JP3180158B2 - Electrostatic image developer - Google Patents

Electrostatic image developer

Info

Publication number
JP3180158B2
JP3180158B2 JP08047091A JP8047091A JP3180158B2 JP 3180158 B2 JP3180158 B2 JP 3180158B2 JP 08047091 A JP08047091 A JP 08047091A JP 8047091 A JP8047091 A JP 8047091A JP 3180158 B2 JP3180158 B2 JP 3180158B2
Authority
JP
Japan
Prior art keywords
fine particles
particles
composite fine
resin
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08047091A
Other languages
Japanese (ja)
Other versions
JPH04291353A (en
Inventor
弘 山崎
健二 山根
一寿 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP08047091A priority Critical patent/JP3180158B2/en
Publication of JPH04291353A publication Critical patent/JPH04291353A/en
Application granted granted Critical
Publication of JP3180158B2 publication Critical patent/JP3180158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば電子写真法、静
電記録法、静電印刷法等に適用される静電像現像剤に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic image developer applied to, for example, electrophotography, electrostatic recording, electrostatic printing, and the like.

【0002】[0002]

【従来の技術】例えば電子写真用の静電像現像剤として
は、従来、クリーニング性を改良するために無機微粒子
を添加する技術が知られている(特開昭60− 32060号、
同60−136752号公報参照)。しかし、無機微粒子を添加
する手段では、研磨効果が大きいために感光体自体を損
傷しその耐久性を低下させる問題がある。一方、有機微
粒子をクリーニング助剤として用いる技術が提案されて
いる(特開昭53− 84741号、同60−186851号公報参
照)。しかし、これらの技術では、良好なクリーニング
を達成するために必要な感光体を研磨する効果がいまだ
不十分である。このため、感光体表面にトナー等の付着
物が堆積する現象が起こり、感光体の耐久性が低下する
等の不具合が発生する。これに対して、着色粒子より小
径で平均粒径が0.05〜3.0 μmの樹脂微粒子の表面に無
機微粒子が固着されてなる複合微粒子を用いる技術が提
案された(特開昭64− 91143公報参照)。この技術は、
複合微粒子の研磨作用により感光体の表面を良好な状態
に維持し、クリーニング性の向上を図るものである。
2. Description of the Related Art For example, as an electrostatic image developer for electrophotography, a technique of adding inorganic fine particles in order to improve the cleaning property has been known (Japanese Patent Application Laid-Open No. 60-32060;
No. 60-136752). However, the method of adding the inorganic fine particles has a problem that the photoreceptor itself is damaged and its durability is reduced due to a large polishing effect. On the other hand, a technique using organic fine particles as a cleaning aid has been proposed (see JP-A-53-84741 and JP-A-60-186851). However, these techniques are still insufficient in the effect of polishing the photoreceptor necessary for achieving good cleaning. For this reason, a phenomenon in which deposits such as toner accumulate on the surface of the photoconductor occurs, and problems such as a decrease in durability of the photoconductor occur. On the other hand, there has been proposed a technique using composite fine particles in which inorganic fine particles are fixed to the surface of resin fine particles having a diameter smaller than that of the colored particles and an average particle diameter of 0.05 to 3.0 μm (see JP-A-64-91143). . This technology is
The purpose is to maintain the surface of the photoreceptor in a good state by the polishing action of the composite fine particles and to improve the cleaning property.

【0003】[0003]

【発明が解決しようとする課題】しかし、特開昭64− 9
1143号公報の現像剤では、複合微粒子が着色粒子中に遊
離した状態で存在するため、着色粒子との摩擦帯電によ
り着色粒子の帯電性を変化させる問題がある。すなわ
ち、複合微粒子は着色粒子に対していわばキャリアとし
て作用することとなるため、複合微粒子の帯電性によっ
ては着色粒子の帯電量を低下させ、画像濃度の低下を招
来する問題がある。特に、薄層形成の現像方式において
は、逆極性に帯電した着色粒子に起因して現像剤の搬送
性が悪化する問題がある。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open No.
In the developer disclosed in Japanese Patent No. 1143, since the composite fine particles are present in the colored particles in a free state, there is a problem that the chargeability of the colored particles is changed by frictional charging with the colored particles. That is, since the composite fine particles act as a carrier for the colored particles, so to speak, there is a problem that the charge amount of the colored particles is reduced depending on the chargeability of the composite fine particles, and the image density is reduced. In particular, in the developing method of forming a thin layer, there is a problem that the transportability of the developer is deteriorated due to the colored particles charged to the opposite polarity.

【0004】本発明は以上のような事情に基づいてなさ
れたものであって、その目的は、複合微粒子の摩擦帯電
性を制御することによって、着色粒子の帯電量を安定さ
せ、画像濃度の低下を招来せず、搬送性の優れた静電像
現像剤を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to control the triboelectric charging of composite fine particles to stabilize the charge amount of colored particles and reduce image density. Accordingly, an object of the present invention is to provide an electrostatic image developer having excellent transportability without inducing.

【0005】[0005]

【課題を解決するための手段】以上の目的を達成するた
め、本発明の静電像現像剤は、少なくとも樹脂と着色剤
とからなる着色粒子と、樹脂微粒子の表面を均一に覆う
よう当該表面に無機微粒子が固着されてなり、前記着色
粒子中に遊離した状態で存在する複合微粒子とを含有し
てなる静電像現像剤において、前記複合微粒子の摩擦帯
電量H(Q/M)と、前記着色粒子の摩擦帯電量T(Q
/M)とが下記式およびで示す関係を満たすことを
特徴とする1成分系トナーからなる静電像現像剤であ
。 式 〔T(Q/M)〕×〔H(Q/M)〕0 式 20≧|H(Q/M)|
In order to achieve the above objects, the electrostatic image developer of the present invention comprises a colored particle comprising at least a resin and a coloring agent, and the surface of the resin fine particle being uniformly covered. And a triboelectric charge amount H (Q / M) of the composite fine particles in an electrostatic image developer containing inorganic fine particles fixed to the colored particles and composite fine particles existing in a free state in the colored particles. The triboelectric charge amount T (Q
/ M) and the electrostatic image developer der consisting of one-component toner and satisfies the relation represented by the following formula and
You . Formula [T (Q / M)] × [H (Q / M)] < 0 Formula 20 ≧ | H (Q / M) |

【0006】[0006]

【作用】本発明者らが鋭意研究を重ねた結果、着色粒子
中に遊離した状態で存在する複合微粒子の帯電性を制御
することによって着色粒子の帯電量を向上させ、画像濃
度の向上を図ることができ、逆極性の着色粒子の発生を
防止でき、安定な画像を形成できることを見出して、本
発明を完成したものである。すなわち、樹脂微粒子の表
面を均一に覆うよう当該表面に無機微粒子が固着されて
複合微粒子が構成され、当該複合微粒子と着色粒子の帯
電極性が異なるので、着色粒子に対して複合微粒子がい
わゆるキャリアとしての機能を発揮し、着色粒子の帯電
量を増加することができ、画像濃度が向上する。また、
複合微粒子の帯電量の絶対値が20μC/g以下であるの
で、着色粒子の帯電量が過剰とならず、従って、非画像
部が現像されるおそれがなく、また着色粒子の搬送性が
経時的に低下するおそれもない。
[Function] As a result of intensive studies conducted by the present inventors, colored particles were obtained.
By controlling the chargeability of the composite fine particles that are present in a free state, the charge amount of the colored particles can be improved, the image density can be improved, the generation of colored particles of the opposite polarity can be prevented, and stable The inventors have found that an image can be formed and completed the present invention. That is, the table of resin fine particles
Inorganic fine particles are fixed on the surface so as to cover the surface uniformly
Since the composite fine particles are constituted and the charged polarity of the composite fine particles and the colored particles is different, the composite fine particles exhibit a function as a so-called carrier with respect to the colored particles, and can increase the charge amount of the colored particles, and the image density can be increased. Is improved. Also,
Since the absolute value of the charge amount of the composite fine particles is 20 μC / g or less, the charge amount of the colored particles does not become excessive, and therefore, there is no possibility that the non-image area is developed, and the transportability of the colored particles increases with time. There is no danger of lowering.

【0007】以下、本発明を具体的に説明する。本発明
においては、複合微粒子の摩擦帯電量H(Q/M)と、
着色粒子の摩擦帯電量T(Q/M)とが前記式および
で示す関係を満たす複合微粒子と着色粒子とを用いて
現像剤を構成する。複合微粒子の摩擦帯電量H(Q/
M)および着色粒子の摩擦帯電量T(Q/M)は、次の
ようにして測定されたものである。すなわち、キャリア
として鉄粉「DSP−138」(パウダーテック社製)
を用い、これに着色粒子および複合微粒子をそれぞれ3
重量%となるように混合し、これを温度20℃、相対湿度
50%の環境条件において、振とう機を用いて20分間振と
うする。次いで、同じ環境条件下で、メッシュからいわ
ゆる窒素気流によって分離して発生する帯電量、すなわ
ちブローオフ帯電量を、ブローオフ粉体帯電量測定装置
「TB−200」(東芝ケミカル社製)により測定す
る。
Hereinafter, the present invention will be described specifically. In the present invention, the triboelectric charge amount H (Q / M) of the composite fine particles,
The developer is constituted by using the composite fine particles and the colored particles that satisfy the relationship represented by the above formula and the triboelectric charge amount T (Q / M) of the colored particles. The triboelectric charge amount H (Q /
M) and the triboelectric charge T (Q / M) of the colored particles were measured as follows. That is, iron powder "DSP-138" (made by Powder Tech) as a carrier
With colored particles and composite fine particles,
Weight percent, and mix at a temperature of 20 ° C and relative humidity.
Shake for 20 minutes using a shaker under 50% environmental conditions. Then, under the same environmental conditions, the charge amount generated by separating from the mesh by a so-called nitrogen gas flow, that is, the blow-off charge amount, is measured by a blow-off powder charge amount measuring apparatus “TB-200” (manufactured by Toshiba Chemical Corporation).

【0008】なお、薄層形成の現像方式においては、着
色粒子の帯電は、主として現像スリーブとの摩擦によっ
てなされるので、実際の摩擦帯電量は現像スリーブとの
摩擦によって発生する帯電量を測定することが好まし
い。しかし、実際上、現像スリーブとの摩擦帯電量は現
像スリーブ自体からエアーブローを行うことにより測定
できるが、発生する帯電量自体が非常に小さい値となっ
てしまうため、測定誤差が大きい。そこで、本発明で
は、上記のように現像スリーブの表面と類似の材料すな
わち鉄粉との摩擦帯電により複合微粒子および着色粒子
の摩擦帯電量を定義したものである。鉄粉によれば、容
易にかつ信頼性良く摩擦帯電量を測定することができ
る。
In the developing method of forming a thin layer, the colored particles are charged mainly by friction with the developing sleeve. Therefore, the actual amount of frictional charge is measured by the amount of charge generated by friction with the developing sleeve. Is preferred. However, in practice, the amount of frictional charge with the developing sleeve can be measured by performing air blowing from the developing sleeve itself. However, since the amount of generated charge itself becomes a very small value, a measurement error is large. Therefore, in the present invention, as described above, the frictional charge amount of the composite fine particles and the colored particles is defined by the frictional charge with a material similar to the surface of the developing sleeve, that is, with the iron powder. According to the iron powder, the triboelectric charge amount can be easily and reliably measured.

【0009】複合微粒子の摩擦帯電量H(Q/M)と着
色粒子の摩擦帯電量T(Q/M)が上記式およびを
満たすことにより、着色粒子の帯電量を向上させ、濃度
の向上、さらには逆極性の着色粒子の発生を防止したカ
ブリのない安定な画像を得ることができる。しかし、上
記式を満たさない場合、すなわち着色粒子と複合微粒
子の帯電極性が同極性である場合には、着色粒子の帯電
量が低下し、経時的に画像濃度が低下する。また、現像
バイアスに従って複合微粒子が現像スリーブ表面に付着
し現像スリーブ表面を汚染する現象が発生する。このた
め、バイアスの効果が減少し、濃度が低下する現象が発
生し、また着色粒子層が過多となり、着色粒子により感
光体が激しく擦過され、非画像部にも着色粒子が付着し
いわゆるカブリが発生する問題がある。また、上記式
を満たさない場合、すなわち複合微粒子の摩擦帯電量H
(Q/M)の絶対値が20μC/gを超える場合には、着
色粒子の摩擦帯電量が過多となり、非画像部も現像され
る現象が発生し、いわゆるカブリが発生する。また、経
時的に着色粒子の搬送性が変化し、現像スリーブ上の搬
送量が過多となってしまう。この結果、さらに画像にカ
ブリが発生する原因となる。
When the triboelectric charge amount H (Q / M) of the composite fine particles and the triboelectric charge amount T (Q / M) of the colored particles satisfy the above expression, the charge amount of the colored particles is improved, and the density is improved. Further, it is possible to obtain a stable image without fogging in which generation of colored particles having the opposite polarity is prevented. However, when the above formula is not satisfied, that is, when the charged polarity of the colored particles and the composite fine particles is the same, the charged amount of the colored particles decreases, and the image density decreases with time. Further, a phenomenon occurs in which the composite fine particles adhere to the surface of the developing sleeve according to the developing bias and contaminate the surface of the developing sleeve. For this reason, the effect of the bias is reduced, the phenomenon that the concentration is reduced occurs, and the colored particle layer becomes excessive, the photoreceptor is violently rubbed by the colored particles, and the colored particles adhere to the non-image area, so-called fog is formed. There are problems that occur. When the above expression is not satisfied, that is, the triboelectric charge amount H of the composite fine particles
If the absolute value of (Q / M) exceeds 20 μC / g, the amount of triboelectricity of the colored particles becomes excessive, causing a phenomenon that the non-image area is also developed, and so-called fog occurs. In addition, the transportability of the colored particles changes over time, and the transport amount on the developing sleeve becomes excessive. As a result, fog is further caused in the image.

【0010】本発明に用いられる複合微粒子は、樹脂微
粒子の表面に無機微粒子が固着されてなるものである。
複合微粒子を構成する樹脂微粒子としては、クリーニン
グ性および摩擦帯電性の観点から、平均粒径が 0.1〜7
μmであることが好ましく、特に 0.2〜5μmが好まし
い。なお、樹脂微粒子の平均粒径とは、体積基準の平均
粒径をいい、湿式分散機を備えたレーザ回折式粒度分布
測定装置「ヘロス(HELOS )」 (シンパテック(SYMPAT
EC)社製) により測定されたものである。ただし、測定
前に、樹脂微粒子の数10mgを界面活性剤と共に水50mlに
分散させ、その後超音波ホモジナイザー(出力 150W)
で発熱による再凝集に注意しながら1〜10分間分散させ
る前処理を行った。
The composite fine particles used in the present invention are obtained by fixing inorganic fine particles to the surface of resin fine particles.
The resin fine particles constituting the composite fine particles have an average particle diameter of 0.1 to 7 from the viewpoint of cleaning properties and triboelectric charging properties.
μm, particularly preferably 0.2 to 5 μm. The average particle size of the resin fine particles refers to the volume-based average particle size, and is a laser diffraction type particle size distribution analyzer “HELOS” equipped with a wet disperser (SYMPAT (SYMPAT)
EC). However, before measurement, several 10 mg of resin fine particles were dispersed in 50 ml of water together with a surfactant, and then an ultrasonic homogenizer (output 150 W)
Pre-dispersion was performed for 1 to 10 minutes while paying attention to re-aggregation due to heat generation.

【0011】樹脂微粒子を構成する樹脂材料としては、
特に限定されず種々の樹脂が用いられる。例えば、スチ
レン、α−メチルスチレン、ジビニルベンゼン等からな
るスチレン系樹脂、メチルメタクリレート、エチルメタ
クリレート、ブチルメタクリレート、2−エチルヘキシ
ルメタクリレート、メチルアクリレート、エチルアクリ
レート、ブチルアクリレート等からなるアクリル系樹
脂、スチレン、α−メチルスチレン、ジビニルベンゼン
等のスチレン系単量体と、メチルメタクリレート、エチ
ルメタクリレート、ブチルメタクリレート、2−エチル
ヘキシルメタクリレート、メチルアクリレート、エチル
アクリレート、ブチルアクリレート等のアクリル系単量
体との共重合体であるスチレン・アクリル系共重合体、
ジメチルアミノメタクリレート、ジエチルアミノメタク
リレート、ビニルピリジン等を含有する含窒素樹脂、テ
フロン、フッ化ビニリデン等を含有する含フッ素樹脂、
ポリプロピレン、ポリエチレン等のポリオレフィン類、
ナイロン樹脂、ウレタン樹脂、ウレア樹脂等が挙げられ
る。
[0011] As a resin material constituting the resin fine particles,
Various resins are used without any particular limitation. For example, styrene resin such as styrene, α-methylstyrene, divinylbenzene, etc., methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, methyl acrylate, ethyl acrylate, acrylic resin such as butyl acrylate, styrene, α A copolymer of a styrene monomer such as methylstyrene and divinylbenzene with an acrylic monomer such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, methyl acrylate, ethyl acrylate and butyl acrylate; A styrene-acrylic copolymer,
Dimethylaminomethacrylate, diethylaminomethacrylate, nitrogen-containing resin containing vinylpyridine and the like, Teflon, fluorine-containing resin containing vinylidene fluoride and the like,
Polyolefins such as polypropylene and polyethylene,
Nylon resin, urethane resin, urea resin and the like can be mentioned.

【0012】以上の樹脂から構成される樹脂微粒子を得
るための手段としては、単量体を使用して乳化重合、懸
濁重合等の重合反応によって合成する方法、樹脂自体を
熱等によって熔融し噴霧し微粒子化する方法、水中など
へ分散することによって所定の粒子サイズにする方法等
が挙げられる。なお、重合法によって樹脂微粒子を製造
する場合には、帯電性を安定化するために、樹脂微粒子
表面に界面活性剤等が残留しないように、いわゆるソー
プフリー重合法が好適に使用されるが、懸濁安定剤を除
去する方法でもよい。
Means for obtaining resin fine particles composed of the above resins include a method of synthesizing a monomer by a polymerization reaction such as emulsion polymerization or suspension polymerization using a monomer, or melting the resin itself by heat or the like. Examples thereof include a method of atomizing by spraying and a method of dispersing in water or the like to obtain a predetermined particle size. In the case where the resin fine particles are produced by a polymerization method, a so-called soap-free polymerization method is preferably used so that a surfactant or the like does not remain on the surface of the resin fine particles in order to stabilize the chargeability. A method of removing the suspension stabilizer may be used.

【0013】複合微粒子を構成する無機微粒子として
は、クリーニング性を高める観点から、平均粒径が1次
平均粒径で5〜200 nmのものが好ましく、特に10〜100
nmのものが好ましい。なお、無機微粒子の1次平均粒径
は、走査型電子顕微鏡により観察して、画像解析により
測定される個数平均粒径をいう。無機微粒子を構成する
無機材料としては、各種無機酸化物、炭化物、窒化物、
ホウ化物等が好適に用いられる。例えば、シリカ、アル
ミナ、チタニア、ジルコニア、チタン酸バリウム、チタ
ン酸アルミニウム、チタン酸ストロンチウム、チタン酸
マグネシウム、チタン酸カルシウム、酸化亜鉛、酸化ク
ロム、酸化セリウム、酸化アンチモン、酸化タングステ
ン、酸化スズ、酸化テルル、酸化マンガン、酸化ホウ
素、炭化ケイ素、炭化ホウ素、炭化チタン、窒化ケイ
素、窒化チタン、窒化チタン、窒化ホウ素等が挙げられ
る。
As the inorganic fine particles constituting the composite fine particles, those having an average primary particle diameter of 5 to 200 nm are preferable, and especially 10 to 100 nm, from the viewpoint of enhancing the cleaning property.
nm is preferred. In addition, the primary average particle diameter of the inorganic fine particles refers to a number average particle diameter measured by image analysis observed with a scanning electron microscope. As the inorganic material constituting the inorganic fine particles, various inorganic oxides, carbides, nitrides,
Borides and the like are preferably used. For example, silica, alumina, titania, zirconia, barium titanate, aluminum titanate, strontium titanate, magnesium titanate, calcium titanate, zinc oxide, chromium oxide, cerium oxide, antimony oxide, tungsten oxide, tin oxide, tellurium oxide , Manganese oxide, boron oxide, silicon carbide, boron carbide, titanium carbide, silicon nitride, titanium nitride, titanium nitride, boron nitride and the like.

【0014】複合微粒子の摩擦帯電量H(Q/M)を制
御するためには、これらの無機材料の帯電性が重要であ
る。帯電性を制御する方法としては、樹脂微粒子の表面
固着する材料自体を変化し帯電性を制御する方法が有
効である。すなわち、着色粒子との帯電極性が異なる材
料を選択することが基本である。また、帯電性の異なる
材料を組合せて表面に固着する方法も有力な方法であ
る。無機微粒子の表面をチタンカップリング剤、シラン
カップリング剤、長鎖カルボン酸、界面活性剤等の表面
処理剤により処理することにより帯電性を変化させるこ
ともできる。
In order to control the triboelectric charge H (Q / M) of the composite fine particles, the chargeability of these inorganic materials is important. As a method of controlling the chargeability, a method of controlling the chargeability by changing the material itself fixed to the surface of the resin fine particles is effective. That is, it is fundamental to select a material having a different charging polarity from the colored particles. Further, a method of combining materials having different charging properties and fixing them to the surface is also an effective method. The chargeability can also be changed by treating the surface of the inorganic fine particles with a surface treatment agent such as a titanium coupling agent, a silane coupling agent, a long-chain carboxylic acid, or a surfactant.

【0015】チタンカップリング剤としては、テトラブ
チルチタネート、テトラオクチルチタネート、イソプロ
ピルトリイソステアロイルチタネート、イソプロピルト
リデシルベンゼンスルフォニルチタネート、ビス(ジオ
クチルパイロフォスフェート)オキシアセテートチタネ
ート等が挙げられる。シランカップリング剤としては、
γ−(2−アミノエチル)アミノプロピルトリメトキシ
シラン、γ−(2−アミノアチル)アミノプロピルメチ
ルジメトキシシラン、アミノシラン、γ−メタクリロキ
シプロピルトリメトキシシラン、N−β−(N−ビニル
ベンジルアミノエチル)γ−アミノプロピルトリメトキ
シシラン塩酸塩、ヘキサメチルジシラザン、メチルトリ
メトキシシラン、メチルトリエトキシシラン、ビニルト
リアセトキシシラン、γ−メルカプトプロピルトリメト
キシシラン、γ−アニリノプロピルトリメトキシシラ
ン、メチルトリクロロシラン、ジメチルジクロロシラ
ン、トリメチルクロロシラン、γ−グリシドキシプロピ
ルトリメトキシシラン等が挙げられる。
Examples of the titanium coupling agent include tetrabutyl titanate, tetraoctyl titanate, isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, and bis (dioctyl pyrophosphate) oxyacetate titanate. As a silane coupling agent,
γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoacetyl) aminopropylmethyldimethoxysilane, aminosilane, γ-methacryloxypropyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl) γ-aminopropyltrimethoxysilane hydrochloride, hexamethyldisilazane, methyltrimethoxysilane, methyltriethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, methyltrichlorosilane , Dimethyldichlorosilane, trimethylchlorosilane, and γ-glycidoxypropyltrimethoxysilane.

【0016】長鎖カルボン酸としては、ウンデシル酸、
ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシ
ル酸、ステアリン酸、パルミチン酸、ヘプタデシル酸、
アラキン酸、モンタン酸、オレイン酸、リノール酸、リ
ノレン酸、アラキドン酸等の炭素数10以上の長鎖カルボ
ン酸が挙げられる。界面活性剤としては、ソルビタン系
界面活性剤、スルフォン酸系界面活性剤、リン酸系界面
活性剤、フッ素系界面活性剤等の一般的な界面活性剤が
挙げられる。
The long-chain carboxylic acids include undecylic acid,
Lauric acid, tridecylic acid, myristic acid, pentadecylic acid, stearic acid, palmitic acid, heptadecylic acid,
Long-chain carboxylic acids having 10 or more carbon atoms, such as arachinic acid, montanic acid, oleic acid, linoleic acid, linolenic acid, and arachidonic acid. Examples of the surfactant include general surfactants such as a sorbitan surfactant, a sulfonic acid surfactant, a phosphoric acid surfactant, and a fluorine surfactant.

【0017】以上の表面処理において、アミノ基を含有
する材料で処理された無機微粒子は、一般に正帯電性の
ものとなり、これらの無機微粒子を用いて得られた複合
微粒子は正帯電性となる。また、一般にフッ素等のハロ
ゲン元素を含有する材料で処理された無機微粒子は負帯
電性を示す。これら材料の帯電性は、鉄粉キャリアとの
摩擦帯電量を測定することにより使用の可否が判定でき
る。無機微粒子の表面を処理する場合、無機微粒子と上
記表面処理剤とを混合し、溶媒等へ分散し、加熱等を行
い、所定時間処理を行った後に濾過乾燥を行うとよい。
In the above-mentioned surface treatment, the inorganic fine particles treated with the material containing an amino group generally have positive charging properties, and the composite fine particles obtained by using these inorganic fine particles have positive charging properties. In general, inorganic fine particles treated with a material containing a halogen element such as fluorine exhibit negative chargeability. The chargeability of these materials can be determined by measuring the amount of triboelectric charge with the iron powder carrier. When treating the surface of the inorganic fine particles, it is preferable to mix the inorganic fine particles and the above-mentioned surface treating agent, disperse them in a solvent or the like, perform heating or the like, perform treatment for a predetermined time, and then perform filtration and drying.

【0018】また、上記の有機材料のほかに無機材料を
使用して表面の処理を行うことも可能である。すなわ
ち、アルミナ、酸化鉄等の材料を陽極酸化、メッキ等の
方法によって処理することによって表面を処理すること
もできる。さらに表面に固着する材料を2種以上混合
し、帯電量を調整することも可能である。すなわち、帯
電量が正帯電の材料と負帯電の材料とを適量使用して帯
電量を調整してもよい。さらに、樹脂微粒子自体の帯電
性が複合微粒子の帯電性に影響する場合もある。例え
ば、樹脂微粒子として大きな正帯電性を示す含窒素樹脂
微粒子では、この帯電性が複合微粒子の帯電性に影響
し、正帯電性の複合微粒子を得ることができる。また、
負帯電性の大きなフッ素系樹脂を使用した場合には負帯
電性の複合微粒子を得ることが容易となる。
It is also possible to treat the surface using an inorganic material in addition to the above-mentioned organic material. That is, the surface can be treated by treating a material such as alumina or iron oxide by a method such as anodic oxidation or plating. Further, it is also possible to adjust the charge amount by mixing two or more materials that adhere to the surface. That is, the charge amount may be adjusted by using an appropriate amount of a positively charged material and a negatively charged material. Further, the chargeability of the resin fine particles themselves may affect the chargeability of the composite fine particles. For example, in the case of nitrogen-containing resin fine particles exhibiting a large positive chargeability as resin fine particles, this chargeability affects the chargeability of the composite fine particles, and positive chargeable composite fine particles can be obtained. Also,
When a fluorine-based resin having a large negative chargeability is used, it is easy to obtain negatively chargeable composite fine particles.

【0019】樹脂微粒子の表面に無機微粒子を固着する
方法としては、樹脂微粒子と無機微粒子とを混合し、静
電的に樹脂微粒子の表面に無機微粒子を付着させ、次い
で機械的エネルギーを付与して樹脂微粒子の表面に無機
微粒子を固着する方法等が挙げられる。無機微粒子を静
電的に樹脂微粒子の表面に付着させる方法としては、樹
脂微粒子と無機微粒子とを、例えばタービュラーミキサ
ー、レーデイゲミキサー、ヘンシェルミキサー等の混合
機等に投入し撹拌する方法等が挙げられる。
As a method of fixing the inorganic fine particles to the surface of the resin fine particles, the resin fine particles and the inorganic fine particles are mixed, the inorganic fine particles are electrostatically adhered to the surface of the resin fine particles, and then mechanical energy is applied. A method of fixing inorganic fine particles to the surface of resin fine particles can be used. Examples of a method for electrostatically adhering the inorganic fine particles to the surface of the resin fine particles include a method in which the resin fine particles and the inorganic fine particles are put into a mixer such as a turbuler mixer, a Laedige mixer, a Henschel mixer or the like, and stirred. No.

【0020】機械的エネルギーを付与する方法として
は、衝撃式粉砕機を改良した「ハイブリダイザー」(奈
良機械製作所製)、「オングミル」(ホソカワミクロン
社製)、「クリプトロン」(川崎重工社製)等を用いる
方法が挙げられる。この機械的エネルギーの大小によっ
て固着の程度が変化するが、この機械的エネルギーは、
例えば撹拌羽根等の周速、撹拌時間、処理時の品温等に
よって調整することができる。
As methods for applying mechanical energy, "Hybridizer" (manufactured by Nara Kikai Seisakusho), "Ongmill" (manufactured by Hosokawa Micron), and "Kryptron" (manufactured by Kawasaki Heavy Industries), which are improved impact-type pulverizers, are used. And the like. The degree of sticking changes depending on the magnitude of this mechanical energy, but this mechanical energy is
For example, it can be adjusted by the peripheral speed of the stirring blade, the stirring time, the product temperature at the time of processing, and the like.

【0021】樹脂微粒子に対する無機微粒子の添加量
は、樹脂微粒子の表面を均一に覆うことができる量であ
ればよい。具体的には、無機微粒子の比重によっても異
なるが、樹脂微粒子 100重量部に対して5〜100 重量部
が好ましく、特に5〜80重量部が好ましい。例えば無機
微粒子の添加量が過小のときは、複合微粒子の表面が不
均一となり、複合微粒子の帯電性が変化して目的の帯電
量を得ることが困難となることがあり、さらに複合微粒
子の表面に樹脂部分が多く存在することとなるため、研
磨効果が低下する場合がある。一方、無機微粒子の添加
量が過大のときは、樹脂微粒子表面に対して無機微粒子
の量が過多となり、遊離した無機微粒子が発生し、複合
微粒子の適正な帯電性を変化させ、所定の帯電量を得る
ことが困難となる場合があり、さらに過剰の無機微粒子
が感光体に付着してクリーニング不良を発生する場合が
ある。
The amount of the inorganic fine particles to be added to the fine resin particles may be an amount capable of uniformly covering the surface of the fine resin particles. Specifically, although it varies depending on the specific gravity of the inorganic fine particles, it is preferably 5 to 100 parts by weight, particularly preferably 5 to 80 parts by weight, per 100 parts by weight of the resin fine particles. For example, when the addition amount of the inorganic fine particles is too small, the surface of the composite fine particles becomes non-uniform, and the chargeability of the composite fine particles may change, making it difficult to obtain a desired charge amount. Since a large amount of resin is present in the resin, the polishing effect may be reduced. On the other hand, when the amount of addition of the inorganic fine particles is excessive, the amount of the inorganic fine particles becomes excessive with respect to the surface of the resin fine particles, free inorganic fine particles are generated, and the appropriate chargeability of the composite fine particles is changed, and the predetermined charge amount is changed. In some cases, it may be difficult to obtain the toner, and in addition, excessive inorganic fine particles may adhere to the photoreceptor, resulting in poor cleaning.

【0022】着色粒子に対する複合微粒子の添加量は、
研磨効果によるクリーニング性を高め、かつ着色粒子の
摩擦帯電性を阻害しない観点から、着色粒子に対して0.
01〜5重量%が好ましく、特に0.01〜2重量%が好まし
い。また、疎水性シリカ等の流動性改良剤や脂肪酸金属
塩を添加して使用することも可能である。添加混合を行
う場合、着色粒子に固着する状態ではなく、遊離した状
態で存在することが好ましい。また、混合を行う場合に
は、タービュラーミキサー、ヘンシェルミキサー等を使
用して混合することが好ましい。
The amount of the composite fine particles added to the colored particles is as follows:
From the viewpoint of enhancing the cleaning property by the polishing effect, and not hindering the triboelectric charging property of the colored particles, the content of the colored particles is 0.1%.
It is preferably from 0.01 to 5% by weight, particularly preferably from 0.01 to 2% by weight. It is also possible to add a fluidity improver such as hydrophobic silica or a fatty acid metal salt before use. When adding and mixing, it is preferable that the compound be present in a free state, not in a state of being fixed to the colored particles. When mixing, it is preferable to use a turbular mixer, Henschel mixer or the like.

【0023】着色粒子は、結着樹脂と、着色剤と、必要
に応じて用いられる荷電制御剤等のその他の添加剤とを
含有してなり、その平均粒径は、通常、1〜30μmの範
囲である。着色粒子自体の帯電極性は現像方式によって
決定される。荷電制御剤の種類、量、樹脂との組合せ等
によって着色粒子の帯電性を制御することができる。着
色粒子を構成する結着樹脂としては、特に限定されず、
従来公知の種々の樹脂が用いられる。例えばポリエステ
ル樹脂、スチレン・アクリル系樹脂等が代表的なものと
して挙げられる。着色粒子を構成する着色剤としては、
特に限定されず、従来公知の種々の着色剤が用いられ
る。例えばカーボンブラック、ニグロシン染料、アニリ
ンブルー、カルコオイルブルー、クロムイエロー、ウル
トラマリンブルー、デュポンオイルレッド、キノリンイ
エロー、メチレンブルークロライド、フタロシアニンブ
ルー、マラカイトグリーンオクサレート、ランプブラッ
ク、ローズベンガル等が挙げられる。
The colored particles contain a binder resin, a colorant, and other additives such as a charge control agent used as needed. The average particle size is usually 1 to 30 μm. Range. The charging polarity of the colored particles themselves is determined by the developing method. The chargeability of the colored particles can be controlled by the type and amount of the charge control agent, the combination with the resin, and the like. The binder resin constituting the colored particles is not particularly limited,
Conventionally known various resins are used. For example, polyester resin, styrene / acrylic resin and the like are typical examples. As a coloring agent constituting the colored particles,
There is no particular limitation, and various conventionally known coloring agents are used. Examples include carbon black, nigrosine dye, aniline blue, calco oil blue, chrome yellow, ultramarine blue, Dupont oil red, quinoline yellow, methylene blue chloride, phthalocyanine blue, malachite green oxalate, lamp black, rose bengal, and the like.

【0024】その他の添加剤としては、荷電制御剤例え
ばサリチル酸誘導体等の荷電制御剤、低分子量ポリオレ
フィン等の定着性改良剤等が挙げられる。また、磁性ト
ナーを得る場合には、着色粒子中に添加剤として磁性体
粒子が含有される。かかる磁性体粒子としては、平均粒
径が 0.1〜2μmのフェライト、マグネタイト等の粒子
が用いられる。磁性体粒子の添加量は、複合微粒子等の
外部添加剤を除いた状態の着色粒子の通常20〜70重量%
となる範囲である。
Other additives include charge control agents such as salicylic acid derivatives, and fixability improvers such as low molecular weight polyolefins. When a magnetic toner is obtained, magnetic particles are contained in the colored particles as an additive. As such magnetic particles, particles such as ferrite and magnetite having an average particle diameter of 0.1 to 2 μm are used. The amount of the magnetic particles added is usually 20 to 70% by weight of the colored particles excluding external additives such as composite fine particles.
Is the range.

【0025】また、トナーの流動性を高める観点から、
着色粒子と複合微粒子のほかに、さらに無機微粒子を外
部から添加してトナーを構成してもよい。かかる無機微
粒子としては、特に、シランカップリング剤、チタンカ
ップリング剤等により疎水化処理されたシリカ微粒子等
が好ましい。
Further, from the viewpoint of enhancing the fluidity of the toner,
In addition to the colored particles and the composite fine particles, inorganic fine particles may be further added from the outside to constitute the toner. As such inorganic fine particles, particularly, silica fine particles which have been subjected to a hydrophobic treatment with a silane coupling agent, a titanium coupling agent or the like are preferable.

【0026】本発明の現像剤は、従来公知の種々の現像
方法と組合せて使用することができるが、特に、薄層形
成方式の現像方法に好適に使用することができる。薄層
を形成するためには、現像スリーブ表面にトナー層を薄
く形成することが必要である。ここで、薄層とは、現像
領域において20〜500 μmのトナー層をいう。この程度
の薄層を現像スリーブ上に形成するためには、トナーを
現像スリーブ表面に搬送する際に20〜500 μm程度の高
さに規制することが必要である。この場合、トナーの磁
気力を利用することができる磁性ブレードを使用する方
法が好ましい。また、現像スリーブ表面にトナー層規制
棒を押圧する方式のトナー層規制方法もある。この場合
は磁力によってこの規制棒を現像スリーブ表面に押圧す
る方法が好ましい。さらに、ウレタンブレードやリン青
銅板等を現像スリーブ表面に接触させて薄層を形成する
ことも可能である。現像スリーブ表面と感光体表面の間
隙は、トナー層の層厚よりも大きくても小さくてもよ
い。さらに現像バイアスはDC成分のみでもよいが、A
Cバイアスを同時に印加してもよい。
Although the developer of the present invention can be used in combination with various conventionally known developing methods, it can be suitably used particularly for a thin layer forming type developing method. In order to form a thin layer, it is necessary to form a thin toner layer on the surface of the developing sleeve. Here, the thin layer refers to a toner layer of 20 to 500 μm in the development area. In order to form such a thin layer on the developing sleeve, it is necessary to regulate the toner to a height of about 20 to 500 μm when transporting the toner to the surface of the developing sleeve. In this case, a method using a magnetic blade capable of utilizing the magnetic force of the toner is preferable. There is also a toner layer regulating method of pressing a toner layer regulating rod against the surface of the developing sleeve. In this case, it is preferable to press the regulating rod against the surface of the developing sleeve by a magnetic force. Furthermore, a urethane blade, a phosphor bronze plate or the like can be brought into contact with the surface of the developing sleeve to form a thin layer. The gap between the surface of the developing sleeve and the surface of the photoconductor may be larger or smaller than the thickness of the toner layer. Further, the developing bias may be a DC component only.
C bias may be applied simultaneously.

【0027】[0027]

【実施例】以下、さらに具体的な実施例について説明す
るが、本発明はこれらの実施例に限定されるものではな
い。なお、以下において「部」は「重量部」を表す。
EXAMPLES Hereinafter, more specific examples will be described, but the present invention is not limited to these examples. In the following, “parts” means “parts by weight”.

【0028】複合微粒子H−1 乳化重合法によって合成したスチレン・アクリル樹脂微
粒子(平均粒径=1.8μm)からなる樹脂微粒子 100部
と、酸化チタン(1次平均粒径=15nm)をラウリン酸で
表面処理してなる無機微粒子17部とを添加し、これらを
高速撹拌装置により混合して、無機微粒子を樹脂微粒子
の表面に静電的に付着させた。次いで、これらの混合物
を「ハイブリダイザー」(奈良機械製作所製)に移し
て、機械的衝撃力を付与し、樹脂微粒子の表面に無機微
粒子を固着させて、複合微粒子H−1を得た。
Composite Fine Particles H-1 100 parts of resin fine particles composed of styrene / acrylic resin fine particles (average particle size = 1.8 μm) synthesized by an emulsion polymerization method and titanium oxide (primary average particle size = 15 nm) were treated with lauric acid. 17 parts of the inorganic fine particles subjected to the surface treatment were added, and these were mixed by a high-speed stirring device to electrostatically adhere the inorganic fine particles to the surface of the resin fine particles. Next, the mixture was transferred to a “Hybridizer” (manufactured by Nara Machinery Co., Ltd.), and a mechanical impact was applied to fix the inorganic fine particles on the surface of the resin fine particles to obtain composite fine particles H-1.

【0029】複合微粒子H−2 複合微粒子H−1において、無機微粒子を、酸化チタン
(1次平均粒径=15nm)を酸化アルミニウムで表面処理
してなる無機微粒子に変更したほかは同様にして複合微
粒子H−2を得た。
Composite Fine Particles H-2 Composite fine particles H-2 were prepared in the same manner as composite fine particles H-1, except that inorganic fine particles were obtained by surface-treating titanium oxide (primary average particle size = 15 nm) with aluminum oxide. Fine particles H-2 were obtained.

【0030】複合微粒子H−3 複合微粒子H−1において、無機微粒子を、酸化チタン
(1次平均粒径=15nm)をテトラオクチルチタネートで
表面処理してなる無機微粒子に変更したほかは同様にし
て複合微粒子H−3を得た。
Composite Fine Particles H-3 Composite fine particles H-1 were prepared in the same manner as composite fine particles H-1 except that the inorganic fine particles were changed to inorganic fine particles obtained by surface-treating titanium oxide (primary average particle size = 15 nm) with tetraoctyl titanate. Composite fine particles H-3 were obtained.

【0031】複合微粒子H−4 複合微粒子H−1において、無機微粒子を、酸化アルミ
ニウム(1次平均粒径=20nm)からなる無機微粒子に変
更したほかは同様にして複合微粒子H−4を得た。
Composite Fine Particles H-4 Composite fine particles H-4 were obtained in the same manner as composite fine particles H-1, except that the inorganic fine particles were changed to inorganic fine particles made of aluminum oxide (primary average particle size = 20 nm). .

【0032】複合微粒子H−5 複合微粒子H−1において、無機微粒子を、酸化チタン
(1次平均粒径=15nm)をステアリン酸で表面処理して
なる無機微粒子に変更したほかは同様にして複合微粒子
H−5を得た。
Composite Fine Particles H-5 Composite fine particles H-5 were prepared in the same manner as composite fine particles H-1, except that inorganic fine particles were obtained by surface-treating titanium oxide (primary average particle size = 15 nm) with stearic acid. Fine particles H-5 were obtained.

【0033】複合微粒子H−6 複合微粒子H−1において、無機微粒子を、酸化チタン
(1次平均粒径=15nm)をステアリン酸と酸化アルミニ
ウムで表面処理してなる無機微粒子に変更したほかは同
様にして複合微粒子H−6を得た。
Composite Fine Particles H-6 The same as the composite fine particles H-1, except that the inorganic fine particles were changed to inorganic fine particles obtained by surface-treating titanium oxide (primary average particle size = 15 nm) with stearic acid and aluminum oxide. Thus, composite fine particles H-6 were obtained.

【0034】複合微粒子H−7 複合微粒子H−1において、無機微粒子を、酸化チタン
(1次平均粒径=15nm)をラウリン酸と酸化アルミニウ
ムで表面処理してなる無機微粒子に変更したほかは同様
にして複合微粒子H−7を得た。
Composite Fine Particles H-7 The same as the composite fine particles H-1, except that the inorganic fine particles were changed to inorganic fine particles obtained by surface-treating titanium oxide (primary average particle size = 15 nm) with lauric acid and aluminum oxide. Thus, composite fine particles H-7 were obtained.

【0035】複合微粒子H−8 複合微粒子H−1において、無機微粒子を、酸化チタン
(1次平均粒径=15nm)をステアリン酸と酸化鉄で表面
処理してなる無機微粒子に変更したほかは同様にして複
合微粒子H−8を得た。
Composite Fine Particles H-8 The same as the composite fine particles H-1 except that the inorganic fine particles were changed to inorganic fine particles obtained by surface-treating titanium oxide (primary average particle size = 15 nm) with stearic acid and iron oxide. Thus, composite fine particles H-8 were obtained.

【0036】複合微粒子H−9 複合微粒子H−1において、無機微粒子を、酸化チタン
(1次平均粒径=15nm)をフッ素界面活性剤で表面処理
してなる無機微粒子に変更したほかは同様にして複合微
粒子H−9を得た。
Composite Fine Particles H-9 Composite fine particles H-9 were prepared in the same manner as composite fine particles H-1, except that the inorganic fine particles were changed to inorganic fine particles obtained by surface-treating titanium oxide (primary average particle size = 15 nm) with a fluorine surfactant. Thus, composite fine particles H-9 were obtained.

【0037】複合微粒子H−10 複合微粒子H−1において、無機微粒子を、酸化チタン
(1次平均粒径=15nm)をヘキサメチルシラザンで表面
処理してなる無機微粒子に変更したほかは同様にして複
合微粒子H−10を得た。
Composite Fine Particles H-10 Composite fine particles H-10 were prepared in the same manner as composite fine particles H-1, except that the inorganic fine particles were changed to inorganic fine particles obtained by surface-treating titanium oxide (primary average particle size = 15 nm) with hexamethylsilazane. Composite fine particles H-10 were obtained.

【0038】複合微粒子H−11 複合微粒子H−1において、無機微粒子を、酸化アルミ
ニウム(1次平均粒径=15nm)をラウリン酸で表面処理
してなる無機微粒子に変更したほかは同様にして複合微
粒子H−11を得た。
Composite Fine Particles H-11 Composite fine particles H-11 were prepared in the same manner as composite fine particles H-1, except that the inorganic fine particles were changed to inorganic fine particles obtained by surface-treating aluminum oxide (primary average particle size = 15 nm) with lauric acid. Fine particles H-11 were obtained.

【0039】複合微粒子H−12 複合微粒子H−1において、無機微粒子を、酸化ジルコ
ニウム(1次平均粒径=15nm)をラウリン酸で表面処理
してなる無機微粒子に変更したほかは同様にして複合微
粒子H−12を得た。
Composite Fine Particles H-12 Composite fine particles H-12 were prepared in the same manner as composite fine particles H-1, except that inorganic fine particles obtained by surface-treating zirconium oxide (primary average particle size = 15 nm) with lauric acid were used. Fine particles H-12 were obtained.

【0040】複合微粒子H−13 複合微粒子H−1において、樹脂微粒子を、水中懸濁反
応によって得られたナイロン粒子(平均粒径=2.5 μ
m)に変更したほかは同様にして複合微粒子H−13を
得た。
Composite Fine Particles H-13 In the composite fine particles H-1, the resin fine particles were mixed with nylon particles (average particle size = 2.5 μm) obtained by a suspension reaction in water.
m-13) to obtain composite fine particles H-13 in the same manner.

【0041】複合微粒子H−14 複合微粒子H−1において、表面をメチル基で処理した
疎水性シリカ1部をさらに添加したほかは同様にして複
合微粒子H−14を得た。
Composite Fine Particles H-14 Composite fine particles H-14 were obtained in the same manner as composite fine particles H-14, except that 1 part of hydrophobic silica whose surface was treated with a methyl group was further added.

【0042】複合微粒子H−15 複合微粒子H−1において、無機微粒子を、疎水性シリ
カ(1次平均粒径=12nm)に変更したほかは同様にして
複合微粒子H−15を得た。
Composite Fine Particle H-15 Composite fine particle H-15 was obtained in the same manner as composite fine particle H-1, except that the inorganic fine particles were changed to hydrophobic silica (primary average particle size = 12 nm).

【0043】磁性着色粒子1 ポリエステル樹脂 100部と、磁性粉(マグネタイト)50
部と、負帯電性荷電制御剤(サリチル酸誘導体)1部と
を混合し、通常の方法によって、練肉、粉砕、分級し、
平均粒径が11μmの磁性着色粒子1を得た。
Magnetic colored particles 1 100 parts of polyester resin and 50 magnetic powder (magnetite)
Part, and 1 part of a negatively chargeable charge control agent (salicylic acid derivative) are mixed, and the mixture is ground, crushed, and classified by an ordinary method.
Magnetic colored particles 1 having an average particle size of 11 μm were obtained.

【0044】磁性着色粒子2 磁性着色粒子1において、ポリエステル樹脂を、スチレ
ン・アクリル樹脂に変更したほかは同様にして平均粒径
が11.3μmの磁性着色粒子2を得た。
Magnetic Colored Particles 2 Magnetic colored particles 2 having an average particle size of 11.3 μm were obtained in the same manner as in magnetic colored particles 1 except that the polyester resin was changed to styrene / acrylic resin.

【0045】磁性着色粒子3 磁性着色粒子1において、負帯電性荷電制御剤を、正帯
電性荷電制御剤(ニグロシン染料)に変更したほかは同
様にして平均粒径が11.2μmの磁性着色粒子3を得た。
Magnetic Colored Particles 3 In the magnetic colored particles 1, magnetic colored particles 3 having an average particle size of 11.2 μm were similarly prepared except that the negatively chargeable charge control agent was changed to a positively chargeable charge control agent (nigrosine dye). I got

【0046】帯電量の測定 上記複合微粒子および磁性着色粒子の帯電量を次のよう
にして測定した。複合微粒子については、各複合微粒子
1部を鉄粉「DSP−138」(パウダーテック社製)
100部に添加して、振とう機「ヤヨイ式 NewYS−3」
(株式会社ヤヨイ製)により、角度45°、200 回転/分
の条件にて20分振とうした後、常温常湿(20℃、50%R
H)の環境条件下でブローオフ法により複合微粒子の帯
電量を測定した。磁性着色粒子については、添加量を3
部としたほかは上記と同様にして磁性着色粒子の帯電量
を測定した。測定結果を後記表1に示す。
Measurement of Charge Amount The charge amounts of the composite fine particles and the magnetic colored particles were measured as follows. Regarding the composite fine particles, one part of each composite fine particle was replaced with iron powder “DSP-138” (manufactured by Powder Tech).
Add to 100 parts, shaker "Yayoi type NewYS-3"
After shaking for 20 minutes at an angle of 45 ° and 200 revolutions / minute by Yayoi Co., Ltd., room temperature and normal humidity (20 ° C, 50% R)
The charge amount of the composite fine particles was measured by a blow-off method under the environmental condition of H). For magnetic colored particles, the addition amount is 3
The charge amount of the magnetic colored particles was measured in the same manner as described above, except that the above-mentioned parts were used. The measurement results are shown in Table 1 below.

【0047】[0047]

【表1】 [Table 1]

【0048】実施例1〜13および比較例1〜6 後記表2に示す組合せで、磁性着色粒子 100部と、疎水
性シリカ 0.4部と、複合微粒子 0.5部とを混合し、1成
分系トナーからなる本発明の現像剤および比較現像剤を
得た。ただし、表2において、「R−972」は、デグサ
社製の製品名である。
Examples 1 to 13 and Comparative Examples 1 to 6 In a combination shown in Table 2 below, 100 parts of magnetic colored particles, 0.4 parts of hydrophobic silica, and 0.5 parts of composite fine particles were mixed, and a one-component toner was prepared. Thus, a developer according to the present invention and a comparative developer were obtained. However, in Table 2, "R-972" is a product name manufactured by Degussa.

【0049】[0049]

【表2】 [Table 2]

【0050】評価 有機光導電性感光体と、マグネットローラ固定型の現像
器を備え、ACバイアスを印加する接触現像方式を採用
したレーザープリンター「LP−3015」(コニカ(株)
製)を使用して評価を行った。薄層の形成手段として
は、磁性ブレード方式のトナー層規制方式を採用し、ト
ナー層の厚みを 150μmとした。現像器は、直径25mmの
現像スリーブで内部に4極のマグネットローラーを有
し、マグネットローラーは固定で、現像スリーブのみを
回転する方式である。感光体の極性は負帯電性である。
実施例1〜12および比較例1〜3,5で得られた現像
剤については、感光体電位− 500Vの条件で、− 250V
のDCバイアスを付与し、さらに周波数2kHz、電圧
−50VP-P 〜− 450VP-P のACバイアスを付与して評
価した。一方、実施例13および比較例4,6で得られ
た現像剤については、感光体電位− 500Vの条件で、−
40VのDCバイアスを付与し、さらに周波数2kHz、
電圧− 240VP-P 〜+ 160VP-P のACバイアスを付与
して評価した。なお、現像スリーブと感光体表面とのギ
ャップは 100μmである。評価は、2万回の印字を常温
常湿(20℃、50%RH)の環境条件で行い、濃度の推
移、現像剤の搬送性、カブリを評価した。濃度は、反射
濃度測定機「RD−914」(マクベス社製)を使用し
て反射濃度を測定した。以上の結果を後記表3に示す。
Evaluation A laser printer "LP-3015" (Konica Corporation) equipped with an organic photoconductive photoreceptor and a developing device fixed to a magnet roller and employing a contact developing system applying an AC bias.
Was used for evaluation. As a means for forming a thin layer, a toner layer regulation system of a magnetic blade system was adopted, and the thickness of the toner layer was set to 150 μm. The developing device is a system in which a developing sleeve having a diameter of 25 mm and a four-pole magnet roller is provided inside, and the magnet roller is fixed and only the developing sleeve is rotated. The photoreceptor has negative polarity.
With respect to the developers obtained in Examples 1 to 12 and Comparative Examples 1 to 3 and 5, the photoconductor potential was -250 V under the condition of -500 V.
The DC bias was applied, further frequency 2 kHz, were evaluated by applying an AC bias voltage -50V PP ~- 450V PP. On the other hand, with respect to the developers obtained in Example 13 and Comparative Examples 4 and 6, under the condition of the photoconductor potential of -500 V,-
A DC bias of 40 V is applied, and a frequency of 2 kHz,
The evaluation was performed by applying an AC bias of a voltage of −240 V PP to +160 V PP . The gap between the developing sleeve and the surface of the photoconductor is 100 μm. The evaluation was carried out 20,000 times under normal temperature and normal humidity (20 ° C., 50% RH) printing conditions, and the change in density, developer transportability and fog were evaluated. The density was measured using a reflection density measuring device “RD-914” (manufactured by Macbeth). The above results are shown in Table 3 below.

【0051】[0051]

【表3】 [Table 3]

【0052】以上の表3から明らかなように、本発明の
現像剤によれば、濃度も安定し、カブリもない安定した
画像が得られる。一方、比較現像剤は、濃度の変化が大
きく、現像スリーブにも付着物が発生している。カブリ
も発生し安定した画像が得られない。
As is clear from Table 3 above, according to the developer of the present invention, a stable image having a stable density and no fog can be obtained. On the other hand, the comparative developer has a large change in concentration, and also has a deposit on the developing sleeve. Fog also occurs and a stable image cannot be obtained.

【0053】[0053]

【発明の効果】以上詳細に説明したように、本発明によ
れば、複合微粒子の摩擦帯電性を制御することによっ
て、着色粒子の帯電量を安定させ、画像濃度の低下を招
来せず、搬送性の優れた静電像現像剤を提供することが
できる。
As described above in detail, according to the present invention, by controlling the triboelectric charging property of the composite fine particles, the charge amount of the colored particles is stabilized, and the transport of the composite particles is prevented without lowering the image density. An electrostatic image developer having excellent properties can be provided.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−2962(JP,A) 特開 昭64−91143(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-2962 (JP, A) JP-A-64-91143 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも樹脂と着色剤とからなる着色
粒子と、 樹脂微粒子の表面を均一に覆うよう当該表面に無機微粒
子が固着されてなり、 前記着色粒子中に遊離した状態で存在する複合微粒子と
を含有してなる静電像現像剤において、 前記複合微粒子の摩擦帯電量H(Q/M)と、前記着色
粒子の摩擦帯電量T(Q/M)とが下記式およびで
示す関係を満たすことを特徴とする1成分系トナーから
なる静電像現像剤。 式 〔T(Q/M)〕×〔H(Q/M)〕0 式 20≧|H(Q/M)|
1. A composite particle comprising a colored particle comprising at least a resin and a colorant, and an inorganic fine particle fixed to the surface of the resin fine particle so as to uniformly cover the surface of the resin fine particle. Wherein the triboelectric charge amount H (Q / M) of the composite fine particles and the triboelectric charge amount T (Q / M) of the colored particles are represented by the following formula and From a one-component toner characterized by satisfying
The electrostatic image developer comprising. Formula [T (Q / M)] × [H (Q / M)] < 0 Formula 20 ≧ | H (Q / M) |
JP08047091A 1991-03-20 1991-03-20 Electrostatic image developer Expired - Lifetime JP3180158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08047091A JP3180158B2 (en) 1991-03-20 1991-03-20 Electrostatic image developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08047091A JP3180158B2 (en) 1991-03-20 1991-03-20 Electrostatic image developer

Publications (2)

Publication Number Publication Date
JPH04291353A JPH04291353A (en) 1992-10-15
JP3180158B2 true JP3180158B2 (en) 2001-06-25

Family

ID=13719152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08047091A Expired - Lifetime JP3180158B2 (en) 1991-03-20 1991-03-20 Electrostatic image developer

Country Status (1)

Country Link
JP (1) JP3180158B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092748A (en) 2011-10-26 2013-05-16 Cabot Corp Toner additives comprising composite particles
JP2014098799A (en) * 2012-11-14 2014-05-29 Ricoh Co Ltd External additive for toner, toner coated with the same, developer, toner storage container, and image forming apparatus
DE112014003546B4 (en) * 2013-07-31 2020-03-12 Canon Kabushiki Kaisha toner
JP6363202B2 (en) 2013-12-20 2018-07-25 キャボット コーポレイションCabot Corporation Metal oxide-polymer composite particles for chemical mechanical planarization

Also Published As

Publication number Publication date
JPH04291353A (en) 1992-10-15

Similar Documents

Publication Publication Date Title
EP0270063B1 (en) Developer for developing electrostatic latent image and image forming method
JPH037955A (en) Electrostatic charge image developing toner
KR100522611B1 (en) Electrophotographic developing agent
JP3180158B2 (en) Electrostatic image developer
JPH1195480A (en) Developer and developing device using that
US6203955B1 (en) Developing agent and image forming apparatus
JP3215980B2 (en) Electrostatic image developer and developing method
JPH06313980A (en) Developer
JPH0797243B2 (en) Electrophotographic developer
JP2001083731A (en) Electrostatic charge image developing dry developer and method for developing electrostatic charge image
JPH05303235A (en) Production of developer
JP3614031B2 (en) Magnetic toner for electrostatic image development
JPH0833681B2 (en) Toner composition
JP3884918B2 (en) Two-component developer and method for producing the same
JP3451852B2 (en) One-component developer and image forming method
JP3943786B2 (en) Toner and image forming method
JPH0756380A (en) Toner
JPH04291352A (en) Electrostatic charge image developer
JPH06208258A (en) Developing method
JP2003255689A (en) Two-component developing device, and process cartridge and two-component developing method using the two- component developing device
JPS6211864A (en) Electrophotographic developer
JP2824834B2 (en) Developer for developing electrostatic images
JPH0424646A (en) Electrostatic latent image developing toner
JP2002372801A (en) Toner for electrophotography, two-component developer, and image forming method and device using the same
JPH04333857A (en) Toner for developing electrostatic charge image

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000208

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

EXPY Cancellation because of completion of term