JP2002147617A - Seal ring for mechanical seal, and mechanical seal using the same - Google Patents

Seal ring for mechanical seal, and mechanical seal using the same

Info

Publication number
JP2002147617A
JP2002147617A JP2000341269A JP2000341269A JP2002147617A JP 2002147617 A JP2002147617 A JP 2002147617A JP 2000341269 A JP2000341269 A JP 2000341269A JP 2000341269 A JP2000341269 A JP 2000341269A JP 2002147617 A JP2002147617 A JP 2002147617A
Authority
JP
Japan
Prior art keywords
sealing
seal
mechanical seal
sealing ring
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000341269A
Other languages
Japanese (ja)
Other versions
JP3517711B2 (en
Inventor
Hisashi Kinugasa
比佐志 衣笠
Masato Wada
正人 和田
Kiyotaka Oda
清隆 纓田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2000341269A priority Critical patent/JP3517711B2/en
Publication of JP2002147617A publication Critical patent/JP2002147617A/en
Application granted granted Critical
Publication of JP3517711B2 publication Critical patent/JP3517711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00344Materials with friction-reduced moving parts, e.g. ceramics lubricated by impregnation with carbon
    • C04B2111/00353Sliding parts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Sealing (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mechanical seal which is largely improved in lubrication performance to a mating seal ring whichever the mating seal ring is of hard material such as silicon carbide or soft material such as carbon, and which is extremely excellent in durability such as abrasion resistance and sealing performance regardless of sealing conditions. SOLUTION: One or both of the two seal rings 1 and 3 rotating to each other to slide is composed of sintered material of silicon carbide in which separate pores of an average pore diameter of 10-40 μm are uniformly disposed at porosity of 3-10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2つの密封環が相
対回転摺接するように構成されたメカニカルシール及び
これに使用する密封環に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical seal constructed so that two sealing rings come into sliding contact with each other, and a sealing ring used for the mechanical seal.

【0002】[0002]

【従来の技術】この種のメカニカルシールとして、例え
ば図1に示す如く、シールケース2に固定保持された密
封環(以下「固定環」という)1と、回転軸4に軸線方
向移動可能に且つ相対回転不能に保持された密封環(以
下「回転環」という)3と、回転軸4に固定されたスプ
リングリテーナ5と回転環3との間に介装されて回転環
3を固定環1へと押圧附勢するスプリング6とからな
り、両密封環1,3の対向端面たる密封端面1a,3a
の相対回転摺接作用により、その相対回転摺接部分の外
周側領域たる機内領域Aとその内周側領域たる機外大気
領域Bとをシールするように構成された端面接触形のも
のが周知であり、一方の密封環を熱的,化学的,機械的
特性や耐摩耗性に優れた炭化珪素等の硬質材で構成する
と共に他方の密封環を自己潤滑性を有するカーボン等の
軟質材で構成したもの(以下「硬質/軟質シール」とい
う)と、両密封環を共に硬質材で構成したもの(以下
「硬質/硬質シール」という)とに大別される。
2. Description of the Related Art As this type of mechanical seal, for example, as shown in FIG. 1, a seal ring (hereinafter referred to as "fixed ring") 1 fixed and held in a seal case 2 and a rotating shaft 4 are movable in the axial direction. The rotating ring 3 is fixed to the stationary ring 1 by being interposed between a rotating ring 3 and a sealing ring (hereinafter referred to as a “rotating ring”) 3 that is held so as not to rotate relative to the rotating ring 4. And sealing springs 6 for pressing and energizing, and sealing end faces 1a and 3a as opposing end faces of both sealing rings 1 and 3.
The end surface contact type, which is configured to seal the in-machine region A, which is the outer peripheral region of the relative rotational sliding contact portion, and the outside air region B, which is the inner peripheral region, of the relative rotational sliding contact portion is well known. One of the sealing rings is made of a hard material such as silicon carbide having excellent thermal, chemical and mechanical properties and abrasion resistance, and the other sealing ring is made of a soft material such as carbon having self-lubricating properties. It is broadly classified into a structure (hereinafter, referred to as “hard / soft seal”) and a structure in which both sealing rings are both formed of a hard material (hereinafter, referred to as “hard / hard seal”).

【0003】[0003]

【発明が解決しようとする課題】しかし、硬質/軟質シ
ールにあっては、軟質材製密封環が摩耗し易く、耐久性
に問題がある。このため、一般には、軟質材として自己
潤滑性を有するカーボンを使用して、密封環間の潤滑性
を高めて密封環の摩耗を軽減することが図られている
が、密封端面であるカーボン表面に所謂カーボンブリス
タを生じる虞れがある。一方、硬質/硬質シールにあっ
ては、固体成分を含むスラリ流体を密封する場合にも、
かかる問題を生じることがないが、密封端面間の潤滑性
に乏しいため、相対摺動する密封端面間に所謂鳴きと称
する騒音が生じたり密封端面同士の固着(焼付)現象が
生じる虞れがある。
However, in the case of a hard / soft seal, the sealing ring made of a soft material is easily worn and has a problem in durability. For this reason, in general, a carbon material having self-lubricating properties has been used as a soft material to enhance the lubricating properties between the sealing rings to reduce wear of the sealing rings. May cause so-called carbon blisters. On the other hand, in the case of a hard / hard seal, when sealing a slurry fluid containing a solid component,
Although such a problem does not occur, the lubricating property between the sealing end faces is poor, so that noise called so-called squeal may occur between the sealing end faces that slide relative to each other, or a sticking (seizure) phenomenon between the sealing end faces may occur. .

【0004】本発明は、このような点に鑑みてなされた
もので、硬質/軟質シール又は硬質/硬質シールの硬質
材製密封環として上記した問題を生じることなく好適に
使用しうるメカニカルシール用密封環を提供すると共
に、これを少なくとも一方の密封環として使用すること
によって上記した問題を生じることなく良好なシール機
能を発揮しうるメカニカルシールを提供することを目的
とするものである。
The present invention has been made in view of the above circumstances, and is intended for use in a mechanical seal which can be suitably used as a hard / soft seal or a hard material sealing ring of a hard / hard seal without causing the above-mentioned problems. It is an object of the present invention to provide a sealing ring and to provide a mechanical seal capable of exhibiting a good sealing function without causing the above-mentioned problem by using the sealing ring as at least one sealing ring.

【0005】[0005]

【課題を解決するための手段】この課題を解決した本発
明のメカニカルシール用密封環は、の構成をなすもの
であり、より好ましくはのように構成されたもので
ある。また、本発明のメカニカルシールは、硬質/硬質
シール又は硬質/軟質シールであって、相対回転摺接す
る2つの密封環の一方又は両方を、のように構成して
おくものであり、より好ましくはのように構成して
おくものである。
Means for Solving the Problems A sealing ring for a mechanical seal according to the present invention which has solved the above problems has the following configuration, and is more preferably configured as follows. In addition, the mechanical seal of the present invention is a hard / hard seal or a hard / soft seal, and one or both of two sealing rings that are in relative rotational sliding contact with each other are as follows, and more preferably. It is configured as follows.

【0006】平均気孔径10〜40μmの独立気孔が
均一に分散配置されており且つ気孔率が3〜10%とさ
れた炭化珪素焼結材で構成されていること。
[0006] Independent sintered pores having an average pore diameter of 10 to 40 µm are uniformly dispersed and are formed of a sintered silicon carbide material having a porosity of 3 to 10%.

【0007】上記の構成をなす密封環において、そ
の密封端面における単位面積(10 4μm2)当りの独立
気孔数が1個以上(通常、1〜5個)であること。
In the sealing ring having the above configuration,
Unit area (10 FourμmTwoIndependence per)
The number of pores is 1 or more (usually 1 to 5).

【0008】上記又はの構成をなす密封環が、焼
成すべき予備成形体の構成材料として炭化珪素粉末をカ
ーボン源であって硬化反応が完了しないゲル状樹脂層で
囲繞してなる球状の硬質造粒材を使用してなる炭化珪素
焼結材で構成されていること。
[0008] The sealing ring having the above structure is a spherical hard structure formed by surrounding a silicon carbide powder as a constituent material of a preform to be fired with a gel-like resin layer which is a carbon source and whose curing reaction is not completed. It must be composed of a silicon carbide sintered material using granular material.

【0009】而して、の構成をなす密封環によれば、
冒頭で述べた問題を生じることなく、相手密封環(硬質
材製密封環又は軟質材製密封環)との相対回転摺接によ
るシール機能(メカニカルシール機能)を良好に発揮さ
せることができる。すなわち、メカニカルシールを構成
する2つの密封環の対向端面たる密封端面間において
は、の構成をなす密封環の密封端面(鏡面)に存在す
る独立気孔によりシールすべき流体(シール流体)が保
持されて、独立気孔が一種のオイルポットとして機能し
(以下、かかる機能を「オイルポット機能」という)、密
封端面間にシール流体による潤滑膜が形成されて、密封
端面間の潤滑性が大幅に向上する。したがって、硬質/
軟質シールにおいては、相手密封環(軟質材製密封環)
の摩耗量が大幅に軽減され、相手密封環がカーボン製の
ものである場合にも、カーボン製密封環との相対回転摺
接による摩擦熱の発生が可及的に防止され、カーボン製
密封環の密封端面においてブリスター現象(所謂火ぶく
れ現象)が生じる虞れがない。また、硬質/硬質シール
においては、相手密封環がの構成をなすものである場
合には勿論、オイルポット機能を有しない緻密質の炭化
珪素焼結材やその他のセラミックス,超硬合金等の硬質
材で構成される場合にも、相対回転摺接作用に伴う熱発
生,鳴き,固着を可及的に抑制,防止し、固形成分を含
有するスラリ液に対しても摩耗量を軽減し、漏れのない
良好なシール機能を発揮することができる。
Thus, according to the sealing ring having the above structure,
The sealing function (mechanical sealing function) by the relative rotational sliding contact with the mating sealing ring (the sealing ring made of a hard material or the sealing ring made of a soft material) can be satisfactorily exhibited without the problems described at the beginning. That is, a fluid (seal fluid) to be sealed is held by the independent pores present on the sealed end faces (mirror surfaces) of the sealed rings having the above-mentioned configuration between the opposed sealed end faces of the two sealed rings constituting the mechanical seal. In addition, the independent pores function as a kind of oil pot (hereinafter, this function is called "oil pot function"), and a lubricating film is formed between the sealing end faces by the sealing fluid, greatly improving the lubricity between the sealing end faces. I do. Therefore, hard /
For soft seals, mating seal ring (soft material seal ring)
Wear is greatly reduced, and even when the mating seal ring is made of carbon, the generation of frictional heat due to relative rotational sliding contact with the carbon seal ring is prevented as much as possible. There is no possibility that a blister phenomenon (a so-called blister phenomenon) will occur on the sealed end face of the first embodiment. In the case of a hard / hard seal, when the mating seal ring has the configuration described above, it is needless to say that a dense silicon carbide sintered material having no oil pot function or other ceramics, cemented carbide, etc. Even when it is made of a material, it minimizes and prevents heat generation, squealing, and sticking caused by the relative rotational sliding action, reduces the amount of abrasion against slurry containing solid components, and reduces leakage. And a good sealing function without any problem can be exhibited.

【0010】の構成において、独立気孔とは、他の気
孔と連通することなく独立に存在するものをいう。密封
端面に存在する気孔がこれに隣接する他の気孔と連通す
る場合には、密封端面からの浸透漏れを生じ、シール機
能を発揮できない。
In the structure described above, the term "independent pores" means those which exist independently without communicating with other pores. If the pores present on the sealed end face communicate with other pores adjacent to the sealed end face, the leak will occur from the sealed end face and the sealing function cannot be exhibited.

【0011】また、平均気孔径は画像解析により求める
ことができ、当該メカニカルシール用密封環の密度(測
定密度)と炭化珪素の理論密度(気孔率の計算上、3.
2g/cm2とする)とから算出されたものである。す
なわち、気孔率=(1−(測定密度)/(理論密度))
×100で与えられるものである。平均気孔径が10μ
m未満である場合や気孔率が3%未満である場合には、
独立気孔による流体保持が十分に行われず、潤滑性を向
上させるに必要且つ十分なオイルポット機能が発揮され
ない。逆に、平均気孔径が40μmを超える場合や気孔
率が10%を超える場合には、密封端面の強度低下を招
くと共に、気孔のエッジ部による砥石作用により異常摩
耗を招く虞れがある。また、シール流体が固形成分を含
むスラリ液等であるときにおいては、固形成分が密封端
面の独立気孔に侵入,捕捉され易く、当該固形成分によ
り密封端面の損傷,異常摩耗を招来する虞れがある。
The average pore diameter can be determined by image analysis, and the density (measured density) of the sealing ring for the mechanical seal and the theoretical density of silicon carbide (3.
2 g / cm 2 ). That is, porosity = (1− (measured density) / (theoretical density))
X100. Average pore size is 10μ
m or a porosity of less than 3%,
The fluid holding by the independent pores is not sufficiently performed, and the necessary and sufficient oil pot function for improving the lubricity is not exhibited. Conversely, when the average pore diameter exceeds 40 μm or when the porosity exceeds 10%, the strength of the sealed end face may be reduced, and abnormal wear may be caused due to the action of the grindstone by the edge portion of the pore. Further, when the sealing fluid is a slurry liquid or the like containing a solid component, the solid component is likely to enter and be trapped in the independent pores of the sealed end face, and the solid component may cause damage to the sealed end face and abnormal wear. is there.

【0012】さらに、独立気孔の存在による密封端面の
強度低下を可及的に防止し且つオイルポット機能による
潤滑性の大幅な向上を図るためには、独立気孔の平均気
孔径及び気孔率が上記した範囲となっていることに加え
て、更に独立気孔が均一に分散配置されていることが必
要である(平均気孔径及び気孔率は必要条件ではある
が、十分条件ではない)。すなわち、独立気孔が密封端
面において均一に分散配置されていないときは、仮令、
平均気孔径及び気孔率がの範囲となっていても、密封
端面における強度にバラツキが生じて、密封端面全体と
しての強度が低下すると共に、密封端面におけるオイル
ポット機能にもバラツキが生じて、密封端面全体として
オイルポット機能による潤滑性がさほど向上しないこと
になる。
Further, in order to prevent a decrease in the strength of the sealed end face due to the presence of the independent pores as much as possible and to greatly improve the lubricity by the oil pot function, the average pore diameter and the porosity of the independent pores are set as described above. In addition to the above range, it is necessary that the independent pores are further dispersed uniformly (the average pore diameter and the porosity are necessary conditions, but not sufficient conditions). That is, when the independent pores are not uniformly distributed on the sealed end face,
Even if the average pore diameter and the porosity are in the range, the strength at the sealed end face varies, and the strength of the entire sealed end face decreases.Also, the oil pot function at the sealed end face also varies, resulting in sealing. As a whole, the lubricity by the oil pot function is not so improved as the whole end face.

【0013】而して、密封端面における独立気孔が均一
に分散配置されているかどうかは、密封端面における単
位面積(104μm2)当りの独立気孔数によって判定す
ることができる。すなわち、実験により確認したところ
によれば、密封端面を縦100μm×横100μmの単
位面積領域に区画した場合において、全ての単位面積領
域において独立気孔が1個以上(1〜5個)存在してい
るときは、独立気孔の存在による密封端面の強度低下を
招くことなくオイルポット機能による潤滑性が大幅に向
上したが、独立気孔が全く存在しない単位面積領域が1
つ以上あるときは、平均気孔径及び気孔率がの範囲と
なっていても、密封端面全体としての強度又はオイルポ
ット機能による潤滑性が低下することが判明した。した
がって、本発明において、にいう「独立気孔が均一に
分散配置されている」とは、具体的には、にいうよう
に「密封端面における単位面積(104μm2)当りの独
立気孔数が1個以上である」ことを意味する。
Whether the independent pores on the sealed end face are uniformly dispersed can be determined by the number of independent pores per unit area (10 4 μm 2 ) on the sealed end face. That is, according to the results of experiments, when the sealed end face is divided into unit area regions each having a length of 100 μm and a width of 100 μm, one or more independent pores (1 to 5) exist in all the unit area regions. In this case, the lubricity by the oil pot function was greatly improved without causing a decrease in the strength of the sealed end face due to the presence of the independent pores, but the unit area region where no independent pores existed was 1 area.
When the average pore diameter and the porosity are in the ranges of more than two, it was found that the strength of the entire sealed end face or the lubricity due to the oil pot function was reduced. Therefore, in the present invention, the phrase "independent pores are uniformly dispersed and arranged" in the present invention specifically means that the number of independent pores per unit area (10 4 μm 2 ) in the sealed end face is as described in the above. At least one ".

【0014】また、本発明のメカニカルシール用密封環
ないしその構成材たる炭化珪素焼結材は、形態上の
ような構成をなすものであるが、材料上においては、
のような構成をなすものである。のような材料構成を
なすものとしておくことによって、又はのような気
孔形態を得ることができ且つメカニカルシール用密封環
として使用しうるに十分な強度を得ることができるので
ある。
The sealing ring for a mechanical seal of the present invention or the sintered silicon carbide material as a constituent material thereof has a configuration as described above.
The configuration is as follows. By using the material configuration as described above, it is possible to obtain a pore form as described above or to obtain sufficient strength to be used as a sealing ring for a mechanical seal.

【0015】炭化珪素焼結材は、一般に、炭化珪素粉末
に焼結助剤(ホウ素,アルミニウム,これらの化合物)
及びカーボン源(カーボン粉,樹脂)等を添加した原料
からなる造粒材を加圧成形(予備成形),焼成(焼結)
することによって得られるが、気孔を有する炭化珪素焼
結材は、一般に、通常の炭化珪素焼結材(緻密質焼結
材)を製造する場合に比して加圧成形,焼成時における
加圧力(焼結圧力)を相当以上に小さくして、焼結粒子
間に気孔が形成されるようにするか、原料に焼失(熱分
解,ガス化)しうる空隙形成用樹脂材(例えば、ポリス
チレンビーズ等のポリマービーズ)を添加して、その焼
失により生じた空隙を気孔となすことによって得ること
が可能である。しかし、前者のように焼結圧力を減少さ
せる場合には、焼結粒子間の結合力が弱く、メカニカル
シール用密封環として使用しうるに十分な強度を確保で
きない。さらに、焼結粒子間の結合状態にバラツキが生
じて、気孔同士が連通し易く、独立気孔を得ることが困
難である。また、後者のように原料に空隙形成用樹脂材
を添加する場合には、当該樹脂材の焼失に伴う大量のガ
ス発生により焼結材内部に亀裂を生じたり、当該樹脂材
の偏析等により気孔径にバラツキが生じ易い。さらに、
気孔が均一に分散せず、焼結材強度も低下する虞れがあ
る。したがって、何れの場合にも、多孔質の炭化珪素焼
結材を得ることは可能であるが、の構成をなし且つ
メカニカルシール用密封環として使用しうるに十分な強
度を有する多孔質焼結材を得ることは困難である。
The silicon carbide sintered material is generally prepared by adding a sintering aid (boron, aluminum, or a compound thereof) to silicon carbide powder.
Molding (preliminary molding) and baking (sintering) of a granulated material consisting of raw materials to which carbon and carbon sources (carbon powder, resin) are added
In general, a sintered silicon carbide material having pores is formed by a pressing force at the time of pressure molding and firing as compared with a case of producing a normal silicon carbide sintered material (a dense sintered material). (Sintering pressure) is considerably reduced so that pores are formed between the sintered particles, or a resin material for forming voids (for example, polystyrene beads) that can be burned out (pyrolysis, gasification) in the raw material Polymer beads), and the pores formed by the burning are converted into pores. However, when the sintering pressure is reduced as in the former case, the bonding force between the sintered particles is weak, and it is not possible to secure sufficient strength to be able to be used as a sealing ring for a mechanical seal. Further, the bonding state between the sintered particles varies, so that the pores are easily communicated with each other, and it is difficult to obtain independent pores. In addition, when the resin material for forming voids is added to the raw material as in the latter case, a large amount of gas is generated due to the burning out of the resin material, thereby causing cracks in the sintered material, or gas due to segregation of the resin material. The hole diameter tends to vary. further,
The pores are not uniformly dispersed, and the strength of the sintered material may be reduced. Therefore, in any case, it is possible to obtain a porous sintered silicon carbide material, but the porous sintered material having the structure described above and having sufficient strength to be used as a sealing ring for a mechanical seal. It is difficult to get.

【0016】しかし、のように、焼成すべき予備成形
体の構成材料として、炭化珪素粉末をカーボン源であっ
て硬化反応が完了しないゲル状樹脂層で囲繞してなる球
状の硬質造粒材を使用すれば、加圧成形,焼成工程を、
緻密質の炭化珪素焼結材を製造する場合と同等の条件
(成形圧力,焼成温度)で行うことにより、十分な強度
を有するの炭化珪素焼結材を得ることができる。な
お、硬質造粒材に、焼成時に完全に消失する上記空隙形
成用樹脂材又はこれに類するものは含まれない。
However, as a constituent material of the preformed body to be fired, a spherical hard granulated material in which silicon carbide powder is a carbon source and is surrounded by a gel resin layer whose curing reaction is not completed, as described above. If used, press forming and firing processes
By performing it under the same conditions (forming pressure and firing temperature) as when manufacturing a dense silicon carbide sintered material, a silicon carbide sintered material having sufficient strength can be obtained. The hard granulating material does not include the resin material for void formation or the like which disappears completely during firing.

【0017】すなわち、ゲル状樹脂層で被覆された硬質
造粒材は、一般に使用される造粒材に比して硬質である
ため、緻密質の炭化珪素焼結材を製造する場合と同等の
成形圧力(例えば100MPa)で加圧成形した場合、
その成形体(予備成形体)にあっては、硬質造粒材が一
般的な造粒材と異なって殆ど圧潰されず、球状の硬質造
粒材同士が点接触状態又はこれに近い状態で接着し、硬
質造粒材の周囲には隣接する硬質造粒材と接着する部分
で区画された複数の空隙が生じる。これらの空隙は、大
きさが均一であり、硬質造粒材間に均一に分散して存在
することになる。したがって、予備成形体を焼成した場
合、各空隙が焼結材における独立気孔となり、これらの
独立気孔は大きさにバラツキがなく均一に分散配置され
ることになる。また、ゲル状樹脂層は硬質のものではあ
るが、硬化反応が完了しないものであるから、予備成形
体における硬質造粒材相互の接着性は損なわれず、また
硬質造粒材同士は上記した如く点接触状態又はこれに近
い状態で接着されていて、接着面積が小さいことから、
その接着個所に作用する成形圧力は極めて高くなる。し
たがって、予備成形体における硬質造粒材同士の接着力
が高くなり、これを焼成して得られる炭化珪素焼結材に
おける炭化珪素粒子の結合力が高く、その強度は緻密質
の炭化珪素焼結材と同等若しくはこれに近いものとな
る。また、上記した如く予備成形体における硬質造粒材
同士の接着面積が小さいことから、緻密質の炭化珪素焼
結材を製造する場合よりも低い成形圧力(例えば50M
Pa)で予備成形する場合にも、当該接着部に作用する
圧力は大きくなるため、焼結粒子の結合力を十分に確保
できて、焼結材が強度不足となることもない。また、ゲ
ル状樹脂層は、炭化珪素粉末を均一厚さで囲繞するもの
であるから、カーボン源としてカーボン粉末等を使用し
た場合と異なって、炭化珪素粒子の周囲にカーボンが均
一に分散配置された状態で焼成が行われることになる。
したがって、炭化珪素粒子表面におけるカーボンによる
酸素除去作用が良好に行われ、良質の炭化珪素焼結材を
得ることができる。なお、予備成形体の成形は冷間で行
われ、予備成形体の焼成は、不活性なガス雰囲気におい
て加圧することなく行われる。
That is, the hard granulated material covered with the gel-like resin layer is harder than the generally used granulated material, so that the hard granulated material is the same as that for producing a dense silicon carbide sintered material. When molding under pressure at molding pressure (for example, 100 MPa),
In the formed body (preformed body), the hard granulated material is hardly crushed unlike the general granulated material, and the spherical hard granulated materials are bonded in a point contact state or in a state close to this point. However, a plurality of voids are formed around the hard granulated material by a portion bonded to the adjacent hard granulated material. These voids are uniform in size and are uniformly dispersed among the hard granulated materials. Therefore, when the preform is fired, each void becomes independent pores in the sintered material, and these independent pores are uniformly dispersed without variation in size. Further, although the gel-like resin layer is a hard material, since the curing reaction is not completed, the adhesiveness between the hard granulated materials in the preform is not impaired, and the hard granulated materials are as described above. Since they are bonded in a point contact state or a state close to this, and the bonding area is small,
The molding pressure acting on the bond is very high. Therefore, the adhesive force between the hard granulated materials in the preformed body is increased, and the bonding force of the silicon carbide particles in the silicon carbide sintered material obtained by firing this is high, and the strength is high. It is equivalent to or close to the material. Further, since the bonding area between the hard granulated materials in the preformed body is small as described above, the forming pressure (for example, 50M) is lower than that in the case of producing a dense silicon carbide sintered material.
Also in the case of preforming in Pa), since the pressure acting on the bonding portion becomes large, the bonding force of the sintered particles can be sufficiently ensured, and the strength of the sintered material does not become insufficient. In addition, since the gel-like resin layer surrounds the silicon carbide powder with a uniform thickness, unlike the case where carbon powder or the like is used as a carbon source, carbon is uniformly dispersed around silicon carbide particles. The sintering is performed in the state where the sintering is performed.
Therefore, the oxygen removing effect of carbon on the surface of the silicon carbide particles is favorably performed, and a high-quality sintered silicon carbide material can be obtained. The preform is formed in a cold state, and the preform is fired in an inert gas atmosphere without pressure.

【0018】ところで、カーボン源として使用する樹脂
としては、一般に、フェノール樹脂等の熱硬化性樹脂が
使用される。そして、熱硬化性樹脂を使用する場合、炭
化珪素粉末と焼結助剤と溶剤によりゾル化させた熱硬化
性樹脂とからなる混合液を造粒し、その造粒材を適当温
度で熱処理して或る程度硬化させることにより、つまり
熱硬化性樹脂の架橋反応(縮合反応)を或る程度進行さ
せることにより、架橋反応が完了しないゲル状樹脂層で
被覆された硬質造粒材を得る。このような熱硬化性樹脂
をゲル化させるための熱処理は、樹脂の架橋反応が或る
程度以上進行し且つ架橋反応が完了しないような温度,
時間で行われる。例えば、フェノール樹脂の場合、約1
00℃で架橋反応(縮合反応)が開始され、150℃を
超えると架橋反応が完了して完全に硬化することから、
ゲル状樹脂層を形成するための熱処理温度は100℃〜
150℃としておく。なお、カーボン源としては、造粒
後のゲル化処理により、フェノール樹脂等の熱硬化性樹
脂と同等の硬度が得られるもの(完全に硬化されるもの
を除く)である限り、熱可塑性樹脂を使用することも可
能である。
As a resin used as a carbon source, a thermosetting resin such as a phenol resin is generally used. When a thermosetting resin is used, a mixture of a silicon carbide powder, a sintering aid, and a thermosetting resin solified with a solvent is granulated, and the granulated material is heat-treated at an appropriate temperature. By hardening to a certain extent, that is, by allowing the crosslinking reaction (condensation reaction) of the thermosetting resin to proceed to a certain extent, a hard granulated material covered with a gel-like resin layer in which the crosslinking reaction is not completed is obtained. The heat treatment for gelling the thermosetting resin is performed at a temperature at which the crosslinking reaction of the resin proceeds to a certain extent or more and the crosslinking reaction is not completed.
Done in time. For example, in the case of a phenol resin, about 1
A crosslinking reaction (condensation reaction) is started at 00 ° C., and when the temperature exceeds 150 ° C., the crosslinking reaction is completed and completely cured.
The heat treatment temperature for forming the gel resin layer is 100 ° C.
Keep at 150 ° C. In addition, as long as the carbon source can obtain the same hardness as a thermosetting resin such as a phenolic resin by gelation after granulation (except for those that are completely cured), a thermoplastic resin is used. It is also possible to use.

【0019】[0019]

【実施例】(実施例1) 実施例1として、図1に示す
構成のメカニカルシール(以下「当該メカニカルシー
ル」という)の回転環3として使用しうる密封環A1を
製作すると共に、当該メカニカルシールであって、回転
環3として密封環A1を使用し且つ固定環1としてカー
ボン製密封環を使用したメカニカルシールM1を組み立
てた。
(Example 1) As Example 1, a sealing ring A1 which can be used as a rotating ring 3 of a mechanical seal having the structure shown in FIG. 1 (hereinafter referred to as "the mechanical seal") is manufactured, and the mechanical seal is manufactured. Then, a mechanical seal M1 using a sealing ring A1 as the rotating ring 3 and a carbon sealing ring as the stationary ring 1 was assembled.

【0020】密封環A1は、次のような混合工程,造粒
工程,造粒硬化工程,予備成形工程,焼成工程,仕上げ
工程により得られたものである。
The sealing ring A1 is obtained by the following mixing step, granulation step, granulation hardening step, preforming step, firing step, and finishing step.

【0021】混合工程: 平均粒子径0.7μmのα−
SiC粉末100gに、焼結助剤としてのB4C粉末
0.5g及びカーボン源としてのフェノール樹脂(レゾ
ール型)4gを添加し、さらに成形助剤としてPEG6
000(ポリエチレングリコール6000番(数値は平
均分子量を表す)29g及びステアリン酸1gを添加し
て、これらを溶剤であるメタノールと共にボールミルで
24時間混合した。
Mixing step: α- having an average particle diameter of 0.7 μm
To 100 g of SiC powder, 0.5 g of B4C powder as a sintering aid and 4 g of a phenol resin (resole type) as a carbon source were added, and PEG6 was further added as a forming aid.
000 (29 g of polyethylene glycol # 6000 (the numerical value represents the average molecular weight)) and 1 g of stearic acid were added and mixed with methanol as a solvent in a ball mill for 24 hours.

【0022】造粒工程: 混合工程で得られた混合液
(流動性懸濁液)を、スプレー・ドライヤーにより60
〜80℃で噴霧乾燥することによって造粒し、径30〜
100μmの球形状の造粒材を得た。この造粒材は、S
iC粉末を均一厚さのフェノール樹脂層で被覆してなる
球形顆粒である。
Granulation step: The mixed liquid (fluid suspension) obtained in the mixing step is spray-dried for 60 minutes.
Granulated by spray drying at ~ 80 ° C, diameter 30 ~
A 100 μm spherical granulated material was obtained. This granulated material is S
It is a spherical granule obtained by coating iC powder with a phenol resin layer having a uniform thickness.

【0023】造粒硬化工程: 造粒工程で得られた造粒
材を110℃,2時間の条件で加熱処理(ゲル化処理)
して、架橋反応が完了しない範囲でフェノール樹脂層を
硬化させ、SiC粉末を均一厚さのゲル状樹脂層(フェ
ノール樹脂)で被覆した球状の硬質造粒材を得た。
Granulation hardening step: Heat treatment (gelation treatment) of the granulated material obtained in the granulation step at 110 ° C. for 2 hours.
Then, the phenol resin layer was cured to the extent that the crosslinking reaction was not completed, and a spherical hard granulated material in which SiC powder was covered with a gel resin layer (phenol resin) having a uniform thickness was obtained.

【0024】予備成形工程: 造粒硬化工程で得られた
硬質造粒材を、所定の金型に充填した上、冷間プレス成
形して、回転環3に対応する環状形態をなす予備成形体
を得た。成形圧力は50MPaとした。
Preforming step: The hard granulated material obtained in the granulating and hardening step is filled in a predetermined mold, and then cold pressed to form a preformed body having an annular shape corresponding to the rotating ring 3. I got The molding pressure was 50 MPa.

【0025】焼成工程: 予備成形工程で得られた予備
成形体を、加圧することなく、2150℃のアルゴン雰
囲気中で焼成して、多孔質の炭化珪素焼結体を得た。
Firing Step: The preformed body obtained in the preforming step was fired in an argon atmosphere at 2150 ° C. without applying pressure to obtain a porous silicon carbide sintered body.

【0026】仕上げ工程: 焼成工程で得られた炭化珪
素焼結体の一端面をRa=0.05の鏡面に表面研磨
(ラップ)する等により、密封環A1を得た。この密封
環A1の鏡面部分は、これを回転環3として使用した場
合における密封端面3aとして機能するものである。な
お、密封環A1は、後述する実施例4で使用するもの
(2個)を含めて、3個製作した。
Finishing Step: One end face of the silicon carbide sintered body obtained in the firing step is polished (wrapped) to a mirror surface with Ra = 0.05 to obtain a sealing ring A1. The mirror part of the sealing ring A1 functions as a sealing end face 3a when the sealing ring A1 is used as the rotating ring 3. In addition, three sealing rings A1 were manufactured including those used in Example 4 described later (two).

【0027】かくして得られた密封環A1の密度,平均
気孔径,気孔率,単位面積当りの独立気孔数は、表1に
示す通りであった。密度は水置換法により計測し、炭化
珪素の理論密度を3.2g/cm3として気孔率を計算
した。すなわち、気孔率=(1−(摺動材の測定密度)
/(理論密度))×100=(1−(2.95/3.
2))×100=7.8(%)である。平均気孔径は画
像解析により求めたものであり、40μmであった。ま
た、単位面積(104μm2)当りの独立気孔数は、鏡面
部分(密封端面)を縦100μm×横100μmの単位
面積領域に区画して、各単位面積領域に存在する独立気
孔の個数を確認することにより得たものであり、各単位
面積領域には各々1〜5個の独立気孔が存在した。図2
は密封環A1の鏡面(密封端面)を100倍に拡大した
ものであるが、この図2からも理解されるように、密封
端面においては独立気孔(図2において黒色表示された
部分)が均一に分散配置されている。
The density, average pore diameter, porosity, and number of independent pores per unit area of the sealing ring A1 thus obtained were as shown in Table 1. The density was measured by a water displacement method, and the porosity was calculated with the theoretical density of silicon carbide being 3.2 g / cm 3 . That is, porosity = (1− (measured density of sliding material)
/ (Theoretical density)) × 100 = (1- (2.95 / 3.
2)) × 100 = 7.8 (%). The average pore diameter was determined by image analysis and was 40 μm. Further, the number of independent pores per unit area (10 4 μm 2 ) is obtained by dividing a mirror surface portion (sealed end face) into a unit area area of 100 μm × 100 μm and dividing the number of independent pores present in each unit area area. This was obtained by confirming that each unit area region had 1 to 5 independent pores. FIG.
Is an enlarged view of the mirror surface (sealed end face) of the sealing ring A1 by a factor of 100. As can be understood from FIG. 2, independent pores (portions shown in black in FIG. 2) are uniform on the sealed end face. Are distributed.

【0028】そして、この回転環A1及びカーボン製固
定環1を組み込んだメカニカルシールM1を使用して工
業用水によるシール試験を行い、密封環の性能及びシー
ル性能を確認した。なお、固定環1は、密封環の構成材
として一般に使用される焼結カーボン(密度:1.8g
/cm3)で構成された周知のカーボン製密封環であ
る。
Using the mechanical seal M1 incorporating the rotating ring A1 and the carbon fixed ring 1, a sealing test using industrial water was performed to confirm the performance and sealing performance of the sealing ring. The stationary ring 1 is made of sintered carbon (density: 1.8 g) generally used as a constituent material of a sealing ring.
/ Cm 3 ).

【0029】すなわち、このシール試験は、メカニカル
シールM1を、シール流体(機内領域Aの流体):工業
用水,シール圧力:2.04MPa,軸回転数:360
0rpm,PV値:13.08MPa・m/sの条件で
100時間継続運転し、運転中において密封端面1a,
3a間から機外大気領域Bへの漏れ量、つまり100時
間当りの漏れ量(cc/100hr)を測定した。さら
に、運転終了後、カーボン製固定環1における密封端面
1aの摩耗量、つまり100時間当りの摩耗量(μm/
100hr)を測定した。摩耗量は、固定環1の背面か
ら前面(密封端面1a)までの軸線方向長さの減少量を
測定することにより得たものである。その結果は、表2
に示す通りであった。すなわち、漏れ量は、蒸気漏れを
含めて、僅か0.4ccであり、摩耗量は0.01μm
であった。
That is, in this seal test, the mechanical seal M1 was sealed with a seal fluid (fluid in the in-machine area A): industrial water, seal pressure: 2.04 MPa, and shaft rotation speed: 360.
0 rpm, PV value: continuously operated under the conditions of 13.08 MPa · m / s for 100 hours.
The leakage amount from outside 3a to the outside atmosphere region B, that is, the leakage amount per 100 hours (cc / 100 hr) was measured. Further, after the operation is completed, the wear amount of the sealing end face 1a in the carbon fixed ring 1, that is, the wear amount per 100 hours (μm /
100 hr). The amount of wear was obtained by measuring the amount of decrease in the length in the axial direction from the back surface of the stationary ring 1 to the front surface (sealed end surface 1a). Table 2 shows the results.
As shown in FIG. That is, the leak amount is only 0.4 cc including the steam leak, and the wear amount is 0.01 μm.
Met.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】(実施例2) 実施例2として、当該メカ
ニカルシールの回転環3として使用しうる密封環A2を
得ると共に、回転環3として密封環A2を使用した点を
除いて、メカニカルシールM1と同一構成をなすメカニ
カルシールM2を組み立てた。
(Example 2) As Example 2, a sealing ring A2 which can be used as the rotating ring 3 of the mechanical seal was obtained, and the mechanical seal M1 was used except that the sealing ring A2 was used as the rotating ring 3. A mechanical seal M2 having the same configuration was assembled.

【0033】密封環A2は、造粒硬化工程における造粒
材の熱処理温度を110℃とした点を除いて、実施例1
と同一工程(混合工程,造粒工程,造粒硬化工程,予備
成形工程,焼成工程,仕上げ工程)を経て得られたもの
である。なお、密封環A2は、後述する実施例5,7で
使用するもの(2個)を含めて3個製作した。
The sealing ring A2 was manufactured in the same manner as in Example 1 except that the heat treatment temperature of the granulated material in the granulation hardening process was set to 110 ° C.
This is obtained through the same steps as those described above (mixing step, granulation step, granulation hardening step, preforming step, firing step, finishing step). In addition, three sealing rings A2 were manufactured including those (two) used in Examples 5 and 7 described later.

【0034】密封環A2の密度,平均気孔径,気孔率,
単位面積当りの独立気孔数は、実施例1と同様にして求
めたものであり、表1に示す通りであった。また、図3
は密封環A2の密封端面を100倍に拡大したもの(黒
色表示された部分が気孔である)であるが、密封環A1
と比較して、その気孔率(5.0%)及び平均気孔径
(30μm)が小さくなっている。これは、造粒材の熱
処理温度が実施例1の場合より低く、硬質造粒材の硬度
がやや低くなっているために、成形圧力が実施例1と同
一(50MPa)であるにも拘らず、予備成形体におけ
る硬質造粒材の圧潰度が高くなり、つまり硬質造粒材相
互間の空隙が小さくなり、その結果、独立気孔が小さく
なるからである。
The density of the sealing ring A2, the average pore diameter, the porosity,
The number of independent pores per unit area was determined in the same manner as in Example 1, and was as shown in Table 1. FIG.
Is an enlarged view of the sealing end face of the sealing ring A2 by 100 times (the portions indicated in black are pores).
The porosity (5.0%) and the average pore diameter (30 μm) are smaller than those of the above. This is because although the heat treatment temperature of the granulated material was lower than that of Example 1, and the hardness of the hard granulated material was slightly lower, the molding pressure was the same as that of Example 1 (50 MPa). This is because the crushing degree of the hard granulated material in the preformed body is increased, that is, the gap between the hard granulated materials is reduced, and as a result, the closed pores are reduced.

【0035】実施例1と同一のシール条件において、メ
カニカルシールM2を100時間運転して、漏れ量(c
c/100hr)及び摩耗量(μm/100hr)を測
定した。その結果は、表2に示す通りであった。平均気
孔径がオイルポット機能を発揮するに十分な大きさであ
り、独立気孔が均一に分散している(単位面積当りの独
立気孔数は、A1と同様に1〜5個である)ことから、
カーボン製固定環1の摩耗量も少なく、メカニカルシー
ルM1と同様(0.01μm)であった。また、メカニ
カルシールM1では0.4ccの漏れが生じたが、メカ
ニカルシールM2では漏れは認められなかった。
Under the same sealing conditions as in Example 1, the mechanical seal M2 was operated for 100 hours, and the amount of leakage (c
c / 100 hr) and the amount of wear (μm / 100 hr). The results were as shown in Table 2. Since the average pore diameter is large enough to exhibit the oil pot function, and the independent pores are uniformly dispersed (the number of independent pores per unit area is 1 to 5 as in A1) ,
The wear amount of the carbon fixed ring 1 was small, and was the same as that of the mechanical seal M1 (0.01 μm). Further, the mechanical seal M1 leaked 0.4 cc, but the mechanical seal M2 did not leak.

【0036】(実施例3) 実施例3として、当該メカ
ニカルシールの回転環3として使用しうる密封環A3を
得ると共に、回転環3として密封環A3を使用した点を
除いて、メカニカルシールM1と同一構成をなすメカニ
カルシールM3を組み立てた。
(Example 3) As Example 3, a sealing ring A3 usable as the rotating ring 3 of the mechanical seal was obtained, and the mechanical seal M1 was used except that the sealing ring A3 was used as the rotating ring 3. A mechanical seal M3 having the same configuration was assembled.

【0037】密封環A3は、予備成形工程における予備
成形体の成形圧力を100MPaとした点を除いて、実
施例1と同一の工程(混合工程,造粒工程,造粒硬化工
程,予備成形工程,焼成工程,仕上げ工程)を経て得ら
れたものである。なお、密封環A3は、後述する実施例
6で使用するもの(1個)を含めて2個製作した。
The sealing ring A3 is the same as the embodiment 1 (mixing step, granulating step, granulating hardening step, preforming step) except that the forming pressure of the preformed body in the preforming step is set to 100 MPa. , Firing step, finishing step). In addition, two sealing rings A3 were manufactured including the one (one) used in Example 6 described later.

【0038】密封環A3の密度,平均気孔径,気孔率,
単位面積当りの独立気孔数は、実施例1と同様にして求
めたものであり、表1に示す通りであった。造粒材の熱
処理温度が同一である密封環A2と比較して、気孔率
(3.4%)及び平均気孔径(20μm)が小さくなっ
ているのは、予備成形体の成形圧力を実施例2の場合よ
り高くしたため、硬質造粒材の硬度(フェノール樹脂層
の硬度)が同じであるにも拘らず、予備成形体における
硬質造粒材の圧潰度が高くなり、つまり硬質造粒材相互
間の空隙が小さくなり、その結果、独立気孔が小さくな
るためである。また、単位面積当りの独立気孔数は1〜
4個であり、密封環A3の密封端面を100倍に拡大し
て示す図4(黒色表示された部分が気孔である)からも
明らかなように、密封端面においては独立気孔が均一に
分散配置されている。
The density of the sealing ring A3, the average pore diameter, the porosity,
The number of independent pores per unit area was determined in the same manner as in Example 1, and was as shown in Table 1. The porosity (3.4%) and the average pore diameter (20 μm) are smaller than those of the sealing ring A2 in which the heat treatment temperature of the granulated material is the same. 2, the hardness of the hard granulated material (the hardness of the phenolic resin layer) is the same, but the crushing degree of the hard granulated material in the preformed body is high, that is, the hard granulated material This is because the gap between them becomes smaller, and as a result, the closed pores become smaller. In addition, the number of independent pores per unit area is 1 to
As is clear from FIG. 4 (porous portions are black portions) in which the sealing end face of the sealing ring A3 is enlarged 100 times, independent pores are uniformly distributed on the sealing end face. Have been.

【0039】実施例1,2と同一のシール条件におい
て、メカニカルシールM3を100時間運転して、漏れ
量(cc/100hr)及び摩耗量(μm/100h
r)を測定した。その結果は、表2に示す通りであり、
漏れ及びカーボン製固定環1の摩耗は、認められなかっ
た。
Under the same sealing conditions as in Examples 1 and 2, the mechanical seal M3 was operated for 100 hours, and the amount of leakage (cc / 100 hr) and the amount of wear (μm / 100 h) were measured.
r) was measured. The results are as shown in Table 2,
Leakage and wear of the carbon fixed ring 1 were not observed.

【0040】(実施例4) 実施例4として、固定環1
として一般的な緻密質の炭化珪素焼結材で構成したもの
を使用した点を除いて、メカニカルシールM1と同一構
成のメカニカルシールM4(回転環3としては実施例1
で得た密封環A1を使用)を組み立てた。なお、固定環
1を構成する緻密質の炭化珪素焼結材は、密度3.14
g/cm3のものであり、実質的に、後述する比較例2
で得た密封環B2と同質のものである。
Example 4 As Example 4, the stationary ring 1
A mechanical seal M4 having the same configuration as that of the mechanical seal M1 (except for the rotating ring 3 of the first embodiment) except that a general dense silicon carbide sintered material was used.
(Using the sealing ring A1 obtained in the above). The dense sintered silicon carbide material constituting stationary ring 1 has a density of 3.14.
g / cm 3 , substantially as described in Comparative Example 2 below.
Of the same quality as the sealing ring B2 obtained in the above.

【0041】そして、このメカニカルシールM4を使用
して工業用水によるシール試験及びスラリー液によるシ
ール試験を行った。工業用水によるシール試験は、実施
例1と同一条件で100時間運転して、100時間経過
後の漏れ(cc/100hr),回転環A1の摩耗量
(μm/100hr)を測定したものである。また、ス
ラリー液によるシール試験は、シール流体(機内領域A
の流体):川砂4%を含有する水スラリー,シール圧
力:1.47MPa,軸回転数:3600rpm,PV
値:13.08MPa・m/sの条件で100時間継続
運転し、運転中において密封端面1a,3a間から機外
大気領域Bへの漏れ量、つまり100時間当りの漏れ量
(cc/100hr)を測定した。さらに、運転終了
後、回転環A1における密封端面3aの摩耗量、つまり
100時間当りの摩耗量(μm/100hr)を測定し
た。これらのシール試験の結果は、表2に示す通りであ
った。すなわち、工業用水によるシール試験において
は、漏れ及び摩耗は生じず、良好なシール機能が発揮さ
れることが確認された。また、スラリー液によるシール
試験においては、シール条件が苛酷であるにも拘わら
ず、漏れ量は、蒸気漏れを含めて、僅か0.3ccであ
り、摩耗量は0.01μmであった。
Using this mechanical seal M4, a seal test using industrial water and a seal test using a slurry liquid were performed. In the seal test using industrial water, the operation was performed for 100 hours under the same conditions as in Example 1, and the leakage (cc / 100 hr) after 100 hours had elapsed and the abrasion loss (μm / 100 hr) of the rotating ring A1 were measured. In addition, a seal test using a slurry liquid is performed using a seal fluid (in-machine area A).
Fluid): water slurry containing 4% river sand, sealing pressure: 1.47 MPa, shaft rotation speed: 3600 rpm, PV
Value: Operating continuously for 100 hours under the condition of 13.08 MPa · m / s. During operation, the amount of leakage from between the sealed end faces 1a and 3a to the outside air area B, that is, the amount of leakage per 100 hours (cc / 100hr) Was measured. Further, after the operation was completed, the wear amount of the sealed end face 3a in the rotating ring A1, that is, the wear amount per 100 hours (μm / 100 hr) was measured. The results of these seal tests were as shown in Table 2. That is, in the seal test using industrial water, it was confirmed that no leakage and abrasion occurred and a good sealing function was exhibited. Further, in the sealing test using the slurry liquid, the leakage amount was only 0.3 cc, including the vapor leakage, and the wear amount was 0.01 μm, despite the severe sealing conditions.

【0042】(実施例5) 実施例5として、回転環3
として実施例2で得た密封環A2を使用した点を除い
て、メカニカルシールM4と同一構成のメカニカルシー
ルM5を組み立てた。そして、実施例4と同一条件で工
業用水によるシール試験及びスラリー液によるシール試
験を行い、漏れ量(cc/100hr)及び回転環A2
の摩耗量(μm/100hr)を測定した。その結果
は、表2に示す通りであり、シール流体に拘わらず、良
好なシール機能が発揮されることが確認された。
Fifth Embodiment As a fifth embodiment, the rotating ring 3
Then, a mechanical seal M5 having the same configuration as the mechanical seal M4 was assembled except that the sealing ring A2 obtained in Example 2 was used. Then, a seal test using industrial water and a seal test using a slurry liquid were performed under the same conditions as in Example 4, and the leakage amount (cc / 100 hr) and the rotation ring A2
Was measured for the amount of wear (μm / 100 hr). The results are as shown in Table 2, and it was confirmed that a good sealing function was exhibited regardless of the sealing fluid.

【0043】(実施例6) 実施例6として、回転環3
として実施例3で得た密封環A3を使用した点を除い
て、メカニカルシールM4と同一構成のメカニカルシー
ルM6を組み立てた。そして、実施例4と同一条件で工
業用水によるシール試験及びスラリー液によるシール試
験を行い、漏れ量(cc/100hr)及び回転環A3
の摩耗量(μm/100hr)を測定した。その結果
は、表2に示す通りであり、シール流体に拘わらず、良
好なシール機能が発揮されることが確認された。
(Embodiment 6) As Embodiment 6, the rotating ring 3
A mechanical seal M6 having the same configuration as that of the mechanical seal M4 was used except that the sealing ring A3 obtained in Example 3 was used. Then, a seal test using industrial water and a seal test using a slurry liquid were performed under the same conditions as in Example 4, and the leakage amount (cc / 100 hr) and the rotating ring A3
Was measured for the amount of wear (μm / 100 hr). The results are as shown in Table 2, and it was confirmed that a good sealing function was exhibited regardless of the sealing fluid.

【0044】(実施例7) 実施例7として、当該メカ
ニカルシールの固定環1として使用しうる密封環A4を
得ると共に、固定環1として密封環A4を使用し且つ回
転環3として実施例2で得た密封環A2を使用した点を
除いて、メカニカルシールM4と同一構成をなすメカニ
カルシールM7を組み立てた。
(Example 7) In Example 7, a sealing ring A4 usable as the stationary ring 1 of the mechanical seal was obtained, and the sealing ring A4 was used as the stationary ring 1 and the rotating ring 3 was used in Example 2. A mechanical seal M7 having the same configuration as that of the mechanical seal M4 was assembled except that the obtained sealing ring A2 was used.

【0045】密封環A4は、予備成形工程における成形
型を当該メカニカルシールに使用しうる固定環1に対応
する形状の予備成形体を得ることができる成形型を使用
した点を除いて、実施例2と同一の工程(混合工程,造
粒工程,造粒硬化工程,予備成形工程,焼成工程,仕上
げ工程)により得たものであり、表1に示す如く、密封
環A2と同質の炭化珪素焼結材で構成されたものであ
る。
The sealing ring A4 is the same as that of the embodiment described above except that a molding die in the preforming step can be used to obtain a preformed body having a shape corresponding to the stationary ring 1 which can be used for the mechanical seal. 2 obtained by the same process (mixing process, granulation process, granulation hardening process, preforming process, firing process, and finishing process) as shown in Table 1. It is made of binder.

【0046】そして、メカニカルシールM7を使用し
て、実施例4と同一条件で工業用水によるシール試験及
びスラリー液によるシール試験を行い、漏れ量(cc/
100hr)及び摩耗量(μm/100hr)を測定し
た。その結果は、表2に示す通りであり、シール流体に
拘わらず、漏れ及び密封環A2,A4の摩耗は認められ
なかった。このことから、固定環1及び回転環3に本発
明の密封環を使用することにより、実施例1〜6のよう
に密封環1,3の一方に本発明の密封環を使用した場合
に比して更にシール機能が向上し、如何なるシール条件
においても同等のシール機能が発揮されることが確認さ
れた。
Using the mechanical seal M7, a seal test using industrial water and a seal test using a slurry liquid were performed under the same conditions as in Example 4, and the leakage amount (cc / cc) was measured.
100 hr) and the amount of wear (μm / 100 hr). The results are as shown in Table 2. No leakage and no wear of the sealing rings A2 and A4 were observed regardless of the sealing fluid. From this fact, by using the sealing ring of the present invention for the stationary ring 1 and the rotating ring 3, compared with the case where the sealing ring of the present invention is used for one of the sealing rings 1 and 3 as in Examples 1 to 6, As a result, it was confirmed that the sealing function was further improved, and the same sealing function was exhibited under any sealing conditions.

【0047】(比較例1) 比較例1として、当該メカ
ニカルシールの回転環3として使用しうる密封環B1を
製作し、回転環3として密封環B1を使用した点を除い
てメカニカルシールM1と同一構成のメカニカルシール
N1を組み立てた。
(Comparative Example 1) As Comparative Example 1, a sealing ring B1 that can be used as the rotating ring 3 of the mechanical seal was manufactured, and was the same as the mechanical seal M1 except that the sealing ring B1 was used as the rotating ring 3. The mechanical seal N1 having the above configuration was assembled.

【0048】密封環B1は、造粒硬化工程における熱処
理温度を160℃とした点を除いて、実施例3と同一の
工程により得たものである。なお、密封環B1は、後述
する比較例4で使用するもの(1個)を含めて2個製作
した。
The sealing ring B1 was obtained by the same process as in Example 3 except that the heat treatment temperature in the granulation hardening process was 160 ° C. In addition, two sealing rings B1 were manufactured including the one (one) used in Comparative Example 4 described later.

【0049】造粒材の熱処理温度を160℃とすること
により、造粒材の外表面層を構成するフェノール樹脂の
架橋反応が完了しており、フェノール樹脂層は完全に硬
化された状態となっている。したがって、実施例3と同
様に高い成形圧(100MPa)で予備成形体を成形し
ているにも拘らず、造粒材間の接着が十分に行なわれな
いことから、造粒材間に形成される空隙による気孔が連
通したものとなり、密封環B1の密封端面を100倍に
拡大して示す図5からも明らかなように、気孔(図5に
黒色部分)が長孔状に連通し、独立気孔とならない。し
たがって、独立気孔の均一配置を特定するための単位面
積(104μm2)当りの独立気孔数は求めることができ
ない。なお、密封環B1の密度,平均気孔径,気孔率
は、実施例1と同様にして求めたものであり、表1に示
す通りである。
By setting the heat treatment temperature of the granulated material to 160 ° C., the crosslinking reaction of the phenol resin constituting the outer surface layer of the granulated material has been completed, and the phenol resin layer is in a completely cured state. ing. Accordingly, despite the fact that the preformed body is formed at a high forming pressure (100 MPa) as in Example 3, the adhesion between the granulated materials is not sufficiently performed. As shown in FIG. 5, which shows the sealing end face of the sealing ring B1 at a magnification of 100 times, the pores (black portions in FIG. 5) communicate with each other in the form of a long hole. No pores. Therefore, the number of independent pores per unit area (10 4 μm 2 ) for specifying the uniform arrangement of independent pores cannot be obtained. The density, average pore diameter, and porosity of the sealing ring B1 were obtained in the same manner as in Example 1, and are as shown in Table 1.

【0050】そして、メカニカルシールN1を使用して
実施例1と同一条件で工業用水によるシール試験を行っ
たところ、密封環B1の密封端面における気孔が連続状
となっていることから、密封端面1a,3aからは浸透
漏れが生じた。したがって、当該シール試験の続行は無
意味であり、中止した。また、密封端面の摩耗量の測定
も、浸透漏れが生じている以上、測定不能であった。
When a seal test was performed using industrial water under the same conditions as in Example 1 using the mechanical seal N1, the pores at the sealing end face of the sealing ring B1 were continuous. , 3a caused seepage leakage. Therefore, the continuation of the seal test was meaningless and was stopped. Also, the measurement of the abrasion amount of the sealing end face could not be measured because of the occurrence of permeation leakage.

【0051】(比較例2) 比較例2として、当該メカ
ニカルシールの回転環3として使用しうる密封環B2を
製作し、回転環3として密封環B2を使用した点を除い
てメカニカルシールM1と同一構成のメカニカルシール
N2を組み立てた。
(Comparative Example 2) As Comparative Example 2, a sealing ring B2 that can be used as the rotating ring 3 of the mechanical seal was manufactured, and was the same as the mechanical seal M1 except that the sealing ring B2 was used as the rotating ring 3. The mechanical seal N2 having the above configuration was assembled.

【0052】密封環B2は、造粒硬化工程を行わない点
を除いて比較例1と同一の工程により得たものである。
すなわち、造粒材を熱処理することなく、100MPa
にて予備成形し、得られた予備成形体を焼成したもので
ある。この密封環B2の製法は、一般的な緻密質の炭化
珪素焼結材と同様である。したがって、密封環B2の密
封端面は、これを100倍に拡大して示す図6及び表1
に示す如く、緻密質であり、オイルポットとして機能し
うる独立気孔は存在しておらず、メカニカルシールN2
は、実質的に、緻密質炭化珪素製の密封環1,3を使用
したものである。表1に示す密封環B2の密度,平均気
孔径,気孔率は、実施例1と同様にして求めたものであ
る。なお、密封環B2は、後述する比較例5で使用する
もの(1個)を含めて2個製作した。
The sealing ring B2 was obtained by the same process as in Comparative Example 1 except that the granulation hardening process was not performed.
That is, without heat treatment of the granulated material, 100MPa
, And the obtained preformed body is fired. The manufacturing method of the sealing ring B2 is the same as that of a general dense silicon carbide sintered material. Therefore, the sealing end face of the sealing ring B2 is shown in FIG.
As shown in the figure, there is no independent pore that is dense and can function as an oil pot.
Uses sealing rings 1 and 3 made of dense silicon carbide. The density, average pore diameter, and porosity of the sealing ring B2 shown in Table 1 were determined in the same manner as in Example 1. In addition, two sealing rings B2 were manufactured including the one (one) used in Comparative Example 5 described later.

【0053】そして、メカニカルシールN2を使用し
て、実施例1と同一条件で工業用水によるシール試験を
行った。その結果は、表2に示す通りであり、カーボン
製密封環との組み合わせに係る硬質/軟質シールとして
の機能は、漏れ量,摩耗量の何れにおいても、硬質材製
密封環として密封環A1,A2,A3を用したメカニカ
ルシールM1,M2,M3に比して劣るものであった。
また、自己潤滑性を有しない硬質/硬質シールであるメ
カニカルシールM4,M5,M6,M7に比しても潤滑
性に劣り、漏れ量,摩耗量は増大している。
Using the mechanical seal N2, a seal test using industrial water was performed under the same conditions as in Example 1. The results are as shown in Table 2, and the function as a hard / soft seal in combination with the carbon sealing ring is as follows. It was inferior to the mechanical seals M1, M2, M3 using A2, A3.
Further, the lubricating properties are inferior to those of the mechanical seals M4, M5, M6, and M7, which are hard / hard seals having no self-lubricating property, and the amount of leakage and wear are increased.

【0054】(比較例3) 比較例3として、当該メカ
ニカルシールの回転環3として使用しうる密封環B3を
製作し、回転環3として密封環B3を使用した点を除い
てメカニカルシールM1と同一構成のメカニカルシール
N3を組み立てた。
(Comparative Example 3) As Comparative Example 3, a sealing ring B3 usable as the rotating ring 3 of the mechanical seal was manufactured, and was the same as the mechanical seal M1 except that the sealing ring B3 was used as the rotating ring 3. The mechanical seal N3 having the above configuration was assembled.

【0055】密封環B3は、前記混合工程で得られる混
合液の原料として、空隙形成用樹脂として50〜60μ
m径のポリスチレンビーズを10g添加したものを使用
した点、造粒硬化工程を経ることなく、造粒工程で得ら
れた造粒材(30〜100μm径)をそのまま100M
Paで加圧成形して、予備成形体を得た点を除いて、実
施例1と同一工程により得られたものである。なお、密
封環B3は、後述する比較例6で使用するもの(1個)
を含めて2個製作した。
The sealing ring B3 is used as a raw material of the mixed solution obtained in the mixing step, and is used as a resin for forming a void in an amount of 50-60 μm.
The point that 10 g of m-diameter polystyrene beads were added was used. The granulated material (30 to 100 μm diameter) obtained in the granulation step was directly processed to 100 M without going through the granulation hardening step.
It was obtained by the same process as in Example 1 except that a preform was obtained by press molding with Pa. The sealing ring B3 is used in Comparative Example 6 described later (one piece).
And two were produced.

【0056】密封環B3にあっては、焼成工程において
ボリスチレンビーズが焼失することにより、独立気孔が
形成される。しかし、冒頭に述べたように、ビーズの焼
失(分解,逸散)によるガス発生等により、密封環B3
における独立気孔はその大きさ及び分布に大きなバラツ
キが生じている。すなわち、密封環B3においては、そ
の密封端面を100倍に拡大した図7及び表1に示す如
く、平均気孔径が大きく(60μm)且つ密封端面にお
ける単位面積当り(104μm2)の独立気孔数は特定で
きず(独立気孔が1個以上存在する単位面積領域と独立
気孔が全く存在しない単位面積領域とがあり、独立気孔
が偏在している)、密封端面における独立気孔は均一に
分散配置していない。なお、表1における密封環B3の
密度,平均気孔径,気孔率,単位面積当りの独立気孔数
は、実施例1と同様にして求めたものである。
In the sealing ring B3, independent pores are formed by burning out the polystyrene beads in the firing step. However, as described at the beginning, due to gas generation due to burning (decomposition, dissipation) of the beads, the sealing ring B3
In the closed pores, there is a large variation in size and distribution. That is, in the sealing ring B3, as shown in FIG. 7 and Table 1 in which the sealing end face is magnified 100 times, the average pore diameter is large (60 μm) and independent pores per unit area (10 4 μm 2 ) at the sealing end face. The number cannot be specified (there is a unit area region in which one or more independent pores exist and a unit area region in which no independent pores exist, and the independent pores are unevenly distributed). I haven't. The density, average pore diameter, porosity, and number of independent pores per unit area of the sealing ring B3 in Table 1 were determined in the same manner as in Example 1.

【0057】そして、メカニカルシールN3を使用し
て、実施例1と同一条件で工業用水によるシール試験を
行った。その結果は表2に示す通りであり、漏れ量及び
カーボン製固定環1の摩耗量は、緻密質の炭化珪素焼結
材製の回転環B2を使用したメカニカルシールN2より
大きく、シール機能が更に低下した。これは、密封端面
における独立気孔が大きく且つ均一に分散配置されてい
ないことから、オイルポット機能を発揮されず、却って
独立気孔の周縁エッジによる砥石作用が生じるためであ
る。
Then, a seal test using industrial water was performed under the same conditions as in Example 1 using the mechanical seal N3. The results are as shown in Table 2. The leakage amount and the wear amount of the carbon fixed ring 1 were larger than those of the mechanical seal N2 using the rotating ring B2 made of dense silicon carbide sintered material, and the sealing function was further improved. Dropped. This is because the independent pores in the sealing end face are not large and are not uniformly distributed, so that the oil pot function is not exerted, and instead, a grinding wheel action is caused by the peripheral edge of the independent pores.

【0058】(比較例4) 比較例4として、回転環3
として比較例1で得た密封環B1を使用した点を除い
て、メカニカルシールM4と同一構成のメカニカルシー
ルN4を組み立てた。そして、実施例4と同一条件で工
業用水によるシール試験及びスラリー液によるシール試
験を行った。その結果、何れの場合にも、密封環B1を
使用した硬質/軟質シールであるメカニカルシールN1
と同様に、浸透漏れが生じ、メカニカルシール機能を発
揮することができなかった。
Comparative Example 4 As Comparative Example 4, the rotating ring 3
A mechanical seal N4 having the same configuration as that of the mechanical seal M4, except that the sealing ring B1 obtained in Comparative Example 1 was used. Then, a seal test using industrial water and a seal test using a slurry liquid were performed under the same conditions as in Example 4. As a result, in any case, the mechanical seal N1 which is a hard / soft seal using the sealing ring B1 is used.
In the same manner as in the above, permeation leakage occurred, and the mechanical seal function could not be exhibited.

【0059】(比較例5) 比較例5として、回転環3
として比較例2で得た密封環B2を使用した点を除い
て、メカニカルシールM4と同一構成のメカニカルシー
ルN5を組み立てた。そして、実施例4と同一条件で工
業用水によるシール試験及びスラリー液によるシール試
験を行い、漏れ量(cc/100hr)及び回転環B2
の摩耗量(μm/100hr)を測定した。その結果
は、表2に示す通りであり、固定環1として自己潤滑性
を有するカーボン製のものを使用したメカニカルシール
N2に比して潤滑性に劣り、漏れ量及び摩耗量が増大し
た。すなわち、メカニカルシールN2より潤滑性に優れ
るメカニカルシールM1〜M7に比しては、漏れ量及び
摩耗量を含めたシール機能が大幅に低下する。
Comparative Example 5 As Comparative Example 5, the rotating ring 3
A mechanical seal N5 having the same configuration as that of the mechanical seal M4, except that the sealing ring B2 obtained in Comparative Example 2 was used. Then, a seal test using industrial water and a seal test using a slurry liquid were performed under the same conditions as in Example 4, and the leakage amount (cc / 100 hr) and the rotating ring B2
Was measured for the amount of wear (μm / 100 hr). The results are as shown in Table 2. As compared with the mechanical seal N2 using the self-lubricating carbon fixed ring 1 as the stationary ring 1, the lubricating property was inferior, and the leakage and wear increased. That is, as compared with the mechanical seals M1 to M7 having better lubricity than the mechanical seal N2, the sealing function including the leakage amount and the wear amount is significantly reduced.

【0060】(比較例5) 比較例6として、回転環3
として比較例3で得た密封環B3を使用した点を除い
て、メカニカルシールM4と同一構成のメカニカルシー
ルN6を組み立てた。そして、実施例4と同一条件で工
業用水によるシール試験及びスラリー液によるシール試
験を行い、漏れ量(cc/100hr)及び回転環B3
の摩耗量(μm/100hr)を測定した。その結果
は、表2に示す通りであり、密封端面に独立気孔が存在
しているにも拘わらず、それが冒頭のの条件を具備
しないため、オイルポット機能による潤滑性の向上が期
待できず、両密封環に緻密質の炭化珪素焼結材のものを
使用するメカニカルシールN5と同程度のシール機能を
発揮するに止まる。
Comparative Example 5 As Comparative Example 6, the rotating ring 3
A mechanical seal N6 having the same configuration as that of the mechanical seal M4, except that the sealing ring B3 obtained in Comparative Example 3 was used. Then, a seal test using industrial water and a seal test using a slurry liquid were performed under the same conditions as in Example 4, and the leakage amount (cc / 100 hr) and the rotating ring B3
Was measured for the amount of wear (μm / 100 hr). The results are as shown in Table 2, and despite the presence of independent pores in the sealed end face, they did not satisfy the opening condition, so that improvement in lubricity by the oil pot function could not be expected. However, only the mechanical seal N5 which uses a dense silicon carbide sintered material for both sealing rings exhibits the same sealing function.

【0061】[0061]

【発明の効果】以上の説明から容易に理解されるよう
に、本発明によれば、硬質/硬質シール及び硬質/軟質
シールの何れにおいても、相手密封環との間の潤滑性を
大幅に向上させることができ、シール条件に拘わらず、
耐摩耗性等の耐久性及びシール性に極めて優れたメカニ
カルシールを提供することができる。
As will be easily understood from the above description, according to the present invention, the lubricity between the sealing ring and the mating seal ring is greatly improved in both the hard / hard seal and the hard / soft seal. And regardless of the sealing conditions,
It is possible to provide a mechanical seal that is extremely excellent in durability such as abrasion resistance and sealing properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】メカニカルシールの一例を示す縦断側面図であ
る。
FIG. 1 is a longitudinal sectional side view showing an example of a mechanical seal.

【図2】密封環A1の密封端面を100倍に拡大した顕
微鏡写真を示す気孔分布図である。
FIG. 2 is a pore distribution diagram showing a micrograph of the sealing end face of the sealing ring A1 magnified 100 times.

【図3】密封環A2の密封端面を100倍に拡大した顕
微鏡写真を示す気孔分布図である。
FIG. 3 is a pore distribution diagram showing a micrograph of a sealed end face of a sealing ring A2 magnified 100 times.

【図4】密封環A3の密封端面を100倍に拡大した顕
微鏡写真を示す気孔分布図である。
FIG. 4 is a pore distribution diagram showing a micrograph of the sealing end face of the sealing ring A3 magnified 100 times.

【図5】密封環B1の密封端面を100倍に拡大した顕
微鏡写真を示す気孔分布図である。
FIG. 5 is a pore distribution diagram showing a micrograph of the sealing end face of the sealing ring B1 magnified 100 times.

【図6】密封環B2の密封端面を100倍に拡大した顕
微鏡写真を示す気孔分布図である。
FIG. 6 is a pore distribution diagram showing a micrograph of the sealing end face of the sealing ring B2 magnified 100 times.

【図7】密封環B3の密封端面を100倍に拡大した顕
微鏡写真を示す気孔分布図である。
FIG. 7 is a pore distribution diagram showing a micrograph of the sealing end face of the sealing ring B3 magnified 100 times.

【符号の説明】[Explanation of symbols]

1…固定環(密封環)、1a…固定環の密封端面、3…
回転環(密封環)、3a…回転環の密封端面。
DESCRIPTION OF SYMBOLS 1 ... Fixed ring (sealing ring), 1a ... Sealed end surface of fixed ring, 3 ...
Rotating ring (sealing ring), 3a...

───────────────────────────────────────────────────── フロントページの続き (72)発明者 纓田 清隆 京都府福知山市長田野町2丁目66番地の3 日本ピラー工業株式会社福知山事業所内 Fターム(参考) 3J041 AA01 BA04 BC02 DA01 4G019 GA04  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyotaka Yida 2-66-3, Nagatano-cho, Fukuchiyama-shi, Kyoto F-term in Fukuchiyama Works of Nippon Pillar Industry Co., Ltd. F term (reference) 3J041 AA01 BA04 BC02 DA01 4G019 GA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均気孔径10〜40μmの独立気孔が
均一に分散配置されており且つ気孔率が3〜10%であ
る炭化珪素焼結材で構成したことを特徴とするメカニカ
ルシール用密封環。
1. A sealing ring for a mechanical seal, wherein independent sealing pores having an average pore diameter of 10 to 40 .mu.m are uniformly dispersed and formed of a silicon carbide sintered material having a porosity of 3 to 10%. .
【請求項2】 相対回転摺接する2つの密封環の一方又
は両方が、平均気孔径10〜40μmの独立気孔が均一
に配置されており且つ気孔率が3〜10%である炭化珪
素焼結材で構成されたものであることを特徴とするメカ
ニカルシール。
2. A sintered silicon carbide material in which one or both of two sealing rings which are in relative rotational sliding contact have independent pores having an average pore diameter of 10 to 40 μm uniformly arranged and a porosity of 3 to 10%. A mechanical seal characterized by comprising:
JP2000341269A 2000-11-09 2000-11-09 Seal ring for mechanical seal and mechanical seal using the same Expired - Fee Related JP3517711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000341269A JP3517711B2 (en) 2000-11-09 2000-11-09 Seal ring for mechanical seal and mechanical seal using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000341269A JP3517711B2 (en) 2000-11-09 2000-11-09 Seal ring for mechanical seal and mechanical seal using the same

Publications (2)

Publication Number Publication Date
JP2002147617A true JP2002147617A (en) 2002-05-22
JP3517711B2 JP3517711B2 (en) 2004-04-12

Family

ID=18816035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000341269A Expired - Fee Related JP3517711B2 (en) 2000-11-09 2000-11-09 Seal ring for mechanical seal and mechanical seal using the same

Country Status (1)

Country Link
JP (1) JP3517711B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205037A (en) * 2002-12-20 2004-07-22 Deublin Co Fluid coolant union
WO2006117897A1 (en) * 2005-04-27 2006-11-09 Kyocera Corporation Porous ceramic for sliding members, method for producing the same and mechanical seal ring
WO2008053903A1 (en) 2006-10-30 2008-05-08 Kyocera Corporation Slide member, process for producing the same, and mechanical seal and mechanical seal ring utilizing the member
WO2009069787A1 (en) 2007-11-29 2009-06-04 Kyocera Corporation Sliding member, mechanical seal ring, mechanical seal, and faucet valve
KR100968672B1 (en) * 2002-12-27 2010-07-06 이구루코교 가부시기가이샤 Sliding element for seals and their process of manufacturing
US20110172080A1 (en) * 2009-07-24 2011-07-14 Pujari Vimal K Dry and Wet Low Friction Silicon Carbide Seal
JP2015086889A (en) * 2013-10-28 2015-05-07 日本ピラー工業株式会社 Mechanical seal
US10876633B2 (en) 2016-07-01 2020-12-29 Nippon Pillar Co., Ltd. Mechanical seal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5530738B2 (en) * 2010-02-10 2014-06-25 日本ピラー工業株式会社 mechanical seal
JP5530739B2 (en) * 2010-02-10 2014-06-25 日本ピラー工業株式会社 Seal ring for mechanical seal and manufacturing method thereof
JP5767897B2 (en) * 2011-08-10 2015-08-26 日本ピラー工業株式会社 SiC sliding member

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205037A (en) * 2002-12-20 2004-07-22 Deublin Co Fluid coolant union
KR100968672B1 (en) * 2002-12-27 2010-07-06 이구루코교 가부시기가이샤 Sliding element for seals and their process of manufacturing
US8158248B2 (en) 2005-04-27 2012-04-17 Kyocera Corporation Porous ceramic for slide member, method for preparing the same, and mechanical seal ring
WO2006117897A1 (en) * 2005-04-27 2006-11-09 Kyocera Corporation Porous ceramic for sliding members, method for producing the same and mechanical seal ring
WO2008053903A1 (en) 2006-10-30 2008-05-08 Kyocera Corporation Slide member, process for producing the same, and mechanical seal and mechanical seal ring utilizing the member
US8916488B2 (en) 2006-10-30 2014-12-23 Kyocera Corporation Sliding member, manufacturing method thereof, mechanical seal ring using sliding member and mechanical seal using mechanical seal ring
WO2009069787A1 (en) 2007-11-29 2009-06-04 Kyocera Corporation Sliding member, mechanical seal ring, mechanical seal, and faucet valve
JP5020334B2 (en) * 2007-11-29 2012-09-05 京セラ株式会社 Sliding members, mechanical seal rings, mechanical seals and forceset valves
KR101217580B1 (en) * 2007-11-29 2013-01-02 쿄세라 코포레이션 Sliding member, mechanical seal ring, mechanical seal, and faucet valve
US8366071B2 (en) 2007-11-29 2013-02-05 Kyocera Corporation Sliding member, mechanical seal ring, mechanical seal and faucet valve
US20140291898A1 (en) * 2009-07-24 2014-10-02 Saint Gobain Ceramics & Plastics, Inc. Method of forming a porous sintered ceramic body
US20110172080A1 (en) * 2009-07-24 2011-07-14 Pujari Vimal K Dry and Wet Low Friction Silicon Carbide Seal
JP2015086889A (en) * 2013-10-28 2015-05-07 日本ピラー工業株式会社 Mechanical seal
US10876633B2 (en) 2016-07-01 2020-12-29 Nippon Pillar Co., Ltd. Mechanical seal
DE112017003319B4 (en) 2016-07-01 2022-12-22 Nippon Pillar Packing Co., Ltd. mechanical seal

Also Published As

Publication number Publication date
JP3517711B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
US5580834A (en) Self-sintered silicon carbide/carbon graphite composite material having interconnected pores which may be impregnated and raw batch and process for producing same
KR0145490B1 (en) Bearing material of porous sic having a trimodal pore composition
JP3517711B2 (en) Seal ring for mechanical seal and mechanical seal using the same
JP2005119965A (en) Silicon carbide with controlled porosity
EP0864549B1 (en) Sintered silicon carbide with graphite added thereto, sintered composite containing the same, and mechanical seal
US6398991B1 (en) Processes for making a silicon carbide composition
EP1440955B1 (en) A seal assembly containing a sliding element and the use of a sliding element for seals
EP1988067B1 (en) Sintered ceramic, slide part therefrom, and process for producing sintered ceramic
JP5637513B2 (en) Sliding material and mechanical seal
JP5020334B2 (en) Sliding members, mechanical seal rings, mechanical seals and forceset valves
JP2007084368A (en) Ceramic sliding member, method for manufacturing the same, mechanical seal ring member using the same, and mechanical seal ring
JP3999468B2 (en) SLIDING BODY, MANUFACTURING METHOD THEREOF, AND MECHANICAL SEAL
EP1433766B1 (en) A seal assembly containing a carbon sliding element and its process of manufacturing
JP4141778B2 (en) Sliding parts and manufacturing method thereof
JP3654861B2 (en) Rotary joint for CMP equipment
JP2007223890A (en) Silicon carbide sintered compact, sliding member and mechanical seal ring each using the same, and mechanical seal
JP2001139376A (en) Silicon carbide sintered compact, and mechanical seal and segment seal using the silicon carbide sintered compact
JP4865146B2 (en) Silicon carbide sintered part, mechanical seal using the same, and manufacturing method thereof
JPH02256971A (en) Sliding member and manufacture thereof
JPH09132478A (en) Porous silicon carbide sintered compact and its production
JP3650739B2 (en) SLIDING BODY, MANUFACTURING METHOD THEREOF, AND MECHANICAL SEAL
JP3764089B2 (en) Composite SiC sliding member, sealing ring for mechanical seal, mechanical seal, and method for manufacturing composite SiC sliding member
JP4002406B2 (en) Slider and mechanical seal
JP2002333069A (en) Mechanical seal
JP2003042305A (en) Sliding component, mechanical seal using the sliding component, and manufacturing method therefor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040109

R150 Certificate of patent or registration of utility model

Ref document number: 3517711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees