JP3180404B2 - Method of forming capacitive element - Google Patents

Method of forming capacitive element

Info

Publication number
JP3180404B2
JP3180404B2 JP00313592A JP313592A JP3180404B2 JP 3180404 B2 JP3180404 B2 JP 3180404B2 JP 00313592 A JP00313592 A JP 00313592A JP 313592 A JP313592 A JP 313592A JP 3180404 B2 JP3180404 B2 JP 3180404B2
Authority
JP
Japan
Prior art keywords
film
oxide film
electrode
forming
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00313592A
Other languages
Japanese (ja)
Other versions
JPH05190792A (en
Inventor
直史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP00313592A priority Critical patent/JP3180404B2/en
Publication of JPH05190792A publication Critical patent/JPH05190792A/en
Application granted granted Critical
Publication of JP3180404B2 publication Critical patent/JP3180404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置における容
量素子の形成方法に係り、とりわけ容量素子の絶縁膜を
形成する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a capacitor in a semiconductor device, and more particularly to a method for forming an insulating film of the capacitor.

【0002】[0002]

【従来の技術】図3は、従来の方法により形成されたD
RAM(Dynamic Ramdom AccessMemory)の容量素
子であるスタックトキャパシタの断面図である。
2. Description of the Prior Art FIG.
FIG. 2 is a cross-sectional view of a stacked capacitor that is a capacitive element of a RAM (Dynamic Ramdom Access Memory).

【0003】図3に示した容量素子では、P型シリコン
基板1に、素子分離のためのフィールド酸化膜2が形成
され、N+拡散層3、ポリシリコンからなるワード線
4、アルミニウムからなるビット線5、SiO2膜6、
層間絶縁膜7、ポリシリコンからなるキャパシタの下部
電極8、キャパシタの絶縁層として第1の酸化膜(Si
2)9およびSi34膜10、ポリシリコンからなる
キャパシタの上部電極13がそれぞれ形成されている。
In the capacitor shown in FIG. 3, a field oxide film 2 for element isolation is formed on a P-type silicon substrate 1, an N + diffusion layer 3, a word line 4 made of polysilicon, and a bit made of aluminum. Line 5, SiO 2 film 6,
An interlayer insulating film 7, a lower electrode 8 of a capacitor made of polysilicon, and a first oxide film (Si
An upper electrode 13 of a capacitor made of O 2 ) 9, Si 3 N 4 film 10 and polysilicon is formed.

【0004】図4は、図3における下部電極8/第1の
酸化膜(SiO2)9、Si34膜10/上部電極13
から構成されるDRAMのキャパシタのうち、下部電極
8/第1の酸化膜9、Si34膜10を形成する工程に
おける下部電極8、第1の酸化膜9、Si34膜10の
断面図である。
FIG. 4 shows a lower electrode 8 / first oxide film (SiO 2 ) 9, an Si 3 N 4 film 10 / an upper electrode 13 in FIG.
Of the lower electrode 8, the first oxide film 9, and the Si 3 N 4 film 10 in the step of forming the lower electrode 8 / the first oxide film 9 and the Si 3 N 4 film 10 It is sectional drawing.

【0005】図4(a)に示すポリシリコンで形成され
た下部電極8の表面上に形成された第1の酸化膜(Si
2)9は、いくら除去しようとフッ酸処理を施しても
洗浄の純水中あるいは乾燥中などにより成長してしまっ
た自然酸化膜である。
A first oxide film (Si) formed on the surface of lower electrode 8 made of polysilicon shown in FIG.
O 2 ) 9 is a natural oxide film that has grown in pure water for cleaning or during drying, even if a hydrofluoric acid treatment is performed to remove it.

【0006】図4(b)に示すように、容量素子の容量
を増加させるためにSiO2よりも誘電率の高いSi3
4膜10を第1の酸化膜(SiO2)9の上面に減圧CV
D法により形成する。
As shown in FIG. 4B, in order to increase the capacitance of the capacitive element, Si 3 N having a higher dielectric constant than SiO 2 is used.
4 A film 10 is formed on the upper surface of the first oxide film (SiO 2 ) 9
Formed by Method D.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記方
法では減圧CVD法によりSi34膜10を形成する工
程において、炉中へのローディング等時に酸素の巻き込
みがあり、図4(b)に示すように、第1の酸化膜9が
図4(a)で示した厚さをより厚くさせ、1〜2nmの
厚さにまで成長してしまう。これでは、Si34をいく
ら薄膜化しようとしても、誘電率の低いSiO2の占め
る割合が大きくなり、容量の増大は図れない。
However, in the above method, in the step of forming the Si 3 N 4 film 10 by the low pressure CVD method, oxygen is involved during loading into a furnace or the like, and as shown in FIG. As described above, the first oxide film 9 increases the thickness shown in FIG. 4A and grows to a thickness of 1 to 2 nm. In this case, no matter how much the thickness of Si 3 N 4 is reduced, the proportion of SiO 2 having a low dielectric constant increases, and the capacity cannot be increased.

【0008】そこで、本発明は、キャパシタ絶縁膜の薄
膜化による容量増大においてネックとなる自然酸化膜等
の第1の酸化膜を除去し、その代わりに第1の酸化膜よ
りも誘電率が高く、しかも禁止帯幅の大きい酸化膜を形
成することにより容量の増大およびリーク電流の低下を
もたらすことにより、信頼性を向上させた容量素子の形
成方法を提供することを目的とする。
Therefore, the present invention removes the first oxide film such as a natural oxide film which becomes a bottleneck in increasing the capacitance by reducing the thickness of the capacitor insulating film, and instead has a higher dielectric constant than the first oxide film. In addition, an object of the present invention is to provide a method for forming a capacitance element with improved reliability by forming an oxide film having a large forbidden band width to increase capacitance and reduce leakage current.

【0009】[0009]

【課題を解決するための手段】上記課題は、片方の電極
キャパシタ絶縁膜/他方の電極から構成される容量素
子の片方の電極表面上に誘電率の低い自然酸化膜から成
第1の酸化膜が生じた半導体基板における容量素子の
形成方法であって、前記片方の電極を形成する材料膜よ
りも酸化物生成自由エネルギーの小さい材料膜を当該片
方の電極上の第1の酸化膜表面に形成する工程と、酸素
を供給しながら当該半導体基板を熱処理を行うことによ
り、誘電率の低い前記第1の酸化膜を改質して第1の酸
化膜よりも誘電率の高い第2の酸化膜を形成する工程
と、その後、前記第2の酸化膜表面に窒化シリコン膜を
形成する工程とを含むことを特徴とする容量素子の形成
方法によって解決される。
An object of the present invention is to form a natural oxide film having a low dielectric constant on one electrode surface of a capacitor composed of one electrode / a capacitor insulating film / the other electrode.
The first method of forming a capacitive element in a semiconductor substrate having an oxide film occurs, the pieces small material film of oxide formation free energy than the material film for forming the one electrode that
Forming a first oxide film surface on the square of the electrode, the oxygen
Heat treatment is performed on the semiconductor substrate while supplying the first oxide film, thereby modifying the first oxide film having a low dielectric constant to form the first acid film.
Forming a second oxide film having a higher dielectric constant than the oxide film, and thereafter , forming a silicon nitride film on the surface of the second oxide film.
And a forming step .

【0010】[0010]

【0011】更に、上記課題は本発明によれば、片方の
電極を形成する材料膜を多結晶シリコンとし、片方の電
極を形成する材料膜よりも酸化物生成自由エネルギーの
小さい材料膜をアルミニウムとすることを特徴とする容
量素子の形成方法によって好適に解決される。
Further, according to the present invention, according to the present invention, a material film forming one electrode is made of polycrystalline silicon, and a material film having a lower free energy of oxide generation than aluminum is used as a material film forming one electrode. It is preferably solved by a method for forming a capacitor, which is characterized in that

【0012】[0012]

【作用】本発明によれば、図2(a)に示すように、容
量素子の片方の電極(下部電極)8の表面上に第1の酸
化膜9が形成された容量素子において、図2(b)に示
すように、片方の電極8の材料膜よりも酸化物生成自由
エネルギーの小さい材料膜11を、第1の酸化膜9の表
面上に形成した後に、図2(c)に示すように熱処理を
行なうことにより、第1の酸化膜9と材料膜11を反応
させて第2の酸化膜12を形成する。材料膜11の酸化
物生成自由エネルギーが片方の電極8の材料膜よりも小
さいので、片方の電極8の材料膜の酸化物である第1の
酸化膜9の酸素が材料膜11と化合させて第2の酸化膜
12を形成することができる。これにより、第1の酸化
膜を改質させて第1の酸化膜よりも誘電率の大きく、禁
止帯幅の広い第2の酸化膜12を容量素子の絶縁膜とし
て形成することができ、容量の増大および信頼性を向上
させることができる。
According to the present invention, as shown in FIG. 2A, in a capacitor in which a first oxide film 9 is formed on the surface of one electrode (lower electrode) 8 of the capacitor, FIG. As shown in FIG. 2B, after forming a material film 11 having a smaller free energy of oxide generation than the material film of one electrode 8 on the surface of the first oxide film 9, FIG. By performing the heat treatment as described above, the first oxide film 9 reacts with the material film 11 to form the second oxide film 12. Since the free energy of oxide formation of the material film 11 is smaller than that of the material film of the one electrode 8, oxygen of the first oxide film 9 which is an oxide of the material film of the one electrode 8 is combined with the material film 11. The second oxide film 12 can be formed. Thus, the first oxide film is modified to form the second oxide film 12 having a larger dielectric constant than the first oxide film and a wide band gap as an insulating film of the capacitor, and And the reliability can be improved.

【0013】また、本発明によれば、酸素を供給しなが
ら熱処理を行なうことにより、材料膜11が完全に酸化
され、第2の酸化膜12のみにより片方の電極8の表面
を好適に被うことができる。
Further, according to the present invention, by performing the heat treatment while supplying oxygen, the material film 11 is completely oxidized, and the surface of one electrode 8 is suitably covered only by the second oxide film 12. be able to.

【0014】更に、本発明によれば、片方の電極8を形
成する材料膜を多結晶シリコンとし、片方の電極8を形
成する材料膜よりも酸化物生成自由エネルギーの小さい
材料膜11をアルミニウムとすることにより、第1の酸
化膜であるSiO2よりも第2の酸化膜である酸化アル
ミニウム12の方が誘電率が大きく、禁止帯幅の広い絶
縁膜を好適に形成することができる。
Further, according to the present invention, the material film forming one electrode 8 is made of polycrystalline silicon, and the material film 11 having a smaller free energy of oxide generation than the material film forming one electrode 8 is made of aluminum. By doing so, an insulating film having a higher dielectric constant and a wider band gap can be suitably formed in the aluminum oxide 12 as the second oxide film than in the SiO 2 as the first oxide film.

【0015】[0015]

【実施例】図1は、本発明による1つの実施例によって
形成されたDRAMのスタックトキャパシタの断面図で
ある。図1によれば、P型シリコン基板1に、フィール
ド酸化膜2、N+拡散層3、ポリシリコンからなるワー
ド線4、アルミニウムからなるビット線5、SiO2
6、層間絶縁膜7、ポリシリコンからなるキャパシタの
下部電極8、キャパシタの絶縁層として第2の酸化膜
(酸化アルミニウム)12およびSi34膜10、ポリ
シリコンからなるキャパシタの上部電極13がそれぞれ
形成されている。
FIG. 1 is a cross-sectional view of a stacked capacitor of a DRAM formed according to one embodiment of the present invention. According to FIG. 1, a field oxide film 2, an N + diffusion layer 3, a word line 4 made of polysilicon, a bit line 5 made of aluminum, an SiO 2 film 6, an interlayer insulating film 7, A lower electrode 8 of a capacitor made of silicon, a second oxide film (aluminum oxide) 12 and an Si 3 N 4 film 10 as an insulating layer of the capacitor, and an upper electrode 13 of a capacitor made of polysilicon are formed, respectively.

【0016】以下、本発明による実施例を図面に基づい
て説明する。
An embodiment according to the present invention will be described below with reference to the drawings.

【0017】図2は、本発明による1つの実施例を示
し、図1における下部電極8/第2の酸化膜(酸化アル
ミニウム)12、Si34膜10/上部電極13から構
成されるDRAMのキャパシタにおいて、キャパシタの
絶縁膜である第2の酸化膜(酸化アルミニウム)12お
よびSi34膜10を形成する工程における下部電極8
/第2の酸化膜(酸化アルミニウム)12、Si34
10の断面図である。
FIG. 2 shows an embodiment according to the present invention, and comprises a DRAM composed of a lower electrode 8 / second oxide film (aluminum oxide) 12, a Si 3 N 4 film 10 / an upper electrode 13 in FIG. The lower electrode 8 in the step of forming the second oxide film (aluminum oxide) 12 and the Si 3 N 4 film 10 which are the insulating films of the capacitor.
FIG. 2 is a sectional view of a second oxide film (aluminum oxide) 12 and a Si 3 N 4 film 10.

【0018】図2(a)は、ポリシリコンで形成された
下部電極8の表面上に第1の酸化膜(SiO2)9が形
成された状態を示している。この第1の酸化膜9は下部
電極8の表面洗浄処理後に生じた自然酸化膜である。
2(b)に示すように、シリコンよりも酸化生成自由エ
ネルギーの小さい物質であるアルミニウム金属11をC
VD法により第1の酸化膜(SiO2)9の表面上に1
〜2nmの厚さに形成する。
FIG. 2A shows a state in which a first oxide film (SiO 2 ) 9 is formed on the surface of a lower electrode 8 made of polysilicon. This first oxide film 9 is
This is a natural oxide film formed after the surface cleaning treatment of the electrode 8. As shown in FIG. 2 (b), aluminum metal 11, which is a substance having a lower free energy of oxidation generation than silicon, is replaced with C.
The first oxide film (SiO 2 ) 9 is formed on the surface of the first oxide film 9 by the VD method.
It is formed to a thickness of about 2 nm.

【0019】次に、酸素を加え熱処理を行なうと、図2
(c)に示すように第1の酸化膜(SiO2)9の酸素
とアルミニウム11が反応し、第2の酸化膜12として
酸化アルミニウムを形成し、未反応のアルミニウムも供
給した酸素と反応し酸化アルミニウムとなる。更に、第
1の酸化膜(SiO2)9のシリコンは下部電極8の上
に堆積し、第1の酸化膜(SiO2)9は改質される。
Next, when heat treatment is performed by adding oxygen, FIG.
As shown in (c), oxygen in the first oxide film (SiO 2 ) 9 reacts with aluminum 11 to form aluminum oxide as the second oxide film 12, and unreacted aluminum also reacts with the supplied oxygen. It becomes aluminum oxide. Furthermore, the first oxide film silicon (SiO 2) 9 is deposited on the lower electrode 8, the first oxide film (SiO 2) 9 is modified.

【0020】次に、図2(d)に示すように、減圧CV
D法によりSi34膜10を第2の酸化膜(酸化アルミ
ニウム)12の表面上に形成する。
Next, as shown in FIG.
By the method D, a Si 3 N 4 film 10 is formed on the surface of the second oxide film (aluminum oxide) 12.

【0021】本実施例では、シリコンよりも酸化物生成
自由エネルギーの小さい物質としてアルミニウムを用い
たが、酸化アルミニウムは比誘電率が約8とSi34
7よりも大きく、容量を増加させることができる。
In this embodiment, aluminum is used as a substance having a lower free energy of oxide formation than silicon. However, aluminum oxide has a relative dielectric constant of about 8 which is larger than 7 of Si 3 N 4 and increases the capacity. be able to.

【0022】更に、禁止帯幅約10eVとSiO2より
も大きく、リーク電流を防ぎ信頼性向上にも寄与する。
Further, the forbidden band width is about 10 eV, which is larger than that of SiO 2 , thereby preventing a leak current and contributing to an improvement in reliability.

【0023】また、シリコンよりも酸化物生成自由エネ
ルギーの小さい物質にはTi、Ce、Mg、Caなどが
あり、これらの酸化物の誘電率および禁止帯幅の性質よ
り適用可能となり、更にシリコン以外の電極形成材料に
も、その酸化物の性質により適用可能となる。
Materials having a lower free energy of oxide formation than silicon include Ti, Ce, Mg, Ca, etc., which are applicable due to the dielectric constant and bandgap properties of these oxides. It can be applied to the electrode forming material described above due to the nature of the oxide.

【0024】また、片方の電極/絶縁膜/他方の電極が
横に並んだ構造をもつ容量素子においても適用可能とな
る。
The present invention is also applicable to a capacitor having a structure in which one electrode / insulating film / the other electrode is arranged side by side.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
容量素子の片方の電極を形成する材料膜よりも酸化物生
成自由エネルギーの小さい材料膜を自然酸化膜から成る
第1の酸化膜の表面上に形成した後に、酸素を供給しな
がら半導体基板を熱処理を行うことにより、この第1の
酸化膜を改質して第1の酸化膜よりも誘電率の高い第2
の酸化膜を形成し、更に、第2の酸化膜表面に窒化シリ
コン膜を形成するようになされるこの構成によって、
誘電率の低い自然酸化膜から成る第1の酸化膜を、より
誘電率の高い第2の酸化膜に改質することができ、この
第2の第2の酸化膜上に窒化シリコン膜を積層して成る
キャパシタ絶縁膜を有する容量素子を再現性良く製造す
ることができる。しかも、キャパシタ絶縁膜の高誘電体
化により蓄積容量の増加および、第2の酸化膜のNa +
バリヤ効果等によって容量素子の信頼性を向上させるこ
とができる。
As described above, according to the present invention,
Oxide is produced more than the material film that forms one electrode of the capacitor.
A material film with low free energy of formation consists of a natural oxide film
After forming on the surface of the first oxide film, do not supply oxygen.
By subjecting the semiconductor substrate to heat treatment,
The second oxide film is modified to have a higher dielectric constant than the first oxide film.
Oxide film is formed on the surface of the second oxide film.
A cone film is formed . With this configuration,
A first oxide film made of a natural oxide film having a low dielectric constant
It can be modified into a second oxide film having a high dielectric constant.
A silicon nitride film is laminated on a second second oxide film.
Manufacture capacitors with capacitor insulation film with good reproducibility
Can be Moreover, the high dielectric of the capacitor insulating film
Increases the storage capacity and increases the Na + of the second oxide film.
Improve the reliability of the capacitive element by barrier effect, etc.
Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例によって形成されたDR
AMスタックトキャパシタの断面図である。
FIG. 1 shows a DR formed according to one embodiment of the present invention.
It is sectional drawing of an AM stacked capacitor.

【図2】本発明による一実施例を示し、図1に示すDR
AMスタックトキャパシタの絶縁膜形成工程における断
面図である。
FIG. 2 shows an embodiment according to the present invention, wherein the DR shown in FIG.
It is sectional drawing in the insulating film formation process of AM stacked capacitor.

【図3】従来の方法によるDRAMスタックトキャパシ
タの断面図である。
FIG. 3 is a cross-sectional view of a DRAM stacked capacitor according to a conventional method.

【図4】図3に示すDRAMスタックトキャパシタの絶
縁膜形成工程における断面図である。
FIG. 4 is a cross-sectional view illustrating a step of forming an insulating film of the DRAM stacked capacitor shown in FIG. 3;

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 フィールド酸化膜 3 N+拡散層 4 ワード線(ポリシリコン) 5 ビット線(アルミニウム) 6 SiO2膜 7 層間絶縁膜 8 片方の電極(下部電極) 9 第1の酸化膜(SiO2) 10 Si34膜 11 材料膜(アルミニウム) 12 第2の酸化膜(酸化アルミニウム) 13 他方の電極(上部電極)Reference Signs List 1 P-type silicon substrate 2 Field oxide film 3 N + diffusion layer 4 Word line (polysilicon) 5 Bit line (aluminum) 6 SiO 2 film 7 Interlayer insulating film 8 One electrode (lower electrode) 9 First oxide film ( SiO 2 ) 10 Si 3 N 4 film 11 Material film (aluminum) 12 Second oxide film (aluminum oxide) 13 The other electrode (upper electrode)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 27/04 (58)調査した分野(Int.Cl.7,DB名) H01L 27/108 H01L 21/316 H01L 21/318 H01L 21/822 H01L 21/8242 H01L 27/04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 identification code FI H01L 27/04 (58) Investigated field (Int.Cl. 7 , DB name) H01L 27/108 H01L 21/316 H01L 21/318 H01L 21/822 H01L 21/8242 H01L 27/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 片方の電極/キャパシタ絶縁膜/他方の
電極から構成される容量素子の片方の電極表面上に誘電
率の低い自然酸化膜から成る第1の酸化膜が生じた半導
体基板における容量素子の形成方法であって、 前記片方の電極を形成する材料膜よりも酸化物生成自由
エネルギーの小さい材料膜を当該片方の電極上の第1の
酸化膜表面に形成する工程と、酸素を供給しながら当該半導体基板を 熱処理を行うこと
により、誘電率の低い前記第1の酸化膜を改質して第1
の酸化膜よりも誘電率の高い第2の酸化膜を形成する工
程と、その後、 前記第2の酸化膜表面に窒化シリコン膜を形成する工程
とを含むことを特徴とする容量素子の形成方法。
A dielectric is formed on the surface of one electrode of a capacitor composed of one electrode / capacitor insulating film / the other electrode.
A semiconductor in which a first oxide film made of a natural oxide film having a low rate is formed
A method of forming a capacitive element in the body substrate, forming a low material film of oxide formation free energy than the material film for forming the one electrode on the first surface of the oxide film on the one electrode Heat-treating the semiconductor substrate while supplying oxygen to modify the first oxide film having a low dielectric constant to form the first oxide film .
Forming a second oxide film having a dielectric constant higher than that of the second oxide film, and thereafter forming a silicon nitride film on the surface of the second oxide film. Element formation method.
【請求項2】 前記片方の電極を形成する材料膜を多結
晶シリコンとし、前記 酸化物生成自由エネルギーの小さい材質膜をアルミ
ニウム金属とすることを特徴とする請求項1記載の容量
素子の形成方法。
Wherein the material film for forming the one electrode and the polycrystalline silicon, the method of forming the capacitor element of claim 1, wherein the small material film with the oxide formation free energy, characterized in that the aluminum metal .
JP00313592A 1992-01-10 1992-01-10 Method of forming capacitive element Expired - Fee Related JP3180404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00313592A JP3180404B2 (en) 1992-01-10 1992-01-10 Method of forming capacitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00313592A JP3180404B2 (en) 1992-01-10 1992-01-10 Method of forming capacitive element

Publications (2)

Publication Number Publication Date
JPH05190792A JPH05190792A (en) 1993-07-30
JP3180404B2 true JP3180404B2 (en) 2001-06-25

Family

ID=11548912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00313592A Expired - Fee Related JP3180404B2 (en) 1992-01-10 1992-01-10 Method of forming capacitive element

Country Status (1)

Country Link
JP (1) JP3180404B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465297B1 (en) * 2000-10-05 2002-10-15 Motorola, Inc. Method of manufacturing a semiconductor component having a capacitor
EP1570525B1 (en) * 2002-12-09 2015-12-02 Imec Method for forming a dielectric stack

Also Published As

Publication number Publication date
JPH05190792A (en) 1993-07-30

Similar Documents

Publication Publication Date Title
US5182232A (en) Metal silicide texturizing technique
KR100246277B1 (en) Capacitor incorporated in semiconductor device and method for forming the same
US5985730A (en) Method of forming a capacitor of a semiconductor device
US6300215B1 (en) Methods of forming integrated circuit capacitors having composite titanium oxide and tantalum pentoxide dielectric layers therein
JP2893009B2 (en) Highly insulating composite thin film for memory applications
KR100282413B1 (en) Thin film formation method using nitrous oxide gas
US6656789B2 (en) Capacitor for highly-integrated semiconductor memory devices and a method for manufacturing the same
JP2731611B2 (en) Manufacturing methods for capacitors and integrated circuits
JP3694410B2 (en) Method of manufacturing a capacitor in an integrated circuit
US5365096A (en) Thin film capacitive memory device with a high dielectric constant
US6207488B1 (en) Method for forming a tantalum oxide capacitor using two-step rapid thermal nitridation
KR20010021015A (en) Methods of fabricating an integrated circuit device with composite oxide dielectric
JPH06151751A (en) Semiconductor integrated circuit device and manufacture thereof
JP3683764B2 (en) Capacitor manufacturing method for memory device
JP3180404B2 (en) Method of forming capacitive element
JPH06310654A (en) Semiconductor device and its manufacture
JP3303788B2 (en) Method for manufacturing electrode structure of semiconductor integrated circuit
JP2750159B2 (en) Method for manufacturing semiconductor device
JPH0689968A (en) Capacitor and its manufacture
JP3014014B2 (en) Semiconductor device and manufacturing method thereof
US6228699B1 (en) Cross leakage of capacitors in DRAM or embedded DRAM
JPS63300518A (en) Formation of dielectric film
JPH02129956A (en) Manufacture of semiconductor memory device
KR100795683B1 (en) Method of manufacturing a capacitor in semiconductor device
JP2000208742A (en) Integrated circuit device having composite oxide dielectric substance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees