JP3178818B2 - Dechlorination method of chlorine-containing polymer composition - Google Patents

Dechlorination method of chlorine-containing polymer composition

Info

Publication number
JP3178818B2
JP3178818B2 JP08251999A JP8251999A JP3178818B2 JP 3178818 B2 JP3178818 B2 JP 3178818B2 JP 08251999 A JP08251999 A JP 08251999A JP 8251999 A JP8251999 A JP 8251999A JP 3178818 B2 JP3178818 B2 JP 3178818B2
Authority
JP
Japan
Prior art keywords
chlorine
polymer composition
containing polymer
hydrolysis
dechlorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08251999A
Other languages
Japanese (ja)
Other versions
JP2000273117A (en
Inventor
昌彦 尾形
知幸 市来
武利 木藤
Original Assignee
濱田重工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 濱田重工株式会社 filed Critical 濱田重工株式会社
Priority to JP08251999A priority Critical patent/JP3178818B2/en
Publication of JP2000273117A publication Critical patent/JP2000273117A/en
Application granted granted Critical
Publication of JP3178818B2 publication Critical patent/JP3178818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/26Removing halogen atoms or halogen-containing groups from the molecule

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリ塩化ビニル
(PVC)のような含塩素重合体組成物の脱塩素法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dechlorinating a chlorine-containing polymer composition such as polyvinyl chloride (PVC).

【0002】[0002]

【従来の技術】プラスチックは軽くて耐久性に富み、成
形性がよく化学的にも比較的安定で他の材料にない優れ
た特性を有しており、しかも安価であるため、日用品等
に広く使用されている。
2. Description of the Related Art Plastics are light and durable, have good moldability, are relatively chemically stable, have excellent properties not found in other materials, and are inexpensive. It is used.

【0003】しかしながら、その反面、廃棄物となった
ときは、この特性が裏目となり、一般家庭、各種事業
所、製造関連産業から廃棄される使用済み廃プラスチッ
クは腐らず嵩ばり、燃やすと混入しているポリ塩化ビニ
ル等から有害な塩素系化合物を発生し、このことに起因
して焼却炉を腐食させたり環境を汚染させたりする厄介
な問題を惹起する。
However, on the other hand, when it is turned into waste, this property is a backfire, and the used waste plastic discarded from ordinary households, various business establishments, and manufacturing-related industries is bulky without being spoiled, and is mixed when burned. Harmful chlorine compounds are generated from the polyvinyl chloride or the like, which causes a troublesome problem of corroding the incinerator and polluting the environment.

【0004】ところが、プラスチックを焼却処分する際
に発生する塩素系化合物による焼却炉の腐食を防止する
実用上有効な技術が確立しておらず、都市系廃棄プラス
チックの処理に際しては、ポリ塩化ビニル等の含塩素プ
ラスチックを分別除去し、その量を少なくして焼却して
いる。しかし、多量の廃棄プラスチックから含塩素プラ
スチックをほぼ完全に分別除去することが大変であるこ
とにも起因して、大部分が埋め立て処分されているのが
現状である。
However, no practically effective technology has been established to prevent the incinerator from being corroded by chlorine compounds generated during the incineration of plastics. The chlorine-containing plastic is separated and removed, and the amount is reduced and incinerated. However, it is currently difficult to separate and remove chlorine-containing plastics from a large amount of waste plastics almost completely.

【0005】廃プラスチックの利用を考えるとき、プラ
スチックの発熱量は10,000kcal/kgと高
く、塩素を除去すれば良質な重油代替燃料となる他、一
例として高炉における還元剤あるいは熱源として微粉炭
を代替できる。この高炉への利用法としては、廃プラス
チックを直径6mm程度の粒状にし熱風とともに高炉内
へ吹き込む方法があり、炉内の高温によってプラスチッ
クが瞬時にガス化し、これを鉄鉱石の還元剤として、ま
た、熱源として利用できる。高炉で溶銑を1トン造るの
に微粉炭を150kg使っているが、廃プラスチックを
利用できれば50kg/t・pigの微粉炭を廃プラス
チックで代替できる。日産5,000トンの高炉1基で
250t/日(8万トン/年)の廃プラスチックを利用
できることになる。
When considering the use of waste plastic, the calorific value of plastic is as high as 10,000 kcal / kg. If chlorine is removed, it becomes a high-quality fuel alternative to heavy oil. For example, pulverized coal is used as a reducing agent in a blast furnace or a heat source. Can be replaced. As a method of using the blast furnace, there is a method in which waste plastic is granulated to a diameter of about 6 mm and blown into the blast furnace together with hot air. Available as a heat source. 150 kg of pulverized coal is used to produce 1 ton of hot metal in a blast furnace, but if waste plastic can be used, 50 kg / t · pig of pulverized coal can be replaced with waste plastic. One 5,000-ton / day blast furnace can use 250 tons / day (80,000 tons / year) of waste plastic.

【0006】ところが、廃プラスチックを燃焼させる
と、その中に含まれているポリ塩化ビニルから腐食性の
強い塩素系化合物およびダイオキシンなどの人体に有害
な塩素系化合物が発生するので、燃焼に際しては前もっ
て脱塩素処理が必要となる。廃プラスチックの脱塩素法
として、通常、熱分解法が用いられているが、熱分解を
効率よく進行させるためには、200℃〜450℃とい
った高温領域で反応を行う必要があり、実用化が非常に
困難である。
However, when waste plastics are burned, highly corrosive chlorine-based compounds and dioxins and other harmful chlorine-based compounds are generated from the polyvinyl chloride contained in the waste plastics. Dechlorination is required. As a method for dechlorinating waste plastics, a thermal decomposition method is generally used. However, in order to promote thermal decomposition efficiently, it is necessary to perform a reaction in a high temperature range of 200 ° C. to 450 ° C. Very difficult.

【0007】この問題を解決するために、本願の出願人
は先に特願平10−143525号明細書において、可
塑剤を配合した含塩素重合体組成物を有機溶媒に溶解せ
しめ、得られた溶液を、常圧下で、且つ、常温から有機
溶媒の沸点までの温度域で加水分解する含塩素重合体組
成物の脱塩素法を提案した。
[0007] In order to solve this problem, the applicant of the present invention disclosed in Japanese Patent Application No. 10-143525, a chlorine-containing polymer composition containing a plasticizer was dissolved in an organic solvent. A method for dechlorination of a chlorine-containing polymer composition in which a solution is hydrolyzed under normal pressure and in a temperature range from room temperature to the boiling point of an organic solvent has been proposed.

【0008】[0008]

【発明が解決しようとする課題】ところが、この含塩素
重合体組成物の脱塩素法を工業的に実施するためには、
加水分解反応を温和な条件下で高い反応率下に行う手段
と、回収溶媒を再利用できるための手段を得ることが必
要である。
However, in order to industrially carry out the method for dechlorination of this chlorine-containing polymer composition,
It is necessary to obtain a means for performing the hydrolysis reaction under a high reaction rate under mild conditions and a means for reusing the recovered solvent.

【0009】本発明が解決しようとする課題は、含塩素
重合体組成物を有機溶媒に溶解せしめ、得られた溶液を
常圧下に常温乃至使用する有機溶媒の沸点までの温度域
で加水分解する脱塩素法において、高い反応率で脱塩素
が可能で、且つ、使用した溶媒を高収率で回収できると
ともに、これを再利用できる手段を提供することにあ
る。
The problem to be solved by the present invention is to dissolve a chlorine-containing polymer composition in an organic solvent and hydrolyze the resulting solution under normal pressure in a temperature range from normal temperature to the boiling point of the organic solvent to be used. In the dechlorination method, it is an object to provide means capable of dechlorination at a high reaction rate, recovering a used solvent in a high yield, and reusing the solvent.

【0010】[0010]

【課題を解決するための手段】本願の発明は、含塩素重
合体を、水溶性で、且つ、しかも非プロトン性極性を有
する有機溶媒に溶解せしめ、得られた溶液にアルカリ成
分を添加して、常圧下で、常温から使用する有機溶媒の
沸点までの温度域で加水分解する含塩素重合体組成物の
脱塩素法である
Means for Solving the Problems The invention of the present application is directed to chlorine-containing heavy
The coalescence is water-soluble and has aprotic polarity.
Dissolved in an organic solvent.
Of the organic solvent used at room temperature under normal pressure.
Of chlorine-containing polymer compositions that hydrolyze in the temperature range up to the boiling point
It is a dechlorination method .

【0011】また、加水分解缶内の溶液を攪拌あるいは
流動せしめることによって、脱塩素過程での脱塩素生成
物粒子を細分化するもので、これによって、高い反応率
での脱塩素を可能とし、また、他の発明は、加水分解に
よって生成した脱塩素化生成物を濾別した後に得られる
有機溶媒を水分調整した後、そのまま再利用して含塩素
重合体組成物の溶解反応に供することである。これによ
って、含塩素重合体組成物の溶解に使用した有機溶媒を
精製することなく数次に亘って再使用できる。
Further , the solution in the hydrolysis can is stirred or
Dechlorination generation in the dechlorination process by flowing
Material particles, which provide a high reaction rate
Dechlorination possible and then at, also, another aspect of the present invention, after the organic solvent obtained after filtering off the dechlorinated product produced by hydrolysis and moisture control, the chlorine-containing polymer composition was reused To dissolve the substance. Thereby, the organic solvent used for dissolving the chlorine-containing polymer composition can be reused for several orders without purification.

【0012】さらに、本願の他の発明は、回収し、再利
用する有機溶媒中の水分を除去し、アルカリ水溶液ある
いは固形アルカリを添加することの何れか一方または双
方を行ってアルカリ水溶液中の水分含有量比率を75%
以下に調整することである。さらに、加水分解反応に供
されるアルカリの量は、化学量論的必要量乃至その2倍
の範囲とすることが工業的なプロセスとして好ましい。
さらに好ましくは、化学量論的必要量の1.2倍〜2倍
の範囲内である。アルカリの量が化学量論的必要量の2
倍で効果が飽和し、それを超えるとコストを上昇せしめ
る。
Further, another invention of the present application is to remove water in an organic solvent to be recovered and reused, and to add one or both of an aqueous alkali solution and a solid alkali to remove the water in the aqueous alkali solution. 75% content ratio
The adjustment is as follows. Further, it is preferable as an industrial process that the amount of the alkali to be subjected to the hydrolysis reaction is in the range of a stoichiometrically necessary amount to twice the amount thereof.
More preferably, it is in the range of 1.2 times to 2 times the stoichiometric requirement. The amount of alkali is the stoichiometric requirement of 2
The effect saturates at twice, and if it exceeds it, the cost rises.

【0013】有機溶媒としては、水と自由に混和し、且
つ、ポリ塩化ビニルのような含塩素重合体組成物を溶解
し液状物にする機能をもち、しかも、沸点がかなり高い
ものが好ましい。かかる有機溶媒として、水と自由に混
和する非プロトン性極性溶媒を用いることができる。非
プロトン性極性溶媒として、例えば、ジメチルスルホキ
シド(DMSO)〔O=(S(CH32)〕、あるい
は、ジメチルイミダゾリジノン(DMI)
The organic solvent is preferably one which is freely miscible with water, has the function of dissolving a chlorinated polymer composition such as polyvinyl chloride into a liquid, and has a considerably high boiling point. As such an organic solvent, an aprotic polar solvent that is freely miscible with water can be used. As the aprotic polar solvent, for example, dimethyl sulfoxide (DMSO) [O = (S (CH 3 ) 2 )] or dimethyl imidazolidinone (DMI)

【化1】 または、へキサメチルフォスフォルアミド(HMPA)
〔O=P〔N(CH323〕があるが、ジメチルスル
ホキシド(DMSO)中での反応が常温のような低温域
でもよく進行し、工業的な反応プロセスに用いるのに好
ましい。
Embedded image Or hexamethylphosphoramide (HMPA)
Although there is [O = P [N (CH 3 ) 2 ] 3 ], the reaction in dimethyl sulfoxide (DMSO) proceeds well in a low temperature range such as normal temperature, and is preferable for use in an industrial reaction process.

【0014】脱塩素反応温度域は、その反応は、常圧下
の常温でもかなり進行する一方、有機溶媒の沸点以下で
十分に反応が進行するため、常温から使用する有機溶媒
の沸点までの温度範囲である。
The dechlorination reaction temperature range is such that the reaction proceeds considerably even at room temperature under normal pressure, but the reaction proceeds sufficiently below the boiling point of the organic solvent, so that the temperature range from the room temperature to the boiling point of the organic solvent used. It is.

【0015】また、有機溶媒によってポリ塩化ビニルの
ような含塩素重合体組成物は充分に溶解されるので、有
機溶媒に容易に溶解されない他のプラスチック例えばP
ET等と含塩素重合体組成物を濾過によって容易且つ確
実に分別することができる。有機溶媒としてジメチルス
ルホキシド(DMSO)を用いると、常温(30℃)以
上の温度域で100%に近い反応率で加水分解反応が進
行する。従って、含塩素重合体組成物をジメチルスルホ
キシド(DMSO)のような水と混和する非プロトン性
極性溶媒で溶解し液状物とするプロセスを採ることによ
って、次の加水分解反応を常圧下に格段に低い温度域で
高い反応率下に進行させ得る。
Further, since the chlorine-containing polymer composition such as polyvinyl chloride is sufficiently dissolved by the organic solvent, other plastics which are not easily dissolved in the organic solvent such as P
ET etc. and the chlorine-containing polymer composition can be easily and reliably separated by filtration. When dimethyl sulfoxide (DMSO) is used as the organic solvent, the hydrolysis reaction proceeds at a reaction rate close to 100% in a temperature range of room temperature (30 ° C.) or higher. Therefore, by adopting a process in which the chlorine-containing polymer composition is dissolved in a water-miscible aprotic polar solvent such as dimethyl sulfoxide (DMSO) to form a liquid, the next hydrolysis reaction is significantly performed under normal pressure. It can proceed under a high reaction rate in a low temperature range.

【0016】[0016]

【発明の実施の形態】図1に、本発明の含塩素重合体組
成物の脱塩素処理フローを示す。同図に示すように、ま
ず、収集した種々のプラスチックを分別する。分別は、
例えば比重差を利用した分別を行うことができる。液の
比重を溶媒と溶質の種類および量の組合せによって種々
に変えることができるから、プラスチックの化学的組成
に応じた比重による分別が可能となる。実際のプロセス
の1つとしては、比重差分別によって、比重の小さい塩
素を含まない群と、比重の大きなポリ塩化ビニル(PV
C)といった含塩素重合体組成物とこれとほぼ同比重の
ポリエチレンテレフタレート(PET)のような塩素を
含まないものとが混在する群の2つの群に分別し、塩素
を含まない群はそのまま燃料あるいは原料として利用す
るプロセスがある。
FIG. 1 shows a flow chart of a dechlorination treatment of the chlorine-containing polymer composition of the present invention. As shown in the figure, first, various collected plastics are separated. Classification is
For example, classification using a specific gravity difference can be performed. Since the specific gravity of the liquid can be variously changed depending on the combination of the type and amount of the solvent and the solute, it is possible to perform the separation by the specific gravity according to the chemical composition of the plastic. As one of the actual processes, a group containing no chlorine having a low specific gravity and a polyvinyl chloride having a high specific gravity (PV
C), and a chlorine-containing polymer composition such as polyethylene terephthalate (PET), which has almost the same specific gravity as the above, and is separated into two groups. Alternatively, there is a process for using the material.

【0017】一方、ポリ塩化ビニル(PVC)のような
含塩素重合体組成物とポリエチレンテレフタレート(P
ET)のような塩素を含まないものとが混在する群は、
有機溶媒によって処理され、ポリ塩化ビニル(PVC)
といった含塩素重合体組成物が選択的に溶解され液状物
とされる。ポリエチレンテレフタレート(PET)のよ
うな塩素を含まないものは難溶解でその殆どが固体のま
ま残存するから、これを濾別することによって容易確実
に分別できる。
On the other hand, a chlorine-containing polymer composition such as polyvinyl chloride (PVC) and polyethylene terephthalate (P
ET) is a group that contains chlorine-free substances such as
Treated with organic solvent, polyvinyl chloride (PVC)
Such a chlorine-containing polymer composition is selectively dissolved to form a liquid material. Since those which do not contain chlorine, such as polyethylene terephthalate (PET), are hardly dissolved and most of them remain in a solid state, they can be easily and surely separated by filtration.

【0018】次いで、上記工程で得られた液状物に極性
溶媒、例えばメタノールを加えてポリ塩化ビニル(PV
C)のような含塩素重合体組成物を沈澱・濾別しポリ塩
化ビニル(PVC)のような含塩素重合体組成物を、さ
らに有機溶媒で溶解させた後、アルカリ水溶液を加え
て、常温から使用する有機溶媒の沸点以下の温度域で加
水分解することによって塩素を除去する。加水分解反応
は、反応式(−CH2CHCl−)n+nNaOH→(−
CH2CHOH−)n+nNaClで示される。このよう
にして脱塩素化された例えばPVA(PVC中の塩素が
水酸基によって置換されてポリビニルアルコールとなっ
たもの)は、燃料あるいは他の原料として利用すること
ができる。このように、加水分解によって脱塩素化物が
生成するとともに食塩(NaCl)が副生し分離され
る。食塩は系外に取り出され、一方、可塑剤はリサイク
ルされ有効利用される。
Next, a polar solvent, for example, methanol is added to the liquid obtained in the above step to add polyvinyl chloride (PV).
The chlorinated polymer composition such as C) is precipitated and separated by filtration, and the chlorinated polymer composition such as polyvinyl chloride (PVC) is further dissolved in an organic solvent. To remove chlorine by hydrolysis in a temperature range below the boiling point of the organic solvent used. The hydrolysis reaction Scheme (-CH 2 CHCl-) n + nNaOH → (-
Represented by CH 2 CHOH-) n + nNaCl. The thus dechlorinated PVA, for example (PVA in which chlorine in PVC is replaced by a hydroxyl group to form polyvinyl alcohol) can be used as a fuel or other raw material. As described above, the dechlorinated product is generated by the hydrolysis, and the salt (NaCl) is by-produced and separated. The salt is taken out of the system, while the plasticizer is recycled and used effectively.

【0019】加水分解反応によって生成する脱塩素化物
粒子の大きさは、脱塩素反応率に大きく影響する。有機
溶媒によって溶解した含塩素重合体組成物溶液にアルカ
リ水溶液を加えて加水分解反応させて生成する脱塩素化
生成物粒子の直径が100μm以下、好ましくは50μ
m以下で、且つフロックを形成しない分散状態か、また
はフロックを形成しても容易に個々の粒子に崩せるフロ
ックである場合に、本発明において規定する反応条件下
で95%以上の高い反応率を確実に得ることができる。
The size of the dechlorinated particles produced by the hydrolysis reaction greatly affects the dechlorination reaction rate. The diameter of the dechlorinated product particles formed by adding an aqueous alkali solution to the chlorine-containing polymer composition solution dissolved by the organic solvent and subjecting the solution to a hydrolysis reaction is 100 μm or less, preferably 50 μm.
m or less, and in a dispersed state in which flocs are not formed, or in a floc which can be easily broken down into individual particles even when flocs are formed, a high conversion of 95% or more under the reaction conditions specified in the present invention. Can be obtained reliably.

【0020】加水分解缶内で、脱塩素化生成物粒子の直
径を100μm以下、好ましくは50μm以下で、且つ
フロックを形成させずに分散した状態、または、フロッ
クを形成しても容易に個々の粒子に崩せるフロックとす
る手段としては、加水分解缶内を激しく攪拌することの
他、種々の方法がある。例えば、加水分解缶において、
加水分解に供されている溶液を抜き取りこれを昇圧して
高速で加水分解缶内に、例えば、接線方向に1本以上の
ノズルから噴射し、缶内の溶液を流動・攪乱せしめる循
環系を付設することもできる。また、溶液の缶接線方向
への噴射を間欠的に反転させれば脱塩素化生成物粒子の
微細化、分散化がさらに促進される。
In the hydrolyzer, the diameter of the dechlorinated product particles is 100 μm or less, preferably 50 μm or less, and the particles are dispersed without forming flocs. As means for forming flocs that can be broken into particles, there are various methods in addition to vigorous stirring in the hydrolysis vessel. For example, in a hydrolysis can,
Withdrawing the solution provided for hydrolysis, pressurizing it and injecting it into the hydrolysis vessel at high speed, for example, from one or more nozzles in a tangential direction, and providing a circulation system for flowing and disturbing the solution in the vessel. You can also. Further, if the injection of the solution in the tangential direction of the can is intermittently reversed, the finer and more dispersed dechlorinated product particles are further promoted.

【0021】[0021]

【実施例】実施例1 脱塩素化生成物粒子を微細化、分散化ときの反応率との
関係を調べた。
Example 1 The relationship between the dechlorinated product particles and the reaction rate in dispersing and dispersing the particles was investigated.

【0022】300mlの三ツ口フラスコ中に有機溶媒
DMSO100mlを入れ、ポリ塩化ビニル(PVC)
5.0gを加えて溶解し、化学量論的必要量の2倍のア
ルカリ水溶液を仕込み、80℃の水溶液温度下で、翼長
77mmの平板型撹拌翼をもつ攪拌装置で回転数l00
rpm(攪拌翼の周速度:24.2m/min)、20
0rpm(撹拌翼の周速度:48.4m/min)、お
よび300rpm(攪拌翼の周速度:72.6m/mi
n)の3水準に変えて、5時間、加水分解を行って反応
率を求めた。結果は以下の通りであった。
In a 300 ml three-necked flask, 100 ml of the organic solvent DMSO was placed, and polyvinyl chloride (PVC) was added.
5.0 g was added and dissolved, an alkaline aqueous solution twice the stoichiometrically required amount was charged, and the solution was stirred at 80 ° C. aqueous solution temperature with a stirrer having a plate-type stirring blade having a blade length of 77 mm and a rotation speed of 100 rpm.
rpm (peripheral speed of the stirring blade: 24.2 m / min), 20
0 rpm (peripheral speed of the stirring blade: 48.4 m / min), and 300 rpm (peripheral speed of the stirring blade: 72.6 m / mi)
Hydrolysis was performed for 5 hours at three levels of n) to determine the reaction rate. The results were as follows.

【0023】 回転数 100rpm 200rpm 300rpm 反応率% 59.0 80.7 98.5 図2は、この結果を図示したものである。図示するよう
に、攪拌翼の周速度を50m/min以上、好ましくは
70m/min以上とすると、脱塩素化生成物粒子の直
径を100μm以下かつフロックを形成させず分散した
状態とし、高い反応率を得ることができた。
Rotational speed 100 rpm 200 rpm 300 rpm Reaction rate% 59.0 80.7 98.5 FIG. 2 illustrates the results. As shown in the figure, when the peripheral speed of the stirring blade is 50 m / min or more, preferably 70 m / min or more, the diameter of the dechlorinated product particles is 100 μm or less and the particles are dispersed without forming flocs, and the high reaction rate is obtained. Could be obtained.

【0024】実施例2 この実施例は、加水分解反応後に脱塩素化生成物を濾別
して得られる有機溶媒を精製することなく、そのままの
状態で繰り返し使用したときの実施例を示す。その反応
条件は、80℃で5時間であった。そのときの反応率は
次の通りであった。
Example 2 This example shows an example in which an organic solvent obtained by filtering off a dechlorinated product after a hydrolysis reaction is repeatedly used as it is without purification. The reaction conditions were 80 ° C. for 5 hours. The reaction rate at that time was as follows.

【0025】 初回 2回目 3回目 反応率% 98.0 74.6 78.2 実施例3 加水分解反応に供されるアルカリ水溶液の水分含有比率
と反応率との関係について調べた。
First time Second time Third time Reaction rate% 98.0 74.6 78.2 Example 3 The relationship between the water content ratio and the reaction rate of the aqueous alkali solution subjected to the hydrolysis reaction was examined.

【0026】実施例1と同様の要領でポリ塩化ビニル
(PVC)を溶解し、反応時間:3時間、反応温度:3
0℃、撹拌翼の回転数:300rpm(攪拌翼の周速
度:72.6m/min)の条件下での加水分解反応に
おいて添加するアルカリ水溶液の水分含有比率を重量
で、55%、73%、87%の3水準で加水分解反応を
進行せしめたところ、反応率は以下の通りであった。
Polyvinyl chloride (PVC) was dissolved in the same manner as in Example 1, and the reaction time was 3 hours and the reaction temperature was 3
The water content ratio of the aqueous alkali solution added in the hydrolysis reaction under the conditions of 0 ° C. and the rotation speed of the stirring blade: 300 rpm (peripheral speed of the stirring blade: 72.6 m / min) is 55%, 73%, by weight. When the hydrolysis reaction was allowed to proceed at three levels of 87%, the reaction rates were as follows.

【0027】 水分含有比率 55% 73% 87% 反応率% 71.2 54.7 13.7 図3は、アルカリ水溶液の水分含有比率(図には、Na
OHの濃度として示しており、その濃度を100%から
引いた値が水分含有比率となる。)と反応率の間の相関
関係を示す。同図に示すように、アルカリ水溶液の水分
含有比率と反応率の間には強い逆相関関係がある。反応
に供するアルカリ水溶液の水分含有比率は、重量で75
%以下である必要がある。75%を超えると、反応率が
80%以下となり工業的なプロセスとして好ましくな
い。
Water content ratio 55% 73% 87% Reaction rate% 71.2 54.7 13.7 FIG. 3 shows the water content ratio of the alkaline aqueous solution (in the figure, Na
It is shown as the concentration of OH, and the value obtained by subtracting the concentration from 100% is the water content ratio. ) And the reaction rate. As shown in the figure, there is a strong inverse correlation between the water content ratio of the alkaline aqueous solution and the reaction rate. The water content of the aqueous alkali solution used for the reaction is 75 wt.
% Or less. If it exceeds 75%, the conversion will be 80% or less, which is not preferable as an industrial process.

【0028】上記何れの場合も、アルカリ量を化学量論
的必要量の120%以上で反応を遂行すると、安定して
高い水準の反応率が得られた。200%で反応の好転は
飽和した。
In any of the above cases, when the reaction was carried out with the alkali amount being 120% or more of the stoichiometrically required amount, a stable high reaction rate was obtained. At 200%, the improvement in reaction was saturated.

【0029】[0029]

【発明の効果】本発明によって、ポリ塩化ビニル(PV
C)の溶解以外には熱を殆ど使用しない、短時間で反応
が終了する、含塩素重合体組成物を溶解する溶媒を水分
除去だけでリサイクル使用できるので溶媒コストがあま
りかからないこと等により、低コストでポリ塩化ビニル
(PVC)等含塩素重合体組成物の脱塩素を行うことが
できる。
According to the present invention, polyvinyl chloride (PV)
Low heat is used, except that little heat is used, the reaction is completed in a short time, and the solvent for dissolving the chlorine-containing polymer composition can be recycled only by removing water, so that the solvent cost is not so high. The chlorine-containing polymer composition such as polyvinyl chloride (PVC) can be dechlorinated at low cost.

【0030】また、湿式反応による脱塩素であるから塩
素ガス等が発生せず、塩素ガスに起因する環境汚染が全
くない。さらに、脱塩素化生成物は粒子となって沈澱す
るので濾別等の手段により溶媒からの分離を簡単、確実
に行える。
Since dechlorination is performed by a wet reaction, no chlorine gas or the like is generated, and there is no environmental pollution caused by the chlorine gas. Further, since the dechlorinated product precipitates as particles, separation from the solvent can be easily and reliably performed by means such as filtration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の含塩素重合体組成物の脱塩素処理フ
ローを示す。
FIG. 1 shows a flow of a dechlorination treatment of a chlorine-containing polymer composition of the present invention.

【図2】 加水分解反応における溶液の撹拌速度と、反
応率の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a stirring rate of a solution and a reaction rate in a hydrolysis reaction.

【図3】 加水分解反応におけるアルカリ水溶液中の水
分比率と反応率の関係を示す。
FIG. 3 shows the relationship between the percentage of water in the aqueous alkali solution and the reaction rate in the hydrolysis reaction.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−123190(JP,A) 特開 昭50−109992(JP,A) 特開 平6−145225(JP,A) 特開 昭50−109991(JP,A) 特開 昭49−103963(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08F 8/26 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-50-123190 (JP, A) JP-A-50-109992 (JP, A) JP-A-6-145225 (JP, A) JP-A-50-123 109991 (JP, A) JP-A-49-1003963 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08F 8/26

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 含塩素重合体を、水溶性で、且つ、しか
も非プロトン性極性を有する有機溶媒に溶解せしめ、得
られた溶液にアルカリ成分を添加して、常圧下で、常
から使用する有機溶媒の沸点までの温度域で加水分解す
る含塩素重合体組成物の脱塩素法。
1. A chlorine-containing polymer which is water-soluble and
Also by dissolving in an organic solvent with an aprotic polar, the resulting solution by adding an alkali component, at atmospheric pressure, to hydrolysis in the temperature range up to the boiling point of the organic solvent used normal temperature
Dechlorination method of containing chlorine polymer composition that.
【請求項2】 加水分解による脱塩素過程で生成した脱
塩素生成物粒子を、加水分解缶内で攪拌あるいは流動せ
しめて細分化する請求項1に記載の含塩素重合体組成物
の脱塩素法。
2. A method according to claim 1, wherein said dechlorination is carried out in a dechlorination process by hydrolysis.
Stir or fluidize the chlorine product particles in the hydrolysis vessel.
The method for dechlorinating a chlorine-containing polymer composition according to claim 1, wherein the chlorine-containing polymer composition is finely divided .
【請求項3】 加水分解して生成した脱塩素生成物を濾
別し、濾別した後の有機溶媒の水分を調整し、そのま
ま、含塩素重合体組成物の溶解反応に再利用する請求項
1または2に記載の含塩素重合体組成物の脱塩素法。
3. A dechlorination product produced by hydrolysis is filtered.
The water content of the organic solvent after separation and filtration is adjusted.
Further, the claim is reused in the dissolution reaction of the chlorine-containing polymer composition.
3. The method for dechlorinating a chlorine-containing polymer composition according to 1 or 2 .
【請求項4】 加水分解して生成した脱塩素生成物を濾
別し、濾別した後の有機溶媒にアルカリ成分を添加する
ことによって、アルカリ水溶液中の水分含有重量比率を
75%以下に制御する請求項1または2に記載の含塩素
重合体組成物の脱塩素法。
4. A dechlorination product produced by hydrolysis is filtered.
Separate and add alkali components to the organic solvent after filtration
By this, the water content weight ratio in the alkaline aqueous solution
The method for dechlorinating a chlorine-containing polymer composition according to claim 1 or 2 , wherein the chlorine-containing polymer composition is controlled to 75% or less .
【請求項5】 加水分解におけるアルカリの量を、化学
量論的必要量乃至化学量論的必要量の2倍の範囲内とし
て反応を行う請求項4に記載の含塩素重合体組成物の脱
塩素法。
5. The method according to claim 5, wherein the amount of alkali in the hydrolysis is
Within the range of stoichiometric requirement to twice the stoichiometric requirement
And removing the chlorine-containing polymer composition according to claim 4.
Chlorine method.
JP08251999A 1999-03-25 1999-03-25 Dechlorination method of chlorine-containing polymer composition Expired - Lifetime JP3178818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08251999A JP3178818B2 (en) 1999-03-25 1999-03-25 Dechlorination method of chlorine-containing polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08251999A JP3178818B2 (en) 1999-03-25 1999-03-25 Dechlorination method of chlorine-containing polymer composition

Publications (2)

Publication Number Publication Date
JP2000273117A JP2000273117A (en) 2000-10-03
JP3178818B2 true JP3178818B2 (en) 2001-06-25

Family

ID=13776795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08251999A Expired - Lifetime JP3178818B2 (en) 1999-03-25 1999-03-25 Dechlorination method of chlorine-containing polymer composition

Country Status (1)

Country Link
JP (1) JP3178818B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022198270A1 (en) * 2021-03-23 2022-09-29 The University Of Queensland Method for stabilising pvc and method for forming carbon fibres from pvc

Also Published As

Publication number Publication date
JP2000273117A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
CA1311343C (en) Method for scrubbing pollutants from an exhaust gas stream
JP5134951B2 (en) How to recover iodine
CN113880116B (en) Method for separating and refining fluorine-containing sodium chloride salt
JP4489956B2 (en) Treatment method of halogen-containing organic waste materials
JP3178818B2 (en) Dechlorination method of chlorine-containing polymer composition
US6989404B2 (en) Method of recovering polyvinyl chloride and apparatus therefor
JP4706615B2 (en) Method for recovering inorganic substances from plastics
JP3266856B2 (en) Dechlorination method of chlorine-containing polymer composition
JPH091105A (en) Method for recovering potassium chloride in flying ash
EP0818420B1 (en) Method for producing a polymer electrolyte
JP2006131962A (en) Method for separating and recovering heavy metal contained in molten flying ash
JP2001114929A (en) Treatment method of mixture of plastics
JP3272570B2 (en) Waste plastic treatment method
JPH10337549A (en) Method and device for separating resource
JP3266826B2 (en) Dechlorination method of halogen-containing polymer composition
EP1379580A1 (en) Process for the treatment of mixed plastic-containing waste
JP2003201524A (en) Waste treatment method
JP3273316B2 (en) Plastic mixed waste treatment method
JP2001134010A (en) Method for producing aggregated and caked body of waste toner and method for utilizing same
CN219453956U (en) Harmless incineration disposal pretreatment system for organic silicon slurry slag hazardous waste
JPH0637522B2 (en) Manufacturing method of chlorinated rubber
JP3266855B2 (en) Dechlorination method and apparatus for chlorine-containing polymer composition
JP2005075927A (en) Method for dechlorination of vinyl chloride polymer in vinyl chloride polymer-containing waste
JP2003253039A (en) Method for dechlorinating vinyl chloride polymer
JP2006044988A (en) Method of recovering titanium dioxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term