JP3171453B2 - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JP3171453B2
JP3171453B2 JP06578391A JP6578391A JP3171453B2 JP 3171453 B2 JP3171453 B2 JP 3171453B2 JP 06578391 A JP06578391 A JP 06578391A JP 6578391 A JP6578391 A JP 6578391A JP 3171453 B2 JP3171453 B2 JP 3171453B2
Authority
JP
Japan
Prior art keywords
layer
laminate
magnetic layer
magnetic
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06578391A
Other languages
Japanese (ja)
Other versions
JPH04302103A (en
Inventor
浩一郎 猪俣
好昭 斉藤
志保 奥野
進 橋本
圭一郎 柚須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP06578391A priority Critical patent/JP3171453B2/en
Publication of JPH04302103A publication Critical patent/JPH04302103A/en
Application granted granted Critical
Publication of JP3171453B2 publication Critical patent/JP3171453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

[発明の目的] [Object of the invention]

【0001】[0001]

【産業上の利用分野】本発明は、磁気抵抗効果素子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistance effect element .

【0002】[0002]

【従来の技術】一般に人工格子膜と呼ばれている超薄膜
構造を採る積層膜は、一定の膜厚の元素Aからなる超薄
膜と元素Bからなる超薄膜とが、交互に積層されてい
る。この様な人工格子膜は特異な性質を示し、研究が盛
んに行われている。
2. Description of the Related Art A laminated film having an ultrathin film structure generally called an artificial lattice film is formed by alternately laminating an ultrathin film composed of an element A and an ultrathin film composed of an element B having a constant thickness. . Such an artificial lattice film has unique properties, and has been actively studied.

【0003】例えば従来にない巨大な磁気抵抗効果を示
すもの(例えば Phy.Rev.Lett. 61,2472(1988)) や、短
波長でカー回転角の大きい垂直磁化を示すもの(例えば
J.Appl.Phys.67,2136(1990))などが報告されている。
[0003] For example, those exhibiting an unprecedented giant magnetoresistance effect (eg, Phy. Rev. Lett. 61,2472 (1988)) and those exhibiting a short magnetization and a perpendicular magnetization having a large Kerr rotation angle (eg,
J. Appl. Phys. 67, 2136 (1990)).

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来の人
工格子膜では、例えばカー回転角が十分ではない,大き
な磁気抵抗効果を得るには大きな磁界を必要とするなど
の問題点があり、実用上の大きな問題となっている。こ
の種の特性を向上しようとして、最適膜厚,構成元素,
積層数などの制御が試みられているが、更なる特性向上
には限界があった。本発明は以上の点を考慮してなされ
たもので、新たな手法で特性向上を図ることのできる積
層膜の構造を提供することを目的とする。 [発明の構成]
However, conventional artificial lattice films have problems such as insufficient Kerr rotation angle and a large magnetic field to obtain a large magnetoresistance effect. It is a big problem. In order to improve this kind of characteristics, the optimum film thickness, constituent elements,
Attempts have been made to control the number of layers, but there is a limit to further improving the characteristics. The present invention has been made in consideration of the above points, and has as its object to provide a structure of a laminated film that can improve characteristics by a new method. [Configuration of the Invention]

【0005】[0005]

【課題を解決するための手段および作用】本発明者らは
磁気抵抗効果の改善を図り、従来一定の膜厚で積層され
ていた人工格子膜の膜厚を積層方向で変調して特性を評
価した。その結果従来に比較して小さい磁界で大きな磁
気抵抗効果を実現できることを見出した。
Means for Solving the Problems and Functions The present inventors have attempted to improve the magnetoresistance effect and evaluated the characteristics by modulating the thickness of the artificial lattice film conventionally laminated with a constant film thickness in the laminating direction. did. As a result, they have found that a large magnetoresistance effect can be realized with a small magnetic field as compared with the related art.

【0006】本発明はこの様な知見に基づくものであ
り、構成元素の異なる薄膜を積層してなる積層膜におい
て、積層周期が異なることを特徴とする積層膜である。
ここでいう積層周期が異なるとは、例えば元素Aからな
る薄膜と元素Bからなる薄膜との積層を考えた場合、元
素Aの薄膜の膜厚tA もしくは元素Bの薄膜の膜厚tB
の少なくとも一方が一定ではなく、異なっている状態を
指す。以後この様な状態を積層変調と呼ぶ。従ってこの
積層変調状態では各層が異なる膜厚を有していても良い
し、積層変調された積層膜をユニットとして、これの繰
り返しでも構わない。この様な場合は長期的に見れば積
層周期をもっていることになる。
The present invention is based on such knowledge, and is a laminated film in which lamination cycles are different in a laminated film in which thin films having different constituent elements are laminated.
The term “different lamination cycle” used herein means that, for example, when a lamination of a thin film made of the element A and a thin film made of the element B is considered, the thickness t A of the thin film of the element A or the thickness t B of the thin film of the element B is considered.
At least one is not constant but different. Hereinafter, such a state is referred to as stack modulation. Therefore, in this layer modulation state, each layer may have a different film thickness, or the layer modulation may be repeated as a unit. In such a case, there is a lamination cycle in the long term.

【0007】磁気抵抗効果を考慮した場合は、Fe,C
o,Niなどの磁性元素からなる磁性層(好ましくは5
〜30オングストローム)と、Cr,Mn,Cu,A
u,Ag,Pt,Pd,Alなどの非磁性元素からなる
非磁性層(好ましくは5〜80オングストローム)とが
積層された磁気抵抗効果を奏する人工格子膜において、
膜厚を一定とせず積層変調することによって本発明を実
現できる。
When the magnetoresistance effect is considered, Fe, C
a magnetic layer made of a magnetic element such as
-30 Å), Cr, Mn, Cu, A
An artificial lattice film having a magnetoresistance effect, in which a nonmagnetic layer (preferably 5 to 80 angstroms) made of a nonmagnetic element such as u, Ag, Pt, Pd, or Al is laminated,
The present invention can be realized by performing the stack modulation without making the film thickness constant.

【0008】[0008]

【実施例】以下に本発明の実施例を説明する。 (実施例1)イオンビームスパッタリング法を用いてC
oとCuからなる積層変調多層膜を作成した。まずチャ
ンバー内を1×10-9torrまで排気した後、Arを5×
10-4torrまで導入した後、300V,30mAの加速
条件でスパッタリングを行った。ターゲットとしてCo
とCuを用意して、石英基板(SiO2 )上に成膜し
た。
Embodiments of the present invention will be described below. (Embodiment 1) C was formed by ion beam sputtering.
A laminated modulation multilayer film made of o and Cu was prepared. First, after evacuating the chamber to 1 × 10 -9 torr, Ar
After introducing up to 10 -4 torr, sputtering was performed under acceleration conditions of 300 V and 30 mA. Co as target
And Cu were prepared and formed on a quartz substrate (SiO 2 ).

【0009】石英基板上に10オングストロームのC
u,15オングストームのCoの組み合わせを2回繰り
返し、その上に15オングストロームのCu,15オン
グストームのCoの組み合わせを2回繰り返したものを
基本ユニットとして、これをn回繰り返した。これを S
iO2 /[(10Cu/15Co)2 /(15Cu/15Co)2 n と表示する。
この構成を図1に模式的に示す。
On a quartz substrate, 10 angstroms of C
The combination of u and 15 angstroms of Co was repeated twice, and the combination of 15 angstroms of Cu and 15 angstroms of Co was repeated twice as a basic unit. This was repeated n times. This is S
iO 2 / [(10Cu / 15Co ) 2 / (15Cu / 15Co) 2] indicated as n.
This configuration is schematically shown in FIG.

【0010】この膜面内で互いに直角になるように磁界
と電流を印加し、磁界の大きさを変化させて電気抵抗を
測定した。n=15の場合を図2(a)に示した。併せ
て図2(b)に変調しなかった場合,すなわち SiO2
[(10Cu/15Co)2 n (n=15)の電気抵抗を示した(比較例
1)。
A magnetic field and a current were applied at right angles to each other in the film plane, and the electric resistance was measured while changing the magnitude of the magnetic field. FIG. 2A shows the case where n = 15. If not modulated in FIG 2 (b) together, i.e. SiO 2 /
An electric resistance of [(10Cu / 15Co) 2 ] n (n = 15) was shown (Comparative Example 1).

【0011】同図から明らかなように、本発明の場合は
小さい磁界で急激に電気抵抗が増加した後、磁界ととも
に減少している。これに対し比較例の場合は、磁界とと
もに電気抵抗がなだらかに減少している。従って本発明
の方が小さい磁界で大きな磁気抵抗効果(MR効果)を
得ることができることが確認された。
As is apparent from FIG. 1, in the case of the present invention, the electric resistance rapidly increases with a small magnetic field and then decreases with the magnetic field. On the other hand, in the case of the comparative example, the electric resistance decreases gradually with the magnetic field. Therefore, it was confirmed that the present invention can obtain a large magnetoresistance effect (MR effect) with a small magnetic field.

【0012】(実施例2)実施例1と同様に SiO2
[(13Cr/20Fe)2 /(20Cr/20Fe)2 n (n=10)の場合
を図3(a)に示した。併せて図3(b)に変調しなか
った場合,すなわちSiO2 /[(13Cr/20Fe)2 n (n=
10)の電気抵抗を示した(比較例2)。同図から明ら
かなように、本発明の場合は小さい磁界で急激に電気抵
抗が増加した後、磁界とともに減少し、大きな磁界で飽
和している。これに対し比較例の場合は、磁界とともに
電気抵抗が単調に減少している。したがって本発明はM
R効果の挙動が従来とは異なり、小さい磁界で大きな磁
気抵抗効果(MR効果)を得ることができることが確認
された。
Example 2 As in Example 1, SiO 2 /
FIG. 3A shows the case of [(13Cr / 20Fe) 2 / (20Cr / 20Fe) 2 ] n (n = 10). In addition, FIG. 3B shows a case where no modulation is performed, that is, SiO 2 / [(13Cr / 20Fe) 2 ] n (n =
10) (Comparative Example 2). As is clear from the figure, in the case of the present invention, the electric resistance rapidly increases with a small magnetic field, then decreases with the magnetic field, and saturates with a large magnetic field. On the other hand, in the case of the comparative example, the electric resistance monotonously decreases with the magnetic field. Therefore, the present invention
It was confirmed that the behavior of the R effect was different from the conventional one, and a large magnetoresistance effect (MR effect) could be obtained with a small magnetic field.

【0013】(実施例3)実施例1と同様に SiO2
[(10Ni/10Fe)2 /50Cu/30Co/50Cu]n でn=15の場合を
図4に示した。同図から明らかなように、電気抵抗が磁
界とともに減少し、5Oe程度の小さい磁界で飽和し、約
10%程度の大きなMR効果を得ることができた。
(Example 3) As in Example 1, SiO 2 /
FIG. 4 shows the case where [(10Ni / 10Fe) 2 / 50Cu / 30Co / 50Cu] n and n = 15. As is clear from the figure, the electric resistance decreases with the magnetic field, saturates with a small magnetic field of about 5 Oe, and a large MR effect of about 10% can be obtained.

【0014】(実施例4)実施例1と同様に SiO2
[(30Pt/5Co/30Cu)/(30Pt/8Co/30Cu)] n でn=10の場
合を図5に示した。同図から明らかなように、電気抵抗
が磁界とともに減少し、100 Oe程度の小さい磁界で飽和
し、約15%程度の大きなMR効果を得ることができ
た。
(Example 4) As in Example 1, SiO 2 /
[(30Pt / 5Co / 30Cu) / (30Pt / 8Co / 30Cu)] n and n = 10 are shown in FIG. As is clear from the figure, the electric resistance decreased with the magnetic field, saturated with a small magnetic field of about 100 Oe, and a large MR effect of about 15% was obtained.

【0015】(実施例5)また積層変調の方法として異
なる特性,例えば保磁力,キュリー温度、を有する積層
膜ユニットを非磁性層を介して積層する手法が挙げられ
る。すなわち、磁性層と金属層とが交互に積層された状
態を (M/N)n Mは磁性体,Nは金属,nは積層数 で表したとき、(M/N)n が非磁性層Lを介して複数
層積層されていることを特徴とするものである。なお積
層ユニット中のM,Nは一種類に限らず、例えば3層以
上の積層でも構わないし、その積層ユニット自体が積層
変調膜であっても良い。
(Embodiment 5) As a method of laminating, there is a method of laminating laminated film units having different characteristics, for example, coercive force and Curie temperature, via a non-magnetic layer. That is, (M / N) n where M is a magnetic material, N is a metal, and n is the number of layers, where (M / N) n is a non-magnetic layer. A plurality of layers are stacked via L. Note that M and N in the stacked unit are not limited to one type, and may be, for example, three or more layers, or the stacked unit itself may be a stacked modulation film.

【0016】図6にその概略を示す。m番目の積層ユニ
ットが磁性層Mm と貴金属などの金属層Nm とのnm
の積層体(Nm /Mm )nm となっており、m番目の非
磁性層Lm を介して積層されている状態を示している。
FIG. 6 shows the outline. m th laminate unit has a n m layer laminate (Nm / Mm) n m of the metal layer Nm such as a magnetic layer Mm and a noble metal are stacked through the m-th non-magnetic layer Lm The state is shown.

【0017】非磁性層は、これを介して対向している積
層膜ユニットの磁気的相互作用を消す機能を有してお
り、非磁性体であれば良い。例えば、SiO2,Al2
3 ,各種ガラス,Pt,Pd,Au,Ag,Al,Cu,Mn,Cr,Si 等が挙
げられる。膜厚は磁気的結合が遮断される10オングスト
ローム以上程度である。また余り厚いと磁気的に一体と
なった積層膜としては取り扱えなくなるため、せいぜい
100オングストローム程度が限界である。好ましくは
30オングストローム乃至80オングストロームであ
る。
The non-magnetic layer has a function of eliminating the magnetic interaction between the laminated film units facing each other via the non-magnetic layer, and may be any non-magnetic material. For example, SiO 2 , Al 2
O 3 , various glasses, Pt, Pd, Au, Ag, Al, Cu, Mn, Cr, Si and the like. The film thickness is about 10 angstroms or more at which magnetic coupling is interrupted. If it is too thick, it cannot be handled as a magnetically integrated laminated film, so the limit is at most about 100 Å. Preferably it is 30 Å to 80 Å.

【0018】さてこの様な積層変調膜をCo,Pd,A
lで実現した例を説明する。まずチャンバー内を1×1
-9torrまで排気した後、Arを1×10-3torrまで導
入した後、500V-30mA の加速条件でスパッタリングを行
った。ターゲットとしてCoとPdとAlを用意して、
石英基板(SiO2 )上に成膜した。
Now, such a laminated modulation film is formed of Co, Pd, A
1 will be described. First, 1 × 1 inside the chamber
After evacuation to 0 -9 torr, Ar was introduced to 1 × 10 -3 torr, and then sputtering was performed under acceleration conditions of 500 V-30 mA. Prepare Co, Pd and Al as targets,
A film was formed on a quartz substrate (SiO 2 ).

【0019】石英基板上に非磁性層として100 オングス
トロームのAlを介して磁性層として5オングストロー
ムのCoと金属層として15オングストロームのPdとを
2回繰り返した第1の積層ユニットを成膜した後、再び
非磁性層として100 オングストロームのAlを介して第
1の積層膜を積層するという繰り返しを10回繰り返
し、約1000オングストローム厚の[(5Co/15Pd)2 /100A
l]10の積層変調膜を作成した(試料番号5-1)。この積
層膜の磁化曲線を図7(a)に、磁気抵抗変化率を図7
(b)に示した。
After forming a first laminated unit in which 5 Å of Co as a magnetic layer and 15 Å of Pd as a metal layer are repeated twice on a quartz substrate via 100 Å of Al as a nonmagnetic layer, The first laminated film is again laminated 10 times through 100 Å of Al as a non-magnetic layer, and the repetition is repeated 10 times, so that [(5Co / 15Pd) 2 / 100A having a thickness of about 1000 Å is obtained.
l] Ten laminated modulation films were prepared (Sample No. 5-1). FIG. 7A shows the magnetization curve of this laminated film, and FIG.
(B).

【0020】同様にして[(5Co/15Pd)2 /50Al/(5Co/10P
d)3 /50Al]5 の積層変調膜を作成した(試料番号5-2)。
この積層膜の磁化曲線を図8(a)に磁気抵抗変化率を
図8(b)に示した。
Similarly, [(5Co / 15Pd) 2 / 50Al / (5Co / 10P
d) A laminated modulation film of 3 / 50Al] 5 was prepared (Sample No. 5-2).
FIG. 8A shows the magnetization curve of this laminated film, and FIG. 8B shows the magnetoresistance change rate.

【0021】図7(a)と図8(a)を比較して明らか
なように、試料番号5-2 の場合は2段ヒステリシスルー
プが実現されている。またそれに伴い、磁気抵抗効果も
変化していることが分かる。すなわち図8(b)から分
かるように、比較的小さい磁界で磁気抵抗変化率が大き
く変化している。これは非磁性層を介して積層される(5
Co/15Pd)2 と(5Co/10Pd)3 とが異なる保磁力を有するた
め2段ヒステリシスが実現され、外部磁界に対する磁気
構造が異なるため、スピンに依存した散乱に伴い、比較
的小さい磁界で磁気抵抗変化率が大きく変化するものと
思われる。
As is apparent from a comparison between FIG. 7A and FIG. 8A, in the case of sample number 5-2, a two-stage hysteresis loop is realized. In addition, it can be seen that the magnetoresistive effect changes accordingly. That is, as can be seen from FIG. 8B, the rate of change in magnetoresistance changes significantly with a relatively small magnetic field. This is laminated via a non-magnetic layer (5
(Co / 15Pd) 2 and (5Co / 10Pd) 3 have different coercive forces to achieve two-stage hysteresis, and have a different magnetic structure for external magnetic fields. It is thought that the resistance change rate changes greatly.

【0022】(実施例6)実施例5と同様にして[(5Co
/20Pt)3/70Cu]10、約1000オングストローム厚の積層変
調膜を作成した(試料番号6-1)。この積層膜の磁化曲線
を図9(a)に、磁気抵抗変化率を図9(b)に示し
た。
(Example 6) [(5Co
/ 20Pt) 3 / 70Cu] 10 , and a multilayer modulation film having a thickness of about 1000 angstroms was prepared (sample number 6-1). FIG. 9A shows the magnetization curve of this laminated film, and FIG. 9B shows the magnetoresistance ratio.

【0023】同様にして[(5Co/20Pt)2 /50Cu/(5Co/15P
t)2 /30Cu/(5Co/10Pt)5 4の積層変調膜を作成した
(試料番号6-2)。この積層膜の磁化曲線を図10(a)
に、磁気抵抗変化率を図10(b)に示した。
Similarly, [(5Co / 20Pt) 2 / 50Cu / (5Co / 15P
t) 2 / 30Cu / (5Co / 10Pt) 5 ] 4 laminated modulation film was prepared (sample number 6-2). The magnetization curve of this laminated film is shown in FIG.
FIG. 10B shows the magnetoresistance ratio.

【0024】図9(a)と図10(a)を比較して明ら
かなように、試料番号6-2 の場合は3段ヒステリシスル
ープが実現されている。またそれに伴い、磁気抵抗効果
も変化していることが分かる。すなわち図10(b)か
ら分かるように、比較的小さい磁界で磁気抵抗変化率が
大きく変化している。これは非磁性層を介して積層され
る(5Co/20Pt)2 と(5Co/15Pt)2 と(5Co/10Pt)5 とが異な
る保磁力を有するため3段ヒステリシスが実現され、外
部磁界に対する磁気構造が異なるため、スピンに依存し
た散乱に伴い、比較的小さい磁界で磁気抵抗変化率が大
きく変化するものと思われる。
As is apparent from a comparison between FIG. 9A and FIG. 10A, in the case of sample No. 6-2, a three-stage hysteresis loop is realized. In addition, it can be seen that the magnetoresistive effect changes accordingly. That is, as can be seen from FIG. 10B, the rate of change in magnetoresistance changes significantly with a relatively small magnetic field. This is because (5Co / 20Pt) 2 , (5Co / 15Pt) 2, and (5Co / 10Pt) 5, which are laminated via a non-magnetic layer, have different coercive forces, so that three-stage hysteresis is realized, Since the structures are different, it is considered that the magnetoresistance change rate largely changes with a relatively small magnetic field due to spin-dependent scattering.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、積
層変調により各種特性を具備する積層膜を有する磁気抵
抗効果素子を得ることができる。例えばMR効果を見れ
ば従来に比較し、小さい磁界で大きな磁気抵抗変化率を
実現することができるため、磁気センサ、MR磁気ヘッ
ドなどへの応用の際に非常に有効である。
As described above, according to the present invention, a magnetic resistor having a laminated film having various characteristics by lamination modulation is provided.
An anti-effect element can be obtained. For example, if the MR effect is observed, a large rate of change in magnetoresistance can be realized with a small magnetic field as compared with the related art, so that it is very effective when applied to a magnetic sensor, an MR magnetic head, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 積層膜の構造を示す概略図FIG. 1 is a schematic diagram showing the structure of a laminated film

【図2】 積層膜の特性を示す特性図FIG. 2 is a characteristic diagram showing characteristics of a laminated film.

【図3】 積層膜の特性を示す特性図FIG. 3 is a characteristic diagram showing characteristics of a laminated film.

【図4】 積層膜の特性を示す特性図FIG. 4 is a characteristic diagram showing characteristics of a laminated film.

【図5】 積層膜の特性を示す特性図FIG. 5 is a characteristic diagram showing characteristics of a laminated film.

【図6】 積層膜の構造を示す概略図FIG. 6 is a schematic view showing the structure of a laminated film.

【図7】 積層膜の特性を示す特性図FIG. 7 is a characteristic diagram showing characteristics of a laminated film.

【図8】 積層膜の特性を示す特性図FIG. 8 is a characteristic diagram showing characteristics of a laminated film.

【図9】 積層膜の特性を示す特性図FIG. 9 is a characteristic diagram showing characteristics of a laminated film.

【図10】 積層膜の特性を示す特性図FIG. 10 is a characteristic diagram showing characteristics of a laminated film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 進 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝 総合研究所内 (72)発明者 柚須 圭一郎 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝 総合研究所内 (56)参考文献 特開 平4−48708(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 10/00 H01L 43/10 G11B 11/10 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Susumu Hashimoto, Inventor No. 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Pref. Address Toshiba Research Institute, Inc. (56) References JP-A-4-48708 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 10/00 H01L 43/10 G11B 11 / Ten

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Cr、Mn、Cu、Au、Ag、Pt、
Pd、Alよりなる第1の群から選ばれる同一の元素を
含み、互いに膜厚が異なる第1及び第2の非磁性層と、
Fe、Co、Niよりなる第2の群から選ばれる元素を
含む磁性層とを備え、 前記第1の非磁性層と前記磁性層との積層体を備える第
1の積層体と、前記第2の非磁性層と前記磁性層との積
層体を備える第2の積層体とを積層したことを特徴とす
磁気抵抗効果素子。
1. Cr, Mn, Cu, Au, Ag, Pt,
The same element selected from the first group consisting of Pd and Al
First and second non-magnetic layers having different thicknesses from each other,
An element selected from the second group consisting of Fe, Co, and Ni
A magnetic layer including the first non-magnetic layer and the magnetic layer.
1 and the product of the second non-magnetic layer and the magnetic layer
And a second laminated body having a layered body.
The magneto-resistance effect element that.
【請求項2】 Cr、Mn、Cu、Au、Ag、Pt、
Pd、Alよりなる第1の群から選ばれる同一の元素を
含み、互いに膜厚が異なる第1及び第2の非磁性層と、
Fe、Co、Niよりなる第2の群から選ばれる同一の
元素を含み、互いに膜厚が異なる第1及び第2の磁性層
とを備え、 前記第1の非磁性層と前記第1の磁性層との積層体を備
える第1の積層体と、前記第2の非磁性層と前記第2の
磁性層との積層体を備える第2の積層体とを積層したこ
とを特徴とする 磁気抵抗効果素子。
2. Cr, Mn, Cu, Au, Ag, Pt,
The same element selected from the first group consisting of Pd and Al
First and second non-magnetic layers having different thicknesses from each other,
The same selected from the second group consisting of Fe, Co, Ni
First and second magnetic layers containing elements and having different thicknesses from each other
And a laminate of the first nonmagnetic layer and the first magnetic layer.
A first laminate, the second nonmagnetic layer, and the second
The second laminate having the laminate with the magnetic layer is laminated.
And a magnetoresistance effect element.
【請求項3】 Cr、Mn、Cu、Au、Ag、Pt、
Pd、Alよりなる第1の群から選ばれる同一の元素を
含み、互いに膜厚が異なる第1、第2及び第3の非磁性
層と、Fe、Co、Niよりなる第2の群から選ばれる
元素を含む磁性層とを備え、 前記第1の非磁性層と前記磁性層との積層体を備える第
1の積層体と、前記第2の非磁性層と前記磁性層との積
層体を備える第2の積層体と、前記第3の非磁性層と前
記磁性層との積層体を備える第3の積層体とを積層した
ことを特徴とする 磁気抵抗効果素子。
3. Cr, Mn, Cu, Au, Ag, Pt,
The same element selected from the first group consisting of Pd and Al
First, second and third non-magnetic layers having different thicknesses from each other
Layer and a second group consisting of Fe, Co, Ni
A magnetic layer containing an element, and a first layer including a stacked body of the first nonmagnetic layer and the magnetic layer.
1 and the product of the second non-magnetic layer and the magnetic layer
A second laminated body including a layered body, the third nonmagnetic layer,
A third laminate having a laminate with the magnetic layer was laminated.
A magnetoresistive effect element characterized in that:
【請求項4】 Cr、Mn、Cu、Au、Ag、Pt、
Pd、Alよりなる第1の群から選ばれる同一の元素を
含み、互いに膜厚が異なる第1、第2及び第3の非磁性
層と、Fe、Co、Niよりなる第2の群から選ばれる
同一の元素を含み、互いに膜厚が異なる第1、第2及び
第3の磁性層とを備え、 前記第1の非磁性層と前記第1の磁性層との積層体を備
える第1の積層体と、前記第2の非磁性層と前記第2の
磁性層との積層体を備える第2の積層体と、前 記第3の
非磁性層と前記第3の磁性層との積層体を備える第3の
積層体とを積層したことを特徴とする 磁気抵抗効果素
子。
4. Cr, Mn, Cu, Au, Ag, Pt,
The same element selected from the first group consisting of Pd and Al
First, second and third non-magnetic layers having different thicknesses from each other
Layer and a second group consisting of Fe, Co, Ni
First, second, and third layers containing the same element and having different film thicknesses from each other.
A third magnetic layer, and a laminate of the first nonmagnetic layer and the first magnetic layer.
A first laminate, the second nonmagnetic layer, and the second
A second laminate comprising a laminate of a magnetic layer, before Symbol third
A third layer including a laminate of the nonmagnetic layer and the third magnetic layer;
A magnetoresistive element , comprising a laminate and a laminate .
【請求項5】 前記第1の積層体、前記第2の積層体、
または前記第3の積層体に隣接し、 Cr、Mn、C
u、Au、Ag、Pt、Pd、Al、Si、SiO 2
Al 2 3 よりなる第3の群から選ばれる物質を含む第4
の非磁性層を設けることを特徴とする請求項1、2、3
または4記載の 磁気抵抗効果素子。
5. The first laminate, the second laminate,
Or adjacent to the third laminate, Cr, Mn, C
u, Au, Ag, Pt, Pd, Al, Si, SiO 2 ,
A fourth material containing a substance selected from the third group consisting of Al 2 O 3
4. A non-magnetic layer according to claim 1, wherein:
Or the magnetoresistance effect element according to 4 .
【請求項6】 Cr、Mn、Cu、Au、Ag、Pt、
Pd、Alよりなる第1の群から選ばれる元素を含む
磁性層を挟む、Fe、Co、Niよりなる第2の群から
選ばれる元素を含む磁性層が形成され、少なくとも一方
の前記磁性層が、前記第2の群のうちの異なる元素を含
複数の層を備える事を特徴とする磁気抵抗効果素子。
6. Cr, Mn, Cu, Au, Ag, Pt,
From a second group made of Fe, Co, and Ni sandwiching a nonmagnetic layer containing an element selected from the first group made of Pd and Al
A magnetic layer containing the selected element is formed, and at least one of the magnetic layers contains a different element from the second group.
Magnetoresistive element characterized by comprising a non-multiple layers.
JP06578391A 1991-03-29 1991-03-29 Magnetoresistance effect element Expired - Fee Related JP3171453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06578391A JP3171453B2 (en) 1991-03-29 1991-03-29 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06578391A JP3171453B2 (en) 1991-03-29 1991-03-29 Magnetoresistance effect element

Publications (2)

Publication Number Publication Date
JPH04302103A JPH04302103A (en) 1992-10-26
JP3171453B2 true JP3171453B2 (en) 2001-05-28

Family

ID=13296981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06578391A Expired - Fee Related JP3171453B2 (en) 1991-03-29 1991-03-29 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JP3171453B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2871990B2 (en) * 1993-02-16 1999-03-17 日本電気株式会社 Magnetoresistive element thin film

Also Published As

Publication number Publication date
JPH04302103A (en) 1992-10-26

Similar Documents

Publication Publication Date Title
JPH11134620A (en) Ferromagnetic tunnel junction element sensor and its manufacture
JPH104012A (en) Magnetoresistance effect element, manufacture thereof and magnetic head manufactured thereby
US5578385A (en) Magnetoresistance effect element
JPH08279117A (en) Gigantic magnetoresistance effect material film and its production and magnetic head using the same
US5277991A (en) Magnetoresistive materials
JPH06243673A (en) Memory element
JPH10223942A (en) Manufacturing method of magneto-resistance effect element
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JP3171453B2 (en) Magnetoresistance effect element
JP3684005B2 (en) Magnetoresistive element, magnetoresistive head, and magnetoresistive magnetic field sensor
JP2610376B2 (en) Magnetoresistance effect element
JP3242279B2 (en) Giant magnetoresistive material film and method of adjusting magnetization of magnetoresistive material film
JP3677107B2 (en) Magnetoresistive effect element
JP3532607B2 (en) Magnetoresistance effect element
JP2957233B2 (en) Magnetic multilayer film
JP2000251230A (en) Ferromagnetic tunnel junction device and fabrication method thereof, and magnetic sensor employing this device
JPH06310329A (en) Multilayer magnetoresistance effect film and magnetic head
JP2907805B1 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device
JPH08316033A (en) Magnetic laminate
JPH08241506A (en) Multilayered magnetoresistance effect film and magnetic head
JPH104013A (en) Magnetoresistance effect element and manufacture thereof
JP3322916B2 (en) Magnetoresistive element and magnetoresistive head and sensor
JPH1032119A (en) Magnetoresistance effect film
JPH08111315A (en) Magnetoresistive effect multilayer film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees