JP3178281B2 - Automatic frequency control demodulator - Google Patents

Automatic frequency control demodulator

Info

Publication number
JP3178281B2
JP3178281B2 JP30899294A JP30899294A JP3178281B2 JP 3178281 B2 JP3178281 B2 JP 3178281B2 JP 30899294 A JP30899294 A JP 30899294A JP 30899294 A JP30899294 A JP 30899294A JP 3178281 B2 JP3178281 B2 JP 3178281B2
Authority
JP
Japan
Prior art keywords
phase
data
known data
signal
frequency deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30899294A
Other languages
Japanese (ja)
Other versions
JPH08167832A (en
Inventor
文雄 石津
秀樹 五十嵐
圭司 村上
年春 小島
真 三宅
忠 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30899294A priority Critical patent/JP3178281B2/en
Publication of JPH08167832A publication Critical patent/JPH08167832A/en
Application granted granted Critical
Publication of JP3178281B2 publication Critical patent/JP3178281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明はデジタル移動体通信/
衛星通信/移動体衛星通信用に捕捉範囲が広く高安定な
自動周波数制御(AFC)機能をもつ復調装置に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a digital mobile communication system.
The present invention relates to a demodulator having an automatic frequency control (AFC) function having a wide acquisition range and high stability for satellite communication / mobile satellite communication.

【0002】[0002]

【従来の技術】たとえば文献(島方他:PSKベースバ
ンド遅延検波復調器の構成と特性、1991信学春季全
大、B−360)に示す従来例のAFC遅延検波復調装
置は図9のように、検波手段1は、中間周波数で帯域制
限された差動符号化位相変調(PSK)信号401を直
交検波器11で同相と直交成分の複素ベースバンド信号
402と403に変換し、A/D変換器12で複素デジ
タル信号404と405にA/D変換する。当該複素デ
ジタル信号404と405を複素/角度変換器13で位
相(角度)データ406に変換し、遅延検波器14で1
シンボル前の位相データ406との差を求め位相差デー
タ407を生成する。位相偏差補正手段2は、検波手段
1からの位相差データ407に対し、判定器22からの
硬判定データ409による帰還をかけ受信角周波数偏差
に対応する位相偏差を補正する自動周波数制御器21か
らの復調データ408を判定器22で硬判定し、硬判定
データ409として出力する。
2. Description of the Related Art FIG. 9 shows a conventional AFC differential detection demodulator shown in a document (Shimakata et al .: PSK baseband differential detection demodulator configuration and characteristics, 1991 IEEJ Spring Spring University, B-360). The detection means 1 converts the differentially coded phase shift keying (PSK) signal 401 band-limited at the intermediate frequency into complex baseband signals 402 and 403 of in-phase and quadrature components by the quadrature detector 11, and performs A / D conversion. The converter 12 performs A / D conversion on the complex digital signals 404 and 405. The complex digital signals 404 and 405 are converted into phase (angle) data 406 by the complex / angle converter 13, and are converted to 1 by the delay detector 14.
A difference from the phase data 406 before the symbol is obtained, and phase difference data 407 is generated. The phase deviation correction means 2 receives feedback from the hard decision data 409 from the decision unit 22 on the phase difference data 407 from the detection means 1 and corrects the phase deviation corresponding to the reception angular frequency deviation from the automatic frequency controller 21. Is hard-decided by the decision unit 22 and output as hard-decision data 409.

【0003】上記従来例のAFC遅延検波復調装置は、
検波後の角周波数偏差に対し、逓倍を基本とし補正する
AFC方式を採る。
The conventional AFC differential detection and demodulation device described above
An AFC method is used in which angular frequency deviation after detection is corrected on the basis of multiplication.

【0004】直交検波器11は図10(a)のように、
帯域制限されたπ/4シフト4相位相変調(QPSK)
信号401に対し、発振器112からの基準信号を分岐
する移相器113からの同相と直交成分とを乗算器11
1で乗積し準同期検波をし、複素ベースバンド信号40
2と403を生成する。
The quadrature detector 11 is, as shown in FIG.
Band-limited π / 4 shift quadrature phase modulation (QPSK)
The multiplier 401 multiplies the signal 401 by the in-phase and quadrature components from the phase shifter 113 for branching the reference signal from the oscillator 112.
1 for quasi-synchronous detection, and the complex baseband signal 40
2 and 403 are generated.

【0005】A/D変換器12は、直交検波器11から
の複素ベースバンド信号402と403に対しA/D変
換を施し、複素デジタル信号S(nT)404と405
を生成する。 S(nT)={I(nT)+jQ(nT)}×{cos
(ΔωnT+θi)+jsin(ΔωnT+θi)} =A(nT)×exp[j{θm(nT)+ΔωnT+
θi}] ここに、I(nT)とQ(nT)は実数部と虚数部変調
成分(ナイキスト点では±1、±1/21/2 、0を示
す)、Tはシンボル周期、Δωは準同期検波の残留角周
波数偏差、θiは初期位相差、A(nT)は包絡線成分
(ナイキスト点では1を示す)、θm(nT)は変調成
分(π/4シフトQPSK信号の場合、nが偶数のとき
{0、±π/2、π}、nが奇数のとき{±π/4、±
3π/4}の値を採る)を表す。
[0005] The A / D converter 12 performs A / D conversion on the complex baseband signals 402 and 403 from the quadrature detector 11, and outputs complex digital signals S (nT) 404 and 405.
Generate S (nT) = {I (nT) + jQ (nT)} × {cos
(ΔωnT + θi) + jsin (ΔωnT + θi)} = A (nT) × exp [j {θm (nT) + ΔωnT +
θi}] where I (nT) and Q (nT) are real and imaginary part modulation components (indicating ± 1, ± 1/2 1/2 , 0 at the Nyquist point), T is a symbol period, and Δω is The residual angular frequency deviation of the quasi-synchronous detection, θi is the initial phase difference, A (nT) is the envelope component (indicating 1 at the Nyquist point), θm (nT) is the modulation component (in the case of a π / 4 shift QPSK signal, n Is an even number, {0, ± π / 2, π}, and n is an odd number, {± π / 4, ±
3π / 4}).

【0006】複素/角度変換器13は、A/D変換器1
2からの複素デジタル信号S(nT)404と405を
アドレスとしてテーブルを参照し、位相(角度)データ
Sa(nT)406を生成する。簡単のため複素デジタ
ル信号S(nT)の包絡線成分A(nT)を1とする
と、 Δω=0のとき Sa(nT)=θm(nT)+θi Δω≠0のとき Sa(nT)=θm(nT)+θi+
ΔωnT
The complex / angle converter 13 is an A / D converter 1
The phase (angle) data Sa (nT) 406 is generated by referring to the table using the complex digital signals S (nT) 404 and 405 from the table as addresses. For simplicity, assuming that the envelope component A (nT) of the complex digital signal S (nT) is 1, when Δω = 0, Sa (nT) = θm (nT) + θi When Δω ≠ 0 Sa (nT) = θm ( nT) + θi +
ΔωnT

【0007】遅延検波器14は図10(b)のように、
複素/角度変換器13からの位相データSa(nT)4
06に対し、シフトレジスタ141からの1シンボル前
の位相データSa((n−1)T)を減算器142で減
じ、位相差データDa(nT)407を生成する。 Δω=0のとき Da(nT)=θm(nT)−θm
((n−1)T) Δω≠0のとき Da(nT)=θm(nT)−θm
((n−1)T)+ΔωT Δω=0(理想的なπ/4シフトQPSK信号)のと
き、検出される位相差は{±π/4、±3π/4}のい
ずれかの値を採り(1、1)、(1、0)、(0、
1)、(0、0)の4つの位相状態に当てはまるから、
正しいデジタル位相復調をすることになる(遅延検波の
動作原理)。Δω≠0のとき、検出される位相差は正規
の位相差{θm(nT)−θm((n−1)T)}から
位相偏差ΔωTのずれを生じるから、誤ったデジタル位
相復調をし劣化することになる。
[0007] As shown in FIG.
Phase data Sa (nT) 4 from the complex / angle converter 13
For 06, the phase data Sa ((n−1) T) one symbol before from the shift register 141 is subtracted by the subtractor 142 to generate phase difference data Da (nT) 407. When Δω = 0, Da (nT) = θm (nT) −θm
((N−1) T) When Δω ≠ 0, Da (nT) = θm (nT) −θm
When ((n−1) T) + ΔωT Δω = 0 (ideal π / 4 shifted QPSK signal), the detected phase difference takes one of {± π / 4 and ± 3π / 4}. (1, 1), (1, 0), (0,
1), (0, 0)
Correct digital phase demodulation is performed (the principle of operation of differential detection). When Δω ≠ 0, the detected phase difference is shifted from the normal phase difference {θm (nT) −θm ((n−1) T)} by a phase deviation ΔωT. Will do.

【0008】自動周波数制御器21は図10(c)のよ
うに、まず第1の減算器211からの復調データ408
に対し、第2の減算器212で判定器22からの硬判定
データ409を減じ位相偏差情報を生成する。つぎに遅
延検波器14からの位相差データ407に対し、第2の
減算器212からの位相偏差情報を平均回路213で平
均化し積分し雑音成分を除去した後、第1の減算器21
1で減じ復調データ408を生成する。さらに上記位相
偏差情報が角周波数偏差Δωに対応する位相偏差ΔωT
に収束するように上記帰還をかけていくと、上記復調デ
ータ408の位相偏差ΔωTのずれを補正することにな
る(自動周波数制御の動作原理)。
The automatic frequency controller 21 first receives the demodulated data 408 from the first subtractor 211 as shown in FIG.
The second subtracter 212 subtracts the hard decision data 409 from the decision unit 22 to generate phase deviation information. Next, with respect to the phase difference data 407 from the delay detector 14, the phase deviation information from the second subtractor 212 is averaged and integrated by an averaging circuit 213 to remove noise components.
The demodulated data 408 is reduced by one. Further, the phase deviation information is a phase deviation ΔωT corresponding to the angular frequency deviation Δω.
When the feedback is applied so as to converge to the above, the deviation of the phase deviation ΔωT of the demodulated data 408 is corrected (the operation principle of the automatic frequency control).

【0009】判定器22は図11のように、π/4シフ
トQPSK信号の位相平面上で送信信号点Aが角周波数
偏差のためΔωTだけ受信信号点Bに位相回転する場
合、図11(a)に示す|Δω|<π/4のとき(Bが
Aと同じ象限にあるとき)はAの位相を出力するから、
自動周波数制御器21からの復調データ408はBの位
相からAの位相に収束し、正しい硬判定データDb(n
T)409を出力する。 Db(nT)=θm(nT)−θm((n−1)T) 図11(b)に示すπ/4<ΔωT<3π/4のとき
(BがAと別象限に移るとき)は誤判定信号点Cの位相
を出力するから、自動周波数制御器21からの復調デー
タ408はBの位相からCの位相に収束し、誤った硬判
定データDb(nT)409を出力する。 Db(nT)=θm(nT)−θm((n−1)T)+
π/2 π/4<ΔωT<3π/4のとき、本来の出力デジタル
データ(In、Qn)は誤同期をし、+π/2ずれ(−
Qn、In)となる。同様に−3π/4<ΔωT<−π
/4のとき、−π/2ずれ(Qn、−In)となり、3
π/4<ΔωT<−3π/4のとき、πずれ(−In、
−Qn)となる。
[0011] As shown in FIG. 11, when the transmission signal point A rotates in phase by ΔωT to the reception signal point B due to the angular frequency deviation on the phase plane of the π / 4 shifted QPSK signal as shown in FIG. ), The phase of A is output when (ΔB | <π / 4) (when B is in the same quadrant as A).
Demodulated data 408 from automatic frequency controller 21 converges from phase B to phase A, and correct hard decision data Db (n
T) 409 is output. Db (nT) = θm (nT) −θm ((n−1) T) When π / 4 <ΔωT <3π / 4 shown in FIG. 11B (when B moves to a different quadrant from A), an error occurs. Since the phase of the decision signal point C is output, the demodulated data 408 from the automatic frequency controller 21 converges from the phase of B to the phase of C, and outputs erroneous hard decision data Db (nT) 409. Db (nT) = θm (nT) −θm ((n−1) T) +
When π / 2 π / 4 <ΔωT <3π / 4, the original output digital data (In, Qn) is erroneously synchronized and shifted by + π / 2 (−
Qn, In). Similarly, -3π / 4 <ΔωT <−π
/ 4, the shift is -π / 2 (Qn, -In), and 3
When π / 4 <ΔωT <−3π / 4, π shift (−In,
−Qn).

【0010】[0010]

【発明が解決しようとする課題】上記のような従来のA
FC復調装置では、検波後の角周波数偏差を補正するた
め逓倍を基本とするAFC方式を採るから、角周波数偏
差が大きい値の場合誤同期してしまい復調データを誤っ
てしまう問題点があった。
SUMMARY OF THE INVENTION The above conventional A
The FC demodulator employs the AFC method based on multiplication to correct the angular frequency deviation after detection, so that when the angular frequency deviation is a large value, there is a problem in that synchronization is erroneous and demodulated data is erroneous. .

【0011】この発明が解決しようとする課題は、AF
C復調装置で角周波数偏差が大きい値の場合でも正しく
同期するように補償するAFC方式(誤同期補償AFC
方式)を提供することにある。
The problem to be solved by the present invention is that AF
An AFC system that compensates for correct synchronization even when the angular frequency deviation is a large value in the C demodulator (erroneous synchronization compensation AFC
Method).

【0012】[0012]

【課題を解決するための手段】この第1の発明に係わる
自動周波数制御復調装置は、受信信号を検波する検波手
段と、該検波手段からの検波データに対し生成する硬判
定データによる帰還で受信角周波数を制御し角周波数偏
差を補正する周波数偏差補正手段とを備える自動周波数
制御復調装置において、前記周波数偏差補正手段からの
硬判定データに対し、受信信号に含まれる既知データパ
ターン系列と予め設定する参照パターンとの相関を取り
既知データ検出信号を生成する複数の既知データパター
ン相関器とを設けるものである。
An automatic frequency control demodulator according to the first aspect of the present invention includes a detecting means for detecting a received signal, and a receiving means for receiving feedback by hard decision data generated for the detected data from the detecting means. An automatic frequency control demodulator comprising frequency deviation correction means for controlling angular frequency and correcting angular frequency deviation, wherein a hard data determined from the frequency deviation correction means is set in advance to a known data pattern sequence included in a received signal. And a plurality of known data pattern correlators for generating a known data detection signal by correlating with a reference pattern to be used.

【0013】第2の発明に係わる自動周波数制御復調装
置は、誤同期補償手段で既知データパターン相関器から
の既知データ検出信号に従い、周波数偏差補正手段から
の硬判定データを変換・選択し所望の出力データとする
データ変換器を設けるものである。
An automatic frequency control demodulator according to a second aspect of the present invention converts and selects hard decision data from a frequency deviation correcting means according to a known data detection signal from a known data pattern correlator by an erroneous synchronization compensating means. A data converter for output data is provided.

【0014】第3の発明に係わる自動周波数制御復調装
置は、誤同期補償手段で既知データパターン相関器から
の既知データ検出信号に従い、検波手段からの検波デー
タを位相回転し所望の出力データとする位相回転器を設
けるものである。
In the automatic frequency control demodulator according to the third aspect of the present invention, the erroneous synchronization compensating means rotates the phase of the detection data from the detection means in accordance with the known data detection signal from the known data pattern correlator to obtain desired output data. A phase rotator is provided.

【0015】第4の発明に係わる自動周波数制御復調装
置は、誤同期補償手段で既知データパターン相関器から
の既知データ検出信号に従い計算する制御角周波数偏差
に相当する制御電圧信号を生成する制御電圧生成器と、
該制御電圧生成器からの制御電圧信号に応じ制御する発
振角周波数で受信信号の角周波数を変換し生成する当該
低域成分信号を検波手段に出力する周波数変換器とを設
けるものである。
According to a fourth aspect of the present invention, there is provided an automatic frequency control demodulator for generating a control voltage corresponding to a control angular frequency deviation calculated by a false synchronization compensator in accordance with a known data detection signal from a known data pattern correlator. A generator;
A frequency converter for converting the angular frequency of the received signal with an oscillation angular frequency controlled according to the control voltage signal from the control voltage generator and outputting the low-frequency component signal to the detection means.

【0016】第5の発明に係わる自動周波数制御復調装
置は、制御電圧生成器で既知データパターン相関器から
の既知データ検出信号に従い生成する検出角周波数偏差
による位相回転量に対し、周波数偏差補正手段からの位
相偏差情報と減算をし受信角周波数偏差による位相回転
量を求め、当該受信角周波数偏差に相当する制御電圧信
号を生成するものである。
According to a fifth aspect of the present invention, there is provided an automatic frequency control demodulation apparatus, wherein a control voltage generator corrects a frequency deviation correction for a phase rotation amount due to a detected angular frequency deviation generated according to a known data detection signal from a known data pattern correlator. Is subtracted from the phase deviation information, the phase rotation amount based on the reception angular frequency deviation is obtained, and a control voltage signal corresponding to the reception angular frequency deviation is generated.

【0017】[0017]

【0018】[0018]

【0019】[0019]

【作用】この発明のAFC復調装置は上記手段で、まず
受信信号を検波し当該検波データに対し、自動周波数制
御をし受信角周波数偏差を補正し硬判定データを生成す
る。つぎに当該硬判定データに対し、予め設定する参照
パターンとの相関を取り、受信信号中に周期的に挿入さ
れる既知データを検出し既知データ検出信号を生成す
る。さらに当該既知データ検出信号に従い、当該硬判定
データを変換・選択しまたは当該検波データを位相回転
し、所望の出力データとする。または当該既知データ検
出信号に従い生成する制御角周波数偏差もしくは受信角
周波数偏差に相当する制御電圧信号に応じ制御する発振
角周波数で受信信号の角周波数を変換し、生成する当該
低域成分信号を検波手段の入力とする。
The AFC demodulator according to the present invention first detects a received signal, performs automatic frequency control on the detected data, corrects a reception angular frequency deviation, and generates hard decision data. Next, the hard decision data is correlated with a preset reference pattern, and known data periodically inserted into the received signal is detected to generate a known data detection signal. Further, according to the known data detection signal, the hard decision data is converted and selected, or the detected data is rotated in phase to obtain desired output data. Alternatively, the angular frequency of the received signal is converted by an oscillation angular frequency controlled according to a control voltage frequency deviation generated according to the known data detection signal or a control voltage signal corresponding to the received angular frequency deviation, and the generated low-frequency component signal is detected. Input of means.

【0020】[0020]

【実施例】この発明を示す一実施例のAFC遅延検波復
調装置は図1のように、検波手段1と位相偏差補正手段
2は、上記従来例の図9に対応する。誤同期補償手段3
は、位相偏差補正手段2からの硬判定データ409に対
し、予め設定する参照パターンとの相関を取り、受信信
号中に周期的に挿入されフレーム同期などに使用される
既知データパターン(図2(c)参照)を検出する既知
データパターン相関器31からの既知データ検出信号4
10に従い、当該硬判定データ409をデータ変換器3
2で変換・選択し正しいデータ系列411として出力す
る。
FIG. 1 shows an AFC differential detection and demodulation apparatus according to one embodiment of the present invention. FIG. 1 shows a detection means 1 and a phase deviation correction means 2 corresponding to FIG. False synchronization compensation means 3
Is a known data pattern that is correlated with the hard decision data 409 from the phase deviation correcting means 2 and a preset reference pattern and is periodically inserted into the received signal and used for frame synchronization or the like (FIG. 2 ( c) a known data detection signal 4 from a known data pattern correlator 31 for detecting
10, the hard decision data 409 is converted by the data converter 3
In step 2, the data is converted and selected, and output as a correct data series 411.

【0021】上記実施例のAFC遅延検波復調装置は、
既知データパターンとの相関を取り、周波数偏差が大き
い値の場合でも正しく同期するように補償するAFC方
式(誤同期補償AFC方式)を採る。
The AFC differential detection and demodulation device of the above embodiment
An AFC system (mis-sync compensation AFC system) that takes a correlation with a known data pattern and compensates for correct synchronization even when the frequency deviation is a large value is adopted.

【0022】既知データパターン相関器31は図2
(a)のように、第1〜第4の各相関器311と311
aと311bと311cから構成する。各相関器311
と311aと311bと311cは図2(b)のよう
に、まず位相偏差補正手段2からの硬判定データ((I
n、Qn)と(−Qn、In)と(−In、−Qn)と
(Qn、−In)のいずれか)409を図2(c)に示
す受信信号中に含まれる既知データのパターン系列長L
のシフトレジスタ312で保持する。またIとQチャネ
ル既知データパターン系列(SIn、SQn)(nは
0、1、・・・、L−1)を{0、π/2、π、−π/
2}だけ位相回転し参照パターン((SIn、SQn)
と(−SQn、SIn)と(−SIn、−SQn)と
(SQn、−SIn)のいずれか)として既知データパ
ターンメモリ313で記憶しておく。つぎに排他的論理
和演算器314でシフトレジスタ312と既知データパ
ターンメモリ313との各ビットの排他的論理和を求め
る。さらに当該不一致ビット“1”を加算器315で加
算する不一致ビット数に対し判定器316で比較し予め
設定する許容誤りビット数ε以下のときは、既知データ
検出信号410を出力する。たとえばπ/4<ΔωT<
3π/4のとき、硬判定データ409は+π/2ずれた
誤判定信号点に収束した場合の出力(−Qn、In)と
なり、受信信号中に含まれる既知データパターン系列も
(−SQn、SIn)として出力されるから、(−SQ
n、SIn)を参照パターンとする。たとえば第2の相
関器311で既知データ検出信号410として位相偏差
補正手段2が+π/2ずれた信号点に誤同期したという
情報を出力することになる。
The known data pattern correlator 31 is shown in FIG.
As shown in (a), each of the first to fourth correlators 311 and 311
a, 311b and 311c. Each correlator 311
311a, 311b, and 311c, first, as shown in FIG. 2B, hard decision data ((I
n, Qn), (-Qn, In), (-In, -Qn) and (Qn, -In)) 409 is a pattern sequence of known data included in the received signal shown in FIG. Length L
Is held by the shift register 312 of FIG. Also, I and Q channel known data pattern sequences (SIn, SQn) (n is 0, 1,..., L-1) are expressed as {0, π / 2, π, −π /
Reference pattern ((SIn, SQn) rotated by 2 °
And (-SQn, SIn), (-SIn, -SQn), and (SQn, -SIn) in the known data pattern memory 313. Next, the exclusive OR operation unit 314 obtains the exclusive OR of each bit of the shift register 312 and the known data pattern memory 313. Further, the discriminator 316 compares the number of mismatch bits to be added by the adder 315 with the number of mismatch bits “1”, and outputs a known data detection signal 410 if the number is equal to or smaller than a preset allowable error bit number ε. For example, π / 4 <ΔωT <
At 3π / 4, the hard decision data 409 becomes an output (−Qn, In) when converging to an erroneous decision signal point shifted by + π / 2, and the known data pattern sequence included in the received signal is also (−SQn, SIn). ) Is output as (−SQ
n, SIn) as a reference pattern. For example, the second correlator 311 outputs, as the known data detection signal 410, information indicating that the phase deviation correction means 2 has erroneously synchronized with a signal point shifted by + π / 2.

【0023】データ変換器32は図3のように、まず位
相偏差補正手段2からの硬判定データ409を第1〜第
4の内部データ変換器321と321aと321bと3
21cでそれぞれ出力データ系列(−Qn、In)と
(In、Qn)と(Qn、−In)と(−In、−Q
n)に変換する。つぎに既知データパターン相関器31
からの既知データ検出信号410に従い、各内部データ
変換器321と321aと321bと321cの出力デ
ータ系列をセレクタ322で選択し所望の出力データ4
11とする。たとえば硬判定データ409(−Qn、I
n)のとき、既知データ検出信号410(−SQn、S
In)に従い、第2の内部データ変換器321aの出力
データ系列(In、Qn)を選択し出力データ411と
し、正しいデータ復調をする。
As shown in FIG. 3, the data converter 32 first converts the hard decision data 409 from the phase deviation correcting means 2 into first to fourth internal data converters 321, 321 a, 321 b, and 3.
21c, the output data series (-Qn, In), (In, Qn), (Qn, -In), and (-In, -Q
n). Next, the known data pattern correlator 31
The output data series of each of the internal data converters 321, 321 a, 321 b, and 321 c is selected by the selector 322 in accordance with the known data detection signal 410 from
It is assumed to be 11. For example, the hard decision data 409 (−Qn, I
n), the known data detection signal 410 (−SQn, S
In), the output data sequence (In, Qn) of the second internal data converter 321a is selected as output data 411, and correct data demodulation is performed.

【0024】なお上記実施例で誤同期補償手段3は位相
偏差補正手段2の出力硬判定データ(−Qn、In)4
09をデータ変換器32で変換・選択し、誤同期を補償
するとして説明したが、図4のように位相偏差補正手段
2の入力位相差データ407を位相回転器33で位相回
転するようにしてもよい。位相回転器33は図5のよう
に、まず既知データパターン相関器31からの既知デー
タ検出信号410に従い、{0、−π/2、π、π/
2}のいずれかの値をセレクタ331で選択する。つぎ
にセレクタ331の当該出力と位相偏差補正手段2の入
力位相差データ407とを加算器332で加算し出力デ
ータ411とする。たとえばπ/4<ΔωT<3π/4
の場合、位相差データ407は“+π/2”の位相偏差
をもち、+π/2ずれた誤判定信号点に収束した硬判定
データ(−Qn、In)407のとき、既知データ検出
信号(−SQn、SIn)410に従い、“−π/2”
を選択するセレクタ331出力が入力位相差データ40
7の“+π/2”と打ち消し合って出力データ411と
し、正しいデータ復調をする。
In the above embodiment, the false synchronization compensating means 3 outputs the output hard decision data (-Qn, In) 4 of the phase deviation correcting means 2.
It has been described that the data converter 32 converts and selects 09 to compensate for erroneous synchronization. However, as shown in FIG. 4, the phase rotation of the input phase difference data 407 of the phase deviation correction means 2 is performed by the phase rotator 33. Is also good. As shown in FIG. 5, the phase rotator 33 first obtains {0, −π / 2, π, π / according to the known data detection signal 410 from the known data pattern correlator 31.
The selector 331 selects one of the values of 2}. Next, the output of the selector 331 and the input phase difference data 407 of the phase deviation correcting means 2 are added by an adder 332 to obtain output data 411. For example, π / 4 <ΔωT <3π / 4
In the case of, the phase difference data 407 has a phase deviation of “+ π / 2”, and when the hard decision data (−Qn, In) 407 converges to the erroneous decision signal point shifted by + π / 2, the known data detection signal (− SQn, SIn) 410 and “−π / 2”
The output of the selector 331 for selecting the input phase difference data 40
7 and “+ π / 2” to cancel each other to obtain output data 411 and perform correct data demodulation.

【0025】また上記実施例で誤同期補償手段3は図6
(a)のように、既知データパターン相関器31からの
既知データ検出信号410に従い生成する制御電圧生成
器34からの制御電圧信号412により発振角周波数を
制御する周波数変換器35で、受信PSK信号401に
対し当該角周波数を変換後検波手段1に出力するように
してもよい。周波数変換器35は図6(b)のように、
まず制御電圧生成器34から計算された制御角周波数偏
差Δωvに相当する制御電圧信号412に応じ、電圧制
御発振器351で発振角周波数を制御し出力信号Cv
(t)を生成する。つぎに受信PSK信号401C
(t)に対し乗算器352で電圧制御発振器351から
の出力信号Cv(t)との乗積結果M(t)から高調波
成分を除去した低域成分信号ML(t)413として検
波手段1に出力する。たとえば|ΔωT|<π/4のと
き、 M(t)=C(t)×Cv(t) =cos{ωc+ωv)t+Δωt+θm(t)+θo
+θv}+ML(t) C(t)=cos{(ωc+Δω)t+θm(t)+θ
o} Cv(t)=2cos(ωvt+θv) ML(t)=cos{(ωc−ωv)t+Δωt+θm
(t)+θo−θv} ここに、ωcは正規の中心角周波数、ωc−ωvは周波
数変換後の正規の中間角周波数、Δωは残留角周波数偏
差、θoは初期位相、θm(t)は変調成分を表す。π
/4<ΔωT<3π/4のとき、位相偏差補正手段2か
らの硬判定データ409は+π/2ずれた信号点に誤同
期した硬判定結果を示すから、 Cv(t)=2cos{(ωv+Δωv)t+θv} Δωv=(+π/2)/T ML(t)=cos{(ωc−ωv)t+(Δω−Δω
v)t+θm(t)+θo−θv} 従って残留角周波数偏差は、|Δω−Δωv|<π/4
に減少することになり、遅延検波後の位相偏差に対し、
位相偏差補正手段2で誤同期しない。−3π/4<Δω
T<−π/4と3π/4<ΔωT<−3π/4の別象限
に同期するときも、上記と同じに補償する。
Further, in the above embodiment, the erroneous synchronization compensating means 3 corresponds to FIG.
As shown in (a), a frequency converter 35 that controls an oscillation angular frequency by a control voltage signal 412 from a control voltage generator 34 that is generated in accordance with a known data detection signal 410 from a known data pattern correlator 31 receives a received PSK signal. The angular frequency may be output to the detection means 1 after conversion with respect to 401. The frequency converter 35, as shown in FIG.
First, according to the control voltage signal 412 corresponding to the control angular frequency deviation Δωv calculated from the control voltage generator 34, the oscillation angular frequency is controlled by the voltage controlled oscillator 351 and the output signal Cv
(T) is generated. Next, the received PSK signal 401C
(T) is detected by the multiplier 352 as a low-frequency component signal ML (t) 413 obtained by removing a harmonic component from the product M (t) of the product M (t) of the output signal Cv (t) from the voltage controlled oscillator 351. Output to For example, when | ΔωT | <π / 4, M (t) = C (t) × Cv (t) = cos {ωc + ωv) t + Δωt + θm (t) + θo
+ Θv} + ML (t) C (t) = cos {(ωc + Δω) t + θm (t) + θ
o} Cv (t) = 2 cos (ωvt + θv) ML (t) = cos {(ωc−ωv) t + Δωt + θm
(T) + θo−θv} Here, ωc is a normal center angular frequency, ωc−ωv is a normal intermediate angular frequency after frequency conversion, Δω is a residual angular frequency deviation, θo is an initial phase, and θm (t) is a modulation. Represents a component. π
When / 4 <ΔωT <3π / 4, the hard decision data 409 from the phase deviation correction means 2 indicates a hard decision result which is erroneously synchronized with a signal point shifted by + π / 2, so that Cv (t) = 2 cos {(ωv + Δωv ) T + θv} Δωv = (+ π / 2) / TML (t) = cos {(ωc−ωv) t + (Δω−Δω)
v) t + θm (t) + θo−θv} Accordingly, the residual angular frequency deviation is | Δω−Δωv | <π / 4.
To the phase deviation after differential detection,
The phase deviation correction means 2 does not erroneously synchronize. -3π / 4 <Δω
The same compensation is performed as described above when synchronizing with another quadrant of T <−π / 4 and 3π / 4 <ΔωT <−3π / 4.

【0026】また上記実施例で制御電圧生成器34は既
知データパターン相関器31から位相偏差補正手段2の
位相回転量検出情報(既知データ検出信号410)に従
い制御角周波数偏差Δωvを計算し制御電圧信号412
として周波数変換器35に出力するとして説明したが、
図7のように自動周波数制御器21aからの位相偏差情
報414にも従い制御電圧生成器34aで制御電圧信号
412を生成するようにしてもよい。より高精度に角周
波数偏差を補償できる。自動周波数制御器21aは図8
(a)のように、上記従来例の図10(c)に対応す
る。ただし平均回路213からの位相偏差情報ΔθAF
C414を制御電圧生成器34aに出力する。制御電圧
制御器34aは図8(b)のように、まず既知データパ
ターン相関器31からの既知データ検出信号410に従
い生成するΔθtotal検出器341からの検出位相
回転量(検出角周波数偏差による位相回転量)Δθto
talに対し、減算器342で自動周波数制御器34a
からの位相偏差情報ΔθAFC414と減算し、受信位
相回転量(受信角周波数偏差による位相回転量)Δθi
nを求める。つぎに当該ΔθinすなわちΔωTから受
信角周波数偏差Δωを求め生成する内部電圧生成回路3
43からの制御電圧信号412を周波数変換器35に出
力する。たとえばπ/4<ΔωT<3π/4のとき図8
(c)のように、遅延検波後の本来の送信信号点Aは角
周波数偏差Δωだけ位相回転し、受信信号点Bで検波さ
れ、誤判定信号点Cに誤同期し収束するから、Δθto
tal=Δθin+ΔθAFCの関係が成立する。この
とき周波数変換器35の低域成分信号ML(t)413
で残留角周波数偏差は、次式のとおり零になり、受信角
周波数偏差Δωを補償することになる。別象限に同期す
るときも同じである。 ML(t)=cos{(ωc−ωv)t+θm(t)+
θo−θv}
In the above embodiment, the control voltage generator 34 calculates the control angular frequency deviation Δωv from the known data pattern correlator 31 in accordance with the phase rotation amount detection information (known data detection signal 410) of the phase deviation correcting means 2, and calculates the control voltage. Signal 412
Has been described as output to the frequency converter 35,
As shown in FIG. 7, the control voltage signal 412 may be generated by the control voltage generator 34a in accordance with the phase deviation information 414 from the automatic frequency controller 21a. The angular frequency deviation can be compensated with higher accuracy. The automatic frequency controller 21a is shown in FIG.
As shown in FIG. 10A, FIG. 10C corresponds to FIG. However, the phase deviation information ΔθAF from the averaging circuit 213
C414 is output to the control voltage generator 34a. As shown in FIG. 8B, the control voltage controller 34a first detects the phase rotation amount (phase rotation due to the detected angular frequency deviation) from the Δθ total detector 341 generated in accordance with the known data detection signal 410 from the known data pattern correlator 31. Amount) Δθto
tal, the automatic frequency controller 34a
Is subtracted from the phase deviation information Δθ AFC414, and the received phase rotation amount (the phase rotation amount due to the reception angular frequency deviation) Δθi
Find n. Next, an internal voltage generation circuit 3 for obtaining and generating a reception angular frequency deviation Δω from the Δθin, that is, ΔωT.
The control voltage signal 412 from 43 is output to the frequency converter 35. For example, when π / 4 <ΔωT <3π / 4, FIG.
As shown in (c), the original transmission signal point A after the delay detection is phase-rotated by the angular frequency deviation Δω, detected at the reception signal point B, erroneously synchronized with the erroneously determined signal point C, and converged.
The relationship of tal = Δθin + ΔθAFC is established. At this time, the low-frequency component signal ML (t) 413 of the frequency converter 35
Then, the residual angular frequency deviation becomes zero as in the following equation, and the received angular frequency deviation Δω is compensated. The same is true when synchronizing to another quadrant. ML (t) = cos {(ωc−ωv) t + θm (t) +
θo-θv}

【0027】また上記実施例で誤同期補償手段3は遅延
検波復調装置の場合に絞って説明したが、同期検波復調
装置の場合にも適用できるのはいうまでもない。
In the above embodiment, the erroneous synchronization compensating means 3 has been described by focusing on the case of the delay detection and demodulation device. However, it is needless to say that the erroneous synchronization compensation means 3 can be applied to the case of the synchronization detection and demodulation device.

【0028】[0028]

【発明の効果】上記のようなこの発明のAFC復調装置
では、既知データパターンとの相関を取り角周波数偏差
が大きい値の場合でも正しく同期するように補償する誤
同期補償AFC方式を採るから、従来のように検波後の
角周波数偏差に対し逓倍を基本とし補正するAFC方式
に比べ、受信信号に対し大きな角周波数偏差があっても
誤同期を補償し、正しく復調できる効果がある。
As described above, the AFC demodulator of the present invention employs an erroneous synchronization compensation AFC system which correlates with a known data pattern and compensates for correct synchronization even when the angular frequency deviation is large. Compared with the conventional AFC system in which the angular frequency deviation after detection is corrected based on multiplication, even if there is a large angular frequency deviation with respect to the received signal, there is an effect that erroneous synchronization is compensated and demodulation can be performed correctly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明を示す一実施例のAFC遅延検波復
調装置の機能ブロック図。
FIG. 1 is a functional block diagram of an AFC differential detection and demodulation device according to an embodiment of the present invention.

【図2】 図1に示す既知データパターン相関器の機能
ブロック図および受信信号中の既知データパターン系列
を説明するフォーマット図。
FIG. 2 is a functional block diagram of a known data pattern correlator shown in FIG. 1 and a format diagram illustrating a known data pattern sequence in a received signal.

【図3】 図1に示すデータ変換器の機能ブロック図。FIG. 3 is a functional block diagram of the data converter shown in FIG.

【図4】 この発明を示す他の一実施例の機能ブロック
図。
FIG. 4 is a functional block diagram of another embodiment showing the present invention.

【図5】 図4に示す位相回転器の機能ブロック図。FIG. 5 is a functional block diagram of the phase rotator shown in FIG. 4;

【図6】 この発明を示す他の一実施例と当該制御電圧
生成器と当該周波数変換器の各機能ブロック図。
FIG. 6 is a functional block diagram of another embodiment showing the present invention, the control voltage generator and the frequency converter.

【図7】 この発明を示す他の一実施例の機能ブロック
図。
FIG. 7 is a functional block diagram of another embodiment showing the present invention.

【図8】 図7に示す自動周波数制御器と制御電圧生成
器の各機能ブロック図および実施例の位相平面上の信号
点配置を説明する図。
8 is a functional block diagram of the automatic frequency controller and the control voltage generator shown in FIG. 7, and a diagram for explaining signal point arrangement on a phase plane in the embodiment.

【図9】 従来例のAFC遅延検波復調装置の機能ブロ
ック図。
FIG. 9 is a functional block diagram of a conventional AFC differential detection and demodulation device.

【図10】 図9に示す直交検波器と遅延検波器と自動
周波数制御器の各機能ブロック図。
FIG. 10 is a functional block diagram of a quadrature detector, a delay detector, and an automatic frequency controller shown in FIG. 9;

【図11】 従来例の位相平面上の信号点配置を説明す
る図。
FIG. 11 is a diagram illustrating a signal point arrangement on a phase plane according to a conventional example.

【符号の説明】[Explanation of symbols]

1 検波手段、2 位相偏差補正手段、3 誤同期補償
手段、11 直交検波器、12 A/D変換器、13
複素/角度変換器、14 遅延検波器、21、21a
自動周波数制御器、22 判定器、31 既知データパ
ターン相関器、32 データ変換器、33 位相回転
器、34、34a 制御電圧生成器、35周波数変換
器、401 帯域制限位相変調(PSK)信号、40
2、403複素ベースバンド信号(同相、直交成分)、
404、405 複素デジタル信号(同相、直交成
分)、406 位相データ、407 位相差データ、4
08 復調データ、409 硬判定データ、410 既
知データ検出信号、411 出力データ、412 制御
電圧信号、413 低域成分信号、414 位相偏差情
報。なお図中、同一符号は同一または相当部分を示す。
REFERENCE SIGNS LIST 1 detection means, 2 phase deviation correction means, 3 false synchronization compensation means, 11 quadrature detector, 12 A / D converter, 13
Complex / angle converter, 14 delay detector, 21, 21a
Automatic frequency controller, 22 determiner, 31 known data pattern correlator, 32 data converter, 33 phase rotator, 34, 34a control voltage generator, 35 frequency converter, 401 band-limited phase modulation (PSK) signal, 40
2,403 complex baseband signals (in-phase, quadrature components),
404, 405 complex digital signal (in-phase and quadrature components), 406 phase data, 407 phase difference data, 4
08 demodulated data, 409 hard decision data, 410 known data detection signal, 411 output data, 412 control voltage signal, 413 low frequency component signal, 414 phase deviation information. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 年春 鎌倉市大船五丁目1番1号 三菱電機株 式会社 通信システム研究所内 (72)発明者 三宅 真 鎌倉市大船五丁目1番1号 三菱電機株 式会社 通信システム研究所内 (72)発明者 藤野 忠 鎌倉市大船五丁目1番1号 三菱電機株 式会社 通信システム研究所内 (56)参考文献 特開 平7−212429(JP,A) 特開 平7−221803(JP,A) 特開 平8−23361(JP,A) 特開 平7−176994(JP,A) 特開 平7−297871(JP,A) (58)調査した分野(Int.Cl.7,DB名) H03J 7/00 - 7/02 H04L 27/22 - 27/38 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiharu Kojima 5-1-1, Ofuna Kamakura City Mitsubishi Electric Corporation Communication Systems Laboratory (72) Inventor Makoto Miyake 5-1-1, Ofuna, Kamakura City Mitsubishi Electric (72) Inventor Tadashi Fujino 5-1-1 Ofuna, Kamakura City Mitsubishi Electric Corporation Communication Systems Laboratory (56) References JP-A-7-212429 (JP, A) JP JP-A-7-221803 (JP, A) JP-A-8-23361 (JP, A) JP-A-7-176994 (JP, A) JP-A-7-297871 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) H03J 7/ 00-7/02 H04L 27/22-27/38

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 差動符号化位相変調された受信信号を位
相に変換する変換手段と、 前記位相を遅延検波して位相差データを出力する遅延検
波手段と、 該遅延検波手段からの位相差データに基き硬判定データ
を生成し、この硬判定データを帰還させることで受信角
周波数偏差に対応する前記位相差を補正する周波数偏差
補正手段と、 該周波数偏差補正手段からの前記硬判定データに対し、
前記受信信号に含まれる既知データパターンと予め記憶
してある参照パターンとに基き、周波数偏差が特定の範
囲にあることを検出し、この特定の範囲にもとづき、受
信信号の誤同期を補償する誤同期補償手段を備えた こと
を特徴とする自動周波数制御復調装置。
1. A method for receiving a differentially encoded phase modulated received signal.
Converting means for converting the phase into a phase, and delay detecting the phase to output phase difference data;
Wave determination means and hard decision data based on the phase difference data from the delay detection means.
Is generated, and the hard decision data is fed back to obtain the reception angle.
Frequency deviation for correcting the phase difference corresponding to the frequency deviation
Correction means, for the hard decision data from the frequency deviation correction means,
A known data pattern included in the received signal and stored in advance
Frequency deviation based on the reference pattern
Is detected, and based on this specific range,
An automatic frequency control demodulator, comprising: an erroneous synchronization compensator for compensating erroneous synchronization of a signal .
【請求項2】 誤同期補償手段は、予め設定した複数の
異なる参照パターンのいずれか1つと前記受信信号中の
既知データパターン系列の硬判定データとの排他的論理
和をとり、得られた1の数の総和が予め設定した閾値よ
りも小さい場合に前記参照パターンが選択されたことを
示す既知データ検出信号を生成する複数の既知データパ
ターン相関器を備えたことを特徴とする請求項1記載の
自動周波数制御復調装置。
2. The erroneous synchronization compensating means includes a plurality of presets.
Any one of the different reference patterns and the
Exclusive logic with known data pattern sequence hard decision data
Take the sum and obtain the sum of the number of 1 from the preset threshold.
If the reference pattern is smaller than
A plurality of known data paths for generating the known data detection signal shown in FIG.
The automatic frequency control demodulator according to claim 1 , further comprising a turn correlator .
【請求項3】 誤同期補償手段で既知データパターン相
関器からの既知データ検出信号に従い、検波手段からの
検波データを位相回転し所望の出力データとする位相回
転器を設けることを特徴とする請求項1記載の自動周波
数制御復調装置。
3. A phase rotator, wherein a phase rotator is provided by the erroneous synchronization compensating means in accordance with a known data detection signal from a known data pattern correlator to rotate the detected data from the detecting means into a desired output data. Item 2. The automatic frequency control demodulator according to Item 1.
【請求項4】 誤同期補償手段で既知データパターン相
関器からの既知データ検出信号に従い計算する制御角周
波数偏差に相当する制御電圧信号を生成する制御電圧生
成器と、該制御電圧生成器からの制御電圧信号に応じ制
御する発振角周波数で受信信号の角周波数を変換し生成
する当該低域成分信号を検波手段に出力する周波数変換
器とを設けることを特徴とする請求項1記載の自動周波
数制御復調装置。
4. A control voltage generator for generating a control voltage signal corresponding to a control angular frequency deviation calculated by a false synchronization compensating means in accordance with a known data detection signal from a known data pattern correlator; 2. The automatic frequency converter according to claim 1, further comprising a frequency converter that converts the angular frequency of the received signal with an oscillation angular frequency controlled according to a control voltage signal and outputs the low-frequency component signal to a detection unit. Control demodulator.
【請求項5】 制御電圧生成器で既知データパターン相
関器からの既知データ検出信号に従い生成する検出角周
波数偏差による位相回転量に対し、周波数偏差補正手段
からの位相偏差情報と減算をし受信角周波数偏差による
位相回転量を求め、当該受信角周波数偏差に相当する制
御電圧信号を生成することを特徴とする請求項4記載の
自動周波数制御復調装置。
5. A control voltage generator subtracts phase deviation information from a frequency deviation correction means from a phase rotation amount due to a detected angular frequency deviation generated in accordance with a known data detection signal from a known data pattern correlator, and receives a reception angle. 5. The automatic frequency control demodulator according to claim 4, wherein a phase rotation amount based on the frequency deviation is obtained, and a control voltage signal corresponding to the reception angular frequency deviation is generated.
JP30899294A 1994-12-13 1994-12-13 Automatic frequency control demodulator Expired - Fee Related JP3178281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30899294A JP3178281B2 (en) 1994-12-13 1994-12-13 Automatic frequency control demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30899294A JP3178281B2 (en) 1994-12-13 1994-12-13 Automatic frequency control demodulator

Publications (2)

Publication Number Publication Date
JPH08167832A JPH08167832A (en) 1996-06-25
JP3178281B2 true JP3178281B2 (en) 2001-06-18

Family

ID=17987635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30899294A Expired - Fee Related JP3178281B2 (en) 1994-12-13 1994-12-13 Automatic frequency control demodulator

Country Status (1)

Country Link
JP (1) JP3178281B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735488B2 (en) 1999-06-23 2006-01-18 埼玉日本電気株式会社 Digital mobile phone equipment
KR20030020412A (en) * 2001-05-30 2003-03-08 미쓰비시덴키 가부시키가이샤 Automatic frequency control device and automatic frequency control method
JP4914202B2 (en) * 2006-12-22 2012-04-11 日本無線株式会社 Burst signal detection method and ARQ communication demodulator
JP4849037B2 (en) * 2007-08-27 2011-12-28 岩崎通信機株式会社 Automatic frequency control method and apparatus

Also Published As

Publication number Publication date
JPH08167832A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
JP2643792B2 (en) Demodulator
US5581582A (en) Automatic frequency control method and apparatus therefor
JPH10308784A (en) Demodulator
US4652834A (en) Rapid acquisition demodulation system
JPH07297870A (en) Tdma data receiver
EP0763919B1 (en) QPSK demodulator with frequency and phase tracking
JP3178281B2 (en) Automatic frequency control demodulator
US6697440B1 (en) Demodulator of receiver
US20040062322A1 (en) Phase error corrector and method
JP3120136B2 (en) TDMA data receiver
JP5213769B2 (en) Receiving machine
JPH09186731A (en) Afc circuit
JPH11112588A (en) Psk demodulator
JP4375032B2 (en) QAM transmission system and QAM receiver
JP3278669B2 (en) Receiver demodulator
JP3404326B2 (en) Carrier recovery circuit, carrier recovery method and quadrature detection circuit, quadrature detection method
WO1997019536A1 (en) Diversity device improved in ability to reproduce carrier in synchronous detection
JPH0730601A (en) Data receiver
JP3865893B2 (en) Demodulator circuit
JP3024111B2 (en) Absolute phase shifter for received signal of receiver
JP2009094942A (en) Receiving apparatus and receiving method
JP3043332B2 (en) Receiving machine
JP3115261B2 (en) Signal point arrangement variance calculation circuit
JP2022072447A (en) Digital receiver
JP2001339454A (en) Device and method for phase error detection and receiving device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees