JP3175928B2 - Rechargeable battery - Google Patents

Rechargeable battery

Info

Publication number
JP3175928B2
JP3175928B2 JP07176999A JP7176999A JP3175928B2 JP 3175928 B2 JP3175928 B2 JP 3175928B2 JP 07176999 A JP07176999 A JP 07176999A JP 7176999 A JP7176999 A JP 7176999A JP 3175928 B2 JP3175928 B2 JP 3175928B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
electrolyte
separator
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07176999A
Other languages
Japanese (ja)
Other versions
JP2000268877A (en
Inventor
英正 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP07176999A priority Critical patent/JP3175928B2/en
Publication of JP2000268877A publication Critical patent/JP2000268877A/en
Application granted granted Critical
Publication of JP3175928B2 publication Critical patent/JP3175928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液を用い
た二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery using a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型、軽量化を次々と実現させている。それに
伴い、携帯用情報端末としての電池に対してもますます
小型、軽量且つ高エネルギー密度であることが求められ
ている。さらに近年の環境問題、特に大気汚染への配慮
から、一酸化炭素や窒素化合物を排出しない電気自動車
(EV)やハイブリッド型電気自動車(HEV)が注目
されており、大容量型の二次電池や大電流が取り出せる
二次電池が求められている。
2. Description of the Related Art In recent years, remarkable progress in electronic technology has enabled electronic devices to be reduced in size and weight one after another. Along with this, there is a demand for batteries as portable information terminals to be increasingly smaller, lighter and have higher energy density. Further, in consideration of recent environmental problems, particularly air pollution, electric vehicles (EV) and hybrid electric vehicles (HEV) that do not emit carbon monoxide or nitrogen compounds have attracted attention, and large-capacity secondary batteries and There is a demand for a secondary battery capable of extracting a large current.

【0003】従来、携帯端末用途のリチウムイオン二次
電池の寿命は、そのサイクル寿命として考えた場合、3
00〜500サイクルの充放電が一般的に目安として考
えられている。従って、300〜500サイクル後に初
期容量の50ないしは60%程度の容量が保持できれば
良いと一般には考えられている。一方、近年、話題とな
っているEVやHEV用途のリチウムイオン二次電池は
搭載される自動車の耐久性から考えて数千〜数十万サイ
クルが必要と考えられている。
Conventionally, the life of a lithium-ion secondary battery for use in a portable terminal is considered to be 3 when considered as its cycle life.
Charge and discharge of 00 to 500 cycles are generally considered as a guide. Therefore, it is generally considered that a capacity of about 50 to 60% of the initial capacity can be maintained after 300 to 500 cycles. On the other hand, in recent years, lithium ion secondary batteries for use in EVs and HEVs are considered to require thousands to hundreds of thousands of cycles in view of the durability of a vehicle to be mounted.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来の携帯
端末用電池の設計方法をEVやHEV用電池に適用しよ
うとした場合、以下のような問題が生じてしまう。すな
わち、携帯端末用電池はリチウムイオン二次電池の有す
る高い重量エネルギー密度を最大限利用するために上述
した電池寿命を満たす最低限の電池重量に抑える必要が
ある。特に近年の携帯電話では電話機の重量低減が大き
な課題であるため全ての電池構成部材が必要最小限の重
量に抑えられている。ところが上述した携帯端末用電池
設計基準で製作した電池を用いてEVあるいはHEV用
の長期充放電サイクルを行うと要求される数千〜数十万
サイクルを経る前に電池寿命となることが分かった。こ
の原因を調査する中で一番影響の大きいものとして電解
液量が不足していることが明らかになった。
However, when the conventional battery design method for a portable terminal is applied to an EV or HEV battery, the following problems occur. That is, in order to make maximum use of the high weight energy density of the lithium ion secondary battery, it is necessary for the battery for a portable terminal to be reduced to the minimum battery weight that satisfies the above-mentioned battery life. Particularly in recent mobile phones, reducing the weight of the telephone is a major issue, so that all battery components are kept to the minimum necessary weight. However, it has been found that when a long-term charge / discharge cycle for EV or HEV is performed using a battery manufactured based on the above-described battery design standard for a portable terminal, the battery life is reached before required thousands to hundreds of thousands of cycles. . Investigation into the cause revealed that the most influential was the lack of electrolyte.

【0005】一般に電解液量は下限値が存在し、その値
を下回ると電極間のインピーダンスが上昇して電池とし
て利用できなくなる。一方で下限値から余裕を持たせて
充分な量を注入すると重量増、容積増、およびコストの
上昇につながる。以上の理由で重量制限の大きい携帯端
末用電池では電解液量が必要最小限に抑えられている。
また、携帯端末用電池は重量エネルギー密度の向上もさ
ることながら体積エネルギー密度の向上も重要であるこ
とから、電池缶内容積に対する電池要素の占める割合が
大きいため、注液可能な電解液量には上限が存在し、上
限以上の電解液を注入する事は事実上不可能である。そ
こで、本発明はこのような従来の実情に鑑みて提案され
たものであり、数千〜数十万サイクルの充放電において
も電解液は不足することなく駆動する電池を提供するこ
とを目的とする。
In general, the amount of the electrolyte has a lower limit, and if the amount is lower than the lower limit, the impedance between the electrodes increases, and the electrolyte cannot be used as a battery. On the other hand, if a sufficient amount is injected with a margin from the lower limit, it leads to an increase in weight, volume and cost. For the above reasons, the amount of electrolyte is kept to a necessary minimum in a battery for a portable terminal having a large weight limit.
Also, batteries for mobile terminals are required to improve not only the weight energy density but also the volume energy density.Therefore, the ratio of battery elements to the internal volume of the battery can is large. Has an upper limit, and it is practically impossible to inject an electrolytic solution higher than the upper limit. Therefore, the present invention has been proposed in view of such conventional circumstances, and an object of the present invention is to provide a battery that can be driven without running out of electrolyte even in charging and discharging of thousands to hundreds of thousands of cycles. I do.

【0006】[0006]

【課題を解決するための手段】本発明は、帯状正極と帯
状負極とをセパレータを介して巻回した巻回体からなる
電池要素を電池缶内に収容した非水電解液二次電池にお
いて、電池要素の正極と負極が対向する部分以外の巻回
体の巻終わりにセパレータのみを巻回し、巻終わりのセ
パレータ空孔体積が正極と負極が対向する電極群の空孔
体積総和の10〜50%からなる二次電池である。活物
質がリチウムイオンをドープ、脱ドープするものである
前記の二次電池である。
The present invention relates to a non-aqueous electrolyte secondary battery in which a battery element comprising a wound body in which a strip-shaped positive electrode and a strip-shaped negative electrode are wound via a separator is accommodated in a battery can. Only the separator is wound at the end of the wound body other than the part where the positive electrode and the negative electrode of the battery element face each other, and the separator pore volume at the end of the winding is 10 to 50 of the total pore volume of the electrode group in which the positive electrode and the negative electrode face each other. % Secondary battery. In the above secondary battery, the active material is for doping and undoping lithium ions.

【0007】[0007]

【発明の実施の形態】本発明の非水電解液二次電池は、
帯状正極と帯状負極とをセパレータを介して渦巻き状に
巻回した電池要素を電池缶内に収容した非水電解液二次
電池において、該渦巻き状の電池要素の電極活物質を設
けた部分以外の部分に電解液の保持部を形成したもので
ある。電解液保持部は、電池要素の巻回体の最後尾部分
にセパレータのみの部分を形成して電解液保持部を備え
ることを特徴とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous electrolyte secondary battery of the present invention
In a non-aqueous electrolyte secondary battery in which a battery element in which a strip-shaped positive electrode and a strip-shaped negative electrode are spirally wound via a separator is accommodated in a battery can, other than a portion where the electrode active material of the spiral-shaped battery element is provided Is formed with an electrolyte holding portion. The electrolytic solution holding portion is characterized in that a portion including only the separator is formed at the rearmost portion of the wound body of the battery element, and the electrolytic solution holding portion is provided.

【0008】本発明の非水電解液二次電池では、帯状正
極と帯状負極とをセパレータを介して積層し、この電極
積層体を多数回巻回した渦巻き状の電池要素を用いてい
る。そして特に、非水電解液二次電池の長期サイクル、
例えば数万〜数十万回サイクルにおいても電解液が不足
にならないように渦巻き状電池要素内あるいは電池要素
の外部に電解液保持用の多孔体を備えたものである。こ
のような渦巻き状電池要素への電解液の補充を目的とし
て充填物を配置する試みはなされていない。
The non-aqueous electrolyte secondary battery of the present invention uses a spiral battery element in which a strip-shaped positive electrode and a strip-shaped negative electrode are stacked with a separator interposed therebetween, and the electrode stack is wound many times. And especially, long-term cycle of non-aqueous electrolyte secondary battery,
For example, a porous body for holding an electrolyte is provided inside the spiral battery element or outside the battery element so that the electrolyte does not become insufficient even in tens of thousands to hundreds of thousands of cycles. No attempt has been made to dispose such a filling in order to replenish the electrolyte in such a spiral battery element.

【0009】通常、正極にコバルト酸リチウム、マンガ
ン酸リチウム等のリチウムの遷移金属複合酸化物を用
い、負極にリチウムイオンをドープ・脱ドープできる炭
素材料からなるリチウムイオン二次電池のような場合、
充放電サイクル時における電解液の消費は数十〜数百サ
イクルでは電池性能として顕著な差で現れない。しかし
ながら実際には電池反応において分解によって徐々に消
費されているものと考えられている。
Usually, in the case of a lithium ion secondary battery using a lithium transition metal composite oxide such as lithium cobalt oxide or lithium manganate for the positive electrode and a carbon material capable of doping / dedoping lithium ions for the negative electrode,
The consumption of the electrolyte during the charge / discharge cycle does not appear as a remarkable difference in the battery performance in several tens to several hundreds of cycles. However, actually, it is considered that it is gradually consumed by decomposition in the battery reaction.

【0010】その結果、数千サイクルを超えた長期サイ
クルを行う場合においては渦巻状の電池要素のみに電解
液を保持させるだけでは明らかに電解液の不足が生じる
ことになる。したがってこの渦巻状の電池要素へ保持し
た電解液を補充できるような多孔体を電池要素内部、あ
るいは外部に配置すれば長期のサイクルにおいても容量
劣化しない電池が得られる。
As a result, in the case of performing a long-term cycle exceeding several thousand cycles, a shortage of the electrolyte is apparently caused only by holding the electrolyte in the spiral battery element alone. Therefore, if a porous body capable of replenishing the electrolyte held in the spiral battery element is disposed inside or outside the battery element, a battery that does not deteriorate in capacity even in a long cycle can be obtained.

【0011】電解液保持部は、巻回体の外周部に、電解
液保持用の多孔性物質を存在させる方法によって実現す
ることができる。巻回体の外周部に位置するセパレータ
を単独で巻回してセパレータのみの部分を形成すること
によって、電解液保持部を形成する。
The electrolyte holding section can be realized by a method in which a porous substance for holding an electrolyte is present on the outer peripheral portion of the wound body. The electrolytic solution holding portion is formed by forming a portion of only the separator by independently winding the separator located on the outer peripheral portion of the wound body.

【0012】なお、本発明において、充填物の空孔率と
は正極、負極及びセパレータのそれぞれが有する空隙体
積の総和を正極、負極及びセパレータの総体積で除した
値である。例えば正極の空隙体積を表すと式1のように
なる。
In the present invention, the porosity of the filler is a value obtained by dividing the sum of the void volumes of the positive electrode, the negative electrode and the separator by the total volume of the positive electrode, the negative electrode and the separator. For example, when expressing the void volume of the positive electrode, Equation 1 is obtained.

【0013】 正極の空隙体積 =(正極巻回長×正極電極幅×正極活物質厚み)−[(電極 単位面積当たりの正極総重量×正極巻回長×正極電極幅)×((正極活物質含量 /正極活物質密度)+(補助材料含量/補助材料密度))] …式1 式1は正極中の空間体積を表しており、実際には電解液
が含浸する部分に相当している。式1をさらに正極体積
(正極巻回長×正極電極幅×正極活物質厚み)で除すれ
ば空孔率となる。負極に関しても正極と同様な式で表さ
れ、実際には電解液が含浸するする部分に相当する。
The void volume of the positive electrode = (positive electrode winding length × positive electrode width × positive electrode active material thickness) − [(total positive electrode weight per unit area of electrode × positive electrode winding length × positive electrode width) × ((positive electrode active material Content / positive material active material density) + (auxiliary material content / auxiliary material density))] Formula 1 Formula 1 represents the space volume in the positive electrode, and actually corresponds to the portion impregnated with the electrolyte. The porosity is obtained by dividing the formula 1 by the positive electrode volume (positive electrode winding length × positive electrode width × positive electrode active material thickness). The negative electrode is also represented by the same formula as the positive electrode, and actually corresponds to a portion impregnated with the electrolytic solution.

【0014】セパレータは材料自身に空孔率が存在して
おり、空孔体積は電解液の保持及びリチウムイオンの通
過経路に用いられる。以上は設計上の計算方法であるが
実際の数値はピクノメーターを用いてヘリウムガス充填
による体積測定方法より検証している。その結果、前記
空孔体積の算出と実際の体積測定による差は殆ど無いこ
とが確認されている。
[0014] The separator itself has a porosity in the material itself, and the porosity volume is used for holding the electrolytic solution and for the passage of lithium ions. The above is the calculation method in design, but the actual numerical value is verified by a volume measurement method using helium gas filling using a pycnometer. As a result, it has been confirmed that there is almost no difference between the calculation of the pore volume and the actual volume measurement.

【0015】充填物のこの充填物の空孔率を巻回した電
池要素において正極と負極が対向する部分のセパレータ
を含めた空孔体積の10〜50%としたのは10%未満
であると効果が顕著に現れないことによる。同様に一般
的な巻回電池要素体の製造方法の場合、正極と負極の対
向しない部分においても製造上わずかなセパレータ単独
分が存在するが電解液補充の効果は全くない。逆に50
%以上の場合は長期サイクル等の顕著な差が確認できな
いことと電池缶内における充填物の占有割合が大きくな
るため電池容量が著しく減少するため実用的ではないた
めである。
When the porosity of the filler is 10 to 50% of the volume of the pores including the separator at the portion where the positive electrode and the negative electrode face each other in the wound battery element, it is less than 10%. The effect is not remarkable. Similarly, in the case of a general method of manufacturing a wound battery element, a small amount of a separator alone is present in the portion where the positive electrode and the negative electrode do not face each other, but there is no effect of replenishing the electrolyte. Conversely 50
% Is not practical because a significant difference in long-term cycle and the like cannot be confirmed and the occupation ratio of the filler in the battery can is large, so that the battery capacity is significantly reduced.

【0016】また、電池缶内部には巻回した電池要素以
外の空間が通常存在する。例えば円筒型電池では巻回し
た電池要素の中央部に円柱状の空間が存在し、矩形型電
池では電池間内部の角部に空間が存在する。本発明では
これらの空間は電解液保持部としては考慮していない。
なぜならば通常の減圧して注液する方法では電解液が吹
きこぼれてしまい、これらの空間に電解液量を制御して
保持することは不可能であるためである。
Further, there is usually a space inside the battery can other than the wound battery element. For example, a cylindrical battery has a columnar space at the center of a wound battery element, and a rectangular battery has a space at a corner inside the space between batteries. In the present invention, these spaces are not considered as electrolyte holding portions.
This is because the electrolyte is blown out by the usual method of injecting the solution under reduced pressure, and it is impossible to control and maintain the amount of the electrolyte in these spaces.

【0017】以下に本発明を図面を参照して以下に説明
する。図1は、本発明の1実施例の二次電池を示す分解
斜視図であり、電池の蓋体を取り除いた状態を示す図で
ある。本発明の二次電池1は、容器である電池缶2が円
筒状に形成されており、その内部に同様な形状の電池要
素3が収容されている。この電池要素3は、活物質を塗
布して形成した帯状の正負の電極4、5と帯状のセパレ
ータ6、7からなり、前記電極4、5は前記セパレータ
6、7を介して積層された状態で巻回されている。前記
電極4、5の一端には電極リード8、9が装着されてお
り、電池要素の外周部には単独で巻回されたセパレータ
からなる電解液保持部10が配置されており、粘着テー
プ11によってセパレータが固定されている。
The present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view showing a secondary battery according to one embodiment of the present invention, and is a view showing a state where a lid of the battery is removed. In a secondary battery 1 of the present invention, a battery can 2 as a container is formed in a cylindrical shape, and a battery element 3 having a similar shape is accommodated in the inside thereof. The battery element 3 includes strip-shaped positive and negative electrodes 4 and 5 formed by applying an active material and strip-shaped separators 6 and 7, and the electrodes 4 and 5 are stacked with the separators 6 and 7 interposed therebetween. It is wound by. Electrode leads 8 and 9 are attached to one end of each of the electrodes 4 and 5, and an electrolytic solution holding unit 10 composed of a separator wound alone is arranged on the outer peripheral portion of the battery element. The separator is fixed.

【0018】本実施例の形態の二次電池1は上述のよう
に外形が円筒形なので断面形状的には電池缶内での余分
な空間は中心部しかない。本実施例の場合、電池要素の
外周部にセパレータ単独の巻回層が存在するため電解液
の保持に充てることが可能であるために数千〜数万サイ
クルといった長期間での充放電を繰り返しても容量が低
下することなく、良好な性能を安定に発揮することがで
きる。
As described above, the secondary battery 1 of the present embodiment has a cylindrical outer shape, so that the extra space in the battery can has only a central portion in cross-sectional shape. In the case of the present embodiment, repeated charging and discharging over a long period of several thousand to several tens of thousands of cycles is possible because the winding layer of the separator alone exists on the outer peripheral portion of the battery element, so that it can be used for holding the electrolytic solution. However, good performance can be stably exhibited without lowering the capacity.

【0019】[0019]

【0020】[0020]

【0021】[0021]

【0022】[0022]

【0023】[0023]

【作用】本発明になる二次電池では、マンガン酸リチウ
ムを主成分とする帯状正極とリチウムイオンをドープ・
脱ドープ可能な炭素材料を主成分とする帯状負極とをセ
パレータを介して巻回した電池要素の再後部にセパレー
タのみの部分を配置し、電解液を十分に保持した電池を
用いると、電池の長期サイクルにおいても容量劣化の少
ない電池が得られる。
In the secondary battery according to the present invention, a belt-shaped positive electrode mainly composed of lithium manganate and a lithium ion-doped lithium ion are used.
A band-shaped negative electrode composed mainly of a undoped carbon material and a battery element in which a separator alone is arranged at the rear portion of a battery element wound with a separator interposed therebetween, and a battery having a sufficient amount of electrolyte is used. A battery with less capacity deterioration can be obtained even in a long cycle.

【0024】[0024]

【実施例】以下に実施例を示し、本発明を説明する。 実施例1 メソフェーズ系炭素材料粉末66.6重量部と、結着材
としてポリフッ化ビニリデン(PVDF)7.4重量部
を混合した負極合剤を、溶剤であるN−メチル2−ピロ
リドン26重量部に分散させて負極合剤スラリーを調製
した。得られた負極合剤スラリーを、厚さ15μmの帯
状の銅箔の両面に塗布、乾燥させた後、圧縮形成して帯
状負極を製作した。なお、この帯状負極は、成形後の合
剤厚さを両面共に50μmで同一とし、幅を57mm、
長さを650mmとした。そして、負極の電極の一端
に、厚さ0.1mm、幅3mmのニッケル製の平板を溶
接して負極の電極リードを形成した。
The present invention will be described below with reference to examples. Example 1 A negative electrode mixture obtained by mixing 66.6 parts by weight of a mesophase-based carbon material powder and 7.4 parts by weight of polyvinylidene fluoride (PVDF) as a binder was mixed with 26 parts by weight of N-methyl 2-pyrrolidone as a solvent. To prepare a negative electrode mixture slurry. The obtained negative electrode mixture slurry was applied to both sides of a 15 μm-thick strip-shaped copper foil, dried, and then compression-formed to produce a strip-shaped negative electrode. The band-shaped negative electrode had the same mixture thickness of 50 μm on both sides after molding, had a width of 57 mm,
The length was 650 mm. Then, a flat plate made of nickel having a thickness of 0.1 mm and a width of 3 mm was welded to one end of the negative electrode to form a negative electrode lead.

【0025】また、炭酸リチウムと二酸化マンガンを混
合し、空気中、温度780℃で12時間焼成してLiM
24を得た。このLiMn24を正極活物質とし、こ
れを50.6重量部と、導電剤としてグラファイト2.
75重量部、結着剤としてポリフッ化ビニリデン1.6
5重量部を混合し、正極合剤を調製した。そして、この
正極合剤をN−メチル2−ピロリドン45重量部に分散
させて正極合剤スラリーを得た。
Further, lithium carbonate and manganese dioxide are mixed and calcined in air at a temperature of 780 ° C. for 12 hours to produce LiM
n 2 O 4 was obtained. This LiMn 2 O 4 was used as a positive electrode active material, and 50.6 parts by weight of this was used as a conductive agent.
75 parts by weight, polyvinylidene fluoride 1.6 as a binder
5 parts by weight were mixed to prepare a positive electrode mixture. Then, this positive electrode mixture was dispersed in 45 parts by weight of N-methyl 2-pyrrolidone to obtain a positive electrode mixture slurry.

【0026】得られた正極合剤スラリーを、厚さ25μ
mの帯状のアルミニウム箔の両面に均一に塗布して乾燥
させた後、圧縮形成して帯状の正極側電極を作製した。
なお、帯状の正極側の電極は、合剤厚さを両面共に60
μmで同一とし、幅を55.5mm、長さを600mm
とした。そして、上述のように製作した正極側の電極の
一端に、厚さ0.1mm、幅3mmのアルミニウム製の
平板を溶接して正側の電極リードを形成した。
The obtained slurry of the positive electrode mixture was coated with a thickness of 25 μm.
After uniformly applying and drying both sides of the m-shaped strip-shaped aluminum foil, it was compression-formed to prepare a strip-shaped positive electrode.
The thickness of the mixture on both sides of the electrode on the positive electrode side is 60
μm, the width is 55.5 mm and the length is 600 mm
And Then, a flat plate made of aluminum having a thickness of 0.1 mm and a width of 3 mm was welded to one end of the positive electrode manufactured as described above to form a positive electrode lead.

【0027】以上のようにして作製した帯状の正負の電
極を、厚さ25μm、幅60mmの微多孔性ポリプロピ
レンフィルムよりなるセパレータを介して、負側の電
極、第一のセパレータ、正側の電極、第二のセパレー
タ、の順に積層し、この電極積層体の一端を断面円状の
巻芯に固定して、20回巻回した。
The strip-like positive and negative electrodes prepared as described above are connected to a negative electrode, a first separator, and a positive electrode through a separator made of a microporous polypropylene film having a thickness of 25 μm and a width of 60 mm. , The second separator, and the like, and one end of the electrode laminate was fixed to a core having a circular cross section and wound 20 times.

【0028】正負の電極の積層が終了した後、第一のセ
パレータと第二のセパレータのみでさらに10回巻回し
て正負の電極及び2層のセパレータが対向して積層する
部分の全空孔に相当する体積の20%分(0.6ml相
当)の電解液保持部を形成した。
After the lamination of the positive and negative electrodes is completed, the first and second separators are further wound 10 times to form all the holes in the portion where the positive and negative electrodes and the two-layer separator face each other and are laminated. An electrolytic solution holding portion corresponding to 20% (corresponding to 0.6 ml) of the corresponding volume was formed.

【0029】このように巻芯に積層体を巻回した後、最
外周に位置するセパレータの最終端部を、幅15mmの
粘着テープによって巻回体に固定した。そして、巻芯を
巻回体から抜き取ることにより電池要素を作製した。
After the laminate was wound around the core in this manner, the final end of the separator located at the outermost periphery was fixed to the roll with an adhesive tape having a width of 15 mm. Then, the battery core was manufactured by extracting the core from the wound body.

【0030】次いで、正側の電極リードを電池缶に溶接
するとともに、負側の電極リードを電池蓋に溶接し、そ
して、電解液注入部よりエチレンカーボネート30重量
部とジエチルカーボネート70重量部の混合溶媒中に、
LiPF6 を1モル/lの割合で溶解した電解液を注入
し、電池蓋と電池缶をかしめにより固定することで電池
内の機密性を保持させた。電解液量は正負の電極及び2
層のセパレータが対向して積層する部の全空孔に相当す
る体積の20%に加えて充填部の空孔体積に相当する電
解液を入れた。以上の工程で、直径18mm、高さ65
mmの非水電解液二次電池を作製した。
Next, the positive electrode lead was welded to the battery can, the negative electrode lead was welded to the battery lid, and 30 parts by weight of ethylene carbonate and 70 parts by weight of diethyl carbonate were mixed from the electrolyte injection portion. In the solvent,
An electrolyte solution in which LiPF 6 was dissolved at a rate of 1 mol / l was injected, and the battery cover and the battery can were fixed by caulking to maintain the secrecy in the battery. The amount of electrolyte is positive and negative electrodes and 2
In addition to 20% of the volume corresponding to the total pores in the portion where the layer separators face each other and stacked, an electrolyte corresponding to the pore volume in the filled portion was added. Through the above steps, the diameter is 18 mm and the height is 65
mm non-aqueous electrolyte secondary battery was manufactured.

【0031】以上は正負の電極及び2層のセパレータが
対向して積層する部の全空孔に相当する体積の20%分
の場合であるが同様にしてのようにして充填部の空孔体
積率を、正負の電極及び2層のセパレータの積層部の全
空孔体積率の10%から80%まで各10%毎に変化さ
せた電池要素体を各合計10個の二次電池を作製し、上
限電圧4.2V、充電電流1.2Aの条件で定電流充電
を1時間行った後、終始電圧3.0V、1Cの条件で放
電を行うといった充放電サイクルを10000回まで繰
り返してから容量維持率を調べた。
The above is the case of 20% of the volume corresponding to the total porosity of the portion where the positive and negative electrodes and the two-layer separator are stacked facing each other. A total of 10 secondary batteries were manufactured in each of the battery elements having the ratio changed from 10% to 80% of the total porosity of the laminated portion of the positive and negative electrodes and the two-layer separator for each 10%. The charge / discharge cycle was repeated up to 10,000 times after performing constant current charging for 1 hour under the conditions of an upper limit voltage of 4.2 V and a charging current of 1.2 A, and then performing discharging under the conditions of a voltage of 3.0 V and 1 C. The maintenance rate was examined.

【0032】この初期の容量の分布を図2に示し、10
000サイクル後の容量維持率の分布を図3に示す。こ
れらの図面から明らかなように、正負の電極及び2層の
セパレータの積層部の全空孔体積に対して電解液保持部
の空孔体積が10%以上のものは容量維持率の低下が非
常に少ない。これは電解液保持部に相当する体積に電解
液が保持されて電解液の消費を補っているためである。
但し、電解液保持部が50%を越えると電池缶内に占め
るセパレータの体積が大きくなるため初期の容量が著し
く低下し始める。このため一定以上の電池容量を確保す
るためには実用的ではない。
FIG. 2 shows this initial capacitance distribution.
FIG. 3 shows the distribution of the capacity retention ratio after 000 cycles. As is apparent from these drawings, when the volume of pores in the electrolyte holding portion is 10% or more of the total volume of pores in the laminated portion of the positive and negative electrodes and the two-layer separator, the capacity retention rate is extremely reduced. Less. This is because the electrolyte solution is held in a volume corresponding to the electrolyte solution holding portion to compensate for the consumption of the electrolyte solution.
However, when the amount of the electrolyte holding portion exceeds 50%, the volume of the separator occupying the battery can becomes large, so that the initial capacity starts to decrease remarkably. For this reason, it is not practical to secure a certain or more battery capacity.

【0033】このことから、電池要素に電解液保持部が
配置させることは、二次電池の数千〜数万サイクルにお
ける容量低下を防止する上で有効であることが判明し
た。つまり、本実施の形態の二次電池は、前述のように
対向した正負の電極以外に電解液が保持できる充填部1
0が配置されているので、数千〜数万回の充放電を繰り
返しても電解液が不足することなく、良好な性能を安定
に発揮することができる。しかも、本実施例の形態の二
次電池の製造方法としては、巻回構造の電池要素を従来
と同様な手法により形成し、その形成過程で電解液保持
部が配置されるので構造を容易に実現することができ
る。
From this, it has been found that arranging the electrolyte holding portion in the battery element is effective in preventing the capacity of the secondary battery from decreasing in thousands to tens of thousands of cycles. In other words, the secondary battery according to the present embodiment has the filling portion 1 that can hold the electrolyte in addition to the positive and negative electrodes facing each other as described above.
Since 0 is arranged, even if charge / discharge is repeated several thousands to tens of thousands of times, the electrolyte can be stably provided without shortage of electrolyte solution. In addition, as a method of manufacturing the secondary battery of the embodiment, the battery element having the wound structure is formed by the same method as in the related art, and the electrolytic solution holding portion is arranged in the forming process, so that the structure can be simplified. Can be realized.

【0034】[0034]

【発明の効果】本発明の二次電池は、電池要素の正極と
負極が対向する部分以外に電解液保持部を備えて電解液
を保持したので、長期サイクルでの充放電においても電
解液不足による電池容量の低下を防止することができ
る。
As described above, the secondary battery of the present invention is provided with an electrolytic solution holding portion other than the portion where the positive electrode and the negative electrode of the battery element face each other, and holds the electrolytic solution. Of the battery capacity can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明を適用した電池の一形態の二次
電池を示す分解斜視図である。
FIG. 1 is an exploded perspective view showing a secondary battery as an embodiment of a battery to which the present invention is applied.

【図2】図2は、実施例の電池の初期の容量の分布を説
明する図である。
FIG. 2 is a diagram illustrating an initial capacity distribution of a battery according to an example.

【図3】図3は、10000サイクル後の容量維持率の
分布を説明する図である。
FIG. 3 is a diagram illustrating a distribution of a capacity retention rate after 10,000 cycles.

【符号の説明】[Explanation of symbols]

1…二次電池、2…電池缶、3…電池要素、4,5…電
極、6、7…セパレータ、8,9…電極リード、10…
電解液保持部、11…粘着テープ
DESCRIPTION OF SYMBOLS 1 ... Secondary battery, 2 ... Battery can, 3 ... Battery element, 4, 5 ... Electrode, 6, 7 ... Separator, 8, 9 ... Electrode lead, 10 ...
Electrolyte holding part, 11 ... adhesive tape

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 2/14 - 2/18 H01M 10/04 H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 2/14-2/18 H01M 10/04 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 帯状正極と帯状負極とをセパレータを介
して巻回した巻回体からなる電池要素を電池缶内に収容
した非水電解液二次電池において、電池要素の正極と負
極が対向する部分以外の巻回体の巻終わりにセパレータ
のみを巻回し、巻終わりのセパレータ空孔体積が正極と
負極が対向する電極群の空孔体積総和の10〜50%か
らなることを特徴とする二次電池。
In a non-aqueous electrolyte secondary battery in which a battery element formed of a wound body in which a strip-shaped positive electrode and a strip-shaped negative electrode are wound via a separator is accommodated in a battery can, the positive electrode and the negative electrode of the battery element face each other. The separator is wound only at the end of the winding body other than the part to be wound, and the separator pore volume at the end of the winding is 10 to 50% of the total pore volume of the electrode group in which the positive electrode and the negative electrode face each other. Rechargeable battery.
【請求項2】 活物質がリチウムイオンをドープ、脱ド
ープするものであることを特徴とする請求項1に記載の
二次電池。
2. The secondary battery according to claim 1, wherein the active material is used for doping and undoping lithium ions.
JP07176999A 1999-03-17 1999-03-17 Rechargeable battery Expired - Lifetime JP3175928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07176999A JP3175928B2 (en) 1999-03-17 1999-03-17 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07176999A JP3175928B2 (en) 1999-03-17 1999-03-17 Rechargeable battery

Publications (2)

Publication Number Publication Date
JP2000268877A JP2000268877A (en) 2000-09-29
JP3175928B2 true JP3175928B2 (en) 2001-06-11

Family

ID=13470104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07176999A Expired - Lifetime JP3175928B2 (en) 1999-03-17 1999-03-17 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP3175928B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593491B2 (en) * 2006-02-14 2010-12-08 三菱電機株式会社 Electric double layer capacitor
JP4803360B2 (en) 2005-12-02 2011-10-26 三菱自動車工業株式会社 Lithium ion secondary battery
JP4699256B2 (en) * 2006-03-24 2011-06-08 三菱電機株式会社 Lithium secondary battery
JP5260857B2 (en) * 2006-11-13 2013-08-14 三洋電機株式会社 Square non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5369756B2 (en) * 2009-02-26 2013-12-18 トヨタ自動車株式会社 Secondary battery, vehicle and equipment using the same
JP5273156B2 (en) 2010-02-05 2013-08-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP6043099B2 (en) * 2012-06-18 2016-12-14 川崎重工業株式会社 battery
JP6114515B2 (en) 2012-08-09 2017-04-12 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6037713B2 (en) 2012-08-09 2016-12-07 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2019069356A1 (en) * 2017-10-02 2019-04-11 株式会社 東芝 Electrode group, secondary battery, battery module, electricity storage device, vehicle and flying body
KR20210092093A (en) * 2020-01-15 2021-07-23 주식회사 엘지에너지솔루션 Rechargeable battery

Also Published As

Publication number Publication date
JP2000268877A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
CN101517817B (en) Hybrid-typed electrode assembly of capacitor-battery structure
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
KR101573106B1 (en) Wound-type accumulator
EP1562248A2 (en) Device for storing electrical energy
JP3705801B1 (en) Lithium ion secondary battery
JP2004519078A (en) Perforated electrode and rechargeable lithium secondary battery using the same
CN209880750U (en) Winding type battery cell and lithium ion battery
JP3175928B2 (en) Rechargeable battery
CN101150183A (en) A coiling lithium secondary battery
CN102856577A (en) Nonaqueous electrolyte secondary battery
KR100912788B1 (en) Electrode Assembly of High Pulse Discharging Property
JP3033563B2 (en) Non-aqueous electrolyte secondary battery
CN214099829U (en) Lithium ion battery with high energy density and long service life
CN101150185A (en) A coiling lithium secondary battery
WO2021067774A1 (en) Spiral wound battery & cell with carbonised fiber mat current collector
JP2006012703A (en) Secondary battery
CN101150184A (en) A coiling lithium secondary battery
EP0957526A1 (en) Lithium secondary cell, charger, and device for information terminal
JP3440520B2 (en) Non-aqueous electrolyte secondary battery
JPH11224699A (en) Energy storage element
JP4599639B2 (en) Non-aqueous electrolyte secondary battery
JP3316219B2 (en) Non-aqueous electrolyte battery
JPH1167276A (en) Nonaqueous electrolyte secondary battery
JPH11297299A (en) Thin secondary battery
JP2730641B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 13

EXPY Cancellation because of completion of term