JP3180992B2 - Porous hydrostatic bearing and its manufacturing method - Google Patents

Porous hydrostatic bearing and its manufacturing method

Info

Publication number
JP3180992B2
JP3180992B2 JP11788993A JP11788993A JP3180992B2 JP 3180992 B2 JP3180992 B2 JP 3180992B2 JP 11788993 A JP11788993 A JP 11788993A JP 11788993 A JP11788993 A JP 11788993A JP 3180992 B2 JP3180992 B2 JP 3180992B2
Authority
JP
Japan
Prior art keywords
porous body
gap
bearing
ceramic
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11788993A
Other languages
Japanese (ja)
Other versions
JPH06307448A (en
Inventor
宗統 金井
篤暢 宇根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11788993A priority Critical patent/JP3180992B2/en
Publication of JPH06307448A publication Critical patent/JPH06307448A/en
Application granted granted Critical
Publication of JP3180992B2 publication Critical patent/JP3180992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】固体と固体間における相対運動の
円滑さや精度を高め、これを長時間維持するための手段
として、固体と固体間に流体、例えば油や空気を加圧供
給し固体間を非接触浮上させる流体潤滑がある。この例
としては、固体間、即ち軸と軸受間の隙間に高圧流体を
供給して非接触浮上させる静圧軸受がある。静圧軸受に
おいて軸と軸受間の微小な隙間に対する流体の供給方法
の一例として、軸または軸受の一方を多孔体で構成する
方法がある。この静圧軸受は多孔体に流体の通路と絞り
の異なる役目を兼用させるところに特徴がある。本発明
は多孔体を用いた静圧軸受における多孔体の通路と絞り
の構成および製法に関するものである。
BACKGROUND OF THE INVENTION As means for improving the smoothness and accuracy of relative motion between solids and maintaining the same for a long time, a fluid, for example, oil or air, is supplied under pressure between the solids so that the solids move between solids. There is a fluid lubrication that makes the non-contact floating. As an example of this, there is a hydrostatic bearing in which a high-pressure fluid is supplied to a gap between a solid, that is, a gap between a shaft and a bearing to float in a non-contact manner. As an example of a method for supplying a fluid to a minute gap between a shaft and a bearing in a hydrostatic bearing, there is a method in which one of the shaft and the bearing is formed of a porous body. This hydrostatic bearing is characterized in that a porous body also serves as a fluid passage and a different function of a throttle. The present invention relates to a configuration and a manufacturing method of a passage and a throttle of a porous body in a hydrostatic bearing using the porous body.

【0002】[0002]

【従来の技術】多孔質静圧軸受用の多孔体素材として
は、金属や炭素(グラファイト)、或いは、セラミック
等の粉体を焼結して製造した多孔体が用いられるが、実
用化されているのは炭素質多孔体のみで他の素材は研究
レベルと言って差し支えない。また、炭素質多孔体であ
っても適用流体は気体(通常は空気)であって多孔質静
圧軸受、そのものが発展途上の技術と言える。図5は従
来における炭素質多孔体素材を用いた静圧軸受の一例を
示す断面図であって、1は回転軸となる円筒状の中空
軸、2は軸受となるやはり円筒状の炭素質多孔体、ま
た、3は中空軸1の両側に結合された面板である。4は
中空軸1と炭素質多孔体2との径方向に形成された微小
な径隙間、同様に5は面板3と炭素質多孔体2との軸方
向に形成された軸隙間、6は炭素質多孔体2を保持する
ケース、7はケース6を貫通して炭素質多孔体2に圧縮
空気を通過させるための給気孔、8は炭素質多孔体2の
円筒外周に設けられた給気溝、9は径隙間4と軸隙間5
間に対する給気を独立させるための排気口である。
2. Description of the Related Art As a porous material for a porous hydrostatic bearing, a porous material produced by sintering powder of metal, carbon (graphite), or ceramic is used. There is only carbonaceous porous material and other materials can be said to be research level. Further, even if the material is a porous carbonaceous material, the applicable fluid is a gas (usually air), and the porous hydrostatic bearing itself can be said to be a developing technology. FIG. 5 is a cross-sectional view showing an example of a conventional hydrostatic bearing using a carbonaceous porous material, wherein 1 is a cylindrical hollow shaft serving as a rotating shaft, and 2 is also a cylindrical carbonaceous porous serving as a bearing. The body, or 3, is a face plate connected to both sides of the hollow shaft 1. 4 is a minute radial gap formed between the hollow shaft 1 and the carbonaceous porous body 2 in the radial direction; 5 is an axial gap formed between the face plate 3 and the carbonaceous porous body 2 in the axial direction; A case for holding the porous porous body 2, 7 is an air supply hole for passing compressed air through the case 6 to the carbonaceous porous body 2, and 8 is an air supply groove provided on the outer periphery of the cylinder of the carbonaceous porous body 2. , 9 are the radial gap 4 and the shaft gap 5
It is an exhaust port to make the air supply to the space independent.

【0003】以下、静圧軸受としての機能を説明する。
給気孔7から給気された圧縮空気は給気溝8を介して炭
素質多孔体2を通過、径隙間4並びに軸隙間5内を流れ
た後、大気中に放出される。圧縮空気の圧力は給気溝8
内は同一であるが、炭素質多孔体2内の流路抵抗でいっ
たん低下した後、さらに、径隙間4並びに軸隙間5内の
流路抵抗を受け大気圧となって軸受外に放出される。但
し、炭素質多孔体2内の流路抵抗は変化しないが、径隙
間4並びに軸隙間5内の流路抵抗は隙間の大小によって
大幅に変化(隙間の3乗に反比例)する。従って、静圧
軸受が何らかの外力を受けて、例えば対向する径隙間
4、または軸隙間5に差が生じると隙間が減少した側の
流路抵抗が大きくなり、この分隙間内の圧力が上昇す
る。但し、対向する側の隙間は、丁度この逆となるので
隙間内の圧力は下降する。この結果、静圧軸受は対向す
る径隙間4並びに対向する軸隙間5内の流路抵抗が常に
一定になるように対向する隙間内の圧力が上昇または下
降するように作用する。通常、圧力変化を力換算した値
を隙間の変化量で除した値をばね定数、即ち、剛性と言
うが、この剛性が高いほど、また回転精度が高いほど高
性能の静圧軸受となる。加えて、多孔質静圧軸受では多
孔体の流路抵抗を軸受隙間の、概ね1/2〜3/4に設
計する。従って、軸受隙間を小さく設計できれば流路抵
抗全体が大となるので低流量で高剛性の静圧軸受とな
る。一方、軸受隙間の流路抵抗の大半は流体と隙間壁面
との摩擦抵抗であるが、多孔体の流路抵抗は多孔体内に
おける流体通路の太さが軸受隙間より十分細ければ流体
と多孔質壁面との摩擦抵抗(毛細管絞り)が主体となる
が、軸受隙間より細かい流体通路を持つ多孔体の製造は
容易ではない。たとえ製造できたとしても後述するよう
に流体の入路と出路間の流路抵抗の制御が課題となる。
Hereinafter, the function as a hydrostatic bearing will be described.
The compressed air supplied from the air supply hole 7 passes through the carbonaceous porous body 2 through the air supply groove 8, flows through the radial gap 4 and the shaft gap 5, and is released into the atmosphere. The pressure of the compressed air is
The inside is the same, but after being temporarily reduced by the flow path resistance in the carbonaceous porous body 2, the flow path resistance in the radial gap 4 and the shaft gap 5 is further received, and the pressure is released to outside the bearing as atmospheric pressure. . However, the flow path resistance in the carbonaceous porous body 2 does not change, but the flow path resistance in the radial gap 4 and the axial gap 5 greatly changes depending on the size of the gap (inversely proportional to the cube of the gap). Therefore, when the hydrostatic bearing receives some external force and, for example, causes a difference between the opposed radial gap 4 or the axial gap 5, the flow path resistance on the side where the gap is reduced increases, and the pressure in the gap increases by that amount. . However, the gap on the opposite side is just the opposite, so the pressure in the gap drops. As a result, the hydrostatic bearing acts so that the pressure in the opposed gap increases or decreases so that the flow path resistance in the opposed radial gap 4 and the opposed axial gap 5 is always constant. Usually, a value obtained by dividing a value obtained by converting a pressure change into a force by a change amount of a gap is referred to as a spring constant, that is, rigidity. The higher the rigidity and the higher the rotational accuracy, the higher the performance of the hydrostatic bearing. In addition, in the porous hydrostatic bearing, the flow resistance of the porous body is designed to be approximately 1/2 to 3/4 of the bearing gap. Therefore, if the bearing clearance can be designed to be small, the overall flow path resistance becomes large, so that a low-flow and high-rigidity hydrostatic bearing is obtained. On the other hand, most of the flow path resistance in the bearing gap is the friction resistance between the fluid and the gap wall surface, but the flow path resistance of the porous body is determined by the fluid and the porous material if the thickness of the fluid passage in the porous body is sufficiently smaller than the bearing gap. Although the friction resistance (capillary restriction) with the wall surface is mainly used, it is not easy to manufacture a porous body having a fluid passage finer than the bearing gap. Even if it can be manufactured, control of the flow path resistance between the inlet and the outlet of the fluid becomes a problem as described later.

【0004】静圧軸受の高剛性化にもっとも影響を与え
るのは軸受の隙間である。これは隙間が小さいほど微小
な隙間変化に対応して圧力が上昇・下降するため、結果
として剛性は高く(隙間に反比例)なるし、軸受隙間へ
の流体の供給量も大幅に低減(隙間の3乗に反比例)で
きる。さらに、軸と軸受間の隙間を小さくするため部材
精度を高める結果、この分回転精度も向上する。このよ
うに軸受隙間の微小化は高精度化そのもので静圧軸受の
高性能化と直結している。但し、高精度化には加工対象
となる材料の特性、例えば強度、硬さ、膨張係数、寸法
安定性、等々に大きく左右される。高精度加工が可能な
セラミック材料に較べ、強度や硬さに劣る炭素質多孔体
2は精密加工に不向きな材料であるため、静圧軸受の更
なる高剛性化を制約する欠点となっている。さらに、炭
素質多孔体2は強度が低いので給気圧力が高いと給気溝
8の内圧によって、軸方向、または半径方向に変形した
り壊れたりする。このため炭素質多孔体2は金属やセラ
ミックに較べ強度上寸法が大きくなる欠点がある。とく
に炭素質多孔体2の強度上の欠点は供給圧力が低くてよ
い静圧気体軸受(約0.5MPa)への適用に留まり、
静圧液体軸受(約5MPa以上)への適用を難しくして
いる。加えて、高精度化が実現されたとしても軸受隙間
への適切な給気が為されないと静圧軸受の性能に悪影響
することは言うまでもない。径隙間4並びに軸隙間5の
設計値は加工可能な精度から概ね決定される。また給気
流量は、この設計値から流路抵抗を逆算して定める手順
をとる。しかしながら唯一の給気孔7から炭素質多孔体
2内を通過させて場所が異なる径隙間4と軸隙間5に決
められた流量を給気するには、炭素質多孔体2の形状や
透過率、給気溝8のレイアウト等が複雑に関係するか
ら、その設計は容易でない。たとえ設計できたとして
も、炭素質多孔体2の焼結法による製造は炭素粉の粒度
や結合剤、成形時の圧力や温度等の条件によって品質が
変化しやすく、均質かつ狙った透過率の炭素質多孔体2
を得ること自体が容易でない。以上、静圧軸受の更成る
高性能化において炭素質多孔体は部材強度、高精度加工
適性、設計・製造の容易さ等の面で種々の欠点を抱えて
いる。
It is the clearance between the bearings that most affects the increase in rigidity of the hydrostatic bearing. This is because, as the gap becomes smaller, the pressure rises and falls in response to a minute gap change, and as a result, the rigidity becomes higher (inversely proportional to the gap). Inversely proportional to the cube). Furthermore, as a result of increasing the member accuracy in order to reduce the gap between the shaft and the bearing, the rotation accuracy is also improved by that much. As described above, the miniaturization of the bearing gap is directly linked to the high performance of the hydrostatic bearing by the high precision itself. However, high precision is greatly affected by the properties of the material to be processed, such as strength, hardness, expansion coefficient, dimensional stability, and the like. Compared with a ceramic material capable of high-precision processing, the carbonaceous porous body 2 having poor strength and hardness is a material unsuitable for precision processing, and thus has a drawback that restricts further increase in rigidity of a hydrostatic bearing. . Furthermore, since the carbonaceous porous body 2 has low strength, if the supply pressure is high, the carbonaceous porous body 2 is deformed or broken in the axial direction or the radial direction due to the internal pressure of the supply groove 8. For this reason, the carbonaceous porous body 2 has a disadvantage in that its size is large in strength compared to metals and ceramics. In particular, the disadvantage of the strength of the carbonaceous porous body 2 is that it is limited to application to a static pressure gas bearing (about 0.5 MPa) which requires a low supply pressure.
This makes application to a hydrostatic bearing (about 5 MPa or more) difficult. In addition, it goes without saying that the performance of the hydrostatic bearing will be adversely affected unless proper air supply to the bearing gap is performed even if high precision is realized. The design values of the diameter gap 4 and the shaft gap 5 are generally determined from the precision that can be processed. The supply air flow rate is determined by back-calculating the flow path resistance from the design value. However, in order to pass through the inside of the carbonaceous porous body 2 from the sole air supply hole 7 and supply the flow rate determined to the radial gap 4 and the shaft gap 5 at different locations, the shape and the transmittance of the carbonaceous porous body 2, Since the layout and the like of the air supply groove 8 are complicatedly related, the design thereof is not easy. Even if it can be designed, the production of the carbonaceous porous body 2 by the sintering method tends to change its quality depending on the conditions such as the particle size of the carbon powder, the binder, the pressure and the temperature at the time of molding, and the uniform and desired transmittance Carbonaceous porous material 2
Is not easy to obtain. As described above, in further improving the performance of the hydrostatic bearing, the carbonaceous porous body has various drawbacks in terms of member strength, suitability for high-precision processing, ease of design and manufacture, and the like.

【0005】一方、図5の炭素質多孔体2のみをセラミ
ック多孔体に置き換えれば、炭素質多孔体の低部材強度
や高精度加工適性の無さ等々の欠点を解決した静圧軸受
を実現できる。但し、設計・製造の容易化までには至ら
ない。このような多孔体を用いた従来の静圧軸受の最大
の欠点は設計・製造を容易化できない点にあり、この原
因は多孔体に流体の通路と絞りの異なる役目を兼用させ
ている点にある。即ち、従来構造の静圧軸受では給気孔
7から軸隙間5や径隙間4に至る流路抵抗、即ち、流体
の絞り量が多孔体の透過率だけでは定まらないで多孔体
の構造や形状と密接に関係することが、設計・製造の容
易化を阻む原因となっている。一方、多孔体に流体の通
路と絞りの役目を兼用させるが、多孔体の流路抵抗を、
実際に必要な流路抵抗より若干小さく製造しておき、軸
受製造後流路抵抗を実際に必要な透過率に正確に制御す
る方法がある。この例として必要とされる透過率より若
干小さい透過率をもつ多孔体を使用して図5の炭素質多
孔体2に相当する軸受部材を製造した後、軸隙間5や径
隙間4を構成する多孔体の表面に、例えば無電解ニッケ
ルメッキ(以下メッキと言う)を施すことで多孔体内の
流体通路の断面積を減少させ透過率、即ち、流体の絞り
量を制御する図6に示す方法(特開昭64−6515)
がある。
On the other hand, if only the carbonaceous porous body 2 in FIG. 5 is replaced with a ceramic porous body, a hydrostatic bearing can be realized which has solved the drawbacks of the carbonaceous porous body such as low strength of the member and lack of suitability for high precision processing. . However, it does not lead to ease of design and manufacture. The biggest disadvantage of the conventional hydrostatic bearing using such a porous body is that the design and manufacture cannot be facilitated, and the cause is that the porous body has a different role of a fluid passage and a throttle. is there. That is, in the hydrostatic bearing of the conventional structure, the flow path resistance from the air supply hole 7 to the shaft gap 5 and the radial gap 4, that is, the amount of throttle of the fluid is not determined only by the transmittance of the porous body, and the structure and shape of the porous body are not determined. The close relationship has been a factor preventing easy design and manufacture. On the other hand, the porous body also serves as a fluid passage and a throttle, but the flow path resistance of the porous body is
There is a method in which the flow path resistance is manufactured to be slightly smaller than the actually required flow path resistance, and the flow path resistance after the bearing is manufactured is accurately controlled to the actually required transmittance. After manufacturing a bearing member corresponding to the carbonaceous porous body 2 in FIG. 5 using a porous body having a transmittance slightly smaller than the transmittance required as the example, the shaft gap 5 and the radial gap 4 are formed. A method shown in FIG. 6 in which the cross-sectional area of the fluid passage in the porous body is reduced by applying, for example, electroless nickel plating (hereinafter referred to as plating) to the surface of the porous body to control the transmittance, that is, the amount of restricting the fluid ( JP-A-64-6515)
There is.

【0006】図6はメッキによる透過率調整を施した多
孔体の断面を示した模式図であって、10は多孔体の肉
質部、11は肉質部10間に存在する空孔、12は肉質
部10の表面に付着したメッキ膜、13は軸受面、14
は軸受隙間である。通常、焼結等により製造される多孔
体は焼結粒子間を融点以下の温度で組成分子や焼結助材
を熱拡散させて結合する。このため粒子間に形成される
気孔は図示のように空孔11が団子状に連なった立体構
造となる。従って、これを通過する流体は断面積がもっ
とも小さい空孔11間断面積の影響で透過率、即ち流路
抵抗が定まる。メッキによる透過率調整は空孔11間の
断面積をメッキ膜12の厚さで減少させて制御される。
但し、この方法は空孔11間断面積に、もともと大小が
存在するためメッキ膜12の厚さを増していくと、メッ
キ膜12は小さな空孔11間断面積から先に封止するた
め、軸受面13上の流体の出口が徐々に減少する。逆に
言えば小さな空孔11間断面積を封止して制御している
ことになる。この結果、大きな空孔11間断面積が粗に
残るため軸受隙間13への均質な流体供給を難しくす
る。また、もともと軸受面13上に開口した空孔11は
メッキ後も取り残され軸受の無駄隙間となって静圧軸受
の剛性を低下させたり、空気静圧軸受に特有のニュウマ
チックハンマ、即ち、空気の圧縮性に基づく自励振動の
原因となる。等々の欠点がある。
FIG. 6 is a schematic view showing a cross section of a porous body which has been subjected to transmittance adjustment by plating, wherein 10 is a fleshy portion of the porous body, 11 is a hole existing between the fleshy portions 10, and 12 is a fleshy portion. 13 is a plating film attached to the surface of the portion 10, 13 is a bearing surface, 14
Is a bearing gap. Normally, a porous body produced by sintering or the like is bonded by thermally diffusing composition molecules and a sintering aid between sintered particles at a temperature equal to or lower than a melting point. Therefore, the pores formed between the particles have a three-dimensional structure in which the pores 11 are connected in a cluster as shown in the figure. Therefore, the transmittance of the fluid passing therethrough, that is, the flow path resistance is determined by the effect of the cross-sectional area between the holes 11 having the smallest cross-sectional area. The transmittance adjustment by plating is controlled by reducing the cross-sectional area between the holes 11 by the thickness of the plating film 12.
However, in this method, when the thickness of the plating film 12 is increased because the size of the cross-sectional area between the holes 11 is originally large, the plating film 12 is sealed from the small cross-sectional area between the holes 11 first. The outlet of the fluid on 13 decreases gradually. Conversely, it means that the cross-sectional area between the small holes 11 is sealed and controlled. As a result, the cross-sectional area between the large holes 11 remains roughly, making it difficult to supply a uniform fluid to the bearing gap 13. In addition, the holes 11 originally opened on the bearing surface 13 are left behind even after plating, and become useless gaps of the bearing to reduce the rigidity of the hydrostatic bearing, or a pneumatic hammer peculiar to the hydrostatic bearing, that is, air Causes self-excited vibration based on the compressibility of There are drawbacks.

【0007】加えて多孔質軸受の軸受隙間は通常5μm
以下が普通である。この場合、多孔体の流路抵抗を先に
述べたように多孔体壁面との摩擦抵抗(毛細管絞り)を
主体にしようとすると、空孔11の直径も5μm以下、
とくにメッキによる断面積の縮小部はμmオーダのサイ
ズとならざるを得ない。また空孔11径が5μm以下と
なると多孔体内への気体の侵入は可能であっても液体で
あるメッキ液の侵入に加え、メッキによる透過率制御そ
のものに難点が生じる。このため軸受隙間より大幅に大
きい空孔11の多孔体が使用されるため軸受面への空孔
11の残留や流体供給の不均一が避けられない透過率制
御となっている。従って、メッキにより制御された多孔
体の流路抵抗の実際は、多孔体壁面との摩擦抵抗(毛細
管絞り)の割合は少なくなり、多孔体表面の小穴からの
流出抵抗(オリフィス絞り)や軸受隙間と多孔体面の形
状で構成される段差や空隙による流出抵抗(面絞り、自
成絞り)等が混在した絞りとなる。これらの絞りは絞り
としての特性に差があるため、混在比率の分だけ静圧軸
受の性能にバラツキが生じる結果となる。毛細管絞りや
オリフィス絞りは軸受の隙間変化とは無関係に一定の流
路抵抗を示すが、面絞りや自成絞りは軸受の隙間が増す
と流路抵抗が下がり、隙間が減ると流路抵抗が上がる特
性を示す。軸受の剛性を高める効果としては、毛細管絞
りやオリフィス絞りの混在比率が増すほど良い結果とな
る。尚、軸受の隙間が増すと流路抵抗が上がり、隙間が
減ると流路抵抗が下がる特性がもっともよいが、このよ
うな絞りは今のところ存在しない。以上、メッキによる
透過率制御を用いる静圧軸受の構成についても様々な欠
点が存在することを述べた。
In addition, the clearance of a porous bearing is usually 5 μm.
The following is common. In this case, when the flow resistance of the porous body is mainly determined by the frictional resistance (capillary restriction) with the wall surface of the porous body as described above, the diameter of the hole 11 is 5 μm or less.
In particular, the reduced portion of the cross-sectional area due to plating must be of the order of μm. If the diameter of the pores 11 is 5 μm or less, even if gas can enter the porous body, in addition to penetration of a liquid plating solution, there is a difficulty in controlling transmittance by plating itself. For this reason, since a porous body having pores 11 that is significantly larger than the bearing gap is used, transmittance control is inevitable in which residual pores 11 on the bearing surface and uneven supply of fluid are inevitable. Therefore, in actuality, the flow resistance of the porous body controlled by the plating is reduced in the ratio of the frictional resistance (capillary restriction) with the wall surface of the porous body, and the flow resistance (orifice restriction) from the small hole on the porous body surface and the bearing clearance are reduced. An aperture having a mixture of steps formed by the shape of the porous body surface and outflow resistance (surface aperture, self-generated aperture) due to voids and the like is mixed. Since these throttles have different characteristics as the throttle, the performance of the hydrostatic bearing varies as much as the mixing ratio. Capillary and orifice throttles show a constant flow resistance regardless of the change in bearing clearance, while surface and self-contained throttles have a lower flow resistance as the bearing clearance increases and a decrease in clearance decreases the flow resistance. Shows rising characteristics. As the effect of increasing the rigidity of the bearing, the better the mixing ratio of the capillary throttle and the orifice throttle, the better the result. The flow path resistance increases when the clearance between the bearings increases, and the flow path resistance decreases when the clearance decreases. However, such a throttle does not exist at present. As described above, it has been described that the configuration of the hydrostatic bearing using the transmittance control by plating has various disadvantages.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記の欠点を
改善するために提案されたもので、その目的は、新たな
流体通路の構成手段と、流体絞りの制御手段とを付与し
た多孔質静圧軸受およびその製法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been proposed to improve the above-mentioned drawbacks, and an object of the present invention is to provide a porous member provided with a new means for forming a fluid passage and a means for controlling a fluid restriction. An object of the present invention is to provide a hydrostatic bearing and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は固体と固体間の隙間に流体を供給して非接
触浮上させる静圧軸受において、流体供給孔と接続さ
れ、かつ、軸受隙間の一部に開口を持つ多孔体が、緻密
セラミック内部に内包され、前記多孔体の軸受隙間の開
口部が、小径粒子をバインダで埋込み固定して形成した
多孔体内多孔質であることを特徴とするセラミック製多
孔質静圧軸受を発明の要旨とするものである。さらに、
本発明は流体供給孔と接続され、かつ、軸受隙間の一部
に開口を持つ多孔体が、緻密セラミック内部に内包され
たセラミック製多孔質静圧軸受を製造する方法におい
て、前記緻密セラミックと前記多孔体を、泥漿鋳込み法
により一体形成し、小径粒子をバインダにより、前記多
孔体の前記軸受隙間の開口部に埋込み固定することを特
徴とするセラミック製多孔質静圧軸受の製法を発明の要
旨とするものである。換言すれば、本発明は第1の手
段、即ち流体通路の構成として、緻密セラミック内部に
流体供給孔と接続され、かつ軸受隙間の一部に開口をも
つ多孔体を内包させ、該流体供給孔から軸受隙間に至る
部分多孔体を流体の通路に限定させ、絞り制御機能のな
い静圧軸受構成部材とする。第2の手段、即ち流体絞り
制御として、軸受隙間の一部に開口をもつ多孔体の開口
部に、開口部の断面積より小さな粒子を埋込み固定して
多孔体内多孔質を形成することによって、部分多孔体開
口部の断面積を減少させて流路抵抗、即ち流体絞りを制
御する。以上の二つの手段は多孔体を流体の通路として
の役割にのみ限定させ、流体絞りの制御は粒子の埋込み
固定法で別途制御する。従って、セラミック多孔質によ
る静圧軸受部材の高強度化や高精度化は勿論、流体の通
路の形成と絞りの制御とを分離独立させたことに特徴が
ある。
In order to achieve the above object, the present invention provides a hydrostatic bearing for supplying a fluid to a gap between solids to float in a non-contact manner, wherein the hydrostatic bearing is connected to a fluid supply hole, and A porous body having an opening in a part of the bearing gap is included in the dense ceramic, and the opening of the bearing gap of the porous body is a porous body formed by embedding and fixing small-diameter particles with a binder. A feature of the present invention is a porous ceramic hydrostatic bearing. further,
The present invention relates to a method for manufacturing a ceramic porous hydrostatic bearing in which a porous body connected to a fluid supply hole and having an opening in a part of a bearing gap is included in a dense ceramic. A method for manufacturing a ceramic porous hydrostatic bearing, wherein a porous body is integrally formed by a slurry casting method, and small-diameter particles are embedded and fixed in an opening of the bearing gap of the porous body with a binder. It is assumed that. In other words, the present invention provides, as a first means, that is, as a configuration of the fluid passage, a porous body which is connected to the fluid supply hole inside the dense ceramic and has an opening in a part of the bearing gap. A part of the porous body extending from the fluid to the bearing gap is limited to a fluid passage, thereby forming a hydrostatic bearing component having no throttle control function. As a second means, that is, as a fluid restricting control, by embedding and fixing particles smaller than the cross-sectional area of the opening in the opening of the porous body having an opening in a part of the bearing gap to form a porous body, The cross-sectional area of the partially porous body opening is reduced to control the flow path resistance, that is, the fluid restriction. The above two means limit the role of the porous body only as a fluid passage, and the control of the fluid restriction is separately controlled by a method of embedding and fixing particles. Therefore, it is characterized in that the formation of the fluid passage and the control of the throttle are separated and independent, as well as the strength and accuracy of the hydrostatic bearing member made of ceramic porous material.

【0010】[0010]

【作用】本発明においては、流体通路の絞り制御は、軸
受面を構成する開口部に小径粒子を埋込み固定して形成
しているため、高精度の絞り制御を可能とすることがで
きる。
In the present invention, since the restriction of the fluid passage is controlled by embedding and fixing small-diameter particles in the opening constituting the bearing surface, it is possible to control the restriction with high precision.

【0011】[0011]

【実施例】次に本発明の実施例について説明する。図1
は本発明の静圧軸受の構造を示した一実施例の断面図で
あって、図において、15は中空円筒状の内部に部分多
孔体を一体形成させたセラミック製のセラミック質部分
多孔体である。16はセラミック質部分多孔体15の一
部であってセラミック質部分多孔体15内に一体形成さ
れ流体通路となる多孔体であって、17は多孔体16と
同材質の軸隙間出口であって、セラミック質部分多孔体
15の軸方向端面に環状に開放されている。18は多孔
体16の同材質の径隙間出口であってセラミック質部分
多孔体15の中空円筒内側に向かって、やはり環状に開
放されている。また、7はセラミック質部分多孔体15
の外側から多孔体16に穴あけした給気孔である。但
し、この段階では多孔体16は軸隙間5、径隙間4に必
要とされる流体供給量を大幅に上回る透過率としてお
く。なお多孔体の軸受隙間の開口部は、小径粒子をバイ
ンダで埋め込み固定して形成されている。このような構
造となっているので給気孔7に加圧流体を供給すれば流
体は多孔体16から軸隙間出口17は径隙間出口18と
に分流し、それぞれ軸隙間5、及び径隙間4を通過して
大気圧の軸受外に放出される。尚、静圧軸受としての機
能は従来の炭素質多孔体2と何等変わらないので説明は
省略する。
Next, an embodiment of the present invention will be described. FIG.
FIG. 1 is a cross-sectional view of an embodiment showing the structure of a hydrostatic bearing of the present invention. In the drawing, reference numeral 15 denotes a ceramic partially porous body made of ceramic in which a partially porous body is integrally formed inside a hollow cylinder. is there. Reference numeral 16 denotes a part of the ceramic partial porous body 15, which is a porous body integrally formed in the ceramic partial porous body 15 and serves as a fluid passage. Reference numeral 17 denotes a shaft gap outlet made of the same material as the porous body 16. The ceramic porous body 15 is annularly opened at the axial end face. Reference numeral 18 denotes a radial gap outlet made of the same material of the porous body 16 and is also opened in an annular shape toward the inside of the hollow cylinder of the ceramic partial porous body 15. 7 is a ceramic partial porous body 15
Are air supply holes formed in the porous body 16 from the outside. However, at this stage, the porous body 16 is set to have a transmittance that greatly exceeds the fluid supply amount required for the shaft gap 5 and the radial gap 4. The opening of the porous bearing gap is formed by embedding and fixing small-diameter particles with a binder. With such a structure, if a pressurized fluid is supplied to the air supply hole 7, the fluid is diverted from the porous body 16 to the shaft gap outlet 17 and the diameter gap outlet 18, and the fluid flows through the shaft gap 5 and the diameter gap 4 respectively. It passes through and is released outside the bearing at atmospheric pressure. The function as the hydrostatic bearing is not different from that of the conventional carbonaceous porous body 2, and therefore the description is omitted.

【0012】つぎに、セラミック質部分多孔体15の製
造方法の一例について簡単に説明する。セラミック内部
に特定形状の多孔質部を形成するには、泥漿鋳込み法と
呼ばれる形状成形法を用いる。通常の泥漿鋳込み法は、
求められる外枠形状を有する石膏型の中に、セラミック
粒子や焼結助剤を水に分散させた泥漿(以下、スラリと
言う)を注ぎ込むとスラリ内の水分は石膏型に徐々に吸
収され石膏型にセラミックの粒子が着床する。この結
果、石膏型に等しいセラミック粒子の鋳込み品が完成す
る。これを乾燥焼結してセラミック化するのが泥漿鋳込
み法である。泥漿鋳込み法によるセラミックは緻密で高
強度であるが、単なる泥漿鋳込みではセラミックの特定
部分を多孔体にすることは不可能である。セラミックの
特定部分を多孔体にするには、特定部分の形状に等し
い、例えば浴室などで使用する発泡ウレタン製やPVF
(ポリビニールアセタール)製のスポンジを石膏型内に
予めセットしてスラリを注ぎ込み、スポンジを内包させ
た鋳込み品を製造し、これを焼結すればスポンジは焼結
時に昇華するため従来スポンジであった部分が空孔とな
る結果、特定部分のみ多孔体のセラミックが製造でき
る。
Next, an example of a method for manufacturing the ceramic partial porous body 15 will be briefly described. In order to form a porous portion having a specific shape inside the ceramic, a shape forming method called a slurry casting method is used. The usual slurry casting method is
When a slurry (hereinafter, referred to as a slurry) in which ceramic particles and a sintering aid are dispersed in water is poured into a gypsum mold having a desired outer frame shape, moisture in the slurry is gradually absorbed by the gypsum mold, The ceramic particles land on the mold. As a result, a cast product of ceramic particles equivalent to a gypsum mold is completed. This is dried and sintered to form a ceramic, which is a slurry casting method. Although the ceramic obtained by the slurry casting method is dense and has high strength, it is impossible to make a specific portion of the ceramic into a porous body by simple slurry casting. In order to make a specific portion of the ceramic a porous body, the shape of the specific portion is equal to that of the specific portion.
A sponge made of (polyvinyl acetal) is set in a gypsum mold in advance, and a slurry is poured thereinto to produce a cast product containing the sponge. If this is sintered, the sponge sublimates during sintering. As a result, a porous ceramic can be produced only in a specific portion.

【0013】尚、泥漿鋳込みによって製造した焼結前の
鋳込み品は、概ね、黒板に字や絵を書くときに使用する
白墨のような性状を示すため、切削加工等で容易に所望
の形状に加工できる。但し、焼結によって収縮するの
で、その分大きく製作しておく必要がある。但し、焼結
後は緻密・高硬度なセラミックに変質するため、研削加
工や研磨加工等しか適用できないが極めて高い仕上げ精
度が得られる。加えて泥漿鋳込み法で部分多孔体のセラ
ミックを製造する場合、セラミック粒子がスポンジの気
孔部のすべてに充填されないと内部に巣ができるため、
気孔密度が粗なスポンジの方が泥漿鋳込みに適してい
る。従って、透過率の小さい、即ち、密な多孔質の形成
よりも透過率の大きい、即ち、粗な多孔体の形成に有利
である。このように泥漿鋳込みでは透過率の小さい密な
多孔体の製造に難点がある反面、精度を高められる利点
がある。但し、前述のように静圧軸受の高剛性化は軸受
隙間の極小化と密接に関係しており、高精度になればな
るほど軸受隙間の流路抵抗は増大するから、多孔体の流
路抵抗も、これに比例して増大させる必要が生じる。し
かしながら泥漿鋳込みによるセラミック多孔体は高精度
化に向いているが、高密度で流路抵抗の大きい多孔体を
得るのに不向きである。しかし流路抵抗が低いため流体
の通路としては適している。以上は本発明に関する静圧
軸受の構造、とくにセラミックによる流体通路の構成
と、その製造法の一例について説明した。以下、絞りの
制御の新たな方法について説明する。
[0013] The cast product before sintering manufactured by the slurry casting generally exhibits properties like black ink used when writing characters or pictures on a blackboard, and thus is easily formed into a desired shape by cutting or the like. Can be processed. However, since it shrinks due to sintering, it is necessary to manufacture it accordingly. However, after sintering, the ceramic is transformed into a dense and high-hardness ceramic, so that only grinding and polishing can be applied, but extremely high finishing accuracy can be obtained. In addition, when producing partially porous ceramics by the slurry casting method, if ceramic particles are not filled in all the pores of the sponge, nests will form inside,
A sponge having a coarse pore density is more suitable for slurry casting. Therefore, it is more advantageous to form a porous body having a large transmittance, that is, a coarse porous body, than forming a porous body having a small transmittance, that is, a dense porous body. As described above, the slip casting has a difficulty in producing a dense porous body having a small transmittance, but has an advantage that the precision can be improved. However, as described above, increasing the rigidity of the hydrostatic bearing is closely related to minimizing the bearing gap, and the higher the precision, the greater the flow resistance in the bearing gap. Also need to be increased in proportion to this. However, although the ceramic porous body formed by slurry casting is suitable for high precision, it is not suitable for obtaining a porous body having high density and large flow path resistance. However, because of low flow resistance, it is suitable as a fluid passage. The foregoing has described the structure of the hydrostatic bearing according to the present invention, particularly the configuration of the fluid passage made of ceramic, and an example of the method of manufacturing the same. Hereinafter, a new method of controlling the aperture will be described.

【0014】図2は本発明の絞りの制御方法を、図1に
示した泥漿鋳込みにより製造したセラミック質部分多孔
体15における流体出口、即ち、軸隙間出口17、また
は径隙間出口18に施した拡大断面の模式図である。但
し、多孔体の構造は理解を容易にするため、図1と同一
にしてある。19がセラミック質部分多孔体15の流体
通路の開口部に存在する空孔11内に埋込み固定した透
過率制御用の小径粒子である。セラミック質部分多孔体
15の流体出口に小径粒子19を埋込み固定すること
で、流体通路の断面積を減少させて通過率、即ち、流路
抵抗を制御する。小径粒子19の埋込みは、セラミック
質部分多孔体15に対する小径粒子19の充填と、その
固定により実施される。以下、小径粒子19の埋込み固
定について説明する。
FIG. 2 shows the method of controlling the restriction according to the present invention applied to the fluid outlet, that is, the shaft gap outlet 17 or the radial gap outlet 18 in the ceramic partial porous body 15 manufactured by the slurry casting shown in FIG. It is a schematic diagram of an enlarged cross section. However, the structure of the porous body is the same as that of FIG. 1 for easy understanding. Reference numeral 19 denotes small-diameter particles for transmittance control embedded and fixed in the holes 11 existing in the openings of the fluid passages of the ceramic partial porous body 15. By embedding and fixing the small-diameter particles 19 in the fluid outlet of the ceramic partial porous body 15, the cross-sectional area of the fluid passage is reduced to control the passage rate, that is, the flow passage resistance. The embedding of the small-diameter particles 19 is performed by filling the small-diameter particles 19 into the partially porous ceramic body 15 and fixing the same. Hereinafter, the embedding and fixing of the small-diameter particles 19 will be described.

【0015】図3は小径粒子19を埋込み固定する器具
構成の一例を示す概略図である。17はセラミック質部
分多孔体15上における流体の軸隙間出口、同様に18
は径隙間出口、20は軸隙間出口17を個別にマスキン
グするための円輪シール、21は径隙間出口18を個別
にマスキングするための円筒シール、22は小径粒子1
9をテトラエトキシシラン系のバインダに分散させたス
ラリ、23はスラリ22を液取りするためのスポイト、
24は余分なスラリ22を除去するためのヘラである。
25はセラミック質部分多孔体15の内部を真空引きす
るための真空ポンプ、26はセラミック質部分多孔体1
5内を通過した小径粒子19やバンイダ液を排除するた
めの分離器、27は分離器26内の圧力を観測するため
の真空計、28は真空ポンプ25に気体以外を通さぬた
めのフィルタ、29はセラミック質部分多孔体15、分
離器26、フィルタ28、及び真空ポンプ25間を接続
する真空ホースである。以下、小径粒子19の埋込み手
順を説明する。
FIG. 3 is a schematic view showing an example of a device configuration for embedding and fixing the small-diameter particles 19. Reference numeral 17 denotes a shaft gap outlet of the fluid on the ceramic partial porous body 15;
Is a circular gap outlet, 20 is a ring seal for individually masking the axial gap outlet 17, 21 is a cylindrical seal for individually masking the radial gap outlet 18, 22 is a small particle 1
A slurry in which 9 is dispersed in a tetraethoxysilane-based binder; 23, a dropper for removing the slurry 22;
Reference numeral 24 denotes a spatula for removing an excessive slurry 22.
Reference numeral 25 denotes a vacuum pump for evacuating the inside of the ceramic partial porous body 15, and 26 denotes a ceramic partial porous body 1.
A separator for removing the small-diameter particles 19 and the vanida liquid that have passed through 5, a vacuum gauge 27 for observing the pressure in the separator 26, a filter 28 for allowing the vacuum pump 25 to pass anything but gas, Reference numeral 29 denotes a vacuum hose that connects the ceramic partial porous body 15, the separator 26, the filter 28, and the vacuum pump 25. Hereinafter, a procedure for embedding the small-diameter particles 19 will be described.

【0016】円輪シール20や円筒シール21を用いて
小径粒子19を充填する軸隙間出口17以外をマスキン
グした後、真空ポンプ25を動作させてセラミック質部
分多孔体15内を排気する。つぎにスポイト23内のス
ラリ22を例えば軸隙間出口17上に供給すると、スラ
リ22は多孔質内に真空吸引される段階で、図2で示し
たようにスラリ22内の小径粒子19が通路の断面積が
もっとも小さい空孔11間断面積に滞留し、これが引き
金となって小径粒子19は多孔体の通路内を埋め尽く
す。但し、スラリ22内のバインダは粘性を持った液体
なので大半は小径粒子19間の隙間を通って排除される
が、小径粒子19や空孔11の壁面に付着したバインダ
は取り残される。このバインダは一定時間経過後に硬化
するため多数の小径粒子19を空孔11内に埋込み固定
することができる。尚、硬化後、炉内で焼成するとバイ
ンダの結合強度を大幅に高められる。
After masking the portion other than the shaft gap outlet 17 filled with the small-diameter particles 19 using the ring seal 20 or the cylindrical seal 21, the inside of the ceramic partial porous body 15 is evacuated by operating the vacuum pump 25. Next, when the slurry 22 in the dropper 23 is supplied onto, for example, the shaft gap outlet 17, the slurry 22 is vacuum-sucked into the porous material, and as shown in FIG. The small-diameter particles 19 stagnate in the cross-sectional area between the holes 11 having the smallest cross-sectional area, and this triggers the small-diameter particles 19 to fill the inside of the passage of the porous body. However, since the binder in the slurry 22 is a viscous liquid, most of the binder is removed through the gap between the small-diameter particles 19, but the small-diameter particles 19 and the binder attached to the wall surfaces of the holes 11 are left behind. Since the binder is cured after a certain time, a large number of small-diameter particles 19 can be embedded and fixed in the holes 11. After the curing, firing in a furnace can greatly increase the bonding strength of the binder.

【0017】図4は小径粒子19が埋込み固定された状
況を図2の軸受面13側から見た模式拡大図である。1
0はセラミック質部分多孔体15の肉質部、30は埋込
み固定された小径粒子19間に新たに開口した流体の新
通路、また31は肉質部10の壁面や小径粒子19間に
取り残されて硬化したバインダである。図示の如く従来
肉質部10間に存在した空孔11は小径粒子19で埋め
尽くされ多孔体内多孔質が形成されているため判別しに
くいが、空孔11内には大小様々な新通路30が三次元
的に多数形成でき、流体通路の断面積も大幅に減少でき
る。尚、模式図は理解を容易にするため同一径の小径粒
子19、及び同一厚のバインダ31で示したが、実際の
埋込み固定では制御対象となるセラミック質部分多孔体
15の空孔11の大きさも関係するが、小径粒子19の
径やバインダ31の粘度などは選択可能であるし、これ
らが異なるスラリ22の多回実施、或いは、真空ポンプ
25等による排気圧力のコントロール等、絞り制御のた
めの条件が多数存在する。従って、図1で示した軸隙間
出口17や径隙間出口18の透過率を狙った値にする条
件の選択は難しくない。
FIG. 4 is a schematic enlarged view of the situation where the small-diameter particles 19 are embedded and fixed, as viewed from the bearing surface 13 side in FIG. 1
Numeral 0 denotes a fleshy portion of the ceramic partial porous body 15, 30 denotes a new passage for a fluid newly opened between the embedded and fixed small-diameter particles 19, and 31 denotes a hardening that is left behind between the wall surface of the fleshy portion 10 and the small-diameter particles 19. It is a binder that did. As shown in the figure, the pores 11 existing between the fleshy portions 10 are hard to be distinguished because the pores 11 are filled with small-diameter particles 19 and the porous body is formed. A large number can be formed three-dimensionally, and the cross-sectional area of the fluid passage can be greatly reduced. Although the schematic diagram shows the small-diameter particles 19 having the same diameter and the binder 31 having the same thickness for easy understanding, the size of the pores 11 of the ceramic partial porous body 15 to be controlled in actual embedding and fixing is controlled. Although it is related, the diameter of the small-diameter particles 19 and the viscosity of the binder 31 can be selected, and these are used for controlling the slurry 22 multiple times, or controlling the exhaust pressure by the vacuum pump 25 or the like. Many conditions exist. Therefore, it is not difficult to select a condition for setting the transmittance of the shaft gap outlet 17 and the diameter gap outlet 18 shown in FIG. 1 to a target value.

【0018】以下、テトラエトキシシラン系のバインダ
について簡単に説明する。基本となるテトラエトキシシ
ランの化学構造は
Hereinafter, the tetraethoxysilane-based binder will be briefly described. The chemical structure of the basic tetraethoxysilane is

【化1】 これは触媒の存在下で水と反応して、以下の如くシリカ
(SiO2 )を生成する。 Si(OC2 5 4 +2H2 O→(触媒)→SiO2
+4C2 5 OH これは約28%のシリカ分とテトラエトキシシラン、エ
タノールなどを含んでいる。さらに部分加水分解によっ
てシリカ分約40%まで濃縮したものが一般にシリカ原
料として用いられる。バンイダには溶媒と水、及び酸性
触媒などを混合させた加水分解液を用いる。通常の加水
分解液はアルコール溶媒中にSiO2 がコロイド状に分
散したものと考えられ、この加水分解液に粒子を混合さ
せて塗布すると粒子を包み込むか、又は間隙埋める形で
SiO2 膜が形成される。この作用で物体表面に粒子を
固着させたり、粒子同士を固めて造形させたりする。用
途としてはロストワックスやショウプロセス等の精密鋳
造に用いる砂型の固形剤、プラスチック材料の表面硬化
剤等が代表的である。尚、加水分解液に極めて細かいS
iO2 微粒子を混合させることで粘度を調整できる。ま
た、SiO2 を用いると、流体通路の洗浄の時の耐薬品
性に優れ、親水性があるのでメッキが容易であり、耐湿
性があるので膨潤による抵抗の変化が小さく、さらに、
熱に強いので抵抗決定後の再加熱による固着力の強化が
容易であるという特徴がある。さらに、SiO2 におい
ては、溶剤(弗酸)があるので、セラミックに損傷を与
えることなく除去でき、抵抗の再調整や母材セラミック
の再生利用が可能であるという特徴もある。以上、従来
の静圧軸受の欠点を改善する流体通路の構成と流体絞り
の制御に関する二つの手段について説明した。
Embedded image It reacts with water in the presence of a catalyst to produce silica (SiO 2 ) as follows. Si (OC 2 H 5 ) 4 + 2H 2 O → (catalyst) → SiO 2
+ 4C 2 H 5 OH It contains about 28% silica and tetraethoxysilane, ethanol and the like. What has been further concentrated to a silica content of about 40% by partial hydrolysis is generally used as a silica raw material. A hydrolyzate obtained by mixing a solvent, water, an acidic catalyst and the like is used for vanida. It is considered that ordinary hydrolyzate is a colloidal dispersion of SiO 2 in an alcohol solvent, and when particles are mixed and applied to this hydrolyzate, an SiO 2 film is formed in such a way as to wrap the particles or fill the gaps Is done. By this action, the particles are fixed to the surface of the object, or the particles are solidified and formed. Typical uses are a sand-type solid agent used for precision casting such as lost wax and a show process, and a surface hardening agent for plastic materials. In addition, extremely fine S
The viscosity can be adjusted by mixing iO 2 fine particles. Further, when SiO 2 is used, the chemical resistance at the time of washing the fluid passage is excellent, the plating is easy because it is hydrophilic, and the resistance change due to swelling is small because it has moisture resistance.
Since it is resistant to heat, it is easy to reinforce the fixing force by reheating after determining the resistance. Furthermore, since SiO 2 has a solvent (hydrofluoric acid), it can be removed without damaging the ceramic, so that the resistance can be readjusted and the base ceramic can be recycled. In the above, two means relating to the configuration of the fluid passage and the control of the fluid restrictor for improving the drawbacks of the conventional hydrostatic bearing have been described.

【0019】但し、実施例の第1の手段において特定部
分のみ多孔体とするセラミックの製造はセラミック粒子
を焼成結合させる通常の焼結法でも可能であることは言
うまでもない。要は多孔体を従来のように流体の絞りと
しては作用しない透過率にする点に特徴がある。前述し
たように多孔体を流体の絞りとして作用させるには図2
に示した空孔の平均径が軸受の隙間以下であること、多
孔体の流路抵抗が軸受隙間の流路抵抗の1/2〜3/4
が望ましい。但し、本発明の流体の通路構成や絞り制御
を用いれば、空孔の平均径が軸受隙間より一桁以上大き
くても、多孔体の流路抵抗が軸受隙間の流路抵抗の1/
10以下であっても何等差し支えないことは言うまでも
ないが製造容易さの方が優先する。因みに、本発明の流
体通路の構成に適当な多孔体の透過率Kを、 K=(Q・L)/(△P・A)(cm3 /sec)・c
m/cm2 ・cmH2 O ガス流量Q(cm3 /sec)、透過厚さL(cm)、
圧力差△P(cmH2O)、透過断面積A(cm2 )と
定義したときKの値は1×10-2近辺、また空孔の平均
径は50μm〜150μm程度のものが泥漿鋳込みで製
造容易、かつ、絞り制御にも好適である。尚、セラミッ
ク材質についても通常はアルミナ(AL2 3 )が使用
されるが、これに限るものでなく例えば窒化珪素(Si
N)や炭化珪素(SiC)でもよいことは言うまでもな
い。
However, needless to say, in the first means of the embodiment, the production of a ceramic in which only a specific portion is made of a porous body can be carried out by a usual sintering method in which ceramic particles are sintered and bonded. In short, it is characterized in that the porous body is made to have a transmittance that does not act as a restrictor for a fluid as in the related art. As described above, in order for the porous body to act as a fluid restrictor, FIG.
That the average diameter of the holes shown in (1) is equal to or smaller than the gap between the bearings, and that the flow path resistance of the porous body is 2〜 to / of the flow path resistance of the bearing gap.
Is desirable. However, if the fluid passage configuration and the throttle control of the present invention are used, even if the average diameter of the pores is one order of magnitude or more larger than the bearing gap, the flow resistance of the porous body is 1/100 of the flow resistance of the bearing gap.
Needless to say, there is no problem even if the number is 10 or less, but the easiness of manufacture has priority. Incidentally, the permeability K of the porous body suitable for the configuration of the fluid passage of the present invention is expressed as follows: K = (Q · L) / (△ PA) (cm 3 / sec) · c
m / cm 2 · cmH 2 O gas flow rate Q (cm 3 / sec), permeation thickness L (cm),
When the pressure difference ΔP (cmH 2 O) and the permeation cross-sectional area A (cm 2 ) are defined, the value of K is around 1 × 10 -2 , and the average pore diameter is about 50 μm to 150 μm. It is easy to manufacture and suitable for controlling the aperture. Alumina (AL 2 O 3 ) is usually used for the ceramic material, but is not limited to this. For example, silicon nitride (Si) may be used.
Needless to say, N) or silicon carbide (SiC) may be used.

【0020】また実施例の第2の手段において小径粒子
の材質についても特定してないがテトラエトキシシラン
系のバインダと同材質の酸化珪素(SiO2 )が適当で
あるが、これに限るものでなく、セラミック製や金属製
のパウダ、または元々多孔質の小径粒子でもよいことは
言うまでもない。小径粒子の大きさも対象となる多孔質
や静圧軸受の設計に応じて選択する必要があることは言
うまでもない。さらに小径粒子をテトラエトキシシラン
系のバインダで埋め込み固定したが、これに限るもので
なく仮止めした後、従来の無電解メッキによる透過率調
整を施してもよいことは言うまでもなく、要は小径粒子
をバインダで多孔体内に埋込み固定して多孔体内多孔質
を形成する点に特徴がある。以上、実施例を用いてセラ
ミック製多孔体による流体通路の新たな構成手段と、多
孔体内多孔質による新たな絞り形成手段について詳細に
説明した。従来の多孔質静圧軸受における流体通路の構
成では、多孔体の通路そのものが流路抵抗の制御手段と
なるように構成するのに対し、本発明の流体通路の構成
は、従来とは正反対に流路抵抗の制御手段とならぬよう
に構成する。構成法が従来とはまったく逆で大きな差異
がある。また従来の多孔質静圧軸受における流路抵抗制
御手段は流体通路を構成する多孔質の流路抵抗を制御す
るのに対し、本発明の流路抵抗制御手段は流体通路を構
成する多孔体とは密度や製造法がまったく異なる多孔体
内多孔質の流路抵抗を制御する。即ち、制御対象となる
多孔質がまったく異なり大きな差異がある。
In the second means of the embodiment, the material of the small-diameter particles is not specified, but silicon oxide (SiO 2 ) of the same material as the tetraethoxysilane-based binder is suitable, but is not limited thereto. Needless to say, ceramic or metal powder or originally small porous particles may be used. It goes without saying that the size of the small-diameter particles also needs to be selected according to the design of the target porous material and the hydrostatic bearing. Further, the small-diameter particles were embedded and fixed with a tetraethoxysilane-based binder, but the present invention is not limited to this, and it is needless to say that the transmittance may be adjusted by conventional electroless plating after temporary fixing. Is embedded and fixed in a porous body with a binder to form a porous body. In the above, the new configuration means of the fluid passage made of the ceramic porous body and the new restriction forming means made of the porous body have been described in detail using the embodiments. In the configuration of the fluid passage in the conventional porous hydrostatic bearing, the passage of the porous body itself is configured as the control means of the flow path resistance, whereas the configuration of the fluid passage of the present invention is opposite to the conventional one. It is configured so as not to be a control means of the flow path resistance. The construction method is completely opposite to the conventional one, and there is a great difference. Further, the flow path resistance control means in the conventional porous hydrostatic bearing controls the flow resistance of the porous flow path constituting the fluid passage, whereas the flow path resistance control means of the present invention employs a porous body constituting the fluid passage. Controls the flow resistance of a porous body in a porous body having completely different densities and manufacturing methods. That is, the porosity to be controlled is completely different, and there is a great difference.

【0021】[0021]

【発明の効果】前述したように本発明の静圧軸受におけ
る流体通路の構成は、セラミック製で、かつ多孔体を流
体通路としての役割に限定できるため、以下の効果があ
る。 (1)多孔体は透過率が十分大きい流体通路であればよ
く多孔体の構成寸法、透過率や、その均質性・バラツキ
等々にさほど精度を要求されないので設計・製造上の余
裕が生じる。 (2)多孔体は流体通路として必要最小限でよく軸受構
造の大半は高い強度や硬度を有する緻密なセラミックで
構成できる。従って、この分だけ静圧軸受の小型化は勿
論、供給圧力の増大も可能となるので静圧液体軸受への
応用も可能となる。 (3)高精度加工に適したセラミックで構成できる。従
って、この分だけ静圧軸受の高精度化と密接に関係する
高剛性化、低給気流量、及び高回転精度などを併せて達
成できる。また、本発明における流体通路の絞り制御
は、軸受面を構成する多孔体開口部に小径粒子を埋込み
固定により多孔体内多孔質を形成するため、以下の効果
がある。 (4)透過率、即ち、流路抵抗を観測しながら制御でき
る分だけ高精度な絞り制御が可能となる。 (5)小径粒子のサイズやバインダの粘度等々の選択に
よって多孔体内多孔質の密度を変更できるので流体絞り
の制御範囲を大幅に拡大できる。 (6)多孔体内多孔質は多孔質密度の微細化により小さ
な流体出口を多数形成でき、軸受隙間に対する流体供給
の分布均一化を達成できる。 (7)軸受面上に絞り特性として優位にある小さな流体
出口、即ち、オリフィス絞りを多数形成できるので、静
圧軸受の高剛性化が図れる。 (8)軸受面上に開口する多孔体の空孔部を小径粒子と
バインダで埋められるので、この分だけ無駄隙間を低減
でき軸受の高剛性化、ニュウマチックハンマの低下等を
達成できる。 等、従来の多孔質静圧軸受が抱えていた設計・製造上の
欠点を克服できるだけでなく、多孔質静圧軸受の適用域
や性能全般を大幅に向上できる利点を数多く有してお
り、この利点を生かした低流量、高剛性、高速高精度な
静圧軸受を実現できることになる。
As described above, since the structure of the fluid passage in the hydrostatic bearing of the present invention is made of ceramic and the role of the porous body as the fluid passage can be limited, the following effects can be obtained. (1) The porous body only needs to be a fluid passage having a sufficiently high transmittance, and therefore, there is not much required precision in the configuration dimensions, the transmittance of the porous body, and the homogeneity and variation thereof. (2) The porous body is a minimum necessary as a fluid passage, and most of the bearing structure can be made of a dense ceramic having high strength and hardness. Accordingly, the supply pressure can be increased as well as the size of the hydrostatic bearing can be reduced by this amount, so that application to a hydrostatic bearing is also possible. (3) It can be made of ceramic suitable for high-precision processing. Therefore, high rigidity, low air supply flow rate, high rotational accuracy, etc., which are closely related to the high precision of the hydrostatic bearing, can be achieved. Further, the throttle control of the fluid passage in the present invention has the following effects because the porous body is formed by embedding and fixing small-diameter particles in the porous body opening constituting the bearing surface. (4) The aperture control can be performed with a high degree of accuracy by controlling the transmittance while observing the flow path resistance. (5) Since the density of the porous material in the porous body can be changed by selecting the size of the small-diameter particles, the viscosity of the binder, and the like, the control range of the fluid restriction can be greatly expanded. (6) The small number of small fluid outlets can be formed in the porous body by reducing the porous density, and the distribution of fluid supply to the bearing gap can be made uniform. (7) Since a large number of small fluid outlets, that is, orifice throttles, which are superior as throttle characteristics on the bearing surface, can be formed, the rigidity of the hydrostatic bearing can be increased. (8) Since the pores of the porous body opened on the bearing surface can be filled with the small-diameter particles and the binder, the useless gap can be reduced by that much, and the rigidity of the bearing can be increased, and the pneumatic hammer can be reduced. In addition to overcoming the design and manufacturing disadvantages of conventional porous hydrostatic bearings, it has many advantages that can greatly improve the application range and overall performance of porous hydrostatic bearings. A low-flow, high-rigidity, high-speed, and high-accuracy hydrostatic bearing utilizing the advantages can be realized.

【0022】以上、軸と軸受間の静圧潤滑を例に発明の
詳細な説明をしたが、軸と軸受をガイドとスライダ、或
いは、ねじ軸とナット等に置き換えれば、軸と軸受は回
転の案内、ガイドとスライダは直進の案内、ねじ軸とナ
ットは螺旋の案内であり、何れも案内であることに変わ
りはない。従って、本発明の多孔質静圧軸受における流
体の通路や絞りの構成法の基本的考え方は静圧潤滑機構
すべてに適用できることは言うまでもない。さらに、本
発明の静圧軸受は気体は勿論、液体を用いた非接触の流
体潤滑に適用でき、その性能を従来に較べ飛躍的に向上
できる。従って、本静圧潤滑を用いた機構構成要素とし
てはスピンドル、ガイドやステージ、静圧ねじ等に適用
すれば、その特徴を十分に生かすことができる。
Although the present invention has been described in detail by taking the hydrostatic lubrication between the shaft and the bearing as an example, if the shaft and the bearing are replaced with a guide and a slider, or a screw shaft and a nut, the shaft and the bearing can rotate. The guide, the guide and the slider are linear guides, and the screw shaft and the nut are helical guides, all of which are guides. Therefore, it is needless to say that the basic concept of the configuration method of the fluid passage and the throttle in the porous hydrostatic bearing of the present invention can be applied to all hydrostatic lubrication mechanisms. Further, the hydrostatic bearing according to the present invention can be applied to non-contact fluid lubrication using liquid as well as gas, and its performance can be remarkably improved as compared with the prior art. Therefore, if the present invention is applied to a spindle, a guide, a stage, a hydrostatic screw, or the like as a mechanical component using the present hydrostatic lubrication, the characteristics thereof can be fully utilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の静圧軸受の構造を示した一実施例の断
面図である。
FIG. 1 is a sectional view of an embodiment showing a structure of a hydrostatic bearing of the present invention.

【図2】本発明の絞り制御方法を施した拡大断面の模式
図である。
FIG. 2 is a schematic view of an enlarged cross section obtained by performing the aperture control method of the present invention.

【図3】小径粒子を埋込み固定する器具構成の一例を示
す概略図の正面図である。
FIG. 3 is a front view of a schematic diagram showing an example of an instrument configuration for embedding and fixing small-diameter particles.

【図4】小径粒子が埋込み固定された軸受面の状況を示
す模式拡大図の断面図である。
FIG. 4 is a cross-sectional view of a schematic enlarged view showing a state of a bearing surface in which small-diameter particles are embedded and fixed.

【図5】従来の炭素質多孔体を用いた静圧軸受の一例を
示す断面図である。
FIG. 5 is a cross-sectional view showing an example of a conventional hydrostatic bearing using a carbonaceous porous body.

【図6】メッキ透過率調整を施した多孔体断面の模式図
である。
FIG. 6 is a schematic diagram of a cross section of a porous body having undergone plating transmittance adjustment.

【符号の説明】[Explanation of symbols]

1 回転軸 2 炭素質多孔体 3 面板 4 径隙間 5 軸隙間 6 ケース 7 給気孔 8 給気溝 9 排気口 10 肉質部 11 空孔 12 メッキ膜 13 軸受面 14 軸受隙間 15 セラミック質部分多孔体 16 多孔体 17 軸隙間出口 18 径隙間出口 19 小径粒子 20 円輪シール 21 円筒シール 22 スラリ 23 スポイト 24 ヘラ 25 真空ポンプ 26 分離器 27 真空計 28 フィルタ 29 真空ホース REFERENCE SIGNS LIST 1 rotating shaft 2 carbonaceous porous body 3 face plate 4 diameter gap 5 shaft gap 6 case 7 air supply hole 8 air supply groove 9 exhaust port 10 fleshy portion 11 void 12 plating film 13 bearing surface 14 bearing gap 15 ceramic partial porous body 16 Porous body 17 Shaft gap outlet 18 Diameter gap outlet 19 Small diameter particles 20 Ring seal 21 Cylindrical seal 22 Slurry 23 Dropper 24 Spatula 25 Vacuum pump 26 Separator 27 Vacuum gauge 28 Filter 29 Vacuum hose

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16C 32/06 B28B 1/26 C04B 33/28 C04B 38/06 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) F16C 32/06 B28B 1/26 C04B 33/28 C04B 38/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体と固体間の隙間に流体を供給して非
接触浮上させる静圧軸受において、流体供給孔と接続さ
れ、かつ、軸受隙間の一部に開口を持つ多孔体が、緻密
セラミック内部に内包され、前記多孔体の軸受隙間の開
口部が、小径粒子をバインダで埋込み固定して形成した
多孔体内多孔質であることを特徴とするセラミック製多
孔質静圧軸受。
1. A hydrostatic bearing for supplying a fluid to a gap between solids to float in a non-contact manner, wherein a porous body connected to a fluid supply hole and having an opening in a part of the bearing gap is made of a dense ceramic. A ceramic porous hydrostatic bearing, wherein the opening is formed inside the porous body and is formed by embedding and fixing small-diameter particles with a binder.
【請求項2】 流体供給孔と接続され、かつ、軸受隙間
の一部に開口を持つ多孔体が、緻密セラミック内部に内
包されたセラミック製多孔質静圧軸受を製造する方法に
おいて、前記緻密セラミックと前記多孔体を、泥漿鋳込
み法により一体形成し、小径粒子をバインダにより、前
記多孔体の前記軸受隙間の開口部に埋込み固定すること
を特徴とするセラミック製多孔質静圧軸受の製法。
2. A method of manufacturing a ceramic porous hydrostatic bearing in which a porous body connected to a fluid supply hole and having an opening in a part of a bearing gap is included in a dense ceramic. And forming the porous body integrally by a slurry casting method, and embedding and fixing small-diameter particles into an opening of the bearing gap of the porous body with a binder.
JP11788993A 1993-04-21 1993-04-21 Porous hydrostatic bearing and its manufacturing method Expired - Lifetime JP3180992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11788993A JP3180992B2 (en) 1993-04-21 1993-04-21 Porous hydrostatic bearing and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11788993A JP3180992B2 (en) 1993-04-21 1993-04-21 Porous hydrostatic bearing and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH06307448A JPH06307448A (en) 1994-11-01
JP3180992B2 true JP3180992B2 (en) 2001-07-03

Family

ID=14722737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11788993A Expired - Lifetime JP3180992B2 (en) 1993-04-21 1993-04-21 Porous hydrostatic bearing and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3180992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102055949B1 (en) 2016-03-30 2019-12-13 가부시키가이샤 오사카 크립 pencil sharpener

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6945043B2 (en) 2000-12-13 2005-09-20 Sharp Kabushiki Kaisha Stirling engine, and stirling refrigerator
CH718301B1 (en) * 2019-12-07 2024-07-15 Akribis Systems Pte Ltd Ultra-low profile aerostatic bearing and method for its manufacture.
CN117989237B (en) * 2023-12-14 2024-10-01 中国船舶集团有限公司第七一九研究所 Heat exchange dehumidifying static pressure air bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102055949B1 (en) 2016-03-30 2019-12-13 가부시키가이샤 오사카 크립 pencil sharpener

Also Published As

Publication number Publication date
JPH06307448A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
JP3584946B2 (en) Cast sliding contact member
US8568650B2 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
US4997192A (en) Mechanical seal using pore-dispersed material, and pore-dispersed cemented carbide and method for manufacturing same
JP3180992B2 (en) Porous hydrostatic bearing and its manufacturing method
JP4718397B2 (en) Manufacturing method of vacuum suction device
US7357976B2 (en) Ceramic molded body and metal matrix composite
JP5637513B2 (en) Sliding material and mechanical seal
US5190094A (en) Heteroporous form tool for manufacturing casting moulds and process for its manufacture
JP2002147617A (en) Seal ring for mechanical seal, and mechanical seal using the same
JPH1082421A (en) Air lubricating system fluid dynamical bearing assembly
JP3417015B2 (en) Porous member and method for manufacturing the same
JPH03505908A (en) shaft bearing unit
JP2007084368A (en) Ceramic sliding member, method for manufacturing the same, mechanical seal ring member using the same, and mechanical seal ring
JP2007223890A (en) Silicon carbide sintered compact, sliding member and mechanical seal ring each using the same, and mechanical seal
JPH02256915A (en) Porous static pressure bearing and manufacture thereof
JP2007119338A (en) Ceramic member, ceramic member production method, ceramic sliding member and sliding device
JPH02256971A (en) Sliding member and manufacture thereof
JP4865146B2 (en) Silicon carbide sintered part, mechanical seal using the same, and manufacturing method thereof
JP3142892B2 (en) Manufacturing method of reaction sintered composite ceramics and manufacturing method of sliding member using it
JPH0658434A (en) Ceramic sliding member
JP2000027865A (en) Static pressure porous bearing
JP2000291656A (en) Manufacture of porous gas hydrostatic bearing
JP2000346071A (en) Porous, static pressure gas bearing
JPH09310765A (en) Sliding device made of ceramic
JPH08296580A (en) Bearing for rotary pump

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 13

EXPY Cancellation because of completion of term