化していた。As a result, when the scavenging gas introduction position was represented by the above-mentioned x, the mixing amount of the impurity gas into the low-pressure side film-forming chamber with respect to x changed as shown in FIG.
【0062】米国特許第4,438,723号明細書に
はガスゲートに要求される実用的な不純物ガス濃度低減
能力が示されており、不純物ガスを導入する成膜室の不
純物濃度がガスゲートを介した不純物ガスを導入しない
成膜室で10-4以下になっていれば実用的なガス分離性
能があると判断することができ、図10から掃気ガスの
導入位置としては0.1≦x≦0.4の範囲が好ましい
ことがわかった。US Pat. No. 4,438,723 discloses a practical ability to reduce the impurity gas concentration required for a gas gate. The impurity concentration of a film forming chamber for introducing an impurity gas is controlled through the gas gate. If it is 10 -4 or less in the film forming chamber where the impurity gas is not introduced, it can be determined that there is practical gas separation performance. From FIG. 10, the introduction position of the scavenging gas is 0.1 ≦ x ≦ It has been found that a range of 0.4 is preferred.
【0063】次に、本発明者らは、同じ装置においてx
=0.25の不純物ガスを導入する成膜室側の位置に掃
気ガス導入位置を固定し、高圧側の成膜室の圧力を0.
05Torrから1.3Torrまで変化させ、ガスゲ
ートの接続する成膜室間の圧力差と低圧側成膜室への不
純物ガス混入量の関係を調べた。Next, the present inventors assumed that x
The scavenging gas introduction position is fixed at a position on the film forming chamber side where an impurity gas of 0.25 is introduced, and the pressure of the film forming chamber on the high pressure side is set to 0.
The pressure was changed from 05 Torr to 1.3 Torr, and the relationship between the pressure difference between the deposition chambers connected to the gas gates and the amount of impurity gas mixed into the low-pressure deposition chamber was examined.
【0064】その結果、成膜室間の圧力差に対して低圧
側成膜室への不純物ガスの混入量は図11に示すように
変化しており、成膜室間の圧力差が0.1〜1.1To
rrのときに実用的なガス分離性能が得られていること
がわかり、成膜室間の圧力差としては0.1〜1.1T
orrの範囲が好ましく、0.2〜1.0Torrの範
囲がより好ましいことがわかった。As a result, the mixing amount of the impurity gas into the low-pressure side film formation chamber changes as shown in FIG. 11 with respect to the pressure difference between the film formation chambers. 1-1.1 To
It was found that practical gas separation performance was obtained at rr, and the pressure difference between the film forming chambers was 0.1 to 1.1 T
It was found that the range of orr was preferable, and the range of 0.2 to 1.0 Torr was more preferable.
【0065】本発明においてガスゲートに流す掃気ガス
としては例えばAr,He,Ne,Kr,Xe,Rn等
の希釈ガス、またはH2等の堆積膜形成用ガスの希釈ガ
スが挙げられる。掃気ガス導入位置の圧力を高めるため
にはガスゲート内の分離通路の圧力が分子流領域の場合
には分子量の大きい掃気ガスを、また粘性流領域の場合
には粘性係数の大きい掃気ガスを選択すればよいが、堆
積膜の形成条件、必要とされるガス分離性能、各成膜室
の排気能力等を考え合わせて掃気ガスの種類を決定す
る。In the present invention, the scavenging gas flowing through the gas gate is, for example, a diluent gas such as Ar, He, Ne, Kr, Xe, or Rn, or a diluent gas such as H 2 for a deposition film forming gas. To increase the pressure at the scavenging gas introduction position, select a scavenging gas with a large molecular weight when the pressure in the separation passage in the gas gate is in the molecular flow region, and select a scavenging gas with a large viscosity coefficient in the viscous flow region. The type of the scavenging gas is determined in consideration of the conditions for forming the deposited film, the required gas separation performance, the exhaust capacity of each film forming chamber, and the like.
【0066】本発明において、前記ガスゲートによって
接続される成膜室内に配設される堆積膜形成手段として
は、RFプラズマCVD法、マイクロ波プラズマCVD
法、スパッタリング法、イオンプレーティング法、光C
VD法、熱CVD法、MOCVD法、MBE法、真空蒸
着法、電子ビーム蒸着法等の機能性堆積膜形成に用いら
れる各種の手段が挙げられる。In the present invention, the deposited film forming means provided in the film forming chamber connected by the gas gate includes RF plasma CVD, microwave plasma CVD, and the like.
Method, sputtering method, ion plating method, light C
Various means used for forming a functional deposited film, such as a VD method, a thermal CVD method, an MOCVD method, an MBE method, a vacuum evaporation method, and an electron beam evaporation method, may be mentioned.
【0067】本発明において、nまたはp型層を堆積す
る成膜室に導入する不純物ガスは該成膜室で形成される
膜の価電子制御を行うために用いられる不純物導入用の
原料物質であり、堆積膜がIV族半導体の場合このよう
な不純物導入用の原料物質としては、常温常圧でガス状
態のもの、または少なくとも膜形成条件下で容易にガス
化し得るものが採用される。このような不純物導入用の
出発物質として具体的には、n型の不純物導入用にはP
H3,P2H4,PF3,PF5,PCl3,AsH 3,As
F3,AsF5,AsCl3,SbH3,SbF5,BiH3
等を、p型の不純物導入用にはBF3,BCl3,BBr
3,B2H6,B4H10,B5H9,B5H11,B6H10,B6
H12,AlCl3等を挙げることが出来る。上記の不純
物元素を含む化合物は、1種用いても2種以上併用して
もよい。In the present invention, an n-type or p-type layer is deposited.
The impurity gas introduced into the film forming chamber is formed in the film forming chamber.
For introducing impurities used to control the valence electrons of the film
This is the case where the material is a raw material and the deposited film is a group IV semiconductor
Gaseous at normal temperature and pressure
Gas, or at least easily gaseous under film-forming conditions
Those that can be used are adopted. For introducing such impurities
As a starting material, specifically, P for introducing n-type impurities is used.
HThree, PTwoHFour, PFThree, PFFive, PClThree, AsH Three, As
FThree, AsFFive, AsClThree, SbHThree, SbFFive, BiHThree
And BF for p-type impurity introduction.Three, BClThree, BBr
Three, BTwoH6, BFourHTen, BFiveH9, BFiveH11, B6HTen, B6
H12, AlClThreeAnd the like. Above impure
Compounds containing compound elements can be used alone or in combination of two or more.
Is also good.
【0068】本発明の機能性堆積膜の連続的形成方法を
実施するについては適宜の装置を使用することができる
が、一例として図7に示す類の装置構成ものを挙げるこ
とができる。For carrying out the method for continuously forming a functional deposited film according to the present invention, an appropriate apparatus can be used. An example of the apparatus shown in FIG. 7 can be given.
【0069】図7において、701、703は13.5
6MHzの高周波(RF)のプラズマCVD法によるn
またはp型層の成膜室、702はマイクロ波プラズマC
VD法によるi型層の成膜室、704は帯状基体の供給
室、705は帯状基体の巻き取り室である。n型、p
型、i型の導電型半導体を形成するそれぞれの成膜室で
あるチャンバーは、4つのガスゲート706によって接
続されている。707は帯状基体で、帯状基体の供給室
から巻き取り室に搬送されるまでに3つの成膜室を通過
して、その表面に三層の機能性堆積膜、例えば、pin
接合を有する光起電力素子用半導体が形成される。尚、
708は耐熱性不織布からなる帯状シートであり、帯状
基体を巻く際に同時に巻き帯状基体表面に傷がつくこと
を防止するものである。In FIG. 7, 701 and 703 are 13.5.
6 MHz radio frequency (RF) n by plasma CVD
Alternatively, a p-type layer deposition chamber 702 is a microwave plasma C
A chamber 704 for forming the i-type layer by the VD method, a supply chamber 704 for the belt-like substrate, and a chamber 705 for winding the belt-like substrate. n-type, p
The chambers that are the respective film forming chambers for forming the type and i-type conductive semiconductors are connected by four gas gates 706. A belt-like substrate 707 passes through three film forming chambers before being transported from the supply chamber of the belt-like substrate to the take-up chamber, and has a three-layer functional deposition film, for example, pin on its surface.
A semiconductor for a photovoltaic element having a junction is formed. still,
Reference numeral 708 denotes a belt-like sheet made of a heat-resistant nonwoven fabric, which prevents the wound belt-like substrate surface from being damaged when the belt-like substrate is wound.
【0070】701、702、703の各成膜室には、
基体を加熱する加熱ヒーター709、不図示の排気手段
により成膜室を排気する排気管711、成膜室内の成膜
ガスにエネルギーを与えて放電を生起するRF電力を供
給する放電電極712、マイクロ波電力を供給する導波
管713およびセラミックス製のマイクロ波導入窓71
7が設けられ、成膜室701、703ではRFプラズマ
CVD法によるnまたはp型層の膜堆積が、成膜室70
2ではマイクロ波CVD法によるi型層の膜堆積がそれ
ぞれ行われる。ガスゲート706には掃気ガス導入管7
14から掃気ガスが導入され隣りあう成膜室の成膜ガス
の混入を阻止する。i型層を堆積する成膜室とn型層を
堆積する成膜室を接続するガスゲートおよびi型層を堆
積する成膜室とp型層を堆積する堆積室を接続するガス
ゲートにおいては、掃気ガス導入管714はそれぞれの
ガスゲートの中央よりもn,p型層を堆積する成膜室側
に設け、i型層成膜室とn,p型層成膜室への距離比が
例えば3:1の位置に設けられる。In each of the film forming chambers 701, 702, and 703,
A heater 709 for heating the substrate, an exhaust pipe 711 for exhausting the film formation chamber by an exhaust means (not shown), a discharge electrode 712 for supplying energy to the film formation gas in the film formation chamber and supplying RF power for generating a discharge, Waveguide 713 for supplying microwave power and microwave introduction window 71 made of ceramics
In the film forming chambers 701 and 703, film deposition of an n-type or p-type layer by RF plasma CVD is performed.
In step 2, the i-type layer is deposited by microwave CVD. The gas gate 706 has a scavenging gas introduction pipe 7
A scavenging gas is introduced from 14 to prevent the film forming gas from being mixed in the adjacent film forming chamber. In the gas gate connecting the deposition chamber for depositing the i-type layer and the deposition chamber for depositing the n-type layer, and the gas gate connecting the deposition chamber for depositing the i-type layer and the deposition chamber for depositing the p-type layer, scavenging is performed. The gas introduction pipe 714 is provided closer to the film forming chamber where the n and p type layers are deposited than the center of each gas gate, and the distance ratio between the i type layer forming chamber and the n, p type layer forming chamber is, for example, 3: 1 is provided.
【0071】また、715は帯状基体の供給室704及
び巻き取り室705の排気を行う排気管であり、716
は各成膜室701、702、703帯状基体の供給室7
04及び巻き取り室705内の圧力を計測するための圧
力計である。Reference numeral 715 denotes an exhaust pipe for exhausting the supply chamber 704 and the take-up chamber 705 of the belt-like substrate.
Is a supply chamber 7 for each of the film-forming chambers 701, 702, and 703.
This is a pressure gauge for measuring the pressure in the chamber 04 and the winding chamber 705.
【0072】また、本発明の方法を実施するための他の
装置例を図8に示す。図8に示す装置は図7に示した装
置のi型層を堆積する成膜室の膜堆積方法をマイクロ波
CVD法からRFプラズマCVD法に変えたものであ
り、図中801〜812、814〜816は図7におけ
る701〜712、714〜716にそれぞれ対応して
いる。FIG. 8 shows another example of the apparatus for carrying out the method of the present invention. The apparatus shown in FIG. 8 is different from the apparatus shown in FIG. 7 in that the film deposition method for depositing the i-type layer in the film forming chamber is changed from microwave CVD to RF plasma CVD, and 801 to 812, 814 in the figure. To 816 correspond to 701 to 712 and 714 to 716 in FIG.
【0073】[0073]
【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例によって何等限定される
ものではない。The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.
【0074】(実施例1)図7に示した装置を用い、本
発明の方法により、以下に示す操作によって帯状基体上
にn,i,p型層のアモルファスシリコン膜を連続的に
形成した。Example 1 Using the apparatus shown in FIG. 7, an n, i, p-type amorphous silicon film was continuously formed on a belt-like substrate by the method of the present invention by the following operation.
【0075】まず、幅30cm、長さ50m、厚さ0.
2mmの帯状ステンレス基体707を、供給室704か
ら巻き出され、701、702、703の三つの成膜室
を通過して、巻き取り室705で巻き取られるようにセ
ットした。尚、各成膜室間を接続するガスゲートの分離
通路の高さはすべて2mm、分離通路の長さは40c
m、分離通路の幅は31cmとした。First, width 30 cm, length 50 m, thickness 0.
A 2 mm strip-shaped stainless steel substrate 707 was set so as to be unwound from the supply chamber 704, passed through three film forming chambers 701, 702, and 703, and wound up by the wind-up chamber 705. The height of the separation passages of the gas gates connecting the film forming chambers is all 2 mm, and the length of the separation passages is 40 c.
m, and the width of the separation passage was 31 cm.
【0076】次に、各室の真空チャンバーをそれぞれの
排気管711、715で十分に排気した後、引き続き排
気しながら各成膜室へガス導入管710から、それぞれ
所望の成膜ガスを導入し、圧力計716を確認しつつ排
気量を調節して各成膜室を所定の圧力に調整した。ガス
ゲート706には掃気ガスとしてArを各々500sc
cmずつをガスゲートの上、下に半分ずつ導入した。ガ
ス導入管714は、i型層の成膜室とnまたはp型層の
成膜室を接続するガスゲートでは1:3の距離比でn,
p型層の成膜室に近い位置に、その他のガスゲートで
は、ガスゲート中央に設けてある。Next, after the respective vacuum chambers are sufficiently evacuated by the respective exhaust pipes 711 and 715, a desired film forming gas is introduced into each film forming chamber from the gas introducing pipe 710 while continuously evacuating. While checking the pressure gauge 716, the exhaust amount was adjusted to adjust each film forming chamber to a predetermined pressure. Ar is used as a scavenging gas in the gas gate 706 at 500 sc each.
Each cm was introduced in half above and below the gas gate. The gas introduction pipe 714 has a distance ratio of 1: 3 in the gas gate connecting the film formation chamber for the i-type layer and the film formation chamber for the n-type or p-type layer.
The other gas gate is provided at the center of the gas gate at a position near the p-type layer deposition chamber.
【0077】このとき、各室の圧力は704,701,
702,703,705でそれぞれ0.500Tor
r,0.500Torr,0.005Torr,0.5
00Torr,0.500Torrであり、成膜室70
1と702の間、成膜室702と703の間に圧力差が
あった。掃気ガスを導入した状態でこれらの成膜室を接
続するガスゲート内の分離通路における圧力を掃気ガス
導入位置に設けた圧力計716により測定したところ、
掃気ガス導入位置の圧力は成膜室701と702の間及
び702と703との間でどちらも0.520Torr
であり、各成膜室の開口端の圧力0.500Torr,
0.005Torrより高くなっており該ガスゲートの
分離通路の圧力が掃気ガス導入位置において最大になっ
ていることを確認した。At this time, the pressure in each chamber is 704, 701,
0.500 Torr for 702, 703 and 705 respectively
r, 0.500 Torr, 0.005 Torr, 0.5
00 Torr and 0.500 Torr.
There was a pressure difference between 1 and 702 and between the deposition chambers 702 and 703. When the pressure in the separation passage in the gas gate connecting these film forming chambers with the scavenging gas introduced was measured by a pressure gauge 716 provided at the scavenging gas introduction position,
The pressure at the scavenging gas introduction position is 0.520 Torr between the film forming chambers 701 and 702 and between the film forming chambers 702 and 703.
And the pressure at the opening end of each film forming chamber is 0.500 Torr,
It was higher than 0.005 Torr, and it was confirmed that the pressure in the separation passage of the gas gate was maximum at the scavenging gas introduction position.
【0078】ヒーター709で帯状基体707の裏面か
ら所定の温度で加熱し、放電電極712からRF電力
を、導波管713からマイクロ波電力を導入して各成膜
室内にプラズマ放電をそれぞれ生起させ、帯状基体を一
定速度で搬送して帯状基体上にn,i,p型のアモルフ
ァスシリコン膜を連続的に形成した。各成膜室での作製
条件を表1に示す。Heating is performed at a predetermined temperature from the back surface of the belt-shaped substrate 707 by the heater 709, and RF power is introduced from the discharge electrode 712 and microwave power is introduced from the waveguide 713 to generate plasma discharge in each film forming chamber. Then, the strip-shaped substrate was conveyed at a constant speed, and n, i, p-type amorphous silicon films were continuously formed on the strip-shaped substrate. Table 1 shows the manufacturing conditions in each film forming chamber.
【0079】[0079]
【表1】 [Table 1]
【0080】上記方法で得られたアモルファスシリコン
膜を堆積した帯状基体をロール・ツー・ロール装置から
取り出し、9cm×30cmの大きさに切り離し、シン
グルチャンバーの真空蒸着装置に入れ、真空蒸着法によ
り表2に示す条件でITO透明導電膜を積層し、図9の
模式断面図に示す光起電力素子を作製した。図9におい
て、901は基体、902はn型層、903はi型層、
904はp型層、905はITO透明導電膜である。The strip-shaped substrate on which the amorphous silicon film obtained by the above method was deposited was taken out from the roll-to-roll apparatus, cut into a size of 9 cm × 30 cm, placed in a single-chamber vacuum evaporation apparatus, and subjected to a vacuum evaporation method. An ITO transparent conductive film was laminated under the conditions shown in FIG. 2 to produce a photovoltaic element shown in the schematic sectional view of FIG. 9, 901 is a base, 902 is an n-type layer, 903 is an i-type layer,
904, a p-type layer; and 905, an ITO transparent conductive film.
【0081】[0081]
【表2】 [Table 2]
【0082】得られた光起電力素子は、各成膜室をゲー
ト弁で完全に分離する三室分離型の堆積膜形成装置で作
製した光起電力素子と同等の、良好な光電変換効率を示
した。また、膜厚方向の不純物分布を二次イオン質量分
析法(SIMS)を用いて測定したところ、n層のP原
子、p層のB原子のi層への混入は認められず、ガスゲ
ートにより隣合う成膜室の成膜ガスはほぼ完全に分離さ
れていることが確認された。The obtained photovoltaic element exhibits a good photoelectric conversion efficiency equivalent to that of a photovoltaic element produced by a three-chamber separation type deposited film forming apparatus in which each deposition chamber is completely separated by a gate valve. Was. When the impurity distribution in the film thickness direction was measured by secondary ion mass spectrometry (SIMS), no P-atom of the n-layer and B-atom of the p-layer were found to be mixed into the i-layer. It was confirmed that the film forming gas in the matching film forming chamber was almost completely separated.
【0083】(比較例1)i型層の成膜室とnまたはP
型層の成膜室を接続するガスゲートに導入する掃気ガス
の導入位置をガスゲート中央にした以外は実施例1と同
様にして帯状基体状にn,i,p型層のアモルファスシ
リコン膜を連続的に形成して光起電力素子を作製した。
このとき、各室の圧力は704,701,702,70
3,705でそれぞれ0.500Torr,0.500
Torr,0.005Torr,0.500Torr,
0.500Torrであり、成膜室701と702の
間、成膜室702と703の間に圧力差があった。掃気
ガスを導入した状態でこれらの成膜室を接続するガスゲ
ート内の分離通路における圧力を掃気ガス導入位置に設
けた圧力計716により測定したところ、掃気ガス導入
位置の圧力は成膜室701と702の間及び702と7
03との間でどちらも0.450Torrであり、n,
p型層の成膜室701、703側の開口端の圧力の0.
500Torrよりも低くなっていた。(Comparative Example 1) A film forming chamber for an i-type layer and n or P
An n, i, p-type amorphous silicon film was continuously formed on a strip-shaped substrate in the same manner as in Example 1 except that the introduction position of the scavenging gas introduced into the gas gate connecting the film forming chamber of the mold layer was at the center of the gas gate. To produce a photovoltaic element.
At this time, the pressure in each chamber is 704, 701, 702, 70
0.500 Torr and 0.500 respectively at 3,705
Torr, 0.005 Torr, 0.500 Torr,
0.500 Torr, and there was a pressure difference between the film formation chambers 701 and 702 and between the film formation chambers 702 and 703. With the scavenging gas introduced, the pressure in the separation passage in the gas gate connecting these film formation chambers was measured by a pressure gauge 716 provided at the scavenging gas introduction position. Between 702 and 702 and 7
03 is 0.450 Torr, and n,
The pressure of the opening end of the p-type layer at the opening end on the side of the film forming chambers 701 and 703 is set to 0.
It was lower than 500 Torr.
【0084】得られた光起電力素子の光電変換効率を測
定したところ、実施例1の約60%の効率しか得られて
いなかった。また膜厚方向の不純物分布を二次イオン質
量分析法(SIMS)を用いて測定したところ、n層の
P原子とP層のB原子がi層へ混入していることが確認
された。When the photoelectric conversion efficiency of the obtained photovoltaic element was measured, only about 60% of the efficiency of Example 1 was obtained. Further, when the impurity distribution in the film thickness direction was measured by using secondary ion mass spectrometry (SIMS), it was confirmed that P atoms in the n-layer and B atoms in the P-layer were mixed in the i-layer.
【0085】(実施例2)掃気ガスをArからH2 に、
掃気ガス導入量を1000sccmにした以外は実施例
1と同様にして帯状基体上にn,i,p型のアモルファ
スシリコン膜を連続的に形成して光起電力素子を作製し
た。このとき、各室の圧力は704、701、702、
703、705でそれぞれ0.500Torr,0.5
00Torr,0.005Torr,0.500Tor
r,0.500Torrであり、成膜室701と702
の間、成膜室702と703の間に圧力差があった。掃
気ガスを導入した状態でこれらの成膜室を接続するガス
ゲート内の分離通路における圧力を掃気ガス導入位置に
設けた圧力計716により測定したところ、掃気ガス導
入位置の圧力はどちらも0.510Torrであり、
n,P型層の成膜室701、703側の開口端の圧力の
0.500Torrよりも高くなっていた。Example 2 The scavenging gas was changed from Ar to H 2 .
An n, i, and p-type amorphous silicon film was continuously formed on a belt-shaped substrate in the same manner as in Example 1 except that the scavenging gas introduction amount was set to 1000 sccm, to produce a photovoltaic element. At this time, the pressure in each chamber is 704, 701, 702,
0.500 Torr and 0.5 for 703 and 705 respectively
00 Torr, 0.005 Torr, 0.500 Torr
r, 0.500 Torr, and the film forming chambers 701 and 702
During the period, there was a pressure difference between the film forming chambers 702 and 703. With the scavenging gas being introduced, the pressure in the separation passage in the gas gate connecting these film forming chambers was measured by a pressure gauge 716 provided at the scavenging gas introduction position, and the pressure at both the scavenging gas introduction position was 0.510 Torr. And
The pressure at the opening end of the n, P-type layer on the side of the film forming chambers 701 and 703 was higher than 0.500 Torr.
【0086】得られた光起電力素子は、各成膜室をゲー
ト弁で完全に分離する三室分離型の堆積膜形成装置で作
製した光起電力素子と同等の、良好な光電変換効率を示
し、膜厚方向の不純物分布を二次イオン質量分析法(S
IMS)を用いて測定したところ、n型層のP原子、p
型層のB原子のi型層への混入は認められず、ガスゲー
トにより隣合う成膜室の成膜ガスはほぼ完全に分離され
ていることが確認された。The obtained photovoltaic element shows a good photoelectric conversion efficiency equivalent to that of a photovoltaic element manufactured by a three-chamber separation type deposition film forming apparatus in which each film forming chamber is completely separated by a gate valve. The impurity distribution in the film thickness direction was determined by secondary ion mass spectrometry (S
IMS), P atoms and p atoms in the n-type layer were measured.
No B atoms in the mold layer were mixed into the i-type layer, and it was confirmed that the film formation gas in the adjacent film formation chamber was almost completely separated by the gas gate.
【0087】(比較例2)i型層の成膜室とnまたはp
型層の成膜室を接続するガスゲートに導入する掃気ガス
の導入位置をガスゲート中央にした以外は実施例2と同
様にして帯状基体上にn,i,p型のアモルファスシリ
コン膜を連続的に形成して光起電力素子を作製した。こ
のとき、各室の圧力は704、701、702、70
3、705でそれぞれ0.500Torr,0.500
Torr,0.005Torr,0.500Torr,
0.500Torrであり、成膜室701と702の
間、成膜室702と703の間に圧力差があった。掃気
ガスを導入した状態でこれらの成膜室を接続するガスゲ
ート内の分離通路における圧力を掃気ガス導入位置に設
けた圧力計716により測定したところ、掃気ガス導入
位置の圧力はどちらも0.440Torrでありn,p
型層の成膜室701、703側の開口端の圧力の0.5
00Torrよりも低くなっていた。(Comparative Example 2) A film forming chamber for an i-type layer and n or p
An n, i, p-type amorphous silicon film was continuously formed on a strip-shaped substrate in the same manner as in Example 2 except that the introduction position of the scavenging gas introduced into the gas gate connecting the film forming chamber of the mold layer was at the center of the gas gate. The photovoltaic element was formed by forming. At this time, the pressure in each chamber is 704, 701, 702, 70
0.500 Torr and 0.500 respectively at 3 and 705
Torr, 0.005 Torr, 0.500 Torr,
0.500 Torr, and there was a pressure difference between the film formation chambers 701 and 702 and between the film formation chambers 702 and 703. With the scavenging gas being introduced, the pressure in the separation passage in the gas gate connecting these film forming chambers was measured by a pressure gauge 716 provided at the scavenging gas introduction position, and the pressure at both the scavenging gas introduction position was 0.440 Torr. And n, p
0.5 of the pressure at the opening end on the side of the film forming chambers 701 and 703 of the mold layer
It was lower than 00 Torr.
【0088】得られた光起電力素子の光電変換効率を測
定したところ、実施例2の約60%の効率しか得られて
いなかった。When the photoelectric conversion efficiency of the obtained photovoltaic element was measured, only about 60% of the efficiency of Example 2 was obtained.
【0089】また膜厚方向の不純物分布を二次イオン質
量分析法(SIMS)を用いて測定したところ、n型層
のP原子とp型層のB原子がi型層へ混入していること
が確認された。When the impurity distribution in the film thickness direction was measured by using secondary ion mass spectrometry (SIMS), it was found that P atoms of the n-type layer and B atoms of the p-type layer were mixed in the i-type layer. Was confirmed.
【0090】(実施例3)図8に示した装置を用い、本
発明の方法により、以下に示す操作によって帯状基体上
にn,i,p型層のアモルファスシリコン膜を連続的に
形成した。Example 3 Using the apparatus shown in FIG. 8, an amorphous silicon film of n, i, p-type layers was continuously formed on a strip-shaped substrate by the method of the present invention by the following operation.
【0091】まず、幅30cm、長さ50m、厚さ0.
2mmの帯状ステンレス基体807を、供給室804か
ら巻き出され、801〜803の三つの成膜室を通過し
て、巻き取り室805で巻き取られるようにセットし
た。尚、各成膜室間を接続するガスゲートの分離通路の
高さはすべて3mm、分離通路の長さは40cm、分離
通路の幅は31cmとした。First, width 30 cm, length 50 m, thickness 0.
A 2 mm strip-shaped stainless steel substrate 807 was set so as to be unwound from the supply chamber 804, passed through three film forming chambers 801 to 803, and wound up in the winding chamber 805. The heights of the separation passages of the gas gates connecting the film forming chambers were all 3 mm, the length of the separation passage was 40 cm, and the width of the separation passage was 31 cm.
【0092】次に各室の真空チャンバーをそれぞれの排
気管811、815で十分に排気した後、引続き排気し
ながら各成膜室へガス導入管810から、それぞれの成
膜ガスを導入し、圧力計816を確認しつつ排気量を調
節して各成膜室を所定の圧力に調整した。ガスゲート8
06には掃気ガスとしてHeを各500sccmずつガ
スゲートの上、下に半分ずつ導入した。掃気ガス導入管
814は、i型層の成膜室とnまたはP型層の成膜室を
接続するガスゲートで1:3の距離比でn,P型層の成
膜室に近い位置にもうけ、その他のガスゲートでは、中
央に設けてある。Next, the vacuum chambers of the respective chambers are sufficiently evacuated by the respective exhaust pipes 811 and 815, and then the respective film forming gases are introduced from the gas introducing pipes 810 into the respective film forming chambers while continuously evacuating. While checking the total number 816, the amount of exhaust was adjusted to adjust each film forming chamber to a predetermined pressure. Gas gate 8
At 06, He was introduced as a scavenging gas by 500 sccm each half above and below the gas gate. The scavenging gas introduction pipe 814 is a gas gate connecting the film formation chamber for the i-type layer and the film formation chamber for the n-type or P-type layer, and is provided at a distance ratio of 1: 3 close to the film formation chamber for the n-type and P-type layers. , And other gas gates are provided at the center.
【0093】このとき、各室の圧力は804、801、
802、803、805でそれぞれ0.750Tor
r,0.750Torr,0.300Torr,0.7
50Torr,0.750Torrであり、成膜室80
1と802の間、成膜室802と803の間に圧力差が
あった。掃気ガスを導入した状態でこれらの成膜室を接
続するガスゲート内の分離通路における圧力を掃気ガス
導入位置に設けた圧力計716により測定したところ、
掃気ガス導入位置の圧力は成膜室801と802の間及
び成膜室802と803の間でどちらも0.760To
rrであり、各成膜室の開口端の圧力0.750Tor
r,0.300Torrより高くなっており、該ガスゲ
ートの分離通路の圧力が掃気ガス導入位置において最大
になっていることを確認した。At this time, the pressure in each chamber is 804, 801,
0.750 Torr for 802, 803 and 805 respectively
r, 0.750 Torr, 0.300 Torr, 0.7
50 Torr and 0.750 Torr.
There was a pressure difference between 1 and 802 and between the deposition chambers 802 and 803. When the pressure in the separation passage in the gas gate connecting these film forming chambers with the scavenging gas introduced was measured by a pressure gauge 716 provided at the scavenging gas introduction position,
The pressure at the scavenging gas introduction position is 0.760 To between the film forming chambers 801 and 802 and between the film forming chambers 802 and 803.
rr and the pressure at the opening end of each film forming chamber is 0.750 Torr.
r, which was higher than 0.300 Torr, and it was confirmed that the pressure in the separation passage of the gas gate was maximum at the scavenging gas introduction position.
【0094】ヒーター809で帯状基体807の裏面か
ら所定の温度で加熱し、放電電極812からRF電力を
導入して各成膜室内にプラズマ放電を生起させ、帯状基
体を一定速度で搬送しながら帯状基体上にn,i,p型
層のアモルファスシリコン膜を連続的に形成した。各成
膜室での作製条件を表3に示す。Heating is performed at a predetermined temperature from the back surface of the band-shaped substrate 807 by the heater 809, RF power is introduced from the discharge electrode 812 to generate plasma discharge in each film forming chamber, and the band-shaped substrate is conveyed at a constant speed. An n, i, p-type amorphous silicon film was continuously formed on the substrate. Table 3 shows the manufacturing conditions in each film forming chamber.
【0095】[0095]
【表3】 [Table 3]
【0096】上記方法で得られたアモルファスシリコン
膜を堆積した帯状基体をロール・ツー・ロール装置から
取り出し、9cm×30cmの大きさに切り離し、シン
グルチャンバーの真空蒸着装置に入れ、真空蒸着法によ
り表2に示す条件でITO透明導電膜を積層し、図9の
模式断面図に示す光起電力素子を作製した。The strip-shaped substrate on which the amorphous silicon film obtained by the above method was deposited was taken out from the roll-to-roll apparatus, cut into a size of 9 cm × 30 cm, placed in a single-chamber vacuum evaporation apparatus, and subjected to a vacuum evaporation method. An ITO transparent conductive film was laminated under the conditions shown in FIG. 2 to produce a photovoltaic element shown in the schematic sectional view of FIG.
【0097】得られた光起電力素子は、各成膜室をゲー
ト弁で完全に分離する三室分離型の堆積膜形成装置で作
製した光起電力素子と同等の、良好な光電変換効率を示
した。また、膜厚方向の不純物分布を二次イオン質量分
析法(SIMS)を用いて測定したところ、n層のP原
子、p層のB原子のi層への混入は認められず、ガスゲ
ートにより隣合う成膜室の成膜ガスはほぼ完全に分離さ
れていることが確認された。The obtained photovoltaic element has a good photoelectric conversion efficiency equivalent to that of a photovoltaic element manufactured by a three-chamber separation type deposited film forming apparatus in which each film forming chamber is completely separated by a gate valve. Was. When the impurity distribution in the film thickness direction was measured by secondary ion mass spectrometry (SIMS), no P-atom of the n-layer and B-atom of the p-layer were found to be mixed into the i-layer. It was confirmed that the film forming gas in the matching film forming chamber was almost completely separated.
【0098】[0098]
【発明の効果】以上説明したように、本発明の機能性堆
積膜の連続的形成方法及び装置によれば、隣合う成膜室
のガスの相互混入することなく成膜に適した圧力が大き
く異なる複数のプロセスを一連のロール・ツー・ロール
法に組み入れることができ、生産性の高い機能性堆積膜
の連続的形成方法を提供することが可能となる。As described above, according to the method and apparatus for continuously forming a functional deposited film of the present invention, the pressure suitable for film formation can be increased without intermixing gases in adjacent film forming chambers. A plurality of different processes can be incorporated into a series of roll-to-roll processes, and it is possible to provide a method for continuously forming a functionally deposited film with high productivity.
【図1】本発明の機能性堆積膜の連続的形成方法におけ
るガスゲートを示す模式的概略図。FIG. 1 is a schematic diagram showing a gas gate in a method for continuously forming a functional deposition film according to the present invention.
【図2】従来の連続的形成装置におけるガスゲート内の
圧力分布とガス流量またはガス導入位置の関係を示す模
式的概略図。FIG. 2 is a schematic diagram showing a relationship between a pressure distribution in a gas gate and a gas flow rate or a gas introduction position in a conventional continuous forming apparatus.
【図3】ガスゲート内の圧力分布とガス流量またはガス
導入位置の関係を示す模式的概略図。FIG. 3 is a schematic diagram showing a relationship between a pressure distribution in a gas gate and a gas flow rate or a gas introduction position.
【図4】ガスゲート内の圧力分布とガス流量またはガス
導入位置の関係を示す模式的概略図。FIG. 4 is a schematic diagram showing a relationship between a pressure distribution in a gas gate and a gas flow rate or a gas introduction position.
【図5】ガスゲート内の圧力分布とガス分離性能の関係
を調べるための装置を示す概略図。FIG. 5 is a schematic diagram showing an apparatus for examining a relationship between a pressure distribution in a gas gate and gas separation performance.
【図6】ガスゲート内での圧力分布とガス分離性能の関
係を示すグラフ。FIG. 6 is a graph showing a relationship between pressure distribution in a gas gate and gas separation performance.
【図7】本発明の機能性堆積膜の連続的形成方法を実現
する機能性堆積膜堆積装置の一例を示す模式的概略図。FIG. 7 is a schematic diagram showing an example of a functional deposition film deposition apparatus for realizing a method for continuously forming a functional deposition film according to the present invention.
【図8】本発明の機能性堆積膜の連続的形成方法を実現
する機能性堆積膜堆積装置の他の例を示す模式的概略
図。FIG. 8 is a schematic diagram illustrating another example of a functional deposition film deposition apparatus that realizes the method for continuously forming a functional deposition film according to the present invention.
【図9】本発明の方法を実施して作製できる光起電力素
子の層構成を示す概略断面図。FIG. 9 is a schematic cross-sectional view illustrating a layer configuration of a photovoltaic element that can be manufactured by performing the method of the present invention.
【図10】ガスゲートの掃気ガス導入位置とガス分離性
能の関係を示すグラフである。FIG. 10 is a graph showing a relationship between a scavenging gas introduction position of a gas gate and gas separation performance.
【図11】ガスゲートが接続している成膜室間の圧力差
とガス分離性能の関係を示すグラフである。FIG. 11 is a graph showing a relationship between a pressure difference between film formation chambers connected to a gas gate and gas separation performance.
101,102 成膜室、 103 ガスゲート、 104 掃気ガス導入管、 105 帯状基体、 501 高圧成膜室、 502 低圧成膜室、 503 ガスゲート、 504 帯状基体、 505 圧力計、 506 四重極質量分析計、 507 ガス導入管、 508 排気管、 701,702,703,801,802,803 成
膜室、 704,804 帯状基体の供給室、 705,805 帯状基体の巻き取り室、 706,806 ガスゲート、 707,807,901 帯状基体、 710,714,810,814 ガス導入管、 711,715,811,815 排気管、 709,809 加熱ヒーター、 712,812 RF放電電極、 713 マイクロ波導波管、 716,816 圧力計、 717 マイクロ波導入窓、 901 基体、 902 n型層、 903 i型層、 904 P型層、 905 ITO透明導電膜。101, 102 film formation chamber, 103 gas gate, 104 scavenging gas introduction pipe, 105 belt-shaped substrate, 501 high-pressure film deposition chamber, 502 low-pressure film deposition chamber, 503 gas gate, 504 belt-shaped substrate, 505 pressure gauge, 506 quadrupole mass spectrometer , 507 gas introduction pipe, 508 exhaust pipe, 701, 702, 703, 801, 802, 803 film formation chamber, 704, 804 belt-like substrate supply chamber, 705, 805 belt-like substrate winding chamber, 706, 806 gas gate, 707 , 807,901 strip-shaped substrate, 710, 714, 810, 814 gas introduction pipe, 711, 715, 811, 815 exhaust pipe, 709, 809 heating heater, 712, 812 RF discharge electrode, 713 microwave waveguide, 716, 816 Pressure gauge, 717 microwave introduction window, 901 substrate, 902 n-type layer, 9 03 i-type layer, 904 P-type layer, 905 ITO transparent conductive film.
フロントページの続き (72)発明者 酒井 明 東京都大田区下丸子3丁目30番2号キヤ ノン株式会社内 (72)発明者 金井 正博 東京都大田区下丸子3丁目30番2号キヤ ノン株式会社内 (72)発明者 吉野 豪人 東京都大田区下丸子3丁目30番2号キヤ ノン株式会社内 (56)参考文献 特開 平4−192415(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 H01L 31/04 Continued on the front page (72) Inventor Akira Sakai Canon Inc. 3- 30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Masahiro Kanai 3-30-2 Shimomaruko, Ota-ku, Tokyo (72) Inventor Takeshi Yoshino 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (56) References JP-A-4-192415 (JP, A) (58) Fields studied (Int.Cl. . 7, DB name) H01L 21/205 H01L 31/04
Claims (13)
スゲートを通して帯状基板を長手方向に連続的に移動さ
せながら前記複数の成膜室において前記帯状基体上に各
々の機能性堆積膜を堆積させる機能性堆積膜形成方法で
あって、掃気ガスの導入位置を前記複数の成膜室である
pあるいはn型の導電性を有する半導体形成用の高圧成
膜室とi型の導電性を有する半導体形成用の低圧成膜室
とを接続するガスゲートの分離通路の帯状基板の移動方
向の中央よりも前記高圧成膜室側に設け前記掃気ガスを
導入することを特徴とする機能性堆積膜形成方法。1. A method according to claim 1, wherein the functional substrate is continuously moved in the longitudinal direction through a plurality of film forming chambers and a gas gate connecting the film forming chambers, and the functional deposition is performed on the band-shaped substrate in the plurality of film forming chambers. A method for forming a functional deposited film for depositing a film, wherein a scavenging gas introduction position is located in the plurality of film forming chambers.
The separation path of the gas gate connecting the high-pressure film formation chamber for forming a semiconductor having p or n-type conductivity and the low-pressure film formation chamber for forming a semiconductor having i-type conductivity from the center in the moving direction of the strip-shaped substrate. Wherein the scavenging gas is introduced into the high pressure film forming chamber.
FプラズマCVD法または、マイクロ波プラズマCVD
法または、スパッタリング法または、イオンプレーティ
ング法または、光CVD法または、熱CVD法または、
MOCVD法または、MBE法または、真空蒸着法また
は、電子蒸着法であることを特徴とする請求項1記載の
機能性堆積膜形成方法。2. A method for forming a deposited film in the film forming chamber, comprising:
F plasma CVD method or microwave plasma CVD
Method, or sputtering method, ion plating method, optical CVD method, or thermal CVD method, or
2. The method according to claim 1, wherein the method is a MOCVD method, an MBE method, a vacuum evaporation method, or an electron evaporation method.
る請求項1記載の機能性堆積膜形成方法。3. The method according to claim 1, wherein the functional deposition film is a photovoltaic element.
力差が0.1Torr以上1.1Torr以下であるこ
とを特徴とする請求項1記載の機能性堆積膜形成方法。4. The method according to claim 1, wherein a pressure difference between the high-pressure film forming chamber and the low-pressure film forming chamber is 0.1 Torr or more and 1.1 Torr or less.
差が0.2Torr以上1.0Torr以下であること
を特徴とする請求項1記載の機能性堆積膜形成方法。5. The method according to claim 1, wherein a pressure difference between the high-pressure deposition chamber and the low-deposition chamber is not less than 0.2 Torr and not more than 1.0 Torr.
掃気ガスを導入する点から高圧成膜室までの距離比が
0.1以上0.4以下であることを特徴とする請求項1
記載の機能性堆積膜形成方法。6. A high-pressure film forming chamber having a distance ratio from a point at which a scavenging gas is introduced to a total length of a gas gate in a substrate transfer direction to a high pressure film forming chamber is 0.1 or more and 0.4 or less.
The method for forming a functional deposited film according to the above.
したスリット状の分離通路を有するガスゲートと、前記
複数の成膜室と前記ガスゲートを通して帯状基板を長手
方向に連続的に移動させる搬送手段と、前記ガスゲート
に掃気ガスを導入するガス導入手段と、前記複数の成膜
室において前記帯状基体上に各々の機能性堆積膜を堆積
させる堆積手段と、を有し、 前記複数の成膜室がpあるいはn型の導電性を有する半
導体形成用の高圧成膜室とi型の導電性を有する半導体
形成用の低圧成膜室であって、 前記掃気ガスの導入位置が前記ガスゲートの分離通路中
央よりも前記高圧成膜室側に設けてあることを特徴とす
る機能性堆積膜堆積装置。7. A plurality of film forming chambers, a gas gate having a slit-shaped separation passage connecting the plurality of film forming chambers, and a strip-shaped substrate continuously extending in the longitudinal direction through the plurality of film forming chambers and the gas gate. Transport means for moving, gas introduction means for introducing a scavenging gas into the gas gate, and deposition means for depositing each functional deposition film on the strip-shaped substrate in the plurality of film formation chambers, Film forming chamber has p-type or n-type conductivity.
A high-pressure film forming chamber for forming a conductor and a low-pressure film forming chamber for forming a semiconductor having i-type conductivity , wherein the introduction position of the scavenging gas is higher than the center of the separation passage of the gas gate. A functional deposition film deposition apparatus provided on the film chamber side.
プラズマCVD法または、マイクロ波プラズマCVD法
または、スパッタリング法または、イオンプレーティン
グ法または、光CVD法または、熱CVD法または、M
OCVD法または、MBE法または、真空蒸着法また
は、電子蒸着法であることを特徴とする請求項7記載の
機能性堆積膜堆積装置。Wherein said definitive in deposition chamber deposited film forming apparatus RF
Plasma CVD method, microwave plasma CVD method, sputtering method, ion plating method, optical CVD method, thermal CVD method, or M
8. The functional deposition film deposition apparatus according to claim 7 , wherein the deposition method is an OCVD method, an MBE method, a vacuum evaporation method, or an electron evaporation method.
性を有する半導体であって、前記高抵抗半導体がi型導
電性を有する半導体であることを特徴とする請求項7記
載の機能性堆積膜堆積装置。9. A semiconductor wherein the low-resistance semiconductor having conductivity p or n-type, the functionality of claim 7, wherein the high-resistance semiconductor is a semiconductor having i-type conductivity Deposition film deposition equipment.
ことを特徴とする請求項7記載の機能性堆積膜堆積装
置。10. The functional deposition film deposition apparatus according to claim 7, wherein said functional deposition film is a photovoltaic element.
力差が0.1Torr以上1.1Torr以下であるこ
とを特徴とする請求頂7記載の機能性堆積膜堆積装置。11. The functional deposition film deposition apparatus according to claim 7 , wherein a pressure difference between the high-pressure film formation chamber and the low-pressure film formation chamber is 0.1 Torr or more and 1.1 Torr or less.
圧力差が0.2Torr以上1.0Torr以下である
ことを特徴とする請求項7記載の機能性堆積膜堆積装
置。12. The functional deposition film deposition apparatus according to claim 7 , wherein a pressure difference between the high-pressure film formation chamber and the low-pressure film formation chamber is not less than 0.2 Torr and not more than 1.0 Torr.
る掃気ガス 導入する点から高圧成膜室までの距離比が
0.1以上0.4以下であることを特徴とする請求項7
記載の機能性堆積膜堆積装置。13. The method of claim distance ratio from the standpoint of the scavenging gas introduced for gas gate full length of the substrate conveying direction to a high pressure deposition chamber, characterized in that 0.1 to 0.4 7
The functional deposition film deposition apparatus as described in the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19259893A JP3181761B2 (en) | 1992-08-06 | 1993-08-03 | Method and apparatus for continuously forming functional deposited film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-231314 | 1992-08-06 | ||
JP23131492 | 1992-08-06 | ||
JP19259893A JP3181761B2 (en) | 1992-08-06 | 1993-08-03 | Method and apparatus for continuously forming functional deposited film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06104194A JPH06104194A (en) | 1994-04-15 |
JP3181761B2 true JP3181761B2 (en) | 2001-07-03 |
Family
ID=26507421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19259893A Expired - Lifetime JP3181761B2 (en) | 1992-08-06 | 1993-08-03 | Method and apparatus for continuously forming functional deposited film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3181761B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5058084B2 (en) * | 2007-07-27 | 2012-10-24 | 株式会社半導体エネルギー研究所 | Method for manufacturing photoelectric conversion device and microwave plasma CVD apparatus |
US20110086462A1 (en) * | 2009-10-08 | 2011-04-14 | Ovshinsky Stanford R | Process for Manufacturing Solar Cells including Ambient Pressure Plasma Torch Step |
-
1993
- 1993-08-03 JP JP19259893A patent/JP3181761B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06104194A (en) | 1994-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5946587A (en) | Continuous forming method for functional deposited films | |
US5397395A (en) | Method of continuously forming a large area functional deposited film by microwave PCVD and apparatus for the same | |
JPH05121338A (en) | Method and apparatus for forming deposited film | |
KR19980024365A (en) | Photovoltaic element, manufacturing method and apparatus thereof | |
US6495392B2 (en) | Process for producing a semiconductor device | |
US6576061B1 (en) | Apparatus and method for processing a substrate | |
JP3659512B2 (en) | Photovoltaic element, method for forming the same, and apparatus for forming the same | |
JP3181761B2 (en) | Method and apparatus for continuously forming functional deposited film | |
JP4949695B2 (en) | Photoelectric conversion device manufacturing apparatus and photoelectric conversion device manufacturing method | |
JP3169243B2 (en) | Continuous formation method of deposited film | |
JP2771363B2 (en) | Continuous production equipment for functional deposited films | |
JPH10209479A (en) | Manufacturing apparatus of semiconductor thin film and photovoltaic device | |
JP3181121B2 (en) | Deposition film formation method | |
JP3255903B2 (en) | Method and apparatus for forming deposited film | |
JP2000349314A (en) | Manufacture of photovoltaic element | |
JPH06216039A (en) | Microwave plasma cvd device | |
JP3068963B2 (en) | Deposition film production equipment | |
JP3007233B2 (en) | Apparatus for continuously producing functional deposited film and method for continuously producing functional deposited film | |
JP2846534B2 (en) | Plasma CVD apparatus and method for forming functional deposited film using the same | |
JP2891808B2 (en) | Apparatus and method for continuously manufacturing semiconductor elements | |
JP3554314B2 (en) | Deposition film formation method | |
JP3658165B2 (en) | Continuous production equipment for photoelectric conversion elements | |
JP3487580B2 (en) | Deposited film forming method and deposited film forming apparatus | |
JP3403039B2 (en) | Apparatus and method for manufacturing thin film semiconductor by plasma CVD method | |
JP3461314B2 (en) | Substrate processing method and substrate processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090420 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090420 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100420 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140420 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |