JP3180567B2 - Manufacturing method of lithium anode for thermal battery - Google Patents

Manufacturing method of lithium anode for thermal battery

Info

Publication number
JP3180567B2
JP3180567B2 JP16928294A JP16928294A JP3180567B2 JP 3180567 B2 JP3180567 B2 JP 3180567B2 JP 16928294 A JP16928294 A JP 16928294A JP 16928294 A JP16928294 A JP 16928294A JP 3180567 B2 JP3180567 B2 JP 3180567B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
thermal battery
nitrogen
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16928294A
Other languages
Japanese (ja)
Other versions
JPH0831431A (en
Inventor
剛 畑中
和典 原口
保廣 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP16928294A priority Critical patent/JP3180567B2/en
Publication of JPH0831431A publication Critical patent/JPH0831431A/en
Application granted granted Critical
Publication of JP3180567B2 publication Critical patent/JP3180567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、負極として溶融リチウ
ムが用いられる熱電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal battery using molten lithium as a negative electrode.

【0002】[0002]

【従来の技術】熱電池は常温では固体である溶融塩を電
解質として用い、これを高温約400〜700℃に加熱
して液体化することによって発電可能とする高温電池の
一種である。従来の熱電池には負極活物質として金属カ
ルシウムや金属マグネシウムなどが用いられていたが、
これらの負極活物質では近年熱電池に求められている大
電流密度放電、例えば500mA/cm3で数分間の放
電寿命という要求や、1000〜3000mA/cm3
という大電流密度のパルス放電というような要求を満足
することが不可能であった。そこでこの様な問題を解決
するために新しくリチウム系負極の開発がなされてき
た。リチウム系負極にも各種のものがあり、例えば、米
国特許第4221849号明細書に示されるような溶融
リチウムを用いるものがある。
2. Description of the Related Art A thermal battery is a type of high-temperature battery capable of generating electricity by using a molten salt which is solid at ordinary temperature as an electrolyte and heating it to a high temperature of about 400 to 700 ° C. to be liquefied. In conventional thermal batteries, metallic calcium and metallic magnesium were used as the negative electrode active material.
In these negative electrode active materials, a large current density discharge recently required for a thermal battery, for example, a demand for a discharge life of several minutes at 500 mA / cm 3 , or 1000 to 3000 mA / cm 3
It was impossible to satisfy such a requirement as a pulse discharge of a large current density. Therefore, a new lithium-based negative electrode has been developed to solve such a problem. There are various lithium-based negative electrodes, for example, those using molten lithium as disclosed in US Pat. No. 4,221,849.

【0003】溶融リチウムを用いた負極を作製する場
合、溶融したリチウムが正極側に流れ込むことを防止す
るため、リチウムを加熱溶融させた後にこの溶融リチウ
ムを、鉄粉を加圧成型した鉄粉成型体に含浸保持させて
いた。
When manufacturing a negative electrode using molten lithium, in order to prevent the molten lithium from flowing into the positive electrode side, the molten lithium is heated and melted, and then the molten lithium is formed by pressing iron powder into iron powder. The body was kept impregnated.

【0004】一方、溶融リチウムは非常に反応性が高い
ために、雰囲気中の酸素や窒素および水分と容易に反応
する。そのため、負極作製時には雰囲気をアルゴンガス
等の不活性ガスとしてできるだけ酸素や窒素および水分
を除去する必要があった。
[0004] On the other hand, molten lithium has a very high reactivity and easily reacts with oxygen, nitrogen and moisture in the atmosphere. For this reason, it was necessary to remove oxygen, nitrogen and moisture as much as possible by using an inert gas such as an argon gas as the atmosphere when preparing the negative electrode.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、負極作
製時の雰囲気中の酸素や水分はそれぞれの簡易な除去装
置によって取り除くことができるが、窒素は除去が難し
く、さらに、酸素や水分が少ない条件下では溶融リチウ
ムは窒素と反応しやすくなっていた。
However, oxygen and moisture in the atmosphere at the time of producing the negative electrode can be removed by simple removing devices, but it is difficult to remove nitrogen, and furthermore, under the condition that oxygen and moisture are small. In this case, the molten lithium was liable to react with nitrogen.

【0006】そして、リチウムと窒素との反応によって
生成する窒化リチウムは、結晶格子がリチウムに比べて
小さいため、反応の活性点が次々と生まれ、窒化リチウ
ムの生成反応はリチウムの表面から内部まで進行して、
ついにはリチウム全部が窒化されて負極活物質としての
能力を失うという問題が発生していた。
[0006] Since lithium nitride produced by the reaction between lithium and nitrogen has a smaller crystal lattice than lithium, active points of the reaction are generated one after another, and the production reaction of lithium nitride proceeds from the surface to the inside of lithium. do it,
Eventually, a problem has arisen that all of the lithium is nitrided and loses its ability as a negative electrode active material.

【0007】本発明は、このような課題を解決するもの
であり、溶融リチウムを鉄粉の成型体内に含浸保持させ
て熱電池用リチウム負極を作製する際に、溶融リチウム
が酸素、窒素および水分と反応することを防止するもの
である。
The present invention has been made to solve the above-mentioned problem. In producing a lithium anode for a thermal battery by impregnating and holding molten lithium in a molded body of iron powder, the molten lithium contains oxygen, nitrogen and water. And to prevent the reaction.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の熱電池用リチウム負極の製造法は、酸素
量および水分量がともに2ppm以下で二酸化炭素を1
〜10%含む不活性ガスの雰囲気下で、鉄粉の成型体内
にリチウムを溶融して含浸させるものである。
In order to solve the above-mentioned problems, a method for producing a lithium anode for a thermal battery according to the present invention comprises the steps of:
In an atmosphere of an inert gas containing 10 to 10%, lithium is melted and impregnated in a molded body of iron powder.

【0009】[0009]

【作用】本発明では、アルゴンガス等の不活性ガスの雰
囲気下において酸素と水分の量を2ppm以下にしてい
るので、溶融リチウムが酸素や水分と反応して変質する
ことはない。
According to the present invention, since the amounts of oxygen and moisture are set to 2 ppm or less in an atmosphere of an inert gas such as an argon gas, the molten lithium does not react with oxygen or moisture to deteriorate.

【0010】また、不活性ガス雰囲気中に二酸化炭素を
1〜10%含ませているが、リチウムは二酸化炭素と反
応して炭酸リチウムに変化する。この炭酸リチウムは窒
化リチウムに比べてはるかに安定しており、不活性ガス
雰囲気中に窒素が存在しても、リチウムは窒素と反応す
るよりも二酸化炭素と反応し、リチウムが窒化されるこ
とはない。
In addition, although the inert gas atmosphere contains 1 to 10% of carbon dioxide, lithium reacts with carbon dioxide and changes into lithium carbonate. This lithium carbonate is much more stable than lithium nitride, and even when nitrogen is present in an inert gas atmosphere, lithium reacts with carbon dioxide rather than reacts with nitrogen, and lithium is not nitrided. Absent.

【0011】一方、炭酸リチウムはその結晶格子がリチ
ウムの結晶格子より大きいので、反応の活性は低く、炭
酸リチウムの生成反応はリチウムの表面層だけに留ま
る。そして、二酸化炭素が1〜10%の範囲ではリチウ
ムの電極反応に対して炭酸リチウムが悪影響を及ぼすこ
とはない。
On the other hand, since the crystal lattice of lithium carbonate is larger than that of lithium, the activity of the reaction is low, and the reaction of forming lithium carbonate remains only on the surface layer of lithium. And when carbon dioxide is in the range of 1 to 10%, lithium carbonate does not adversely affect the electrode reaction of lithium.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1(A)(B)を用いて本発明の熱電池
用リチウム負極の製造法を説明する。
A method for producing a lithium anode for a thermal battery according to the present invention will be described with reference to FIGS.

【0014】図1(A)はリチウム負極の作製前の様子
を示す図であり、図1(B)は同負極の作製後の様子を
示す図である。
FIG. 1A is a view showing a state before the production of a lithium negative electrode, and FIG. 1B is a view showing a state after the production of the negative electrode.

【0015】図1(A)で1は円形に打ち抜かれた金属
リチウムのシート、2は平均粒径20μm、比表面積2
〜5m2/gの海綿状鉄粉からなる成型体であり、前記
鉄粉をリチウムシート1の上に均一に分散した後10t
on/cm2で加圧成型したものである。3はリチウム
シート1を内側に収納した金属製カップである。
In FIG. 1 (A), 1 is a sheet of metallic lithium punched out in a circular shape, 2 is an average particle size of 20 μm, and 2 is a specific surface area.
A molded product made of sponge-like iron powder of about 5 m 2 / g;
It was molded under pressure at on / cm 2 . Reference numeral 3 denotes a metal cup containing the lithium sheet 1 inside.

【0016】そして、図1(B)に示したように、鉄粉
成型体2の上面と、金属カップ3の下面を550℃に加
熱した熱板4で挟み、リチウムシート1を溶融した後、
溶融リチウムを鉄粉成型体2内にある隙間に含浸保持さ
せて負極5を得た。このとき、ガス雰囲気はアルゴンガ
スと二酸化炭素を95:5の割合で混合した混合ガスと
し、この混合ガス中の酸素と水分の量を2ppm以下と
した。このようにして作製したリチウム負極を本発明の
負極とした。
Then, as shown in FIG. 1B, the upper surface of the iron powder molded body 2 and the lower surface of the metal cup 3 are sandwiched between hot plates 4 heated to 550 ° C., and the lithium sheet 1 is melted.
The negative electrode 5 was obtained by impregnating and holding the molten lithium in the gap in the iron powder molded body 2. At this time, the gas atmosphere was a mixed gas obtained by mixing argon gas and carbon dioxide at a ratio of 95: 5, and the amounts of oxygen and moisture in the mixed gas were set to 2 ppm or less. The lithium anode thus produced was used as the anode of the present invention.

【0017】また、二酸化炭素を含まない以外は本発明
と同様にしてリチウム負極を作製し、これを比較の負極
とした。
A lithium negative electrode was prepared in the same manner as in the present invention except that carbon dioxide was not contained, and this was used as a comparative negative electrode.

【0018】そして、本発明と比較の負極の各雰囲気内
に窒素を1、5、10、15%導入し、同雰囲気中で負
極を保存した際の各負極の窒化の進行状況を観察した。
Then, nitrogen was introduced at 1, 5, 10 and 15% into each atmosphere of the negative electrode compared with the present invention, and the progress of nitridation of each negative electrode was observed when the negative electrode was stored in the same atmosphere.

【0019】この結果を(表1)に示す。The results are shown in (Table 1).

【0020】[0020]

【表1】 [Table 1]

【0021】(表1)に示したように、酸素量と水分量
が2ppm以下の状態では窒素の量が1、5、10、1
5%と少ない場合でもリチウムの窒化が進行しやすく、
比較の負極ではリチウムすべてが窒化されるまでの時間
は窒素量の増加にともなって短かくなった。
As shown in Table 1, when the amount of oxygen and the amount of water are 2 ppm or less, the amount of nitrogen is 1, 5, 10, 1
Even when the amount is as low as 5%, the nitridation of lithium easily proceeds,
In the comparative negative electrode, the time until all the lithium was nitrided became shorter as the amount of nitrogen increased.

【0022】一方、本発明の負極ではリチウムが窒素と
反応する前に二酸化炭素と反応するために、リチウムの
窒化は全く発生しなかった。
On the other hand, in the negative electrode of the present invention, since lithium reacts with carbon dioxide before reacting with nitrogen, lithium nitridation did not occur at all.

【0023】また、本発明のガス雰囲気下においてアル
ゴンガスを窒素に置き換え、窒素の量が多くなった状態
を想定して窒素と二酸化炭素の比を95:5および9
9:1とした場合でも、二酸化炭素の存在によってリチ
ウムの窒化を防止することができた。
In the gas atmosphere of the present invention, the argon gas is replaced with nitrogen, and the ratio of nitrogen to carbon dioxide is increased to 95: 5 and 9 on the assumption that the amount of nitrogen has increased.
Even in the case of 9: 1, nitriding of lithium could be prevented by the presence of carbon dioxide.

【0024】[0024]

【発明の効果】以上のように、本発明の熱電池用リチウ
ム負極の製造法では、酸素と水分の量をともに2ppm
以下とし、二酸化炭素を1〜10%含む不活性ガスの雰
囲気下で、リチウムを溶融して鉄粉の成型体内に含浸保
持させているので、雰囲気内に窒素が存在してもリチウ
ムは窒素と反応するより二酸化炭素と反応するためリチ
ウムの窒化を防止することができる。
As described above, in the method for producing a lithium anode for a thermal battery according to the present invention, both the amounts of oxygen and moisture are 2 ppm.
In the following, lithium is melted in an atmosphere of an inert gas containing 1 to 10% of carbon dioxide and is impregnated and held in a molded body of iron powder. Therefore, even if nitrogen is present in the atmosphere, lithium is converted to nitrogen. Since it reacts with carbon dioxide rather than the reaction, nitridation of lithium can be prevented.

【0025】また、酸素と水分の量を2ppm以下にす
ることによりリチウムが酸素や水分と反応して変質する
ことを防止できる。
Further, by controlling the amounts of oxygen and water to 2 ppm or less, it is possible to prevent lithium from reacting with oxygen and water to deteriorate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A) リチウム負極の作製前の様子を示す図 (B) 同負極の作製後の様子を示す図1A illustrates a state before a lithium anode is manufactured; FIG. 1B illustrates a state after the lithium anode is manufactured;

【符号の説明】[Explanation of symbols]

1 金属リチウムシート 2 鉄粉成型体 3 金属製カップ 4 熱板 5 負極 DESCRIPTION OF SYMBOLS 1 Metal lithium sheet 2 Iron powder molded object 3 Metal cup 4 Hot plate 5 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−267546(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 6/36 WPI(DIALOG)────────────────────────────────────────────────── (5) References JP-A-6-267546 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 6/36 WPI (DIALOG)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素量および水分量がともに2ppm以下
で二酸化炭素を1〜10%含む不活性ガスの雰囲気下
で、鉄粉の成型体内にリチウムを溶融して含浸させる熱
電池用リチウム負極の製造法。
1. A lithium anode for a thermal battery, wherein lithium is melted and impregnated in a molded body of iron powder in an atmosphere of an inert gas containing both oxygen content and water content of 2 ppm or less and carbon dioxide of 1 to 10%. Manufacturing method.
【請求項2】不活性ガスはアルゴンガスである請求項1
記載の熱電池用リチウム負極の製造法。
2. An inert gas is an argon gas.
A method for producing a lithium negative electrode for a thermal battery according to the above.
JP16928294A 1994-07-21 1994-07-21 Manufacturing method of lithium anode for thermal battery Expired - Fee Related JP3180567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16928294A JP3180567B2 (en) 1994-07-21 1994-07-21 Manufacturing method of lithium anode for thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16928294A JP3180567B2 (en) 1994-07-21 1994-07-21 Manufacturing method of lithium anode for thermal battery

Publications (2)

Publication Number Publication Date
JPH0831431A JPH0831431A (en) 1996-02-02
JP3180567B2 true JP3180567B2 (en) 2001-06-25

Family

ID=15883631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16928294A Expired - Fee Related JP3180567B2 (en) 1994-07-21 1994-07-21 Manufacturing method of lithium anode for thermal battery

Country Status (1)

Country Link
JP (1) JP3180567B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667835B2 (en) * 2004-11-25 2011-04-13 Jfeケミカル株式会社 Hydrogen generating medium and method for producing the same
US9085813B2 (en) 2010-09-23 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Method for recovering metallic lithium
KR101484042B1 (en) 2014-07-23 2015-01-19 국방과학연구소 Manufacturing method for thin metal foam impregnated with lithium as an anode for thermally activated reserve batteries

Also Published As

Publication number Publication date
JPH0831431A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
KR101920851B1 (en) Liquid lithium
JPS622455A (en) Manufacture of nickel positive electrode
KR20000068369A (en) Carbonaceous particles and carbonaceous fibers both coated with boron nitride, and lithium secondary cells produced by using the same as negative active material
CN109461911A (en) A kind of cladded type Li-Si alloy and its preparation method and application
CN111682164B (en) Three-dimensional composite metal lithium cathode and preparation method thereof
JP3180567B2 (en) Manufacturing method of lithium anode for thermal battery
CA1042503A (en) Method of preparing a lithium-aluminum electrode using heat and pressure
JP4707950B2 (en) Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, electrode for lithium battery, and lithium battery
US4654195A (en) Method for fabricating molten carbonate ribbed anodes
JPH0785876A (en) Manufacture of positive electrode for fused carbonate fuel cell
JP2514748B2 (en) Method for starting molten carbonate fuel cell
JP2002216762A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
US3941614A (en) Method of preparing high capacity nickel electrode powder
JPH0261095B2 (en)
JPH03141555A (en) Manufacture of fuel electrode for molten carbonate fuel cell
JPH0571644B2 (en)
JP2751390B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
US5114432A (en) Electrode for use in a high temperature rechargeable molten salt battery and method of making said electrode
CN113488632B (en) Li (lithium ion battery)1-xTMO4-yNy/Li2SO4Coated high-nickel ternary positive electrode material and preparation method thereof
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
US6238619B1 (en) Process for the production of an electrode for a fused carbonate fuel cell
TW200522422A (en) A cathode material with nano-oxide layer on the surface and the produce method
JP2730074B2 (en) Anode for fuel cell
JPS61116758A (en) Lithium battery
JP3624510B2 (en) Method for producing positive electrode active material for battery or positive electrode plate for battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees