JP3039055B2 - Manufacturing method of cylindrical air cell and cylindrical air electrode - Google Patents
Manufacturing method of cylindrical air cell and cylindrical air electrodeInfo
- Publication number
- JP3039055B2 JP3039055B2 JP3308814A JP30881491A JP3039055B2 JP 3039055 B2 JP3039055 B2 JP 3039055B2 JP 3308814 A JP3308814 A JP 3308814A JP 30881491 A JP30881491 A JP 30881491A JP 3039055 B2 JP3039055 B2 JP 3039055B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cylindrical air
- cylindrical
- gas diffusion
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
- Hybrid Cells (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、酸素を活物質として用
いる円筒形空気電池および円筒形空気電極の製造法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical air battery using oxygen as an active material and a method for manufacturing a cylindrical air electrode.
【0002】[0002]
【従来の技術】従来、円筒形空気電極はポリテトラフル
オロエチレン(以下PTFEという)から成るガス透過
能を有する撥水膜、ニッケルネット、エキスパンドメタ
ルなどの導電性の集電シート、および種々の金属酸化
物、活性炭、PTFEディスパージョンを混合して成る
多孔質の触媒シートを重ねて全体を圧着して形成される
3層構造の電極を湾曲して円筒状とし、該円筒状の合わ
せ目である両側端を合成ゴム系またはエポキシ樹脂系の
接着剤で接着することにより構成される。例えば、撥水
性層としてPTFE、ポリテトラフルオロエチレン−ヘ
キサフルオロプロピレン共重合体などからなる酸素ガス
透過性のシート、多孔質触媒層として白金、パラジウ
ム、銀、二酸化マンガンなどを担持させた活性炭の粉末
をPTFEで結着してなる導電性の多孔質体のシート、
集電体層としてニッケルの金網、エキスパンドメタル等
を用いて、撥水性層、多孔質触媒層、集電体層をこの順
序で積層し圧着した3層構造体をつくる。この電極を集
電体層が内側になるようにして湾曲し該シートの両端部
の一部を重ねて筒形とする。ついで、この重なった部分
の撥水性層、多孔質触媒層の部分を取り除いて露出した
集電体層をスポット溶接、ビーム溶接などの溶接手段で
溶接し、液密の状態にない溶接部にフッ素樹脂を充填し
液密に補修する方法(特開昭58−75773)や、集
電体層をあらかじめスポット溶接などを用いて円筒形に
接合した後、触媒層シートを円筒の外側に両端部を若干
重ね合わせて巻き、さらに、撥水性シートを両端部を若
干重ね合わせて巻き加熱圧着して一体化する方法(特開
昭58−198862)などがある。2. Description of the Related Art Conventionally, a cylindrical air electrode is made of a polytetrafluoroethylene (hereinafter referred to as PTFE) having a gas-permeable ability and having a water-repellent film, a nickel net, an expanded current collector, or other conductive current-collecting sheet, and various metals. An electrode having a three-layer structure formed by stacking porous catalyst sheets made of a mixture of oxide, activated carbon, and PTFE dispersion and pressing the whole is pressed into a curved cylindrical shape. It is constituted by bonding both ends with a synthetic rubber or epoxy resin adhesive. For example, an oxygen gas permeable sheet made of PTFE, polytetrafluoroethylene-hexafluoropropylene copolymer or the like as a water-repellent layer, and activated carbon powder carrying platinum, palladium, silver, manganese dioxide or the like as a porous catalyst layer A sheet of a conductive porous body obtained by binding
Using a metal net of nickel, expanded metal, or the like as the current collector layer, a water repellent layer, a porous catalyst layer, and a current collector layer are laminated in this order, and a three-layer structure is formed by pressure bonding. The electrode is curved so that the current collector layer is on the inside, and a part of both ends of the sheet is overlapped to form a cylindrical shape. Next, the water-repellent layer and the porous catalyst layer in the overlapped portion were removed, and the exposed current collector layer was welded by a welding method such as spot welding or beam welding. After filling the current collector layer into a cylindrical shape by spot welding or the like, a method of filling the resin and repairing the solution in a liquid-tight manner (JP-A-58-75773), and placing the catalyst layer sheet on both ends of the cylinder outside the cylinder. There is a method of slightly overlapping and winding, and furthermore, slightly overlapping the water-repellent sheets at both ends, winding and press-bonding them to integrate them (Japanese Patent Laid-Open No. 58-198862).
【0003】[0003]
【発明が解決しようとする課題】上記のいずれの方法に
おいても、接着剤または熱溶着により接合部を液密に接
着しなければならないが、撥水性層が主としてフッ素樹
脂から構成されているために接合効果は極めて弱い。こ
のような円筒形空気極を正極とし、その内側にセパレー
タを介して負極(例えば、亜鉛)を充填し電池を構成し
た場合、電池放電反応の進行にともなって亜鉛が酸化亜
鉛等に変化することにより体積膨脹し、その結果接合部
が開口してそこから電解液が漏液し電池性能の低下をき
たしていた。In any of the above methods, the joints must be bonded in a liquid-tight manner with an adhesive or heat welding. However, since the water-repellent layer is mainly composed of fluororesin, The bonding effect is extremely weak. When such a cylindrical air electrode is used as a positive electrode, and a negative electrode (for example, zinc) is filled inside the separator through a separator, the zinc is changed to zinc oxide or the like as the battery discharge reaction proceeds. As a result, the joint expands and the electrolyte leaks from the joint, resulting in a decrease in battery performance.
【0004】本発明はこのような課題を解決するもの
で、耐漏液性、放電性能にすぐれた円筒形空気電池およ
び円筒形空気電極の製造法を提供することを目的とする
ものである。An object of the present invention is to solve such problems and to provide a method for manufacturing a cylindrical air battery and a cylindrical air electrode which are excellent in liquid leakage resistance and discharge performance.
【0005】[0005]
【課題を解決するための手段】これらの課題を解決する
ため本発明は、内側より外側にむけて酸素ガス還元能を
有する触媒層、金属集電体層、ガス拡散層および酸素選
択性透過膜層からなる4層構造の円筒形空気極を使用
し、更に上記ガス拡散層が接合部のない完全に液密な円
筒側面をもつことを特徴とした円筒形空気電池および円
筒形空気極の製造法を見出したものである。In order to solve these problems, the present invention provides a catalyst layer, a metal current collector layer, a gas diffusion layer, and an oxygen-selective permeable membrane having an oxygen gas reducing ability from the inside to the outside. Production of a cylindrical air battery and a cylindrical air electrode, characterized in that a cylindrical air electrode having a four-layer structure comprising layers is used, and the gas diffusion layer has a completely liquid-tight cylindrical side surface without a joint. I found the law.
【0006】すなわち、内側より外側にむけて触媒層、
金属集電体層、ガス拡散層および酸素選択性透過膜層か
らなる4層構造の円筒形空気電極であって、まず、酸素
ガス還元能を有する触媒層シートを円柱状の治具の外側
に巻き触媒層を形成し、次に、該円柱の外側表面に金属
線を編み込むことにより集電体層を形成する。その外側
にガス拡散層を押し出し成型により形成する。さらに酸
素選択性透過膜を最外周に巻き、その後、円柱の治具を
抜き取ることにより4層構造の円筒形とする製造法で円
筒形空気電極を作製するものである。That is, the catalyst layer is directed outward from the inside,
A cylindrical air electrode having a four-layer structure including a metal current collector layer, a gas diffusion layer, and an oxygen-selective permeable membrane layer. First, a catalyst layer sheet having an oxygen gas reducing ability is placed outside a cylindrical jig. A wound catalyst layer is formed, and then a current collector layer is formed by weaving a metal wire on the outer surface of the column. A gas diffusion layer is formed on the outside by extrusion molding. Further, a cylindrical air electrode is produced by a method of manufacturing a cylinder having a four-layered structure by winding an oxygen-selective permeable membrane around the outermost periphery and then extracting a cylindrical jig.
【0007】[0007]
【作用】円筒形空気極を作製するとき、従来まではいず
れの方法にせよ平板電極を湾曲させ接合部を工夫するこ
とにより接合部からの漏液を防ぐことを図ってきた。し
かしながら、程度の違いはあるものの接合部の耐漏液性
は十分とはいえない。このことは、撥水性部分に接合部
がある以上避けられないものと考えることができ、接合
部を無くすことが重要技術である。本発明のように、カ
ーボンブラックおよびフッ素樹脂を混合し、界面活性剤
を含む水あるいは有機溶媒を加えて混練した合剤を円形
のスリットを用いて押し出し成型により接合部のない円
筒形に形成した後、加熱し界面活性剤を除去すれば、こ
の層は接合部がない上に撥水性の層とすることができ
る。つまり、電解液が円筒形電極の内側から外側へ接合
部を通って漏液することを防ぎ、この電極を正極とした
円筒形空気電池の耐漏液性を飛躍的に改善することが可
能となる。また、このようなガス拡散層を新たに設け、
4層構造にすることにより、触媒層にくまなく酸素が供
給でき、従来の3層構造のものに比べ電池性能も向上す
る結果となる。When producing a cylindrical air electrode, a conventional method has been designed to prevent liquid leakage from the joint by bending the flat electrode and devising the joint in any method. However, the degree of leakage resistance of the joints is not sufficient, though varying in degree. This can be considered as inevitable as long as the water-repellent portion has a joint, and eliminating the joint is an important technique. As in the present invention, a mixture obtained by mixing carbon black and a fluororesin, adding water or an organic solvent containing a surfactant, and kneading the mixture was formed into a cylindrical shape without a joint by extrusion molding using a circular slit. Thereafter, by heating to remove the surfactant, this layer can be a water-repellent layer having no joint. That is, it is possible to prevent the electrolyte from leaking from the inside to the outside of the cylindrical electrode through the joint portion, and to dramatically improve the liquid leakage resistance of the cylindrical air battery having this electrode as a positive electrode. . In addition, such a gas diffusion layer is newly provided,
With the four-layer structure, oxygen can be supplied to the entire catalyst layer, and the battery performance is improved as compared with the conventional three-layer structure.
【0008】[0008]
【実施例】以下、図面とともに本発明を具体的な実施例
に沿って説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to the drawings according to specific embodiments.
【0009】図1に本発明の円筒形空気電極を用いた単
3形空気亜鉛電池の半截断面図を示した。図の中で、円
で囲み拡大したものは、本発明による4層構造の円筒形
空気極(X)で、1は多孔質触媒層、2はニッケルめっ
きを施したステンレス線(金属集電体層)、3はガス拡
散層、4は酸素選択性透過膜層である。5は酸素選択性
透過膜層とガス拡散層との隙間に電解液が回り込むのを
防ぐ封止剤、6はセパレータ、7はゲル状亜鉛負極であ
る。ゲル状亜鉛負極は以下のようにして調整した。40
重量%の水酸化カリウム水溶液(ZnOを3重量%含
む)に3重量%のポリアクリル酸ソーダと1重量%のカ
ルボキシメチルセルロースを加えてゲル化する。次に、
ゲル状電解液に対して重量比で2倍の亜鉛合金粉末を加
えて混合し、ゲル状亜鉛負極とした。8は空気拡散紙、
9は正極缶、10は絶縁チューブである。11は空気取
り入れ孔で、12は電池を使用する前にはがす密封シー
ル、13は正極キャップ、14は皿紙である。15,1
6は金属製のキャップで15と16の間に円筒形空気極
をはさみ込み圧着させ、正極缶とスポット溶接すること
により集電する。17は有機封止剤、18は樹脂封口
体、19は負極端子キャップ、20は負極集電子であ
る。FIG. 1 is a half sectional view of an AA zinc battery using the cylindrical air electrode of the present invention. In the figure, what is encircled and enlarged is a four-layer cylindrical air electrode (X) according to the present invention, 1 is a porous catalyst layer, and 2 is a nickel-plated stainless steel wire (metal current collector). Layers), 3 is a gas diffusion layer, and 4 is an oxygen-selective permeable membrane layer. Reference numeral 5 denotes a sealant for preventing the electrolyte from flowing into the gap between the oxygen-selective permeable membrane layer and the gas diffusion layer, reference numeral 6 denotes a separator, and reference numeral 7 denotes a gelled zinc negative electrode. The gelled zinc negative electrode was prepared as follows. 40
3% by weight of sodium polyacrylate and 1% by weight of carboxymethylcellulose are added to a 3% by weight aqueous solution of potassium hydroxide (containing 3% by weight of ZnO) to gel. next,
A zinc alloy powder having a weight ratio twice that of the gel electrolyte was added and mixed to obtain a gel zinc negative electrode. 8 is air diffusion paper,
9 is a positive electrode can and 10 is an insulating tube. 11 is an air intake hole, 12 is a hermetic seal to be peeled off before using the battery, 13 is a positive electrode cap, and 14 is a plate. 15,1
Reference numeral 6 denotes a metal cap, which has a cylindrical air electrode sandwiched between 15 and 16 to be pressed and pressed, and is spot-welded to the positive electrode can to collect current. 17 is an organic sealant, 18 is a resin sealing body, 19 is a negative electrode terminal cap, and 20 is a negative electrode current collector.
【0010】次に、本発明による4層構造の円筒形空気
極の製造法を説明する。製造工程の概略図を図2に示
す。図中の1は酸素還元能を有する多孔質触媒層であ
る。本実験においては、マンガン酸化物、活性炭、アセ
チレンブラック、およびフッ素樹脂粉末をそれぞれ40
重量%、30重量%、15重量%および15重量%の割
合で十分に混合した後、360℃でホットプレスするこ
とによりシート状に成形した。マンガン酸化物は、γ−
MnOOHを窒素気流中400℃で熱処理したものを用
いた。2はニッケルめっきを施したステンレス線であ
る。上記の方法により成形した多孔質触媒シートを円柱
の治具21に巻きつけた後(工程1)、ニッケルめっき
を施したステンレス線を外側に編み込む(工程2)。こ
のとき用いる機械は、被覆電線を作製する際に通常よく
用いられる編み機で、本実験においても類似の機械を調
整し用いた。3はアセチレンブラックとフッ素樹脂から
なるガス拡散層である。これは、押し出し成型によりつ
なぎ目のない円筒形とするものであるが、以下の手順に
より作製した。アセチレンブラック10kgに対して水3
00kg、界面活性剤(関東化学社製ポリエチレンオクチ
ルフェニルエーテル:商品名トリトンX−100)2k
g、フッ素樹脂粉末15kgを混合、攪拌した後、ろ過、
乾燥(100℃)、粉砕の工程を経て高分散されたアセ
チレンブラックとフッ素樹脂の混合粉末を得る。この混
合粉末5kgに対してソルベントナフサを10kgを加えて
混練し、ゴム状ブラックとする。次に、円形スリットの
内側を上記の方法で作製した1および2を通しながら、
ゴム状ブラックを1および2を被覆するように円形スリ
ットから押し出すことで円筒形とした。この結果、1,
2および3の3層構造よりなる円筒形空気極となる(工
程3)。しかしながら、この時点では界面活性剤(トリ
トンX−100)が残留しているためガス拡散層3の撥
水性は乏しい。したがって、酸素選択性透過膜を形成す
る前に、これを290℃で熱処理し、界面活性剤を除去
する(工程4)。なお、多孔質触媒層中にも、フッ素樹
脂が含まれているが混合比が小さいためこの層は完全な
撥水性とはならない。つまり、電池にした場合、1の多
孔質触媒層には電解液が浸透するが3の撥水性ガス拡散
層の内側で止められる。また、3のガス拡散層には従来
より問題となっていた接合部がないため電解液の耐漏液
性を飛躍的に向上させることが可能になる。最後に、フ
ッ素樹脂からなる厚み150μmの酸素選択性透過膜を
若干重ねて巻くことにより4を形成する(工程5)。以
上の工程により、4層構造を持った円筒形空気極を作り
上げる。Next, a method for manufacturing a four-layer cylindrical air electrode according to the present invention will be described. FIG. 2 shows a schematic diagram of the manufacturing process. 1 in the figure is a porous catalyst layer having an oxygen reducing ability. In this experiment, manganese oxide, activated carbon, acetylene black, and fluorine resin powder
After sufficiently mixing at a ratio of 30% by weight, 30% by weight, 15% by weight and 15% by weight, the mixture was formed into a sheet by hot pressing at 360 ° C. Manganese oxide is γ-
MnOOH that had been heat-treated at 400 ° C. in a nitrogen stream was used. Reference numeral 2 denotes a nickel-plated stainless steel wire. After winding the porous catalyst sheet formed by the above-described method around a cylindrical jig 21 (Step 1), a nickel-plated stainless steel wire is woven outside (Step 2). The machine used at this time is a knitting machine that is commonly used when producing a covered electric wire, and a similar machine was adjusted and used in this experiment. Reference numeral 3 denotes a gas diffusion layer made of acetylene black and a fluororesin. This was made into a seamless cylindrical shape by extrusion molding, but was produced by the following procedure. Water 3 for 10 kg of acetylene black
00 kg, surfactant (polyethylene octyl phenyl ether manufactured by Kanto Chemical Co., Ltd .: trade name: Triton X-100) 2 k
g, 15 kg of fluororesin powder, mixed, stirred, filtered,
After drying (100 ° C.) and pulverizing steps, a highly dispersed mixed powder of acetylene black and a fluororesin is obtained. 10 kg of solvent naphtha is added to 5 kg of the mixed powder and kneaded to obtain a rubbery black. Next, while passing the inside of the circular slit through 1 and 2 produced by the above method,
The rubbery black was extruded from a circular slit so as to cover 1 and 2, thereby obtaining a cylindrical shape. As a result,
A cylindrical air electrode having a three-layer structure of two and three is obtained (step 3). However, at this time, since the surfactant (Triton X-100) remains, the water repellency of the gas diffusion layer 3 is poor. Therefore, before forming the oxygen-selective permeable membrane, it is heat-treated at 290 ° C. to remove the surfactant (Step 4). Although the porous catalyst layer also contains a fluororesin, the layer does not have complete water repellency due to a small mixing ratio. That is, in the case of a battery, the electrolytic solution permeates into one porous catalyst layer but is stopped inside the third water-repellent gas diffusion layer. In addition, since the gas diffusion layer 3 does not have a joint which has been a problem, the leakage resistance of the electrolytic solution can be significantly improved. Finally, a 150 μm-thick oxygen-selective permeable membrane made of fluororesin is slightly overlapped and wound to form 4 (Step 5). Through the above steps, a cylindrical air electrode having a four-layer structure is completed.
【0011】上記の方法で作製した4層構造でかつ接合
部のないガス拡散層(撥水性)をもつ円筒形空気極を用
いた単3形空気亜鉛電池と従来までの3層構造で接合部
を有する円筒形空気極を用いた電池の放電性能および耐
漏液性を比較した。その結果を(表1)に示した。An AA type zinc-air battery using a cylindrical air electrode having a gas diffusion layer (water repellency) having a four-layer structure and no junction, manufactured by the above method, and a conventional three-layer structure having a junction The discharge performance and leakage resistance of the battery using the cylindrical air electrode having the above characteristics were compared. The results are shown in (Table 1).
【0012】[0012]
【表1】 [Table 1]
【0013】表中の電池No.1は上記方法で作製した4
層構造でかつ接合部のないガス拡散層をもつ円筒形空気
極を用いた単3形空気亜鉛電池で、No.2は4層構造の
円筒形空気極を使用し、ガス拡散層の部分だけNo.1と
異なり、材料はNo.1と同じものでこれをシート状にし
両端部を重ねて圧着してガス拡散層を構成した電池であ
る。つまり、本発明のNo.1電池のガス拡散層に接合部
があるものである。No.3は従来の3層構造の空気極を
用いた電池で、以下のようにして作製した電池である。
フッ素樹脂の多孔膜で構成された撥水性層、多孔質触媒
層(本発明の電池のものと同じ多孔質触媒シート)、集
電体層(ステンレス線にニッケルめっきを施した線から
なるネット)をこの順序で積層して圧着した3層構造体
を、集電体層が内側になるようにして湾曲して該シート
の両端部の一部を重ねて筒形とする。ついで、この重な
った部分の撥水性層、多孔質触媒層の部分を取り除いて
露出した集電体層をスポット溶接し、溶接部にフッ素樹
脂を充填し液密に補修する。これを正極として後は本発
明と同様の電池構成としたものである。No.4は、集電
体層をあらかじめスポット溶接を用いて円筒形に接合し
た後、触媒層シートを円筒の外側に両端部を若干重ね合
わせて巻き、さらに、フッ素樹脂の多孔膜で構成された
撥水性層を両端部を若干重ね合わせて巻き加熱圧着して
一体化する方法により円筒形空気極を作製する。これを
正極として後は本発明と同様の電池構成である。電池放
電性能に関しては、比較のためにNo.3電池の放電時間
を100とした場合の比較値を示した。耐漏液性に関し
ては、各放電負荷で放電した電池を20℃、1ヶ月保存
し、漏液している電池の個数を表に示した。このときの
n数は10である。放電特性において、No.3およびNo.
4はほぼ同等の性能であるのに対して、本発明のNo.1
電池では1Ω負荷放電で46%、10Ω負荷放電で22
%、75Ω負荷放電で11%放電時間が増加している。
また、No.2電池においてもほぼ同じ割合で放電時間が
増加している。このことは、新しくガス拡散層を設け4
層構造にすることによりガス拡散層を通して酸素ガスが
反応層にくまなく供給されることで、放電性能が向上し
たものと考えられる。耐漏液性については、No.3,No.
4では5割以上の電池が漏液したのに対して本発明のう
ちNo.1電池では漏液電池はなかった。このことは、No.
3,No.4電池では放電にともなって亜鉛が体積膨脹し
接合強度が弱められそこから漏液が起こったのに対し
て、No.1電池では接合部がないためにこのことによる
漏液を防ぐことができたものと考えられる。また、No.
2電池ではNo.3,No.4と比較して漏液した電池は少な
いもののガス拡散層に接合部があるために耐漏液性は若
干劣るものである。なお、本発明の多孔質触媒層を押し
出し成型によって継ぎ目のない円筒形として用いた場合
は、放電性能、耐漏液性はNo.1と同等ですぐれ製造工
程も簡略化できるものである。また、本実施例では金属
集電体としてステンレスにニッケルめっきを施した線を
用いたが、ステンレス線、ニッケル線でも同様であっ
た。[0013] Battery No. 1 in the table was prepared by the above method.
AA type zinc-air battery using a cylindrical air electrode with a gas diffusion layer with a layered structure and no joint. No. 2 uses a cylindrical air electrode with a four-layer structure and only the gas diffusion layer part. Unlike No. 1, the material is the same as that of No. 1, and this is a battery in which a gas diffusion layer is formed by forming this into a sheet shape, and stacking and pressing both ends. That is, the gas diffusion layer of the No. 1 battery of the present invention has a joint. No. 3 is a battery using a conventional three-layer air electrode, and was manufactured as follows.
Water-repellent layer composed of a fluororesin porous film, porous catalyst layer (the same porous catalyst sheet as that of the battery of the present invention), current collector layer (a net made of a nickel-plated stainless steel wire) Are laminated in this order and crimped to form a cylindrical shape by curving the current collector layer inside and partially overlapping both ends of the sheet. Next, the water-repellent layer and the porous catalyst layer in the overlapped portion are removed, and the exposed current collector layer is spot-welded, and the welded portion is filled with a fluororesin to perform liquid-tight repair. This was used as a positive electrode, and the remaining battery configuration was the same as that of the present invention. In No. 4, the current collector layer was previously joined in a cylindrical shape using spot welding, and then the catalyst layer sheet was wound around the outside of the cylinder with the both ends slightly overlapped, and furthermore, was composed of a fluororesin porous membrane. A cylindrical air electrode is produced by a method in which the water-repellent layer is slightly overlapped at both ends, wound, and heat-pressed to be integrated. The battery configuration is the same as that of the present invention after using this as a positive electrode. Regarding the battery discharge performance, a comparative value when the discharge time of No. 3 battery was set to 100 is shown for comparison. Regarding the leak resistance, the batteries discharged at each discharge load were stored at 20 ° C. for one month, and the number of batteries leaking is shown in the table. The n number at this time is 10. In the discharge characteristics, No. 3 and No.
No. 4 of the present invention has almost the same performance,
For batteries, 46% at 1Ω load discharge and 22% at 10Ω load discharge
%, The discharge time increased by 11% at 75Ω load discharge.
Also, in the No. 2 battery, the discharge time increases at almost the same rate. This is because a new gas diffusion layer is provided.
It is thought that the discharge performance was improved by supplying oxygen gas throughout the reaction layer through the gas diffusion layer by adopting the layer structure. No. 3 and No. 3
In No. 4, 50% or more of the batteries leaked, whereas No. 1 battery of the present invention did not have any leaky batteries. This is No.
In the No. 3 and No. 4 batteries, the volume of zinc expanded due to the discharge and the bonding strength was weakened, and the leak occurred from there. It is probable that it was prevented. No.
In the No. 2 battery, the number of leaked batteries was smaller than that of No. 3 and No. 4, but the leak resistance was slightly inferior due to the presence of the joint in the gas diffusion layer. When the porous catalyst layer of the present invention is used as a seamless cylindrical shape by extrusion molding, the discharge performance and liquid leakage resistance are equal to those of No. 1, and the manufacturing process can be simplified. In this example, a stainless steel-coated nickel-coated wire was used as the metal current collector, but the same applies to a stainless wire and a nickel wire.
【0014】[0014]
【発明の効果】以上の説明で明らかなように、本発明に
よれば内側より外側にむけて触媒層、金属集電体層、ガ
ス拡散層および酸素選択性透過膜層からなる4層構造の
円筒形空気極、更にガス拡散層が接合部のない完全に液
密な円筒側面をもつ構造の円筒形空気極を用いることに
より放電性能および耐漏液性能にすぐれた円筒形空気電
池を提供できる。As apparent from the above description, according to the present invention, a four-layer structure comprising a catalyst layer, a metal current collector layer, a gas diffusion layer and an oxygen-selective permeable membrane layer is provided from the inside to the outside. By using a cylindrical air electrode and a cylindrical air electrode having a structure in which a gas diffusion layer has a completely liquid-tight cylindrical side surface without a joint, a cylindrical air battery having excellent discharge performance and leakage resistance can be provided.
【図1】(a)本発明の実施例における円筒形空気電池
の半截断面図 (b)本発明電池の要部拡大図FIG. 1A is a half sectional view of a cylindrical air battery according to an embodiment of the present invention. FIG. 1B is an enlarged view of a main part of the battery of the present invention.
【図2】本発明の実施例における円筒形空気電極の製造
工程図FIG. 2 is a manufacturing process diagram of a cylindrical air electrode according to an embodiment of the present invention.
1 多孔質触媒層 2 ニッケルめっきを施したステンレス線(金属集電体
層) 3 ガス拡散層 4 酸素選択性透過膜層 X 4層構造の円筒形空気極 6 セパレータ 7 ゲル亜鉛負極 9 正極缶 11 空気取り入れ孔DESCRIPTION OF SYMBOLS 1 Porous catalyst layer 2 Nickel-plated stainless steel wire (metal current collector layer) 3 Gas diffusion layer 4 Oxygen-selective permeable membrane layer X 4-layer cylindrical air electrode 6 Separator 7 Gel zinc negative electrode 9 Positive electrode can 11 Air intake
───────────────────────────────────────────────────── フロントページの続き (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−290658(JP,A) 特開 平2−257577(JP,A) 特開 昭59−205168(JP,A) 特開 昭58−198862(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 12/06 - 12/08 H01M 4/86 - 4/88 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshiaki Nitta 1006 Kazuma Kadoma, Kadoma City, Osaka Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-61-290658 (JP, A) JP-A-2 -257577 (JP, A) JP-A-59-205168 (JP, A) JP-A-58-198862 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 12/06- 12/08 H01M 4/86-4/88
Claims (6)
内側から外側にむけて酸素ガス還元能を有する触媒層、
金属集電体層、ガス拡散層および酸素選択性透過膜層の
4層構造をもつ円筒形空気極と、空気拡散紙と、空気取
り入れ孔を持った正極缶とからなる円筒形空気電池であ
って、上記4層構造の円筒形空気極のうち少なくともガス拡散
層が、予め円筒形に一体成形したものを用い、接合部の
ない完全に液密な円筒側面をもつ構造である 円筒形空気
電池。1. A negative electrode mainly composed of zinc, a separator,
A catalyst layer having oxygen gas reducing ability from the inside to the outside,
Metal collector layer, gas diffusion layer and oxygen-selective permeable membrane layer
A cylindrical air battery comprising a cylindrical air electrode having a four-layer structure , an air diffusion paper, and a positive electrode can having an air intake hole, wherein at least the gas diffusion of the cylindrical air electrode having the four-layer structure is performed.
The layer is made of a single piece that has been previously molded into a cylindrical shape.
A cylindrical air battery that is not completely liquid-tight and has a structure with cylindrical sides .
びフッ素樹脂からなる多孔質体である請求項1記載の円
筒形空気電池。2. The cylindrical air battery according to claim 1, wherein the gas diffusion layer is a porous body mainly composed of carbon black and a fluororesin.
ボンブラックおよびフッ素樹脂のうち少なくとも1つを
含む触媒合剤よりなる請求項1記載の円筒形空気電池。3. The cylindrical air battery according to claim 1, wherein the catalyst layer is made of a catalyst mixture containing at least one of manganese oxide, activated carbon, carbon black and fluororesin.
線、ステンレスにニッケルめっきを施した線のうち少な
くとも1つを含む線よりなる請求項1記載の円筒形空気
電池。4. The cylindrical air battery according to claim 1, wherein the metal current collector layer comprises a wire including at least one of a stainless wire, a nickel wire, and a nickel-plated stainless steel wire.
層、ガス拡散層および酸素選択性透過膜層からなる4層
構造の円筒形空気電極であって、 触媒シートを円柱状の治具の外側に巻き触媒層を形成
し、該円柱の外側表面に金属線を編み込むことにより集
電体層を形成し、その外側にガス拡散層を押し出し成型
により形成し、さらに酸素選択性透過膜を最外周に巻
き、その後、円柱の治具を抜き取ることにより4層構造
の円筒形とする円筒形空気電極の製造法。5. A cylindrical air electrode having a four-layer structure comprising a catalyst layer, a metal current collector layer, a gas diffusion layer and an oxygen-selective permeable membrane layer from the inside to the outside, wherein the catalyst sheet has a cylindrical shape. A wound catalyst layer is formed on the outside of the jig, a current collector layer is formed by weaving a metal wire on the outer surface of the cylinder, and a gas diffusion layer is formed on the outside of the current collector layer by extrusion molding. A method for producing a cylindrical air electrode having a four-layered cylindrical shape by winding a membrane around the outermost periphery and then extracting a cylindrical jig.
びフッ素樹脂を混合し、界面活性剤を含む水あるいは有
機溶媒を加えて混練した合剤を、円形のスリットを用い
て押し出し成型により円筒形とする請求項5記載の円筒
形空気電極の製造法。6. The gas diffusion layer is formed by mixing carbon black and a fluororesin, adding water or an organic solvent containing a surfactant and kneading the mixture, and extruding the mixture using a circular slit into a cylindrical shape. The method for producing a cylindrical air electrode according to claim 5 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3308814A JP3039055B2 (en) | 1991-11-25 | 1991-11-25 | Manufacturing method of cylindrical air cell and cylindrical air electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3308814A JP3039055B2 (en) | 1991-11-25 | 1991-11-25 | Manufacturing method of cylindrical air cell and cylindrical air electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05144482A JPH05144482A (en) | 1993-06-11 |
JP3039055B2 true JP3039055B2 (en) | 2000-05-08 |
Family
ID=17985637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3308814A Expired - Fee Related JP3039055B2 (en) | 1991-11-25 | 1991-11-25 | Manufacturing method of cylindrical air cell and cylindrical air electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3039055B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3475527B2 (en) * | 1993-12-14 | 2003-12-08 | 松下電器産業株式会社 | Cylindrical air battery |
JPH07211323A (en) * | 1994-01-25 | 1995-08-11 | Matsushita Electric Ind Co Ltd | Air electrode, manufacture thereof, and air battery using the electrode |
US6232007B1 (en) | 1999-08-13 | 2001-05-15 | The Gillette Company | Metal-air battery container |
US6492046B1 (en) | 1999-08-13 | 2002-12-10 | The Gillette Company | Metal-air battery |
US6479188B1 (en) * | 1999-10-13 | 2002-11-12 | The Gillette Company | Cathode tube and method of making the same |
US20080014495A1 (en) * | 2004-09-21 | 2008-01-17 | Kotaro Saito | Membrane Electrode Assembly, Method of Manufacturing the Same, Fuel Battery, and Electronic Device |
JP5184795B2 (en) | 2006-06-06 | 2013-04-17 | シャープ株式会社 | FUEL CELL, FUEL CELL SYSTEM, AND ELECTRONIC DEVICE |
JP5275990B2 (en) | 2007-08-02 | 2013-08-28 | シャープ株式会社 | Fuel cell stack and fuel cell system |
JP5290402B2 (en) | 2009-04-01 | 2013-09-18 | シャープ株式会社 | Fuel cell stack and electronic device including the same |
JP2011096492A (en) | 2009-10-29 | 2011-05-12 | Sony Corp | Lithium air battery |
KR101793907B1 (en) * | 2016-02-12 | 2017-12-01 | 주식회사 이엠따블유에너지 | Air-Zinc secondary battery |
JP2024119308A (en) * | 2023-02-22 | 2024-09-03 | 千住金属工業株式会社 | SLIDE MEMBER AND METHOD FOR MANUFACTURING SLIDE MEMBER |
-
1991
- 1991-11-25 JP JP3308814A patent/JP3039055B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05144482A (en) | 1993-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3039055B2 (en) | Manufacturing method of cylindrical air cell and cylindrical air electrode | |
JP2007524209A (en) | Foldable air battery | |
JPH08162173A (en) | Cylindrical air battery | |
CN1253385A (en) | Air electrode and metal-air battery made of same | |
JP3530339B2 (en) | Polymer electrolyte fuel cell and method of manufacturing the same | |
JP3172852B2 (en) | Air electrode, method of manufacturing the air electrode, and air battery having the air electrode | |
JPH07211322A (en) | Air electrode, manufacture thereof, and air battery using the electrode | |
JP3348236B2 (en) | Air electrode current collecting material for air battery using alkaline electrolyte and air battery using alkaline electrolyte provided with the same | |
JP3395440B2 (en) | Air electrode current collecting material for air battery and air battery provided with the same | |
JPH08287920A (en) | Cylindrical air electrode and battery using it | |
CN1254200A (en) | Cylindrical metal-air battery | |
JPH07211323A (en) | Air electrode, manufacture thereof, and air battery using the electrode | |
JPH08264186A (en) | Cylindrical air zinc battery | |
JPH08306398A (en) | Cylindrical air cell | |
JP2007080793A (en) | Air battery | |
JP2001043864A (en) | Cylindrical air electrode and cylindrical air battery | |
JP3232936B2 (en) | Cylindrical air battery | |
WO2022009687A1 (en) | Metal-air cell production method | |
JP2814665B2 (en) | Organic electrolyte battery | |
JPS63138668A (en) | Thin type air cell | |
JPH07201335A (en) | Production of air electrode catalytic layer and cylindrical air cell using this method | |
JPH11339817A (en) | Manufacture of air electrode and manufacture of air battery | |
JP3642298B2 (en) | Cylindrical air battery | |
JPH11185769A (en) | Air electrode and air cell having the electrode | |
JPS58198862A (en) | Manufacturing method of cylindrical air electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |