JP3172852B2 - Air electrode, method of manufacturing the air electrode, and air battery having the air electrode - Google Patents

Air electrode, method of manufacturing the air electrode, and air battery having the air electrode

Info

Publication number
JP3172852B2
JP3172852B2 JP00734394A JP734394A JP3172852B2 JP 3172852 B2 JP3172852 B2 JP 3172852B2 JP 00734394 A JP00734394 A JP 00734394A JP 734394 A JP734394 A JP 734394A JP 3172852 B2 JP3172852 B2 JP 3172852B2
Authority
JP
Japan
Prior art keywords
fluororesin
porous membrane
air electrode
air
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00734394A
Other languages
Japanese (ja)
Other versions
JPH07220733A (en
Inventor
浩司 芳澤
晃 三浦
隆文 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP00734394A priority Critical patent/JP3172852B2/en
Publication of JPH07220733A publication Critical patent/JPH07220733A/en
Application granted granted Critical
Publication of JP3172852B2 publication Critical patent/JP3172852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸素を活物質に用いる
ガス拡散電極を有し、ハイレート(強負荷)放電特性お
よび耐漏液性に優れた円筒または角筒などの筒型空気電
極及びその空気電極の製造方法並びにその空気電極を有
する空気電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical air electrode such as a cylindrical or rectangular cylinder having a gas diffusion electrode using oxygen as an active material, and having excellent high rate (high load) discharge characteristics and liquid leakage resistance. The present invention relates to a method for manufacturing an air electrode and an air battery having the air electrode.

【0002】[0002]

【従来の技術】従来、円筒型空気電極はポリテトラフル
オロエチレン(以下PTFEという)からなる酸素ガス
透過能を有する撥水性のふっ素樹脂多孔膜、ニッケルネ
ット、エキスパンドメタルなどの導電性の集電体と、種
々の金属酸化物、活性炭、PTFEディスパージョンを
混合してなる多孔質の触媒層とを重ねて全体を圧着して
成形させる3層構造の電極を湾曲して円筒型とし、その
円筒の両側端部分を合成ゴムまたはエポキシ樹脂系の接
着剤で接着する事により構成していた。例えば、撥水性
のふっ素樹脂多孔膜としてPTFE、テトラフルオロエ
チレンとヘキサフルオロプロピレンとの共重合体(以下
FEPという)などからなる酸素ガス透過能を有するシ
ートを用い、集電体としてニッケルの金網、エキスパン
ドメタル等を用いて、撥水性のふっ素樹脂多孔膜、触媒
層、集電体をこの順序で積層し圧着した3層構造の電極
とする。
2. Description of the Related Art Conventionally, a cylindrical air electrode is made of a polytetrafluoroethylene (hereinafter referred to as PTFE), a water-repellent fluororesin porous membrane having oxygen gas permeability and a conductive current collector such as a nickel net or an expanded metal. And a porous catalyst layer obtained by mixing various metal oxides, activated carbon, and PTFE dispersion, and a three-layer electrode, which is formed by pressing and pressing the whole, into a cylindrical shape, is curved. Both end portions were formed by bonding with synthetic rubber or epoxy resin adhesive. For example, as a water-repellent fluororesin porous membrane, a sheet having oxygen gas permeability, such as PTFE, a copolymer of tetrafluoroethylene and hexafluoropropylene (hereinafter, referred to as FEP), and a nickel wire netting as a current collector, By using an expanded metal or the like, a water-repellent fluororesin porous membrane, a catalyst layer, and a current collector are laminated in this order and pressed to form a three-layer electrode.

【0003】そしてこの電極を集電体が内側になるよう
にして湾曲しその集電体の両端部分の一部を相互に重ね
て円筒にする。ついで、この重なった部分のふっ素樹脂
多孔膜と、触媒層の部分を取り除いて露出した集電体を
スポット溶接、ビーム溶接などの溶接手段で溶接し、そ
の接合部にふっ素樹脂を充填し液密に補修する方法(特
開昭58−75773号公報参照)や、集電体をあらか
じめスポット溶接等を用いて円筒型に接合した後、触媒
層となるシートを円筒の外側に両端部分を若干重ね合わ
せて巻き、さらに、ふっ素樹脂多孔膜を両端部分を若干
重ねて巻き加熱圧着して一体化する方法(特開昭58−
198862号公報参照)等が知られている。
The electrode is curved so that the current collector is on the inside, and both ends of the current collector are partially overlapped to form a cylinder. Next, the overlapped portion of the fluororesin porous membrane and the current collector exposed by removing the catalyst layer portion are welded by welding means such as spot welding or beam welding, and the joint is filled with fluororesin and liquid-tight. (See Japanese Patent Application Laid-Open No. 58-75773) or after the current collector is joined in a cylindrical shape using spot welding or the like in advance, and a sheet serving as a catalyst layer is slightly overlapped on both ends of the outside of the cylinder. A method of winding together, and further wrapping the fluororesin porous membrane slightly at both ends, winding and press-fitting to integrate them (Japanese Patent Application Laid-Open No.
198862) is known.

【0004】そして、上記いずれの公知の電極において
も最外周のPTFEあるいはFEPからなるふっ素樹脂
多孔膜により電解液の漏液を防いでいる。
In any of the above-mentioned known electrodes, leakage of the electrolyte is prevented by a fluororesin porous membrane made of PTFE or FEP on the outermost periphery.

【0005】しかし、これらのふっ素樹脂材料は各種フ
ィルム類の内で最も表面エネルギーが低いため撥水性に
優れている反面、粘着性には非常に乏しい。従ってこれ
らの膜を集電体あるいは触媒層に巻き付けてもその結着
力は非常に弱い。このような電極では放電に伴って撥水
性のふっ素樹脂多孔膜と集電体あるいは触媒層間の界面
に電解液が浸透し液膜を構成するために、結果としてこ
の液膜が酸素の供給を阻止して放電性能がよくない。
[0005] However, these fluororesin materials are excellent in water repellency due to the lowest surface energy among various films, but are very poor in tackiness. Therefore, even if these films are wound around a current collector or a catalyst layer, the binding force is very weak. In such an electrode, the electrolyte penetrates into the interface between the water-repellent fluororesin porous membrane and the current collector or the catalyst layer during discharge to form a liquid film, and as a result, this liquid film prevents the supply of oxygen. And the discharge performance is not good.

【0006】一方、巻き付けた撥水性のふっ素樹脂多孔
膜の両端部分であるが、前記公知例のようにPTFEあ
るいはFEPの多孔膜をそのPTFEあるいはFEPの
融点以上の温度にあげ熱融着させる方法が従来から行わ
れている。しかし、PTFE多孔膜の場合340℃〜3
80℃に温度を上げても溶融粘度は1011〜1013ポイ
ズと非常に高いためPTFE多孔膜どうしを接合させる
ためには圧力をかけ冷却し結合させる必要があり、PT
FE多孔膜にピンホールをなくして漏液の少ない電極と
するには非常に複雑で高度の技術を要するといった問題
がある。
On the other hand, at both ends of the wound water-repellent fluororesin porous film, a method of heat-sealing the PTFE or FEP porous film to a temperature higher than the melting point of the PTFE or FEP as in the above-mentioned known example. Is conventionally performed. However, in the case of a porous PTFE membrane,
Even if the temperature is raised to 80 ° C., the melt viscosity is extremely high at 10 11 to 10 13 poise, so that it is necessary to apply pressure to cool and combine the PTFE porous membranes in order to join the porous PTFE membranes.
In order to eliminate the pinholes in the FE porous membrane to obtain an electrode with less liquid leakage, there is a problem that a very complicated and sophisticated technique is required.

【0007】またFEP多孔膜の場合は、逆に溶融粘度
が104〜105と非常に小さいために溶融させるとFE
Pが流れだし変形したり、孔をふさぐため多孔膜として
機能しなくなるといった問題がある。以上のように筒型
の電極の場合、撥水性のふっ素樹脂多孔膜と集電体ある
いは触媒層間の接合界面の結着及び撥水性のふっ素樹脂
多孔膜の両端部分の接合の2点のうち、どちらか1点が
接合が悪いと放電特性あるいは耐漏液性に問題が起き
る。
On the other hand, in the case of a FEP porous membrane, the melt viscosity is extremely small, 10 4 to 10 5 , so that when the FEP is melted,
There is a problem that P flows out and is deformed, and does not function as a porous film because it blocks pores. As described above, in the case of the cylindrical electrode, of the two points of the bonding of the bonding interface between the water-repellent fluororesin porous membrane and the current collector or the catalyst layer and the joining of both ends of the water-repellent fluororesin porous membrane, If the bonding at one of the two points is poor, a problem occurs in the discharge characteristics or liquid leakage resistance.

【0008】[0008]

【発明が解決しようとする課題】本発明は、前記する従
来例のような電流をながすことによる電極構成要素間の
界面の液膜の生成を防ぐことにより放電特性を安定さ
せ、かつふっ素樹脂からなる撥水性シートの接合の弱い
点を解決して耐漏液性に優れた空気電極および空気電池
を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention is to stabilize discharge characteristics by preventing the formation of a liquid film at the interface between electrode components by passing a current as in the above-mentioned conventional example, and to stabilize discharge characteristics. It is an object of the present invention to provide an air electrode and an air battery having excellent liquid leakage resistance by solving the weak point of the joining of the water repellent sheet.

【0009】[0009]

【課題を解決するための手段】請求項1記載に係る発明
は、集電体と、触媒層と、ふっ素樹脂多孔膜との少なく
とも三者を重ね、その両側端部分が相互に接触または接
近するように筒型に形成した空気電極において、前記ふ
っ素樹脂多孔膜の表面にそのふっ素樹脂多孔膜の融点よ
り低い融点をもつふっ素樹脂を含む分散液を付着し、前
記分散液中のふっ素樹脂の溶融温度以上の温度処理で、
前記ふっ素樹脂多孔膜どうしまたは前記ふっ素樹脂多孔
膜と前記触媒層とを結着した空気電極としたものであ
る。
According to the first aspect of the present invention, at least three of a current collector, a catalyst layer, and a fluororesin porous membrane are overlapped, and both end portions thereof come into contact with or approach each other. In the air electrode formed in a cylindrical shape as described above, a dispersion containing a fluororesin having a melting point lower than the melting point of the fluororesin porous membrane is attached to the surface of the fluororesin porous membrane, and the fluororesin in the dispersion is melted. With a temperature treatment above the temperature,
An air electrode is formed by binding the fluororesin porous membranes or the fluororesin porous membrane and the catalyst layer.

【0010】請求項2記載に係る発明は、請求項1記載
に係る発明に加えて、ふっ素樹脂多孔膜をPTFE多孔
膜としたものであり、請求項3記載に係る発明は、請求
項1記載の発明または2記載に係る発明に加えてふっ素
樹脂を含む分散液として、乳化重合によって得られるF
EPの疎水性コロイド状樹脂粒子を非イオン性界面活性
剤あるいは陰イオン界面活性剤を用いて懸濁させた液を
含む分散液としたものである。
The invention according to claim 2 is the same as the invention according to claim 1, except that the fluororesin porous film is a PTFE porous film, and the invention according to claim 3 is according to claim 1. A dispersion obtained by emulsion polymerization as a dispersion containing a fluororesin in addition to the invention according to the invention described in (2) or (2).
This is a dispersion containing a liquid in which hydrophobic colloidal resin particles of EP are suspended using a nonionic surfactant or an anionic surfactant.

【0011】また請求項4記載に係る発明は、請求項1
記載に係る発明の空気電極の製造法、請求項5記載に係
る発明は、請求項2記載に係る発明の空気電極の製造
法、請求項6記載に係る発明は請求項3記載に係る発明
の空気電極の製造法としたものである。
The invention according to claim 4 is the first invention.
The method for manufacturing an air electrode according to the invention according to the description, the invention according to claim 5 is the method for manufacturing the air electrode according to claim 2, and the invention according to claim 6 is the invention according to claim 3. This is a method for manufacturing an air electrode.

【0012】また請求項7記載に係る発明は、請求項1
ないし3のいずれかに記載の空気電極を正極として備え
た空気電池としたものであり、請求項8記載に係る発明
は、請求項4ないし6のいずれかに記載の空気電極の製
造方法により製造した空気電極を正極として備えた空気
電池としたものである。
The invention according to claim 7 is the first invention.
An air battery provided with the air electrode according to any one of claims 1 to 3 as a positive electrode. The invention according to claim 8 is manufactured by the method for manufacturing an air electrode according to any of claims 4 to 6. An air battery provided with the air electrode as a positive electrode.

【0013】さらに請求項9記載に係る発明は、集電体
と、触媒層と、カーボンブラック及びふっ素樹脂を有す
るガス拡散層と、ふっ素樹脂多孔膜との少なくとも四者
をその両側部分が相互に接触または接近するように筒型
に形成した空気電極において、前記ガス拡散層か前記ふ
っ素樹脂多孔膜かの少なくともいずれか一方に前記ふっ
素樹脂多孔膜より低い融点をもつふっ素樹脂を含む分散
液を付着し、前記分散液中のふっ素樹脂の溶融温度以上
の温度で熱処理した空気電極としたものである。
Further, according to the ninth aspect of the present invention, at least four members of a current collector, a catalyst layer, a gas diffusion layer having carbon black and a fluororesin, and a fluororesin porous film are mutually connected at both sides. At least one of the gas diffusion layer and the fluororesin porous membrane adheres a dispersion containing a fluororesin having a melting point lower than that of the fluororesin porous membrane to an air electrode formed in a cylindrical shape so as to be in contact with or approaching. The air electrode is heat-treated at a temperature equal to or higher than the melting temperature of the fluororesin in the dispersion.

【0014】そして請求項10記載に係る発明は、請求
項9記載に係る発明に加えてふっ素樹脂多孔膜はPTF
E多孔膜とし、請求項11記載に係る発明は、請求項9
または10記載に係る発明に加えて、ふっ素樹脂分散液
を、乳化重合によって得られるFEPの疎水性コロイド
状樹脂粒子を非イオン性界面活性剤または陰イオン界面
活性剤を用いて懸濁させた液を含む分散液とした空気電
極としたものであり、請求項12記載に係る発明は、請
求項9ないし11のいずれかに記載の空気電極を正極と
して備えた空気電池としたものである。
According to a tenth aspect of the present invention, in addition to the ninth aspect, the fluororesin porous membrane is made of PTF.
The invention according to claim 11 is an E porous membrane, and the invention according to claim 11 is claim 9.
Or a liquid in which a fluororesin dispersion is obtained by suspending hydrophobic colloidal resin particles of FEP obtained by emulsion polymerization using a nonionic surfactant or an anionic surfactant. The invention according to claim 12 is an air battery provided with the air electrode according to any one of claims 9 to 11 as a positive electrode.

【0015】[0015]

【作用】前記した構成により、融点が高くて、溶融粘度
も大きいふっ素樹脂多孔膜は、多孔膜としての形を維持
し、ふっ素樹脂多孔膜の融点よりも低い融点をもつふっ
素樹脂を分散した分散液が前記多孔膜に付着しているた
め、このふっ素樹脂はその融点よりも高い温度処理によ
って溶融してふっ素樹脂多孔膜どうしあるいはふっ素樹
脂多孔膜と触媒層を強く結着する。このことにより放電
に伴ってふっ素樹脂多孔膜と集電体あるいは触媒層間の
界面に電解液が浸透することをなくし、従って浸透電解
液の液膜による酸素供給の防止がなく、放電が悪くなる
従来の現象を防ぐ事ができる。
According to the above construction, a fluororesin porous membrane having a high melting point and a high melt viscosity maintains its shape as a porous membrane, and a dispersion in which a fluororesin having a melting point lower than the melting point of the fluororesin porous membrane is dispersed. Since the liquid has adhered to the porous membrane, the fluororesin is melted by a temperature treatment higher than its melting point and strongly binds the fluororesin porous membranes or the fluororesin porous membrane and the catalyst layer. This prevents the electrolyte from penetrating into the interface between the fluororesin porous membrane and the current collector or the catalyst layer due to the discharge, and therefore prevents the supply of oxygen by the liquid film of the permeated electrolyte, resulting in poor discharge. Phenomenon can be prevented.

【0016】また、上記の作用に加え請求項9ないし1
2に記載した空気電極にならびにその空気電極を備えた
空気電池は、ガス拡散層にカーボンブラックがあり、そ
のかさ高さのため空気を十分に保持できるガス拡散層と
なっており、ハイレート(強負荷)放電時の初期に空気
の供給不足による電池電圧の立ち下がりをガス拡散層か
ら空気を供給する事で防ぐことができる。
Further, in addition to the above-mentioned functions, claims 9 to 1
The air electrode described in No. 2 and the air battery provided with the air electrode have a gas diffusion layer that has carbon black, and has a bulky gas diffusion layer that can sufficiently hold air. Load) A fall in the battery voltage due to insufficient air supply at the beginning of discharge can be prevented by supplying air from the gas diffusion layer.

【0017】[0017]

【実施例】【Example】

(実施例1)以下、図面とともに本発明を具体的な実施
例に沿って説明する。
(Embodiment 1) Hereinafter, the present invention will be described along with specific embodiments with reference to the drawings.

【0018】図1に本発明を適用した円筒型空気亜鉛電
池の断面図を示した。内側から1は触媒層、2は集電
体、3は撥水性のふっ素樹脂多孔膜で、これらの3層構
造の円筒型成形体を4Aとする。
FIG. 1 is a sectional view of a cylindrical zinc-air battery to which the present invention is applied. From the inside, 1 is a catalyst layer, 2 is a current collector, 3 is a water-repellent fluororesin porous film, and these three-layer cylindrical molded bodies are 4A.

【0019】空気電極は導電性塗料で被覆したネット状
の集電体2にシート状の触媒層1を圧着する。この触媒
層1は活性炭3kg、マンガン酸化物4kg、カーボン
ブラック1.5kg及びふっ素樹脂粉末0.7kgを混
合し、この混合合剤にエチルアルコールを加え混練した
後、押し出し成形により偏平帯状にし、更に約60℃に
加熱した2本ローラ間に通して圧延し0.6mmのシー
トにしたものである。集電体2には、縦糸に横糸を螺旋
状に織り込んだいわゆるシームレスの円筒金網を用い、
その集電体2の内側から外側にむけてシート状の触媒層
1を押し出すように圧着すれば継ぎ目のない3層構造の
円筒型成形体4Aにすることができる。次にガス透過能
を有する撥水性のふっ素樹脂多孔膜3の表面にこれより
融点の低いふっ素樹脂を含む分散液を塗布し上記3層構
造の円筒型成形体4Aにふっ素樹脂多孔膜3を3周巻き
付けた後280℃で2時間熱処理する。このときふっ素
樹脂多孔膜3として厚み50μmのPTFE多孔膜を用
い、塗布する分散液中のふっ素樹脂はFEPを用いた。
5はセパレータ、6はゲル状亜鉛負極である。ゲル状亜
鉛負極6は以下のようにして調整した。すなわち40重
量%の水酸化カリウム水溶液(酸化亜鉛を3重量%含
む)に3重量%のポリアクリル酸ソーダと1重量%のカ
ルボキシメチルセルロースを加えてゲル化する。次にゲ
ル状電解液に対して重量比で2倍の亜鉛粉末を加えて混
合し、ゲル状亜鉛負極とした。7は空気拡散紙、8は正
極缶、9は絶縁チューブである。10は、空気取り入れ
孔で、11は電池を使用する前にはがす密封シール、1
2は皿紙である。13と14は金属製のキャップで13
と14の間に円筒型空気電極を挟み込み圧着させ、正極
缶8とスポット溶接する事により集電する。15は有機
封止剤、16Aおよび16Bは樹脂封口体、17は負極
端子キャップ、18は負極集電子である。
The air electrode is formed by pressing a sheet-like catalyst layer 1 onto a net-like current collector 2 covered with a conductive paint. The catalyst layer 1 was prepared by mixing 3 kg of activated carbon, 4 kg of manganese oxide, 1.5 kg of carbon black and 0.7 kg of fluororesin powder, adding ethyl alcohol to the mixed mixture, kneading the mixture, and extruding to form a flat belt. Rolled into a 0.6 mm sheet by passing between two rollers heated to about 60 ° C. For the current collector 2, a so-called seamless cylindrical wire mesh in which the weft is woven into the warp spirally,
When the sheet-shaped catalyst layer 1 is pressed and pressed from the inside of the current collector 2 to the outside, a cylindrical molded body 4A having a seamless three-layer structure can be obtained. Next, a dispersion containing a fluororesin having a lower melting point is applied to the surface of the water-repellent fluororesin porous film 3 having gas permeability, and the fluororesin porous film 3 is applied to the cylindrical molded body 4A having the three-layer structure. After the winding, heat treatment is performed at 280 ° C. for 2 hours. At this time, a 50 μm thick PTFE porous membrane was used as the fluororesin porous membrane 3, and FEP was used as the fluororesin in the dispersion liquid to be applied.
5 is a separator and 6 is a gelled zinc negative electrode. The gelled zinc negative electrode 6 was prepared as follows. That is, 3% by weight of sodium polyacrylate and 1% by weight of carboxymethylcellulose are added to a 40% by weight aqueous solution of potassium hydroxide (containing 3% by weight of zinc oxide) to gel. Next, zinc powder having a weight ratio twice that of the gel electrolyte was added and mixed to obtain a gel zinc negative electrode. 7 is an air diffusion paper, 8 is a positive electrode can, and 9 is an insulating tube. 10 is an air intake hole, 11 is a hermetic seal to be removed before using the battery, 1
2 is a plate. 13 and 14 are metal caps.
14 and 14, a cylindrical air electrode is sandwiched and pressed, and the current is collected by spot welding with the positive electrode can 8. Reference numeral 15 denotes an organic sealant, 16A and 16B denote resin sealing members, 17 denotes a negative electrode terminal cap, and 18 denotes a negative electrode current collector.

【0020】上記した円筒型空気亜鉛電池10個の60
℃、20日密封保存後の漏液電池個数と100mA定電
流放電容量を(表1)に示した。
The above-mentioned 10 cylindrical zinc-air batteries of 60
(Table 1) shows the number of leaked batteries and the 100 mA constant-current discharge capacity after sealed storage at 20 ° C for 20 days.

【0021】[0021]

【表1】 [Table 1]

【0022】(表1)中に示したように電池種No.1
はPTFE多孔膜表面に分散液を塗布せず、多孔膜巻き
終わり端部も熱融着していないもの、電池種No.2は
PTFE多孔膜巻き終わり端部のみ熱融着したもの、電
池種No.3は、PTFE多孔膜表面にその多孔膜と同
じ成分であるPTFEのふっ素樹脂分散液を塗布し熱処
理を施したもの、この場合の熱処理はPTFE融点以上
である340℃で行った。電池種No.4は、本発明の
実施例の電池でありPTFE多孔膜表面にFEPの分散
液を塗布したものである。電池種No.5は、電池種N
o.4において更にPTFE多孔膜の巻き終わりの端部
を熱融着した電池である。(表1)より明らかなように
分散液を塗布しない場合はたとえ多孔膜の巻き終わりを
熱融着しようとも耐漏液性は確保できずまた放電に伴っ
て多孔膜と触媒層界面に液膜が生成し放電特性を低下さ
せている。分散液にPTFEを用いた場合も電池種N
o.3のようにPTFEの溶融粘度が高いために多孔膜
自身の目づまりも起こらないが分散液塗布による結着性
も得られず耐漏液性及び放電特性もよくない。一方、電
池種No.4及び電池種No.5の本発明の実施例によ
る電池ではPTFEは融点が327℃で溶融粘度も大き
いので変化せず多孔膜を維持するがFEPは融点が27
0℃で溶融粘度が小さいため熱処理により溶ける。従っ
て、溶けたFEPの接着効果によりPTFE多孔膜どう
しあるいはPTFE多孔膜と触媒層が強く結着する。こ
のことにより耐漏液性の向上と放電に伴って多孔膜と触
媒層間の界面に電解液が浸透し酸素の供給を阻止し放電
を悪くする現象を防ぐ事ができる。なお、上記において
各電池種における電極は多孔膜を3周巻いたが1周巻き
以上の場合同様の結果であった。また、本発明の実施例
においては、FEPの分散液をPTFE多孔膜に塗布し
たが、さらに円筒の触媒層側にもFEP分散液を塗布し
ても、同様の良い結果であった。
As shown in Table 1, the battery type No. 1
No. 4 shows that the dispersion liquid was not applied to the surface of the porous PTFE membrane and the end of the porous membrane winding end was not heat-sealed. No. 2 was obtained by heat-sealing only the end of the PTFE porous membrane winding end. No. 3 is obtained by applying a fluororesin dispersion of PTFE, which is the same component as the porous film, to the surface of the PTFE porous film and performing a heat treatment. In this case, the heat treatment was performed at 340 ° C., which is higher than the PTFE melting point. Battery type No. Reference numeral 4 denotes a battery according to an example of the present invention, in which an FEP dispersion is applied to the surface of a PTFE porous film. Battery type No. 5 is the battery type N
o. 4 is a battery in which the end of the winding end of the porous PTFE membrane is further heat-sealed. As is clear from Table 1, when the dispersion is not applied, even if the winding end of the porous film is heat-sealed, the liquid leakage resistance cannot be secured, and the liquid film is formed at the interface between the porous film and the catalyst layer due to the discharge. It is generated and reduces the discharge characteristics. When PTFE is used for the dispersion, the battery type N
o. Since the melt viscosity of PTFE is high as in 3, the clogging of the porous film itself does not occur, but the binding property by the application of the dispersion is not obtained, and the leakage resistance and discharge characteristics are not good. On the other hand, the battery type No. 4 and battery type No. In the battery according to the fifth embodiment of the present invention, PTFE has a melting point of 327 ° C. and a high melt viscosity, so that the porous membrane is maintained without change.
Melts at 0 ° C. due to low melt viscosity and melts by heat treatment. Therefore, due to the adhesive effect of the melted FEP, the porous PTFE membranes or the porous PTFE membrane and the catalyst layer are strongly bonded. As a result, it is possible to improve the liquid leakage resistance and prevent the electrolyte from penetrating into the interface between the porous membrane and the catalyst layer due to the discharge, thereby preventing the supply of oxygen and deteriorating the discharge. In the above, the electrode of each battery type was wound around the porous membrane three times, but the same result was obtained when the electrode was wound one or more times. In the examples of the present invention, the FEP dispersion was applied to the PTFE porous membrane. However, the same good results were obtained when the FEP dispersion was further applied to the cylindrical catalyst layer side.

【0023】本実施例1では円筒型に電極も、電池も構
成したが、円筒型に限るものではなく、角筒型など筒型
であればよい。
In the first embodiment, the electrode and the battery are formed in a cylindrical shape. However, the present invention is not limited to the cylindrical shape, but may be a cylindrical shape such as a rectangular tube type.

【0024】さらに、本実施例1ではPTFE多孔膜と
FEPの分散液を用いたが、要は融点の高いふっ素樹脂
によって多孔膜を形成し、その融点よりも低い融点をも
つふっ素樹脂を分散した分散液であればよい。そして本
発明に使用できるふっ素樹脂のなかには、エチレンとテ
トラフロロエチレンの共重合体、ポリパーフロロモノフ
ロルメトキシペンタン、ポリパーフロロジフロルエトキ
シヘキサン、ポリパーフロロジフロルエトキシヘキサン
などのふっ化アルキル基を側鎖として有するパーフロロ
アルコキシ樹脂、ポリふっ化エチレン、ポリ六ふっ化プ
ロピレンなど従来より知られている種々のふっ素樹脂が
ある。
Further, in Example 1, a dispersion of PTFE porous membrane and FEP was used, but the point is that a porous membrane was formed by a fluororesin having a high melting point, and a fluororesin having a melting point lower than the melting point was dispersed. Any dispersion may be used. And among the fluororesins that can be used in the present invention, there are copolymers of ethylene and tetrafluoroethylene, polyperfluoromonofluoromethoxypentane, polyperfluorodifluoroethoxyhexane, polyperfluorodifluoroethoxyhexane, and other alkyl fluoride groups such as polyperfluorodifluoroethoxyhexane. There are various conventionally known fluororesins such as a perfluoroalkoxy resin having a chain, polyfluorinated ethylene and polyhexafluoropropylene.

【0025】(実施例2)図2にガス拡散層をふっ素樹
脂多孔膜と触媒層の間に設けた4層構造の円筒型空気電
極を適用した電池の断面図を示す。図中の4Bは触媒層
を含む4層構造の円筒型成形体で、内側から1は触媒
層、2は集電体、3Aはカーボンブラック及びふっ素樹
脂からなるガス拡散層、3Bは撥水性のふっ素樹脂多孔
膜である。
(Example 2) FIG. 2 is a sectional view of a battery employing a four-layer cylindrical air electrode having a gas diffusion layer provided between a fluororesin porous membrane and a catalyst layer. 4B in the figure is a cylindrical molded body having a four-layer structure including a catalyst layer. From inside, 1 is a catalyst layer, 2 is a current collector, 3A is a gas diffusion layer made of carbon black and fluororesin, and 3B is a water repellent. It is a fluororesin porous membrane.

【0026】空気電極は導電性塗料で被覆したネット状
の集電体2にシート状の触媒層1を圧着する。このシー
ト状の触媒層1は活性炭3kg、マンガン酸化物4k
g、カーボンブラック1.5kg及びふっ素樹脂粉末
0.7kgを混合し、この混合合剤にエチルアルコール
を加え混練した後、押し出し成形により偏平帯状にし、
更に約60℃に加熱した2本ローラ間に通して圧延し
0.6mmのシートにしたものである。集電体2に縦糸
に横糸を螺旋状に織り込んだいわゆるシームレスの円筒
金網を用いて集電体2の内側から外側にむけてシート状
の触媒層1を押し出すように圧着すれば継ぎ目のない円
筒型の成形体4Bにすることができる。次にカーボンブ
ラック4kgとPTFE粉末6kgを混合し触媒層1と
同様の方法で200μmの厚みに作製したシート状のガ
ス拡散層を上記円筒型成形体に2周巻き付ける。さらに
ガス透過能を有する撥水性のふっ素樹脂多孔膜3Bの表
面にこれより融点の低いふっ素樹脂を含む分散液を塗布
し上記円筒型成形体に3周巻き付けた後280℃で2時
間熱処理する。このときふっ素樹脂多孔膜3Bとして厚
み50μmのPTFE多孔膜を用い、塗布する分散液中
のふっ素樹脂はFEPを用いた。5はセパレータ、6は
ゲル状亜鉛負極である。ゲル状亜鉛負極は以下のように
して調整した。40重量%の水酸化カリウム水溶液(酸
化亜鉛を3重量%含む)に3重量%のポリアクリル酸ソ
ーダと1重量%のカルボキシメチルセルロースを加えて
ゲル化する。次にゲル状電解液に対して重量比で2倍の
亜鉛粉末を加えて混合し、ゲル状亜鉛負極とした。7は
空気拡散紙、8は正極缶、9は絶縁チューブである。1
0は、空気取り入れ孔で、11は電池を使用する前には
がす密封シール、12は皿紙である。13と14は金属
製のキャップで13と14の間に円筒型空気電極を挟み
込み圧着させ、正極缶8とスポット溶接する事により集
電する。15は有機封止剤、16Aおよび16Bは樹脂
封口体、17は負極端子キャップ、18は負極集電子で
ある。
For the air electrode, a sheet-like catalyst layer 1 is pressed onto a net-like current collector 2 covered with a conductive paint. This sheet-like catalyst layer 1 is composed of 3 kg of activated carbon and 4 k of manganese oxide.
g, 1.5 kg of carbon black and 0.7 kg of fluororesin powder, ethyl alcohol was added to this mixture, and the mixture was kneaded.
The sheet was further passed through two rollers heated to about 60 ° C. and rolled to form a 0.6 mm sheet. A seamless cylinder is formed by pressing a sheet-like catalyst layer 1 from the inside to the outside of the current collector 2 using a so-called seamless cylindrical wire mesh in which the weft is woven into the current collector 2 in a spiral manner. It can be formed into a molded body 4B. Next, 4 kg of carbon black and 6 kg of PTFE powder are mixed, and a sheet-shaped gas diffusion layer formed to a thickness of 200 μm in the same manner as the catalyst layer 1 is wound around the cylindrical molded body two times. Further, a dispersion containing a fluororesin having a lower melting point is applied to the surface of the water-repellent fluororesin porous membrane 3B having gas permeability, wound around the cylindrical molded body three times, and then heat-treated at 280 ° C. for 2 hours. At this time, a 50 μm thick PTFE porous membrane was used as the fluororesin porous membrane 3B, and FEP was used as the fluororesin in the dispersion liquid to be applied. 5 is a separator and 6 is a gelled zinc negative electrode. The gelled zinc negative electrode was prepared as follows. A 40% by weight aqueous solution of potassium hydroxide (containing 3% by weight of zinc oxide) is mixed with 3% by weight of sodium polyacrylate and 1% by weight of carboxymethylcellulose to gel. Next, zinc powder having a weight ratio twice that of the gel electrolyte was added and mixed to obtain a gel zinc negative electrode. 7 is an air diffusion paper, 8 is a positive electrode can, and 9 is an insulating tube. 1
0 is an air intake hole, 11 is a hermetic seal to be peeled off before using the battery, and 12 is a dish paper. Reference numerals 13 and 14 denote metal caps, in which a cylindrical air electrode is sandwiched between 13 and 14 for pressure bonding, and current is collected by spot welding with the positive electrode can 8. Reference numeral 15 denotes an organic sealant, 16A and 16B denote resin sealing members, 17 denotes a negative electrode terminal cap, and 18 denotes a negative electrode current collector.

【0027】上記の円筒型空気亜鉛電池10個の100
mA定電流放電後60℃で10日密封保存した漏液電池
個数、100mA定電流放電容量及び500mA定電流
放電開始時の立ち下がり最低電圧を(表2)に示した。
漏液試験において放電後の電池としたのは放電により亜
鉛が膨張するため放電後の方が漏液しやすく耐漏液性評
価において差が出やすいものと考えたためである。
The above-mentioned 10 cylindrical zinc-air batteries of 100
(Table 2) shows the number of leaked batteries which were sealed and stored at 60 ° C. for 10 days after the mA constant current discharge, the 100 mA constant current discharge capacity, and the minimum falling voltage at the start of the 500 mA constant current discharge.
The reason for using the battery after discharge in the liquid leakage test is that it is considered that the zinc expands due to the discharge, so that it is easy for the liquid to leak after the discharge and a difference easily appears in the liquid leakage resistance evaluation.

【0028】[0028]

【表2】 [Table 2]

【0029】(表2)中に示したように電池種No.1
はガス拡散層は適用せず、PTFE多孔膜表面にも分散
液を塗布していないもの、電池種No.2はガス拡散層
は適用せず、PTFE多孔膜表面にFEP分散液を塗布
したもの、電池種No.3から電池種No.5はガス拡
散層を適用したものであるが、電池種No.3はガス拡
散層表面にのみFEP分散液を塗布したもの、電池種N
o.4はPTFE多孔膜にFEP分散液を塗布したもの
で、電池種No.5は両方に塗布したものである。(表
2)より明らかなようにPTFE多孔膜あるいはガス拡
散層にFEP分散液を塗布した場合は塗布しない場合の
電池種No.1に比べ放電特性及び放電後の耐漏液性に
おいても飛躍的に向上している。このことは実施例1で
説明した作用と同様のことが考えられる。さらにガス拡
散層を適用した電池においては強負荷放電時の電池電圧
の初期立ち下がりに改善が確認され、このことはシート
状の拡散層はカーボンブラックのかさ高さのため空気を
十分保持できる多孔質層となりハイレート放電時の初期
に空気の供給不足による電池電圧の立ち下がりをガス拡
散層から空気を供給する事で防ぐことができたためと考
えられる。なお、本実施例においてはPTFE多孔膜を
3周巻いたが1周巻き以上の場合も同様の結果であっ
た。また、ガス拡散層の場合も1周巻き以上で同様の電
池電圧の立ち下がり抑制効果が見られた。
As shown in Table 2, the battery type No. 1
No gas diffusion layer was applied, and no dispersion was applied to the surface of the PTFE porous membrane. No. 2 does not apply a gas diffusion layer, but has a FPTFE dispersion applied to the surface of a PTFE porous membrane. 3 to the battery type No. The battery type No. 5 applies the gas diffusion layer. No. 3 is the one in which the FEP dispersion is applied only to the surface of the gas diffusion layer, battery type N
o. No. 4 is a PTFE porous membrane coated with an FEP dispersion liquid. No. 5 is applied to both. As is clear from Table 2, when the FEP dispersion liquid was applied to the PTFE porous membrane or the gas diffusion layer, the battery type No. when the FEP dispersion liquid was not applied. Compared with No. 1, the discharge characteristics and the resistance to liquid leakage after the discharge are dramatically improved. This is considered to be the same as the operation described in the first embodiment. Furthermore, in the battery using the gas diffusion layer, an improvement was confirmed in the initial fall of the battery voltage at the time of heavy load discharge, which indicates that the sheet-like diffusion layer has a porous shape that can sufficiently hold air due to the height of the carbon black. It is considered that the fall of the battery voltage due to insufficient air supply was prevented by supplying air from the gas diffusion layer at the beginning of high-rate discharge. In this example, three rounds of the PTFE porous membrane were wound, but the same result was obtained with one or more rounds. Also, in the case of the gas diffusion layer, a similar effect of suppressing the fall of the battery voltage was observed in one or more turns.

【0030】[0030]

【発明の効果】以上の説明で明らかなように、円筒型空
気電極においてふっ素樹脂多孔膜の表面にそのふっ素樹
脂多孔膜より融点の低いふっ素樹脂を含む分散液を塗布
し、分散液中のふっ素樹脂の溶融温度以上で熱処理する
事によりふっ素樹脂多孔膜を接合する事によりハイレー
ト放電特性および耐漏液性に優れた筒型空気電極及びそ
れを備えた電池を提供できる。
As is clear from the above description, in the cylindrical air electrode, a dispersion containing a fluororesin having a lower melting point than that of the fluororesin porous film is applied to the surface of the fluororesin porous film, and the fluorine in the dispersion is By joining the fluororesin porous film by heat treatment at a temperature not lower than the melting temperature of the resin, it is possible to provide a cylindrical air electrode excellent in high-rate discharge characteristics and liquid leakage resistance, and a battery having the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の実施例1における円筒型空気
亜鉛電池の半截断面図 (b)は(a)図中の円部分の拡大説明図
FIG. 1A is a half sectional view of a cylindrical zinc-air battery according to a first embodiment of the present invention. FIG. 1B is an enlarged explanatory view of a circle in FIG.

【図2】(a)は本発明の実施例2における円筒型空気
亜鉛電池の半截断面図 (b)は(a)図中の円部分の拡大説明図
FIG. 2A is a half sectional view of a cylindrical zinc-air battery according to Embodiment 2 of the present invention. FIG. 2B is an enlarged explanatory view of a circle in FIG.

【符号の説明】[Explanation of symbols]

1 触媒層 2 集電体 3 ふっ素樹脂多孔膜 3A ガス拡散層 3B ふっ素樹脂多孔膜 4A 3層構造の円筒型成形体 4B 4層構造の円筒型成形体 5 セパレータ 6 ゲル状亜鉛負極 8 正極缶 10 空気取り入れ孔 DESCRIPTION OF SYMBOLS 1 Catalyst layer 2 Current collector 3 Fluororesin porous film 3A Gas diffusion layer 3B Fluororesin porous film 4A Three-layer cylindrical molded body 4B Four-layer cylindrical molded body 5 Separator 6 Gelled zinc negative electrode 8 Positive electrode can 10 Air intake

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−144482(JP,A) 特開 昭63−94565(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 - 4/98 H01M 12/06 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-144482 (JP, A) JP-A-63-94565 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/86-4/98 H01M 12/06

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 集電体と、触媒層と、ふっ素樹脂多孔膜
との少なくとも三者を重ね、その両側端部分が相互に接
触または接近するように筒型に形成した空気電極におい
て、前記ふっ素樹脂多孔膜の表面にそのふっ素樹脂多孔
膜の融点より低い融点をもつふっ素樹脂を含む分散液を
付着し、前記分散液中のふっ素樹脂の溶融温度以上の温
度処理で前記ふっ素樹脂多孔膜どうしまたは前記ふっ素
樹脂多孔膜と前記触媒層とを結着した空気電極。
An air electrode formed in a cylindrical shape such that at least three members of a current collector, a catalyst layer, and a fluororesin porous membrane are overlapped and both end portions thereof come into contact with or approach each other. A dispersion containing a fluororesin having a melting point lower than the melting point of the fluororesin porous membrane is adhered to the surface of the resinous porous membrane, and the fluororesins in the dispersion are subjected to a temperature treatment at a temperature equal to or higher than the melting temperature of the fluororesin. An air electrode that binds the fluororesin porous membrane and the catalyst layer.
【請求項2】 ふっ素樹脂多孔膜はポリテトラフルオロ
エチレン多孔膜とした請求項1記載の空気電極。
2. The air electrode according to claim 1, wherein the fluororesin porous membrane is a polytetrafluoroethylene porous membrane.
【請求項3】 ふっ素樹脂を含む分散液は、乳化重合に
よって得られるテトラフルオロエチレンとヘキサフルオ
ロプロピレンとの共重合体の疎水性コロイド状樹脂粒子
を非イオン性界面活性剤または陰イオン界面活性剤を用
いて懸濁させた液を含む分散液とした請求項1または2
記載の空気電極。
3. A dispersion containing a fluororesin is prepared by subjecting a hydrophobic colloidal resin particle of a copolymer of tetrafluoroethylene and hexafluoropropylene obtained by emulsion polymerization to a nonionic surfactant or an anionic surfactant. 3. A dispersion containing a liquid suspended by using the method described in claim 1.
The air electrode as described.
【請求項4】 集電体と、触媒層と、ふっ素樹脂多孔膜
との少なくとも三者を重ね、その両側端部分が相互に接
触または接近するように筒型に形成した空気電極の製造
方法において前記ふっ素樹脂多孔膜の表面にそのふっ素
樹脂多孔膜の融点より低い融点をもつふっ素樹脂を含む
分散液を付着する工程と、前記分散液中のふっ素樹脂の
溶融温度以上の温度で処理する熱処理工程とを有し、前
記ふっ素樹脂多孔膜どうしまたは前記ふっ素樹脂多孔膜
と前記触媒層とを結着する事を特徴とする空気電極の製
造方法。
4. A method for manufacturing an air electrode, comprising: a current collector, a catalyst layer, and a fluororesin porous membrane, wherein at least three members are overlapped, and a cylindrical shape is formed such that both end portions thereof come into contact with or approach each other. Attaching a dispersion containing a fluororesin having a melting point lower than the melting point of the fluororesin porous membrane to the surface of the fluororesin porous membrane, and a heat treatment step of treating at a temperature equal to or higher than the melting temperature of the fluororesin in the dispersion. And bonding the fluororesin porous membranes or the fluororesin porous membrane and the catalyst layer to each other.
【請求項5】 ふっ素樹脂多孔膜に、ポリテトラフルオ
ロエチレン多孔膜を用いた請求項4記載の空気電極の製
造方法。
5. The method for producing an air electrode according to claim 4, wherein a polytetrafluoroethylene porous membrane is used as the fluororesin porous membrane.
【請求項6】 ふっ素樹脂を含む分散液に、乳化重合に
よって得られるテトラフルオロエチレンとヘキサフルオ
ロプロピレンとの共重合体の疎水性コロイド状樹脂粒子
を非イオン性界面活性剤または陰イオン界面活性剤を用
いて懸濁させた液を含む分散液を用いた請求項4または
5記載の空気電極の製造方法。
6. A nonionic surfactant or an anionic surfactant, wherein hydrophobic colloidal resin particles of a copolymer of tetrafluoroethylene and hexafluoropropylene obtained by emulsion polymerization are added to a dispersion containing a fluororesin. The method for producing an air electrode according to claim 4 or 5, wherein a dispersion containing a liquid suspended by using a liquid is used.
【請求項7】 請求項1ないし3のいずれかに記載の空
気電極を正極として備えた空気電池。
7. An air battery comprising the air electrode according to claim 1 as a positive electrode.
【請求項8】 請求項4ないし6のいずれかに記載の空
気電極の製造方法により製造した空気電極を正極として
備えた空気電池。
8. An air battery provided with an air electrode produced by the method for producing an air electrode according to claim 4 as a positive electrode.
【請求項9】 集電体と、触媒層と、カーボンブラック
及びふっ素樹脂を有するガス拡散層と、ふっ素樹脂多孔
膜との少なくとも四者をその両側端部分が相互に接触ま
たは接近するように筒型に形成した空気電極において、
前記ガス拡散層か前記ふっ素樹脂多孔膜かの少なくとも
いずれか一方に前記ふっ素樹脂多孔膜より低い融点をも
つふっ素樹脂を含む分散液を付着し、前記分散液中のふ
っ素樹脂の溶融温度以上の温度で熱処理した空気電極。
9. A tube in which at least four sides of a current collector, a catalyst layer, a gas diffusion layer having carbon black and a fluororesin, and a fluororesin porous membrane are contacted or approached to each other at both end portions thereof. In the air electrode formed in the mold,
A dispersion containing a fluororesin having a melting point lower than that of the fluororesin porous film is attached to at least one of the gas diffusion layer and the fluororesin porous film, and the temperature is equal to or higher than the melting temperature of the fluororesin in the dispersion. Air electrode heat treated at
【請求項10】 ふっ素樹脂多孔膜はポリテトラフルオ
ロエチレン多孔膜とした請求項9記載の空気電極。
10. The air electrode according to claim 9, wherein the fluororesin porous membrane is a polytetrafluoroethylene porous membrane.
【請求項11】 ふっ素樹脂分散液は、乳化重合によっ
て得られるテトラフルオロエチレンとヘキサフルオロプ
ロピレンとの共重合体の疎水性コロイド状樹脂粒子を非
イオン性界面活性剤または陰イオン界面活性剤を用いて
懸濁させた液を含む分散液とした請求項9または10記
載の空気電極。
11. A fluororesin dispersion is prepared by using a hydrophobic colloidal resin particle of a copolymer of tetrafluoroethylene and hexafluoropropylene obtained by emulsion polymerization using a nonionic surfactant or an anionic surfactant. The air electrode according to claim 9, wherein the air electrode is a dispersion containing a liquid suspended by the method.
【請求項12】 請求項9ないし11のいずれかに記載
の空気電極を正極として備えた空気電池。
12. An air battery comprising the air electrode according to claim 9 as a positive electrode.
JP00734394A 1994-01-27 1994-01-27 Air electrode, method of manufacturing the air electrode, and air battery having the air electrode Expired - Fee Related JP3172852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00734394A JP3172852B2 (en) 1994-01-27 1994-01-27 Air electrode, method of manufacturing the air electrode, and air battery having the air electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00734394A JP3172852B2 (en) 1994-01-27 1994-01-27 Air electrode, method of manufacturing the air electrode, and air battery having the air electrode

Publications (2)

Publication Number Publication Date
JPH07220733A JPH07220733A (en) 1995-08-18
JP3172852B2 true JP3172852B2 (en) 2001-06-04

Family

ID=11663305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00734394A Expired - Fee Related JP3172852B2 (en) 1994-01-27 1994-01-27 Air electrode, method of manufacturing the air electrode, and air battery having the air electrode

Country Status (1)

Country Link
JP (1) JP3172852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349529B2 (en) 2009-05-12 2013-01-08 Ricoh Company, Ltd. Electrophotographic photoconductor, and electrophotographic method, electrophotographic apparatus and process cartridge containing the electrophotographic photoconductor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479188B1 (en) * 1999-10-13 2002-11-12 The Gillette Company Cathode tube and method of making the same
KR102031349B1 (en) 2013-02-21 2019-10-14 삼성전자주식회사 Cathode and lithium air battery comprising the cathode, and preparation method thereof
KR101487465B1 (en) * 2013-08-12 2015-01-29 한국과학기술연구원 Air cathode for magnesium air battery and the preparation thereof
KR102280682B1 (en) 2014-09-15 2021-07-22 삼성전자주식회사 Cathode and lithium air battery comprising the cathode, and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349529B2 (en) 2009-05-12 2013-01-08 Ricoh Company, Ltd. Electrophotographic photoconductor, and electrophotographic method, electrophotographic apparatus and process cartridge containing the electrophotographic photoconductor

Also Published As

Publication number Publication date
JPH07220733A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
JP5124961B2 (en) Bipolar battery
JP4777615B2 (en) Electrochemical equipment alignment film
US20210126289A1 (en) Battery and method for manufacturing same
JP3172852B2 (en) Air electrode, method of manufacturing the air electrode, and air battery having the air electrode
JPH05144482A (en) Cylindrical air cell and electrode manufacturing method
AU2004216989A1 (en) Partition wall for a bipolar battery, bipolar electrode, bipolar battery and method for producing a partition wall
JPH07211322A (en) Air electrode, manufacture thereof, and air battery using the electrode
US6479188B1 (en) Cathode tube and method of making the same
JP3348236B2 (en) Air electrode current collecting material for air battery using alkaline electrolyte and air battery using alkaline electrolyte provided with the same
KR20180032763A (en) Electrode Assembly Applied with Partially Binding between Electrode and Separator
JPS5830065A (en) Manufacture of button type zinc-air cell
JP3395440B2 (en) Air electrode current collecting material for air battery and air battery provided with the same
JPH07211323A (en) Air electrode, manufacture thereof, and air battery using the electrode
KR101163388B1 (en) Secondary Battery with Excellent Insulation Resistance
JPH07201335A (en) Production of air electrode catalytic layer and cylindrical air cell using this method
JPH08287920A (en) Cylindrical air electrode and battery using it
JP2001043864A (en) Cylindrical air electrode and cylindrical air battery
JPS58198862A (en) Manufacturing method of cylindrical air electrode
WO2022009687A1 (en) Metal-air cell production method
JP3232936B2 (en) Cylindrical air battery
JPS60136168A (en) Manufacture of air electrode
JPS5994374A (en) Cylindrical air electrode
JPH0610980B2 (en) Air electrode manufacturing method
JPH09306509A (en) Manufacture of oxygen-reduced electrode, and battery therewith
JPS61216275A (en) Button type air battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees