JP3173274B2 - Inspection method for semiconductor device - Google Patents

Inspection method for semiconductor device

Info

Publication number
JP3173274B2
JP3173274B2 JP05751594A JP5751594A JP3173274B2 JP 3173274 B2 JP3173274 B2 JP 3173274B2 JP 05751594 A JP05751594 A JP 05751594A JP 5751594 A JP5751594 A JP 5751594A JP 3173274 B2 JP3173274 B2 JP 3173274B2
Authority
JP
Japan
Prior art keywords
semiconductor device
transistor
current
inj
operating current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05751594A
Other languages
Japanese (ja)
Other versions
JPH07270499A (en
Inventor
泰博 徳丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP05751594A priority Critical patent/JP3173274B2/en
Publication of JPH07270499A publication Critical patent/JPH07270499A/en
Application granted granted Critical
Publication of JP3173274B2 publication Critical patent/JP3173274B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の検査方法に
係り、特に論理回路を形成してなる半導体装置に用いて
好適な半導体装置の検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a semiconductor device, and more particularly to a method for inspecting a semiconductor device suitable for a semiconductor device having a logic circuit formed thereon.

【0002】[0002]

【従来の技術】例えばIILなどのように、インバータ
を多数縦続接続して論理回路を形成する半導体装置が従
来より知られている。このような半導体装置は、製造時
に1段でも素子に欠陥が発生すると、入力論理2値信号
に応じた正しい出力信号を得ることができない。
2. Description of the Related Art A semiconductor device, such as an IIL, in which a plurality of inverters are connected in cascade to form a logic circuit is conventionally known. In such a semiconductor device, if a defect occurs in even one element during manufacturing, a correct output signal corresponding to the input logical binary signal cannot be obtained.

【0003】そこで従来は、拡散を浮き出させた上で人
間が顕微鏡を使用して肉眼により結晶の欠陥を検査して
いた。この方法では、結晶の不均一を気泡状態を見つけ
ることにより識別することができ、良品と不良品の判定
をおこなっていた。
[0003] Conventionally, humans have inspected crystal defects with the naked eye using a microscope after the diffusion is revealed. In this method, the non-uniformity of the crystal can be identified by finding the bubble state, and a good product and a defective product are determined.

【0004】あるいは、半導体装置を低温または高温状
態にすることでリーク電流を常温時よりも増大させてお
いて半導体装置に入力論理2値信号を付与し、入力論理
2値信号に応じた正しい出力信号が得られるかを検査し
ていた。このように出力信号を見て、良品か不良品かの
判定をおこなっていた。なお、低温状態よりも高温状態
の方がリーク電流は増大するので検査精度は上がるが、
高温にし過ぎると信頼性の点で問題となる。
Alternatively, an input logic binary signal is given to the semiconductor device by setting the semiconductor device to a low or high temperature state to increase the leakage current from that at normal temperature, and a correct output corresponding to the input logic binary signal is given. I was checking if a signal could be obtained. As described above, the output signal is used to determine whether the product is good or defective. In addition, although the test accuracy is improved in the high temperature state as compared with the low temperature state, the leakage current increases,
If the temperature is too high, reliability becomes a problem.

【0005】[0005]

【発明が解決しようとする課題】しかしながら前者の方
法によれば、肉眼による検査であるために検査精度に限
度があると共に検査精度に個人差によるばらつきがあっ
た。一方後者の方法では、検査精度にばらつきは生じる
ことがなく環境温度によっては検査精度を向上させるこ
とができるものの、半導体装置を低温または高温状態に
するための設備が必要であり大がかりな検査方法となっ
てしまう問題があった。
However, according to the former method, since the inspection is performed by the naked eye, the inspection accuracy is limited, and the inspection accuracy is varied due to individual differences. On the other hand, in the latter method, although there is no variation in the inspection accuracy and the inspection accuracy can be improved depending on the environmental temperature, equipment for setting the semiconductor device to a low or high temperature state is required, so that a large inspection method is required. There was a problem.

【0006】そこで本発明は上記の点に鑑みてなされた
ものであって、簡便で精度の良い半導体装置の検査方法
を提供することを目的とする。
The present invention has been made in view of the above points, and has as its object to provide a simple and accurate method for inspecting a semiconductor device.

【0007】[0007]

【課題を解決するための手段】上記の問題を解決するた
めに、本発明では次の通り構成した。
In order to solve the above-mentioned problems, the present invention has the following constitution.

【0008】すなわち、論理回路を形成してなる半導体
装置に論理2値信号を入力すると共に半導体装置に動作
電流を供給し、半導体装置の出力信号に基づいて半導体
装置の良不良を判定する半導体装置の検査方法におい
て、半導体装置に供給する動作電流を通常の値よりも所
定量低減し、半導体装置の出力信号が論理2値信号に応
じた論理値を示すがどうかを判別して半導体装置の良不
良を判定するように構成した。
That is, a logic binary signal is input to a semiconductor device formed with a logic circuit, an operating current is supplied to the semiconductor device, and the semiconductor device determines good or bad based on an output signal of the semiconductor device. In the inspection method, the operating current supplied to the semiconductor device is reduced by a predetermined amount from a normal value, and it is determined whether or not the output signal of the semiconductor device indicates a logical value corresponding to a logical binary signal to determine whether or not the semiconductor device is good. It was configured to determine a defect.

【0009】[0009]

【作用】上記構成の本発明によれば、半導体装置に供給
する動作電流を通常の値よりも所定量低減することで出
力電流中のリーク電流の割合が増大するため、結晶欠陥
当によりリーク電流が元々多い不良品では、リーク電流
の影響によりhfeが良品よりも低下するように作用す
る。
According to the present invention having the above structure, the operating current supplied to the semiconductor device is reduced by a predetermined amount from the normal value, so that the ratio of the leak current in the output current increases. In the case of a defective product originally having a large amount, h fe acts to be lower than that of a non-defective product due to the influence of the leak current.

【0010】[0010]

【実施例】次に、図面を参照して本発明の実施例につい
て説明する。図1は本発明の一実施例を説明するための
回路図である。図1に示される回路はIIL(Inte
grated Injection Logic)と称
される論理回路ICからなり、通常同一半導体チップ上
にリニヤICと共通のプロセスにより共存して形成され
る。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram for explaining one embodiment of the present invention. The circuit shown in FIG.
It is composed of a logic circuit IC called graded injection logic, and is usually formed on the same semiconductor chip by coexisting with a linear IC by a common process.

【0011】信号源1は所定のタイミングの論理2値信
号を生成する。この論理2値信号はトランジスタQ11
ベースに供給されている。トランジスタQ11のエミッタ
は接地されている。
The signal source 1 generates a logical binary signal at a predetermined timing. The logical binary signal is supplied to the base of the transistor Q 11. The emitter of the transistor Q 11 is grounded.

【0012】また、トランジスタQ21のコレクタはトラ
ンジスタQ11のベースに接続されており、トランジスタ
21のベースは接地されている。一方、トランジスタQ
21のエミッタには電流源2が接続されており、電流源2
からの電流は可変制御されるようになっている。
[0012] In addition, the collector of the transistor Q 21 is connected to the base of the transistor Q 11, the base of the transistor Q 21 is grounded. On the other hand, transistor Q
The current source 2 is connected to the emitter 21 and the current source 2
Is variably controlled.

【0013】このような構成により、電流源2からトラ
ンジスタQ21を介してトランジスタQ11のベースに動作
電流IINJ が注入され、トランジスタQ11はインバータ
として動作する。さらに、トランジスタQ11のコレクタ
には次段のインバータが接続される。
[0013] With this configuration, the base operating current I INJ of the transistor Q 11 from the current source 2 via the transistor Q 21 is injected, the transistor Q 11 operates as an inverter. Further, the collector of the transistor Q 11 is connected to the next-stage inverter.

【0014】すなわち、トランジスタQ11のコレクタに
トランジスタQ12のベースが接続されている。トランジ
スタQ12のエミッタは接地されている。また、トランジ
スタQ12のベースにはトランジスタQ22のコレクタが接
続されており、トランジスタQ22のベースは接地されて
いる。一方、トランジスタQ22のエミッタにはトランジ
スタQ21のエミッタと同様に動作電流IINJ 注入用の電
流源2が接続されている。
[0014] That is, the base of the transistor Q 12 is connected to the collector of the transistor Q 11. The emitter of the transistor Q 12 is grounded. Moreover, the base of the transistor Q 12 is the collector of the transistor Q 22 is connected, the base of the transistor Q 22 is grounded. On the other hand, to the emitter of the transistor Q 22 is a current source 2 for the operating current I INJ injection similarly to the emitter of the transistor Q 21 is connected.

【0015】さらに、トランジスタQ12のコレクタには
後段のインバータが複数段縦続接続される。最終段のイ
ンバータは、トランジスタQ1nとトランジスタQ2nとで
構成されている。nの値を奇数とすれば、全体としてイ
ンバータ回路を構成する。nの値を偶数とすれば、全体
としてバッファ回路を構成する。
Furthermore, downstream inverters are a plurality of stages cascade-connected to the collector of the transistor Q 12. Inverter in the final stage, and a transistor Q 1n and the transistor Q 2n. If the value of n is an odd number, an inverter circuit is constituted as a whole. If the value of n is an even number, a buffer circuit is constituted as a whole.

【0016】本実施例ではインバータを複数段縦続接続
しているのでインバータ回路またはバッファ回路が構成
されるが、各インバータトランジスタの接続方法はこれ
に限るものでなく、その他の論理回路を構成することも
考えられる。最終段のトランジスタQ1nのコレクタには
例えばテスタ3が接続される。テスタ3の代わりに、オ
シロスコープ等の波形モニタを接続しても勿論構わな
い。
In this embodiment, an inverter circuit or a buffer circuit is formed because a plurality of inverters are connected in cascade. However, the connection method of each inverter transistor is not limited to this, and other logic circuits may be formed. Is also conceivable. For example, a tester 3 is connected to the collector of the transistor Q 1n in the last stage. Of course, a waveform monitor such as an oscilloscope may be connected instead of the tester 3.

【0017】図2は動作電流IINJ を可変したときのコ
レクタ出力電流IC と動作電流IIN J との比(IC /I
INJ )を結晶欠陥のない良品のトランジスタについて示
す図である。
[0017] The ratio of 2 and the collector output current I C at the time of varying the operating current I INJ and the operating current I IN J (I C / I
INJ ) is a diagram showing a non-defective transistor having no crystal defects.

【0018】通常の動作ではIINJ =1μA程度に設定
されているが、本実施例になる半導体装置の検査方法で
は、常温(すなわち室温)において電流源2からの電流
IN J を可変制御してこれを所定量低減させる。すなわ
ち、図示の如く1nAまで低減させている。
[0018] While in normal operation is set to about I INJ = 1 .mu.A, the inspection method of a semiconductor device according to the present embodiment, the variable controlling the current I IN J from the current source 2 at room temperature (i.e., room temperature) This is reduced by a predetermined amount. That is, it is reduced to 1 nA as shown in the figure.

【0019】コレクタ出力電流IC と動作電流IINJ
の比(IC /IINJ )はエミッタ接地の電流増幅率に他
ならず、図示の如くIINJ が数μAでピーク値を示し、
ピークの両側で直線的に減少している。通常動作のI
INJ =1μAでは約20とされている。
The ratio of the collector output current I C to the operating current I INJ (I C / I INJ ) is nothing less than the current amplification factor of the common emitter, and I INJ shows a peak value at several μA as shown in the figure.
It decreases linearly on both sides of the peak. I for normal operation
It is about 20 when INJ = 1 μA.

【0020】IINJ を例えば数10nAまで低減させた
ときには、コレクタ出力電流IC と動作電流IINJ との
比(IC /IINJ )は14乃至18とされ、トランジス
タは充分な電流駆動能力を有する。
When I INJ is reduced to, for example, several tens of nA, the ratio (I C / I INJ ) of the collector output current I C to the operating current I INJ is set to 14 to 18, and the transistor has sufficient current driving capability. Have.

【0021】したがって、次段のトランジスタを駆動す
ることができるので、入力論理2値信号に応じた正しい
信号を最終段のトランジスタQ1nのコレクタに接続され
たテスタ3で観測することができる。なお、入力論理2
値信号は、これに応じた出力信号をテスタ3で観測する
ことができる程度の比較的長い周期で論理値が切り換え
られる。
Therefore, since the transistor at the next stage can be driven, a correct signal corresponding to the input logic binary signal can be observed by the tester 3 connected to the collector of the transistor Q 1n at the last stage. Note that input logic 2
The logic value of the value signal is switched at a relatively long cycle such that an output signal corresponding to the value signal can be observed by the tester 3.

【0022】図3は動作電流IINJ を可変したときのコ
レクタ出力電流IC と動作電流IIN J との比(IC /I
INJ )を結晶欠陥のある不良品のトランジスタについて
示す図である。
[0022] The ratio of 3 to the collector output current I C at the time of varying the operating current I INJ and the operating current I IN J (I C / I
INJ ) is a diagram showing a defective transistor having a crystal defect.

【0023】通常の動作ではIINJ =1μA程度に設定
されているが、本実施例になる半導体装置の検査方法で
は、常温(すなわち室温)において電流源2からの電流
IN J を可変制御してこれを所定量低減させる。すなわ
ち、図示の如く1nAまで低減させている。
[0023] While in normal operation is set to about I INJ = 1 .mu.A, the inspection method of a semiconductor device according to the present embodiment, the variable controlling the current I IN J from the current source 2 at room temperature (i.e., room temperature) This is reduced by a predetermined amount. That is, it is reduced to 1 nA as shown in the figure.

【0024】コレクタ出力電流IC と動作電流IINJ
の比(IC /IINJ )はエミッタ接地の電流増幅率に他
ならず、図示の如くIINJ は良品のトランジスタと同様
数μAでピーク値を示し(ピーク値はやや小さい)、ピ
ークの右側の増大方向では直線的に減少している。一
方、ピークの左側の減少方向では曲線的に減少してい
る。通常動作のIINJ =1μAでは約16とされてお
り、充分な駆動能力を有している。
The ratio of the collector output current I C to the operating current I INJ (I C / I INJ ) is nothing less than the current amplification factor of the common emitter, and as shown in the figure, I INJ peaks at several μA like a good transistor. (The peak value is slightly smaller), and decreases linearly in the increasing direction on the right side of the peak. On the other hand, it decreases in a curve in the decreasing direction on the left side of the peak. It is about 16 when I INJ = 1 μA in the normal operation, and has a sufficient driving capability.

【0025】IINJ を例えば数10nAまで低減させた
ときには、コレクタ出力電流IC と動作電流IINJ との
比(IC /IINJ )は4乃至10とされ、良品のトラン
ジスタ場合の約半分の電流駆動能力しか有さない。
When I INJ is reduced to, for example, several tens of nA, the ratio (I C / I INJ ) of the collector output current I C to the operating current I INJ is set to 4 to 10, which is about half that of a good transistor. It has only current drive capability.

【0026】したがって、次段のトランジスタを駆動す
ることが不可能で正常動作を行えなくなり、不良品がど
の段かに1個だけあったとしても、入力論理2値信号に
応じた正しい信号を最終段のトランジスタQ1nのコレク
タに接続されたテスタ3で観測することができず、最終
段の出力はハイレベルに固定されて変化することのない
信号となる。
Therefore, it is impossible to drive the transistor at the next stage and normal operation cannot be performed. Even if there is only one defective product at any stage, a correct signal corresponding to the input logic binary signal is finally output. The signal cannot be observed by the tester 3 connected to the collector of the transistor Q1n in the stage, and the output of the final stage is a signal which is fixed at a high level and does not change.

【0027】このように本実施例によれば、半導体装置
に供給する動作電流を通常の値よりも所定量低減するこ
とで出力電流中のリーク電流の割合が増大するため、結
晶欠陥当によりリーク電流が元々多い不良品では、リー
ク電流の影響によりhfeが良品よりも低下して次の段の
トランジスタを駆動できなくなる。
As described above, according to this embodiment, the operating current supplied to the semiconductor device is reduced by a predetermined amount from the normal value, so that the ratio of the leak current in the output current increases. In a defective product originally having a large current, hfe becomes lower than that of a non-defective product due to the influence of a leak current, so that the transistor of the next stage cannot be driven.

【0028】したがって、常温において大がかりな設備
を必要とすることなく、電流を可変する簡便な方法で、
良品と不良品とを判別して検査することができる。ま
た、肉眼によらない検査方法であるので、検査精度も電
流源からの電流に応じて決まり、安定して良好な検査精
度が得られることとなる。
Therefore, a simple method of varying the current at room temperature without requiring a large-scale facility,
Good products and defective products can be discriminated and inspected. In addition, since the inspection method does not use the naked eye, the inspection accuracy is also determined according to the current from the current source, and stable and excellent inspection accuracy can be obtained.

【0029】[0029]

【発明の効果】上述の如く本発明によれば、半導体装置
に供給する動作電流を通常の値よりも所定量低減する
と、不良品ではリーク電流の影響によりhfeが良品より
も低下するため、次段の論理回路を駆動できなくなる。
したがって、温度を可変する設備等を必要とすることな
く、常温においても、出力信号が入力論理2値信号に応
じた論理値を示さなくなるので簡便な方法で精度良く不
良品を良品と判別することができる特徴がある。
As described above, according to the present invention, when the operating current supplied to the semiconductor device is reduced by a predetermined amount from a normal value, hfe of a defective product becomes lower than that of a nondefective product due to the influence of a leak current. The next stage logic circuit cannot be driven.
Therefore, the output signal does not show a logical value corresponding to the input logical binary signal even at room temperature without the need for a facility for changing the temperature and the like. There is a feature that can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を説明するための回路図であ
る。
FIG. 1 is a circuit diagram for explaining an embodiment of the present invention.

【図2】動作電流IINJ を可変したときのコレクタ出力
電流IC と動作電流IINJ との比(IC /IINJ )を結
晶欠陥のない良品のトランジスタについて示す図であ
る。
FIG. 2 is a diagram showing the ratio (I C / I INJ ) between the collector output current I C and the operating current I INJ when the operating current I INJ is varied, for a non-defective transistor having no crystal defects.

【図3】動作電流IINJ を可変したときのコレクタ出力
電流IC と動作電流IINJ との比(IC /IINJ )を結
晶欠陥のある不良品のトランジスタについて示す図であ
る。
FIG. 3 is a diagram showing the ratio (I C / I INJ ) between the collector output current I C and the operating current I INJ when the operating current I INJ is varied for a defective transistor having a crystal defect.

【符号の説明】[Explanation of symbols]

1 信号源 2 電流源 3 テスタ Q11,Q12,〜Q1n,Q21,Q22,〜Q2n トランジス
1 signal source 2 the current source 3 tester Q 11, Q 12, ~Q 1n , Q 21, Q 22, ~Q 2n transistors

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 論理回路を形成してなる半導体装置に論
理2値信号を入力すると共に半導体装置に動作電流を供
給し、 該半導体装置の出力信号に基づいて該半導体装置の良不
良を判定する半導体装置の検査方法において、 該半導体装置に供給する該動作電流を通常の値よりも所
定量低減し、 該半導体装置の出力信号が該論理2値信号に応じた論理
値を示すがどうかを判別して該半導体装置の良不良を判
定することを特徴とする半導体装置の検査方法。
A semiconductor device comprising a logic circuit, a logic binary signal is input to the semiconductor device, an operating current is supplied to the semiconductor device, and the semiconductor device is determined based on an output signal from the semiconductor device. In the method of testing a semiconductor device, the operating current supplied to the semiconductor device is reduced by a predetermined amount from a normal value, and it is determined whether an output signal of the semiconductor device indicates a logical value corresponding to the logical binary signal. And determining whether the semiconductor device is defective or defective.
JP05751594A 1994-03-28 1994-03-28 Inspection method for semiconductor device Expired - Lifetime JP3173274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05751594A JP3173274B2 (en) 1994-03-28 1994-03-28 Inspection method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05751594A JP3173274B2 (en) 1994-03-28 1994-03-28 Inspection method for semiconductor device

Publications (2)

Publication Number Publication Date
JPH07270499A JPH07270499A (en) 1995-10-20
JP3173274B2 true JP3173274B2 (en) 2001-06-04

Family

ID=13057881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05751594A Expired - Lifetime JP3173274B2 (en) 1994-03-28 1994-03-28 Inspection method for semiconductor device

Country Status (1)

Country Link
JP (1) JP3173274B2 (en)

Also Published As

Publication number Publication date
JPH07270499A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
US4495628A (en) CMOS LSI and VLSI chips having internal delay testing capability
KR100237504B1 (en) Process monitoring circuit and its method
JPH0954140A (en) Method and apparatus for testing of semiconductor integrated circuit
JP2002359270A (en) Semiconductor device
Fan et al. A novel stuck-at based method for transistor stuck-open fault diagnosis
US7069486B2 (en) Test circuit for logical integrated circuit and method for testing same
US5831446A (en) Process monitor test chip and methodology
JP3173274B2 (en) Inspection method for semiconductor device
JPH0545423A (en) Fault analyzing method for integrated circuit
JPH1184420A (en) Liquid crystal display device, array substrate test method and tester for array substrate
JPH06201801A (en) Improved data analyzer and analyzing method used for bist circuit
KR20010004884A (en) DC stress circuit for measuring degradation of the device and semiconductor circuit using that
JPH0312099A (en) Method of testing recording element with series data transmission path
JPH10242806A (en) Semiconductor integrated circuit
JP2728233B2 (en) Semiconductor logic circuit
JP3240744B2 (en) Output pad circuit and test circuit
JP2957073B2 (en) Semiconductor integrated circuit device and test method for semiconductor integrated circuit device
JP3140090B2 (en) Semiconductor device
JP3531635B2 (en) Semiconductor integrated circuit device
JPH04288588A (en) Active matrix type liquid crystal display device
JPS59200456A (en) Semiconductor integrated circuit device
JP2944307B2 (en) A / D converter non-linearity inspection method
US20050050422A1 (en) Semiconductor integrated circuit
JPH09159727A (en) Cmos semiconductor device
CA1219368A (en) Cmos lsi and vlsi chips having internal delay testing capability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

EXPY Cancellation because of completion of term