JP3170966B2 - Insulated gate control semiconductor device and manufacturing method thereof - Google Patents

Insulated gate control semiconductor device and manufacturing method thereof

Info

Publication number
JP3170966B2
JP3170966B2 JP20979393A JP20979393A JP3170966B2 JP 3170966 B2 JP3170966 B2 JP 3170966B2 JP 20979393 A JP20979393 A JP 20979393A JP 20979393 A JP20979393 A JP 20979393A JP 3170966 B2 JP3170966 B2 JP 3170966B2
Authority
JP
Japan
Prior art keywords
well
groove
insulated gate
semiconductor device
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20979393A
Other languages
Japanese (ja)
Other versions
JPH0766395A (en
Inventor
浩 島袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP20979393A priority Critical patent/JP3170966B2/en
Publication of JPH0766395A publication Critical patent/JPH0766395A/en
Application granted granted Critical
Publication of JP3170966B2 publication Critical patent/JP3170966B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は埋め込みゲート構造の電
界効果トランジスタや絶縁ゲートバイポーラトランジス
タ等の絶縁ゲート制御半導体装置とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate control semiconductor device such as a field effect transistor or an insulated gate bipolar transistor having a buried gate structure and a method of manufacturing the same.

【0002】[0002]

【従来の技術】上述の絶縁ゲート制御半導体装置は高入
力インピーダンスの絶縁ゲートによりそのオンオフを制
御でき、かつ電界効果トランジスタは高周波用に,絶縁
ゲートバイポーラトランジスタは大電流用にそれぞれと
くに適する利点があり、個別の半導体素子として広く利
用されるほか、最近では関連する回路とともに集積回路
装置のチップに組み込んだ形で使用される場合が増加し
て来た。
2. Description of the Related Art The above-described insulated gate control semiconductor device has an advantage that its on / off can be controlled by an insulated gate having a high input impedance, and that a field effect transistor is particularly suitable for a high frequency and an insulated gate bipolar transistor is particularly suitable for a large current. In addition to being widely used as individual semiconductor elements, recently, the number of cases in which the semiconductor device is used together with related circuits in a form of integrated circuit device chip has been increasing.

【0003】この絶縁ゲート制御半導体装置では、集積
回路装置に組み込む場合はもちろん個別素子の場合でも
高周波特性を高め電流容量を増加させるには半導体集積
回路技術を利用して微細ユニットセルパターンを平面的
に繰り返す構造とするのが有利であるが、最近ではかか
る微細パターン化による性能向上も限界に近づきつつあ
るので、半導体内にトレンチ状に掘り込んだ溝の中にゲ
ートを収納して微細化を図る埋め込み形絶縁ゲート構造
が採用されるようになって来た。以下、図6を参照して
この埋め込みゲート構造の従来の絶縁ゲート制御半導体
装置の構造を説明する。
In this insulated gate control semiconductor device, in order to improve the high frequency characteristics and increase the current capacity not only in the case of being incorporated in an integrated circuit device but also in the case of an individual element, a fine unit cell pattern is planarized by utilizing semiconductor integrated circuit technology. However, recently the performance improvement due to such fine patterning is approaching its limit, so the gate is housed in a trench dug in a semiconductor and the miniaturization is performed. A buried insulated gate structure has been adopted. Hereinafter, the structure of the conventional insulated gate control semiconductor device having the buried gate structure will be described with reference to FIG.

【0004】図6に示す絶縁ゲート制御半導体装置は縦
形の電界効果トランジスタであり、図には2個の埋め込
み形絶縁ゲートを含むその端部の拡大断面が示されてい
る。半導体装置用のウエハないしチップである半導体基
体10はn形の半導体基板11の上に微細構造を作り込むべ
き半導体領域12として比較的高い比抵抗のn形のエピタ
キシャル層を数十μmの厚みに成長させたものであり、
図の右側のその表面を覆うフィールド酸化膜13で取り囲
まれた範囲内の半導体領域12の表面からp形のウエル20
をまず拡散し、このウエル20の表面の要所からトレンチ
状の溝30を図のように下側の半導体領域12に食い込むよ
う掘り込み、その中にゲート酸化膜41と多結晶シリコン
のゲート42とからなる絶縁ゲート40を埋め込み、溝30の
相互間にウエル20用のp形のコンタクト層23を高不純物
濃度で拡散し、かつn形のソース層50をこのコンタクト
層23と一部が重なり合いかつ溝30に接するように高不純
物濃度でごく浅く拡散する。
[0006] The insulated gate control semiconductor device shown in FIG. 6 is a vertical field effect transistor, and FIG. 6 shows an enlarged cross section of an end portion including two buried insulated gates. A semiconductor substrate 10, which is a wafer or chip for a semiconductor device, has an n-type epitaxial layer having a relatively high resistivity of several tens μm as a semiconductor region 12 on which a fine structure is to be formed on an n-type semiconductor substrate 11. That has grown,
The p-type well 20 extends from the surface of the semiconductor region 12 within a range surrounded by the field oxide film 13 covering the surface on the right side of the figure.
First, a trench 30 is dug into a lower semiconductor region 12 as shown in the figure from a point on the surface of the well 20, and a gate oxide film 41 and a gate 42 of polycrystalline silicon are formed therein. , The p-type contact layer 23 for the well 20 is diffused between the trenches 30 with a high impurity concentration, and the n-type source layer 50 partially overlaps the contact layer 23. At the same time, it diffuses very shallowly with a high impurity concentration so as to be in contact with the groove 30.

【0005】さらに、半導体基体10の表面側に金属の電
極膜61を配設してp形のウエル20のコンタクト層23とn
形のソース層50を表面で短絡するソース端子Sとし、裏
面側にはn形の半導体基板11に接する電極膜62を配設し
てドレイン端子Dとし、かつ絶縁ゲート40の図示の断面
以外の個所から制御端子Gを導出する。かかる構造の電
界効果トランジスタでは、その制御端子Gにソース端子
Sより正の制御電圧を受けると、溝30の側面のゲート酸
化膜41に接するp形のウエル20のn形のソース層50とn
形の半導体領域12で挟まれた部分にn形のチャネルが形
成されてソース端子Sとドレイン端子Dの間がオンす
る。このように、絶縁ゲート40を溝30内に埋め込んでチ
ャネルを縦方向に形成させることにより絶縁ゲート40の
相互間隔を短縮して構造を微細化することができ、かつ
溝30の側面の全周に亘りチャネルが形成されるので電流
容量も増加させることができる。
Further, a metal electrode film 61 is provided on the surface side of the semiconductor substrate 10 so that the contact layer 23 of the p-type well 20 and n
The source layer 50 is formed as a source terminal S for short-circuiting on the front surface, an electrode film 62 is provided on the back surface in contact with the n-type semiconductor substrate 11 to form a drain terminal D, and the insulating gate 40 has a section other than the illustrated cross section. The control terminal G is derived from the location. In the field effect transistor having such a structure, when the control terminal G receives a positive control voltage from the source terminal S, the n-type source layers 50 and n of the p-type well 20 contacting the gate oxide film 41 on the side surface of the groove 30
An n-type channel is formed in a portion sandwiched between the semiconductor regions 12 and the source terminal S and the drain terminal D are turned on. As described above, by embedding the insulating gate 40 in the groove 30 and forming the channel in the vertical direction, the interval between the insulating gates 40 can be shortened, and the structure can be miniaturized. , The current capacity can be increased.

【0006】なお、オフ時に空乏層が主に溝30の下側の
半導体領域12内に広がるので、この電界効果トランジス
タの耐圧は半導体領域12にもたせる厚みにより設定する
が、ウエル20の周縁付近の半導体領域12のフィールド酸
化膜13の下側の表面に沿って絶縁破壊が生じやすいた
め、電極膜61の配設と同時に金属のいわゆるフィールド
プレート63をフィールド酸化膜13の上にウエル20の周縁
付近を覆うように設け、これにウエル20と同じ電位を掛
けて絶縁破壊を防止する。また、図6は電界効果トラン
ジスタの構造であるが、半導体基板11をp形としかつn
形のバッファ層を半導体領域12との間に挿入すれば、半
導体領域12より上側部分が図と同じ構造のままで絶縁ゲ
ートバイポーラトランジスタとすることができる。
Since the depletion layer mainly spreads in the semiconductor region 12 below the trench 30 when the device is off, the breakdown voltage of this field effect transistor is set by the thickness of the semiconductor region 12. Since dielectric breakdown easily occurs along the lower surface of the field oxide film 13 in the semiconductor region 12, a metal so-called field plate 63 is placed on the field oxide film 13 and near the periphery of the well 20 at the same time that the electrode film 61 is provided. And the same potential as that of the well 20 is applied thereto to prevent dielectric breakdown. FIG. 6 shows the structure of the field-effect transistor.
By inserting a buffer layer of the shape between the semiconductor region 12 and the semiconductor region 12, an insulated gate bipolar transistor can be obtained with the upper part of the semiconductor region 12 having the same structure as that shown in the figure.

【0007】[0007]

【発明が解決しようとする課題】上述のように絶縁ゲー
トを埋め込み形とすることにより絶縁ゲート制御半導体
装置の構造を微細パターン化してその高周波特性を高め
あるいはその電流容量を増加させることができるが、オ
フ状態で絶縁ゲート用の溝の下側の半導体領域にアバラ
ンシェ破壊が発生しやすくなるため耐圧の点でむしろ不
利になる逆効果があり、オン状態でも溝の側面に形成さ
れるチャネルから半導体領域内に流入する電流の流路の
広がりがあまり良好でないために順方向電圧ないしオン
電圧が上昇しやすくなる問題がある。以下、これらの問
題点の原因を図7(a) と図7(b) をそれぞれ参照して説
明する。
By embedding the insulated gate as described above, the structure of the insulated gate control semiconductor device can be finely patterned to enhance its high-frequency characteristics or increase its current capacity. In the off state, the avalanche breakdown is likely to occur in the semiconductor region below the insulated gate groove, which has the adverse effect of being rather disadvantageous in terms of withstand voltage. There is a problem that the forward voltage or the on-voltage tends to increase because the flow path of the current flowing into the region is not so good. Hereinafter, the causes of these problems will be described with reference to FIGS. 7A and 7B, respectively.

【0008】図7(a) はオフ状態の絶縁ゲート制御半導
体装置の要部の拡大断面図であり、図にはp形のウエル
20とn形の半導体領域12の間のpn接合から空乏層が後者
内に広がる様子が等電位面EPで示されている。この等電
位面EPの間隔を溝30直下の線の、パルク中の線b、Si表
面に沿った線c、接合の曲率部近くの線dで比較すると
図からわかるように、絶縁ゲート40が埋め込まれた溝30
の下側の縦の線aの方向で等電位面EPの間隔が最も狭く
なっており、半導体領域12の溝30の直下の個所で電界強
度が非常に強くてアバランシェ破壊が発生しやすい。半
導体領域12のフィールド酸化膜13に接する表面部の横の
線c方向の等電位面EPの間隔は前述のフィールドプレー
ト63により広げられ、電界強度が緩和されている。この
ように、アバランシェ破壊が最も発生しやすい弱点部は
半導体領域12の溝30の直下部であり、この弱点による耐
圧低下は溝30がウエル20の底面から突出する深さを減ら
せば若干は緩和されるはずであるが、実際には溝30が底
面からわずかでも突出すると急激に素子耐圧に約150Vの
低下が見られ、その後溝30の深さを増すにつれて低下量
はさらに大きくなっていくことが確認された。
FIG. 7A is an enlarged sectional view of a main part of an insulated gate control semiconductor device in an off state.
The manner in which the depletion layer extends from the pn junction between the semiconductor region 20 and the n-type semiconductor region 12 into the latter is shown by the equipotential surface EP. When the interval between the equipotential surfaces EP is compared with the line just below the groove 30, the line b in the bulge, the line c along the Si surface, and the line d near the curvature of the junction, as can be seen from the figure, the insulating gate 40 Embedded groove 30
In the direction of the lower vertical line a, the interval between the equipotential surfaces EP is the narrowest, and the electric field intensity is very strong at a portion immediately below the groove 30 in the semiconductor region 12, and avalanche breakdown is likely to occur. The distance between the equipotential surfaces EP in the direction of the line c beside the surface of the semiconductor region 12 in contact with the field oxide film 13 is widened by the above-mentioned field plate 63, and the electric field intensity is reduced. As described above, the weak point where avalanche breakdown is most likely to occur is directly below the groove 30 in the semiconductor region 12, and the reduction in breakdown voltage due to this weak point is slightly alleviated by reducing the depth of the groove 30 projecting from the bottom surface of the well 20. However, in practice, when the groove 30 slightly protrudes from the bottom surface, the device withstand voltage suddenly drops by about 150 V, and then the depth decreases further as the depth of the groove 30 increases. Was confirmed.

【0009】図7(b) はオン状態における上と同じ要部
の拡大断面図であり、図には溝30の側面に形成されたチ
ャネルChから半導体領域12内に流入する電子電流の流路
CPが示されている。電流が縦方向のチャネルChから半導
体領域12に流入する場合は、いわゆる J-FET効果により
電荷がほとんど存在しない空乏領域DZが図示のように電
流の流入点からウエル20と半導体領域12の間のpn接合面
に沿って広がることが知られており、これにより電流流
路CPの半導体領域12内の図ではθで示す広がり角度が制
限されるのでこの狭い角度θ内の電流密度が高くなり、
この流路CP内の電圧降下であるオン電圧が増加するもの
と考えられる。実験の結果によればオン電圧の増加を溝
30の相互間隔を短縮することにより改善できる余地はあ
るがこの手段にも限度があり、また溝30がウエル20の底
面から突出する深さを減らしても大きな改善効果は望め
ないことがわかった。
FIG. 7B is an enlarged cross-sectional view of the same main portion as above in an ON state. FIG. 7B shows a flow path of an electron current flowing into the semiconductor region 12 from a channel Ch formed on the side surface of the groove 30.
CP is shown. When a current flows into the semiconductor region 12 from the channel Ch in the vertical direction, a depletion region DZ where there is almost no charge due to the so-called J-FET effect is formed between the well 20 and the semiconductor region 12 from the current inflow point as shown in the figure. It is known that it spreads along the pn junction surface, which limits the spread angle indicated by θ in the figure in the semiconductor region 12 of the current flow path CP, so that the current density within this narrow angle θ increases,
It is considered that the ON voltage, which is a voltage drop in the flow path CP, increases. According to the results of the experiment, the increase in ON voltage
There is room for improvement by shortening the mutual spacing of the 30's, but there is a limit to this means, and it has been found that significant improvement cannot be expected even if the depth of the groove 30 projecting from the bottom of the well 20 is reduced. .

【0010】以上のような耐圧の低下やオン電圧の増加
はいずれも埋め込み形絶縁ゲートの採用により高周波特
性の向上や電流容量の増加を図る際に起きるいわば逆効
果であり、従来から絶縁ゲート制御半導体装置の性能を
一層高める上で最大の隘路になっていたのが実情であ
る。かかる現状に鑑み、本発明は埋め込み形の絶縁ゲー
トを採用した場合にも絶縁ゲート制御半導体装置の耐圧
が低下する程度ないしはオン電圧が増加する程度を各々
できるだけ減少させることを目的とするものである。
[0010] The above-mentioned reduction in withstand voltage and increase in on-voltage are both counter-effects that occur when the buried insulated gate is used to improve high-frequency characteristics and increase current capacity. In fact, this has been the biggest bottleneck in further improving the performance of semiconductor devices. In view of this situation, an object of the present invention is to reduce as much as possible the degree to which the withstand voltage of the insulated gate control semiconductor device is reduced or the degree to which the on-voltage is increased even when a buried insulated gate is employed. .

【0011】[0011]

【課題を解決するための手段】本発明の絶縁ゲート制御
半導体装置によればオン電圧の増加を防止する目的は、
半導体基体の表面側に形成された一導電形の半導体領域
と、該半導体領域の所定範囲に形成された他導電形のウ
エルと、前記ウエルの表面から前記半導体領域に達する
まで掘り込まれた溝と、該溝内に埋め込まれた絶縁ゲー
トと、前記ウエルの表面から前記溝に接して拡散された
一導電形のソース層と、前記ウエルの表面および前記ソ
ース層から導出された第1主端子と、前記半導体基体の
裏面側から導出した第2主端子と、前記絶縁ゲートから
導出された制御端子とを備えた絶縁ゲート制御半導体装
置において、前記ウエルの前記溝の近傍に、前記溝が形
成される部分のウエルの深さより浅く拡散された浅拡散
部分を設けることにより達成される。なお、ウエルの浅
い拡散部分は溝を掘り込む部分の拡散深さよりも 0.5μ
m以上浅く, 望ましくは1μm以上浅くするのがよい。
また、この場合も溝がウエルの底面から下方に突出する
深さは少なめにするのがオン電圧の増加を抑える上で有
利である。
According to the insulated gate control semiconductor device of the present invention, the purpose of preventing an increase in on-voltage is to:
A semiconductor region of one conductivity type formed on the surface side of the semiconductor substrate, a well of another conductivity type formed in a predetermined range of the semiconductor region, and a trench dug from the surface of the well to reach the semiconductor region; An insulating gate embedded in the trench, a source layer of one conductivity type diffused from the surface of the well in contact with the trench, and a first main terminal derived from the surface of the well and the source layer An insulated gate control semiconductor device comprising: a second main terminal derived from the back side of the semiconductor substrate; and a control terminal derived from the insulated gate , wherein the groove is formed near the groove of the well.
Shallow diffusion diffused shallower than well depth
This is achieved by providing a part . The well shallow
0.5μ deeper than the diffusion depth of the trench
m or more, preferably 1 μm or more.
Also in this case, the groove projects downward from the bottom of the well.
Making the depth smaller is advantageous in suppressing an increase in the on-state voltage .

【0012】また、前述の耐圧低下を防止する目的は、
本発明の絶縁ゲート制御半導体装置によれば、ウエルの
周縁部に、前記溝より深く拡散された深拡散部分を設け
ことによって達成される。なお、ウエルの深い拡散部
分は他の部分の拡散深さよりも少なくとも50%以上深く
拡散させるのがよい。また、溝がウエルの底面から下方
に突出する深さは極力少ないめの例えば3μm以下, よ
り望ましくは 0.5〜2μmにするのが耐圧を高める上で
有利である。
The purpose of preventing the decrease in the withstand voltage described above is as follows.
According to the insulated gate control semiconductor device of the present invention, the well
In the peripheral portion, a deep diffusion portion is provided, which is deeper than the groove.
It is achieved by that. In addition, the deep diffusion part of the well
Minutes at least 50% deeper than other parts
It is good to diffuse. Also, the groove is below the bottom of the well.
The projecting depth is as small as possible, for example, 3 μm or less.
More desirably, the thickness is 0.5 to 2 μm, which is advantageous in increasing the withstand voltage .

【0013】上記のウエルの周縁部を深い拡散部分とす
る構成と, ウエルの一部を浅い拡散部分とする構成と
は、互いに組み合わせて実施することにより耐圧の低下
とオン電圧の増加を防止する目的を同時に達成でき、い
ずれの構成もとくに縦形構造の絶縁ゲート制御半導体装
置に適する。また、ウエルから一方の主端子を導出する
ため従来と同様にこの導出部のウエルの表面部分に同じ
導電形の高不純物濃度で拡散されたコンタクト層を作り
込むのがよい。
The above-described configuration in which the peripheral portion of the well has a deep diffusion portion and the configuration in which a portion of the well has a shallow diffusion portion are implemented in combination with each other to prevent a reduction in breakdown voltage and an increase in on-voltage. The object can be achieved at the same time, and it is suitable for any structure, particularly, an insulated gate control semiconductor device having a vertical structure. In order to lead one main terminal from the well, it is preferable to form a contact layer of the same conductivity type diffused with a high impurity concentration on the surface portion of the well of the lead portion as in the conventional case.

【0014】上述の深い拡散部分および浅い拡散部分を
備えるウエルを用いる本発明による絶縁ゲート制御半導
体装置の製造方法では、半導体基体の表面側の一導電形
の半導体領域の表面の所定範囲の周縁部に、他導電形の
ウエルを絶縁ゲートが埋め込まれる溝より深く拡散し、
前記所定範囲の表面の前記溝の近傍に、該溝が形成され
る部分のウエルの深さより浅く拡散されるウエル領域の
ために他導電形の不純物を、前記深く拡散するウエル領
域を形成するときより低いドーズ量でイオン注入し、前
溝が形成される領域の表面に他導電形の不純物をイオ
ン注入し、これらイオン注入した不純物を熱拡散させて
周縁部の深い拡散部分の内側に前記溝より浅く拡散され
る領域を含んだウエルを形成し、前記ウエルの表面から
下側の半導体領域に達するまで前記溝を掘り込み、この
溝内に絶縁ゲートを埋め込み、ウエルの表面の溝に接す
る部分に一導電形のソース層を浅く拡散する。なお、ウ
エルの表面部に前述のコンタクト層を設ける場合は、そ
の他方の導電形の不純物をソース層の一方の導電形の不
純物と同時に熱拡散させるのが工程上有利である。
In the method of manufacturing an insulated gate control semiconductor device according to the present invention using the well having the deep diffusion portion and the shallow diffusion portion, the peripheral portion of the surface of the one conductivity type semiconductor region on the front surface side of the semiconductor substrate has a predetermined range. At the same time, the well of the other conductivity type is diffused deeper than the groove in which the insulating gate is
The groove is formed near the groove on the surface of the predetermined area.
Other conductivity type impurities, the well territory to diffuse the deeper for partial shallow spreading by well region than the depth of the wells of that
Ion implantation at a lower dose than when forming the region , ion implantation of impurities of another conductivity type into the surface of the region where the groove is formed , and thermal diffusion of these ion-implanted impurities to form a deep diffusion portion at the periphery. A well including a region diffused shallower than the groove is formed inside the trench, the trench is dug from the surface of the well to a semiconductor region below, and an insulating gate is buried in the trench, and a surface of the well is formed. The source layer of one conductivity type is shallowly diffused into a portion in contact with the groove. When the above-mentioned contact layer is provided on the surface of the well, it is advantageous in terms of the process that the impurity of the other conductivity type is thermally diffused simultaneously with the impurity of one conductivity type of the source layer.

【0015】[0015]

【作用】本発明はウエルの底面ないしは半導体領域との
pn接合面に凹凸を設けることにより半導体領域内のオフ
時の電位分布やオン時の電流分布を制御できる点に着目
して、絶縁ゲートを埋め込み形にした場合に前述のよう
に絶縁ゲート制御半導体装置の耐圧が低下したりオン電
圧が増加したりする逆効果が発生する従来からの問題点
の解決に成功したものである。
According to the present invention, the contact between the bottom of the well and the semiconductor region is improved.
Focusing on the fact that the potential distribution at the time of off and the current distribution at the time of on in the semiconductor region can be controlled by providing irregularities on the pn junction surface, the insulated gate control semiconductor The present invention has succeeded in solving a conventional problem in which the adverse effect of reducing the breakdown voltage of the device or increasing the on-voltage occurs.

【0016】すなわち、前項の構成にいう深い拡散部分
をウエルの周縁部に形成することにより、絶縁ゲートの
下側の半導体領域内の等電位面をいわば周囲から下方に
押し下げてオフ時に空乏層を広がりやすくすることがで
き、これにより絶縁ゲートの直下の半導体領域内の電界
強度を緩和して、絶縁ゲート制御半導体装置の耐圧を従
来よりも向上させるものである。また、前項の構成にい
う浅い拡散部分を形成してその付近のウエルの部分に絶
縁ゲート用の溝を設けることにより、オン時に溝の側面
のチャネルから半導体領域に流入する電流に付随して前
述の J-FET効果により発生する空乏領域を浅い拡散部分
に対応するウエルの底面のいわば凹所の中にほぼ納めて
しまうことができ、これにより半導体領域内の電流流路
の広がり角度を従来より拡大して流路内の電流密度を低
下させ、その電圧降下である絶縁ゲート制御半導体装置
のオン電圧を減少させるものである。
That is, by forming the deep diffusion portion referred to in the configuration of the preceding paragraph at the periphery of the well, the equipotential surface in the semiconductor region below the insulating gate is pushed downward from the surroundings so as to reduce the depletion layer when off. Thus, the electric field strength in the semiconductor region immediately below the insulated gate is reduced, and the withstand voltage of the insulated gate control semiconductor device is improved as compared with the related art. Further, by forming a shallow diffused portion in the structure described in the preceding paragraph and providing a trench for an insulating gate in a well portion near the shallow diffused portion, the above-mentioned structure is accompanied by a current flowing from the channel on the side surface of the trench into the semiconductor region at the time of ON. The depletion region created by the J-FET effect can be almost completely contained in the so-called recess at the bottom of the well corresponding to the shallow diffusion, thereby increasing the spread angle of the current flow path in the semiconductor region. This is to reduce the current density in the flow path by enlarging, thereby reducing the on-voltage of the insulated gate control semiconductor device, which is the voltage drop.

【0017】さらに、本発明の絶縁ゲート制御半導体装
置の製造方法は上述の深い拡散部分および浅い拡散部分
を具備するウエルの作り込みに適するもので、ウエルを
作り込むべき範囲の周縁部に深い拡散部分を所定深さに
まず拡散した後、この範囲の表面に浅い拡散部分用の不
純物を低いドーズ量で,周縁部の内側の表面の一部に不
純物を所定ドーズ量でそれぞれイオン注入した上でそれ
らを熱拡散させることにより、少ない工程数でウエルの
深い拡散部分と浅い拡散部分と絶縁ゲート用の部分をそ
れぞれ所望の深さに正確に作り込めるようにするもので
ある。
Further, the method of manufacturing an insulated gate control semiconductor device according to the present invention is suitable for forming a well having the above-mentioned deep diffusion portion and shallow diffusion portion. After the portion is first diffused to a predetermined depth, the impurity for the shallow diffusion portion is ion-implanted into the surface of this area at a low dose, and the impurity is ion-implanted at a predetermined dose into a part of the inner surface of the peripheral portion. By thermally diffusing them, a deep diffusion portion, a shallow diffusion portion, and a portion for an insulated gate of a well can be accurately formed to desired depths in a small number of steps.

【0018】[0018]

【実施例】以下、図を参照しながら本発明の実施例を説
明する。図1は本発明による絶縁ゲート制御半導体装置
の一部拡大断面図、図2はそのオフ時の等電位面の分布
とオン時の電流流路の分布を図1の要部を拡大して示す
断面図、図3は耐圧特性を示す線図、図4はオン電圧特
性を示す線図、図5は図1の絶縁ゲート制御半導体装置
に対応する本発明の製造方法を主な工程ごとの状態で示
すウエハの要部拡大断面図である。なお、これら実施例
ではウエルが深い拡散部分と浅い拡散部分を備えるもの
とするが、これらの内の一方だけをウエルに設けること
でも本発明を実施できる。また、絶縁ゲート制御半導体
装置は電界効果トランジスタとするが本発明は絶縁ゲー
トバイポーラトランジスタや絶縁ゲートを備えかつ類似
構造をもつサイリスタ等の半導体装置にも適用できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a partially enlarged cross-sectional view of an insulated gate control semiconductor device according to the present invention, and FIG. 2 is an enlarged view of the distribution of equipotential surfaces when turned off and the distribution of current flow paths when turned on. FIG. 3 is a diagram showing a breakdown voltage characteristic, FIG. 4 is a diagram showing an on-voltage characteristic, and FIG. 5 is a diagram showing a state of a main process in a manufacturing method of the present invention corresponding to the insulated gate control semiconductor device of FIG. FIG. 3 is an enlarged sectional view of a main part of the wafer indicated by. In these embodiments, the well has a deep diffusion portion and a shallow diffusion portion. However, the present invention can be practiced by providing only one of these in the well. Although the insulated gate control semiconductor device is a field effect transistor, the present invention can be applied to a semiconductor device such as an insulated gate bipolar transistor or a thyristor having an insulated gate and having a similar structure.

【0019】図1には本発明の絶縁ゲート制御半導体装
置が図6の従来例と同じ要領でかつ同じ符号を付して示
されているので、以下では主に異なる点について説明す
る。従来構造と異なるのは半導体基体10のn形の半導体
領域12の表面から作り込んだp形のウエル20がその周縁
部に深い拡散部分21を備える点と、その内側の溝30に埋
め込まれた絶縁ゲート40の付近に浅い拡散部分22を備え
る点であって、溝30に接するn形のソース層50とウエル
20用のp形のコンタクト層23を設け,ウエル20とソース
層50から電極膜61を介してソース端子である一方の主端
子Sを導出し,半導体基体10の裏面側から電極膜62を介
しドレイン端子である他方の主端子Dを導出し,かつ絶
縁ゲート40から制御端子Gを導出する点はすべて図6の
従来例と同じである。フィールド酸化膜13の上にウエル
20と同電位に置かれるフィールドプレート63が配設され
ている点も同じである。
FIG. 1 shows an insulated gate control semiconductor device of the present invention in the same manner as in the conventional example of FIG. 6 and is denoted by the same reference numerals, and the following mainly describes the differences. The difference from the conventional structure is that the p-type well 20 formed from the surface of the n-type semiconductor region 12 of the semiconductor substrate 10 has a deep diffusion portion 21 on the peripheral edge thereof and is embedded in the groove 30 inside the same. The point that the shallow diffusion portion 22 is provided near the insulated gate 40 is that the n-type source layer 50 and the well contact the trench 30.
A p-type contact layer 23 for 20 is provided, one main terminal S as a source terminal is derived from the well 20 and the source layer 50 via the electrode film 61, and from the back side of the semiconductor substrate 10 via the electrode film 62. The point that the other main terminal D that is the drain terminal is derived and the control terminal G is derived from the insulated gate 40 are all the same as the conventional example of FIG. Well on field oxide film 13
This is the same in that a field plate 63 placed at the same potential as 20 is provided.

【0020】次に、本発明の特徴であるウエル20の深い
拡散部分21と浅い拡散部分22がもつ効果を従来の図7に
対応する図2を参照して説明する。図2(a) はオフの状
態で半導体領域12内に空乏層が広がる様子を等電位面EP
で示し、図7(a) と比べるとわかるように等電位面EPが
ウエル20の周縁部の深い拡散部分21により図ではその左
側である内側範囲内で全体的に図の下方に向け押し下げ
られ、このため従来の弱点部であった溝30の直下の半導
体領域12に空乏層が広がりやすくなる。半導体領域12の
不純物濃度が1014〜1016原子/cm3 のとき 2.5〜4x10
5 V/cmの電界強度でアバランシェ破壊が発生するが、
本発明では溝30の直下のこの電界強度を深い拡散部分21
により緩和して耐圧を向上させることができる。なお、
この例のように浅い拡散部分22の付近に溝30を設けた場
合でも半導体領域12内の空乏層の広がりはあまりその影
響を受けない。
Next, the effect of the deep diffusion portion 21 and the shallow diffusion portion 22 of the well 20, which is a feature of the present invention, will be described with reference to FIG. 2 corresponding to FIG. FIG. 2 (a) shows how the depletion layer spreads in the semiconductor region 12 in the off state.
As can be seen from comparison with FIG. 7 (a), the equipotential surface EP is pushed down entirely in the inner region on the left side in FIG. Therefore, the depletion layer easily spreads in the semiconductor region 12 immediately below the groove 30, which is a conventional weak point. 2.5 to 4 × 10 when the impurity concentration of the semiconductor region 12 is 10 14 to 10 16 atoms / cm 3
Avalanche breakdown occurs at an electric field strength of 5 V / cm.
In the present invention, the electric field intensity immediately below the groove
This can relax and improve the withstand voltage. In addition,
Even when the trench 30 is provided near the shallow diffusion portion 22 as in this example, the spread of the depletion layer in the semiconductor region 12 is not significantly affected.

【0021】図2(b) はオンの状態で溝30の側面のチャ
ネルChから半導体領域12に流入したこの例では電子電流
の流路CPを示す。これを図7(b) と比べるとわかるよう
に、浅い拡散部分22の付近に溝30が設けられるので前述
の J-FET効果により発生する空乏領域DZが浅い拡散部分
22に対応するウエル20の底面の凹所の中に図のようにほ
ぼ納まってしまい、従って半導体領域12内の電流流路CP
の広がり角度θが従来より拡大される。これにより、本
発明では流路CP内の電流密度を低下させてその電圧降下
を減少させ、絶縁ゲート制御半導体装置のオン電圧を減
少させることができる。なお、図から容易にわかるよう
に深い拡散部分21を設けた場合でもこのオン時の電流流
路CPの分布はほとんどその影響を受けない。
FIG. 2B shows a flow path CP of the electron current in this example, which flows into the semiconductor region 12 from the channel Ch on the side surface of the groove 30 in the ON state. As can be seen from a comparison with FIG. 7B, since the trench 30 is provided near the shallow diffusion portion 22, the depletion region DZ generated by the J-FET effect described above is reduced to the shallow diffusion portion.
As shown in the figure, the current flow path CP in the semiconductor region 12 almost fits in the recess on the bottom surface of the well 20 corresponding to 22.
Is wider than before. Thus, in the present invention, the current density in the flow path CP can be reduced to reduce the voltage drop, and the ON voltage of the insulated gate control semiconductor device can be reduced. Note that, as can be easily understood from the drawing, even when the deep diffusion portion 21 is provided, the distribution of the current flow path CP at the time of ON is hardly affected by the provision.

【0022】ついで、図3と図4を参照して図1に示し
た構造をもつ絶縁ゲート制御半導体装置のそれぞれ耐圧
とオン電圧に関連する実験の結果を紹介する。図3は横
軸の溝30の深さdに対する縦軸の耐圧BVないしはアバラ
ンシェ破壊電圧がもつ特性を示すもので、特性Aが本発
明の場合であり、特性Bはその比較例としての図6の従
来構造の場合である。この実験では特性Bに対応する従
来構造ではウエル20の拡散深さを 4.5μmとしたのに対
し、特性Aに対応する本発明の図1に示す構造ではウエ
ル20内の深い拡散部分21の拡散深さを 4.5μm, 浅い拡
散部分22の拡散深さを2μm, その溝30の掘り込み部分
の拡散深さを 2.5μmとそれぞれした。なお、半導体領
域12は厚みが50μmで比抵抗が42Ωcmである。
Next, referring to FIGS. 3 and 4, the results of experiments relating to the withstand voltage and the on-voltage of the insulated gate control semiconductor device having the structure shown in FIG. 1 will be introduced. FIG. 3 shows the characteristics of the breakdown voltage BV or the avalanche breakdown voltage on the vertical axis with respect to the depth d of the groove 30 on the horizontal axis. The characteristic A is the case of the present invention, and the characteristic B is FIG. This is the case of the conventional structure of FIG. In this experiment, the diffusion depth of the well 20 was set to 4.5 μm in the conventional structure corresponding to the characteristic B, whereas the diffusion depth of the deep diffusion portion 21 in the well 20 was adjusted in the structure shown in FIG. The depth was 4.5 μm, the diffusion depth of the shallow diffusion portion 22 was 2 μm, and the diffusion depth of the trench 30 was 2.5 μm. The semiconductor region 12 has a thickness of 50 μm and a specific resistance of 42 Ωcm.

【0023】従来構造の特性Bでは、溝30の深さdがウ
エル20の拡散深さd1より小さい間は耐圧BVは700Vと一定
であるが、溝30の深さdがウエル20の深さd1をごく僅か
でも越えると耐圧BVは550V以下に急速に低下する。これ
は従来構造では溝30の直下の半導体領域12に電界が集中
するためと考えられる。これに対し、本発明の場合の特
性Aでは溝30の深さdがその部分のウエル20の深さd2を
越えると耐圧BVはそれまでの700Vからは下がるが低下の
度合いは従来よりずっと少なくなり、深さdが4μmで
耐圧BVは約650Vあり、深さdが6μmでも600V程度の耐
圧が得られる。これは、ウエル20の周縁部の深い拡散部
分21により溝30の直下の半導体領域12に空乏層が広がり
やすくなって電界強度が緩和されるためと考えられる。
According to the characteristic B of the conventional structure, while the depth d of the groove 30 is smaller than the diffusion depth d1 of the well 20, the breakdown voltage BV is constant at 700 V, but the depth d of the groove 30 is equal to the depth of the well 20. If the voltage exceeds d1 even slightly, the breakdown voltage BV rapidly decreases to 550V or less. This is probably because the electric field concentrates on the semiconductor region 12 immediately below the groove 30 in the conventional structure. On the other hand, in the characteristic A of the present invention, when the depth d of the groove 30 exceeds the depth d2 of the well 20 in that portion, the withstand voltage BV decreases from the previous 700 V, but the degree of decrease is much smaller than in the conventional case. Thus, the withstand voltage BV is about 650 V when the depth d is 4 μm, and a withstand voltage of about 600 V can be obtained even when the depth d is 6 μm. This is presumably because the deep diffusion portion 21 at the peripheral edge of the well 20 easily spreads the depletion layer in the semiconductor region 12 immediately below the groove 30, and the electric field intensity is reduced.

【0024】図4はウエル20を図3と同じ構造にした場
合の縦軸のオン電圧FVの横軸に示す溝30ないしは絶縁ゲ
ート40の配列ピッチpに対する依存特性を示す。前と同
様に特性Bが従来構造の場合, 特性A1とA2が本発明によ
る図1の構造の場合であり、従来構造では溝30の深さを
6μmとし、本発明構造では溝30の深さを特性A1では4
μm, 特性A2では3μmとした。一定の電流定格に対し
溝30の配列ピッチpを狭めるとオン電圧FVは図示のよう
に一般に低減されるが、従来構造の特性Bでは配列ピッ
チpを15〜20μmよりさらに狭めるとオン電圧FVは逆に
上昇して来る。これは、配列ピッチpを狭め過ぎると図
7(b) の空乏領域DZの影響が強まり電流流路CPの広がり
角度θが小さくなるためと考えられる。これに対して、
本発明の場合の特性A1やA2はオン電圧FVが従来より低
く、かつ配列ピッチpの縮小による逆効果もほとんど現
れない。これは、図2(b) の浅い拡散部分22が空乏領域
DZを閉じ込めるためと考えられる。また、溝30が浅い時
の特性A2の方がオン電圧FVが若干低くなり、これは溝30
のウエル20の底面からの突出深さが小さい方が前述のJ-
FET効果が軽微になるためと考えられる。
FIG. 4 shows the dependence of the ON voltage FV on the vertical axis on the arrangement pitch p of the grooves 30 or the insulating gates 40 on the horizontal axis when the well 20 has the same structure as in FIG. As before, when the characteristic B is the conventional structure, the characteristics A1 and A2 are the case of the structure of FIG. 1 according to the present invention. In the conventional structure, the depth of the groove 30 is 6 μm, and in the structure of the present invention, the depth of the groove 30 is Is 4 for characteristic A1.
μm, and 3 μm for the characteristic A2. When the arrangement pitch p of the grooves 30 is reduced for a certain current rating, the on-voltage FV is generally reduced as shown in the figure. However, in the characteristic B of the conventional structure, when the arrangement pitch p is further reduced from 15 to 20 μm, the on-voltage FV becomes On the contrary, it rises. This is presumably because if the arrangement pitch p is too narrow, the influence of the depletion region DZ in FIG. 7B becomes stronger and the spread angle θ of the current flow path CP becomes smaller. On the contrary,
In the characteristics A1 and A2 in the case of the present invention, the on-voltage FV is lower than in the prior art, and almost no adverse effect due to the reduction of the arrangement pitch p appears. This is because the shallow diffusion region 22 in FIG.
It is thought to confine DZ. Also, when the groove 30 is shallow, the characteristic A2 has a slightly lower on-voltage FV.
The smaller the protruding depth of the well 20 from the bottom is the above J-
It is considered that the FET effect becomes slight.

【0025】以上説明した図3と図4の特性からもわか
るように、本発明の絶縁ゲート制御半導体装置では溝30
がウエル20の底面から突出する深さは3μm程度以下,
より望ましくは 0.5〜2μmとするのが耐圧BVの向上お
よびオン電圧FVの低減に有利である。さらに、ウエル20
の溝30の掘り込み部分の深さよりも深い拡散部分21は50
%以上深く, 浅い拡散部分22は 0.5μm以上浅く, 望ま
しくは1μm以上浅くなるようにそれぞれ拡散するのが
有利である。
As can be seen from the characteristics shown in FIGS. 3 and 4 described above, in the insulated gate control semiconductor device of the present invention, the groove 30 is used.
Is less than about 3μm protruding from the bottom of the well 20,
More preferably, the thickness is set to 0.5 to 2 μm, which is advantageous for improving the breakdown voltage BV and reducing the on-voltage FV. In addition, well 20
The diffusion portion 21 deeper than the depth of the dug portion of the groove 30 is 50
%, It is advantageous that the diffusion portions 22 are each diffused so as to be shallower than 0.5 μm, preferably 1 μm or more.

【0026】最後に、図5を参照して図1の構造に対応
する本発明の絶縁ゲート制御半導体装置の製造方法を説
明する。図は図1に対応する個所の断面図であるが、半
導体基体10ないしウエハとしてそのn形の半導体領域12
が示されている。この半導体領域12ないしエピタキシャ
ル層には例えば厚みが50μmで比抵抗が40Ωcm程度のも
のが用いられる。最初の図5(a) はウエル20用の深い拡
散部分21の拡散工程である。図の右側のフィールド酸化
膜13は半導体領域12を熱酸化した1μm程度の膜厚の酸
化膜からフォトエッチングにより形成され、これにより
囲まれた左側の部分がウエル20を作り込む範囲である。
図5(a) の工程ではこの範囲の周縁部にp形不純物とし
てボロンを例えば50keV の加速電圧, 4x1013原子/cm
2 程度のドーズ量でイオン注入した後に1150℃程度の高
温下の2〜3時間の熱拡散によりウエル用の深い拡散部
分21を所定の深さに作り込む。この熱拡散に際して半導
体領域12の表面は0.15〜0.3 μmの酸化膜14で覆われ
る。
Finally, a method of manufacturing the insulated gate control semiconductor device of the present invention corresponding to the structure of FIG. 1 will be described with reference to FIG. The figure is a cross-sectional view of a portion corresponding to FIG. 1, but the semiconductor substrate 10 or its n-type semiconductor region 12 as a wafer is shown.
It is shown. The semiconductor region 12 or the epitaxial layer has a thickness of, for example, 50 μm and a specific resistance of about 40 Ωcm. FIG. 5 (a) shows the diffusion step of the deep diffusion portion 21 for the well 20. The field oxide film 13 on the right side of the figure is formed by photoetching from an oxide film having a thickness of about 1 μm obtained by thermally oxidizing the semiconductor region 12, and the left portion surrounded by the field oxide film 13 is a range in which the well 20 is formed.
In the step of FIG. 5A, boron is used as a p-type impurity in the periphery of this range, for example, at an accelerating voltage of 50 keV and 4 × 10 13 atoms / cm 3.
After ion implantation at a dose of about 2 , a deep diffusion portion 21 for a well is formed at a predetermined depth by thermal diffusion at a high temperature of about 1150 ° C. for 2 to 3 hours. During this thermal diffusion, the surface of the semiconductor region 12 is covered with an oxide film 14 of 0.15 to 0.3 μm.

【0027】次の図5(b) はウエル用の浅い拡散部分22
用のp形の不純物22aの導入工程であり、フィールド酸
化膜13をマスクとして半導体領域12のそれ以外の全面に
対しボロンを酸化膜14を通してその厚みに応じた35〜45
keVの加速電圧下で4x1013原子/cm2 程度ないしそれ
を若干下回る低いドーズ量でイオン注入する。つづく図
5(c) はウエルの溝30を設ける部分用のp形不純物20a
の導入工程であるが、その前に低温酸化膜15をCVD法
等により例えば1μmの膜厚に成膜してフォトエッチン
グによって窓を開口する。この低温酸化膜15は深い拡散
部分21の深さに狂いが出ないよう 400〜450 ℃の低温で
成膜する。不純物20aとしてのボロンは低温酸化膜15を
マスクとして例えば80 keVの加速電圧下の2x103 原子
/cm2 のドーズ量でイオン注入する。
FIG. 5B shows a shallow diffusion portion 22 for wells.
And a step of introducing boron through the oxide film 14 to the entire surface of the semiconductor region 12 using the field oxide film 13 as a mask.
At a keV accelerating voltage, ions are implanted at a low dose of about 4 × 10 13 atoms / cm 2 or slightly lower. FIG. 5 (c) shows a p-type impurity 20a for a portion where a well groove 30 is to be provided.
Before that, a low-temperature oxide film 15 is formed to a thickness of, for example, 1 μm by a CVD method or the like, and a window is opened by photoetching. The low-temperature oxide film 15 is formed at a low temperature of 400 to 450 ° C. so that the depth of the deep diffusion portion 21 does not change. Boron as the impurity 20a is ion-implanted at a dose of 2 × 10 3 atoms / cm 2 at an acceleration voltage of 80 keV, for example, using the low-temperature oxide film 15 as a mask.

【0028】図5(d) はウエル20を作り込む熱拡散工程
であって、例えば1150℃の高温下の1〜2時間の熱処理
により上述の導入不純物22aと20aを同時熱拡散させて
深い拡散部分21と浅い拡散部分22を備えるウエル20とす
る。これによってウエル20の各部の深さは例えば深い拡
散部分21が 4.5μm, 浅い拡散部分22が2μm, 他の部
分が 2.5μmとなる。以上のように本発明方法では深い
拡散部分21をまず作り込んだ上で不純物を2回に分けて
導入して同時熱拡散させることにより、少ない工程数で
ウエル20の各部分の深さを正確に制御することができ
る。
FIG. 5 (d) shows a thermal diffusion step for forming the well 20. For example, the above-described introduced impurities 22a and 20a are simultaneously thermally diffused by heat treatment at a high temperature of 1150 ° C. for 1 to 2 hours to deeply diffuse the impurities. The well 20 has a portion 21 and a shallow diffusion portion 22. As a result, the depth of each portion of the well 20 is, for example, 4.5 μm for the deep diffusion portion 21, 2 μm for the shallow diffusion portion 22, and 2.5 μm for the other portions. As described above, according to the method of the present invention, the depth of each part of the well 20 can be accurately determined with a small number of steps by first forming the deep diffusion portion 21 and then introducing the impurity in two steps and simultaneously performing thermal diffusion. Can be controlled.

【0029】図5(e) は溝30の掘り込み工程であって、
図1(c) で形成した低温酸化膜15をマスクとするドライ
エッチング法, 望ましくはリアクティブイオンエッチン
グ法によって1〜2μ幅のトレンチ状の溝30をウエル20
を貫通してその下側の半導体領域12に達するように, 例
えば3〜4μmの深さに掘り込んだ後、ふっ酸系等のエ
ッチング液を用いて低温酸化膜15を除去し、フィールド
酸化膜13のみを残した図の状態とする。次の図5(f) は
絶縁ゲート40の配設工程であり、まず全面酸化によりご
く薄いゲート酸化膜41を付けた後、CVD法によりゲー
ト42用の多結晶シリコンを図では一点鎖線で示すよう全
面に成長させ、かつフォトエッチングを施すことにより
溝30内に絶縁ゲート40が埋め込まれた図示の状態とす
る。なお、溝30と絶縁ゲート40の実際の平面的なパター
ンは図示の断面以外の個所で相互に連結された櫛歯状と
するのがよい。
FIG. 5E shows a process of digging the groove 30.
A dry etching method using the low-temperature oxide film 15 formed as shown in FIG. 1C as a mask, preferably a reactive ion etching method, is used to form a 1 to 2 .mu.
And digging it to a depth of, for example, 3 to 4 μm so as to reach the semiconductor region 12 thereunder. Then, the low-temperature oxide film 15 is removed using an etching solution such as a hydrofluoric acid, and the field oxide film is removed. The state shown in FIG. FIG. 5 (f) shows a process of arranging the insulating gate 40. First, a very thin gate oxide film 41 is formed by oxidizing the whole surface, and then polycrystalline silicon for the gate 42 is shown by a dashed line in the figure by the CVD method. As shown in the drawing, the insulating gate 40 is buried in the groove 30 by growing the entire surface and performing photoetching. Note that the actual planar pattern of the groove 30 and the insulating gate 40 is preferably a comb-like shape connected to each other at locations other than the illustrated cross section.

【0030】図5(g) はソース層50の拡散工程である
が、この実施例ではウエル20にp形のコンタクト層23を
設けるのでそれ用にボロンを溝30と接しないよう, かつ
n形のソース層50用に例えば砒素を溝30と接するように
それぞれ高不純物濃度でイオン注入した上で、同時熱拡
散により浅いn形のソース層50とそれよりも深いn形の
コンタクト層23を作り込む。最後の図5(h) は電極膜の
配設工程であり、通例のアルミの電極膜61によってコン
タクト層23とソース層50の表面を短絡して図1の一方の
主端子Sとし、かつ同じアルミの膜からウエル20と接続
されたフィールドプレート63をフィールド酸化膜13の上
に形成する。なお、図1の絶縁ゲート40の制御端子Gは
その櫛歯状パターンの連結部から導出され、他方の端子
Dは半導体基体10の裏面側から導出される。
FIG. 5 (g) shows a step of diffusing the source layer 50. In this embodiment, the p-type contact layer 23 is provided in the well 20, so that boron is not in contact with the groove 30 and the n-type is used. For example, arsenic is ion-implanted at a high impurity concentration so as to be in contact with the groove 30 for the source layer 50, and then a shallow n-type source layer 50 and an n-type contact layer 23 deeper than that are formed by simultaneous thermal diffusion. Put in. Finally, FIG. 5 (h) shows an electrode film disposing step, in which the surface of the contact layer 23 and the surface of the source layer 50 are short-circuited by the usual aluminum electrode film 61 to form one main terminal S of FIG. A field plate 63 connected to the well 20 is formed on the field oxide film 13 from an aluminum film. Note that the control terminal G of the insulated gate 40 in FIG. 1 is led out from the connection portion of the comb-like pattern, and the other terminal D is led out from the back side of the semiconductor substrate 10.

【0031】以上の製造方法により底面に凹凸をもつウ
エル20の各部分を正確な拡散深さで作り込んで、絶縁ゲ
ート制御半導体装置に例えば600Vの耐圧の再現性よく安
定にもたせ、かつそのオン電圧も低減することができ
る。また、溝30の配列ピッチを10μm程度にないしそれ
以下に縮小してパターンを微細化することにより、電界
効果トランジスタでは高周波特性を従来より高め、絶縁
ゲートバイポーラトランジスタでは数mm角のチップ面積
に数百個の絶縁ゲート40を配列して数十Aの電流容量を
もたせることができる。本発明の絶縁ゲート制御半導体
装置は制御端子に数〜15Vの制御電圧を与えて高速動作
させることができる。
According to the above-described manufacturing method, each portion of the well 20 having the unevenness on the bottom surface is formed with an accurate diffusion depth, so that the insulated gate control semiconductor device has a withstand voltage of, for example, 600 V and is stable with good reproducibility. Voltage can also be reduced. In addition, by reducing the arrangement pitch of the grooves 30 to about 10 μm or less and miniaturizing the pattern, the high-frequency characteristics of the field-effect transistor are improved as compared with the conventional case, and the insulated gate bipolar transistor has a chip area of several mm square. One hundred insulated gates 40 can be arranged to provide a current capacity of several tens of amps. The insulated gate control semiconductor device of the present invention can operate at high speed by applying a control voltage of several to 15 V to the control terminal.

【0032】なお、以上述べた実施例ではウエル20の深
い拡散部分21をその周縁部に設けるようにしたが、必要
に応じてウエル20の内側にも深い拡散部分21を形成して
その耐圧向上の効果を一層高めることができる。この場
合は深い拡散部分21で溝30や絶縁ゲート40を挟み込んだ
構造となり、絶縁ゲート制御半導体装置はこのいわば単
位構造を複合化した構造となる。実施例からわかるよう
に、ウエル20の内側に深い拡散部分21を作り込むに必要
な面積は溝30の前述の配列ピッチpと同程度でよい。こ
のように、本発明は実施例に限定されることなく必要な
いし場合に応じ種々の態様で実施をすることができる。
In the above-described embodiment, the deep diffusion portion 21 of the well 20 is provided on the periphery thereof. However, if necessary, the deep diffusion portion 21 is formed inside the well 20 to improve the breakdown voltage. Can be further enhanced. In this case, the trench 30 and the insulating gate 40 are sandwiched by the deep diffusion portion 21, and the insulated gate control semiconductor device has a so-called composite structure of unit structures. As can be seen from the embodiment, the area required for forming the deep diffusion portion 21 inside the well 20 may be substantially the same as the above-described arrangement pitch p of the grooves 30. As described above, the present invention is not limited to the embodiments and can be carried out in various modes as necessary or necessary.

【0033】[0033]

【発明の効果】以上説明したとおり本発明の絶縁ゲート
制御半導体装置では、ウエルを半導体領域の表面から周
縁部に内側部分よりも深い拡散部分を形成するよう, あ
るいは一部に浅い拡散部分を形成するように拡散し、ウ
エルの表面から溝をその下側の半導体領域に達するよう
に掘り込んでその中に絶縁ゲートを埋め込み、ウエルの
表面からソース層を溝に接するよう拡散する構成とする
ことにより、次の効果を挙げることができる。
As described above, in the insulated gate control semiconductor device of the present invention, the well is formed so as to form a diffusion part deeper than the inner part from the surface of the semiconductor region to the peripheral part, or to form a shallow diffusion part in part. A trench is dug from the surface of the well to reach the semiconductor region underneath, an insulating gate is buried therein, and a source layer is diffused from the surface of the well so as to contact the groove. Thus, the following effects can be obtained.

【0034】(a) ウエルの周縁部に深い拡散部分を形成
してそれよりも浅い内側部分に溝を掘り込んで絶縁ゲー
トを埋め込むことにより、オフ時に溝の下の半導体領域
内に空乏層を広がりやすくして溝の直下の電界強度を緩
和し、絶縁ゲート制御半導体装置の耐圧を向上させるこ
とができる。 (b) ウエルに浅い拡散部分を形成してその付近に溝に埋
め込んだ絶縁ゲートを配設することにより、オン時に溝
の側面のチャネルから半導体領域に電流が流入する点付
近に発生する空乏領域を浅い拡散部分に対応するウエル
の底面の凹所に閉じ込めて半導体領域内の電流流路の広
がり角を増加させ、流路内の電流密度を減少させて絶縁
ゲート制御半導体装置のオン電圧を低減できる。
(A) By forming a deep diffusion portion in the peripheral portion of the well and digging a groove in a shallower inner portion to bury the insulating gate, a depletion layer is formed in the semiconductor region below the groove when off. It is easy to spread, the electric field intensity immediately below the groove is reduced, and the breakdown voltage of the insulated gate control semiconductor device can be improved. (b) A depletion region generated near the point where current flows into the semiconductor region from the channel on the side surface of the groove when the shallow diffusion is formed in the well and an insulated gate buried in the groove is provided near the well. To reduce the on-voltage of the insulated gate control semiconductor device by increasing the spread angle of the current flow path in the semiconductor region and reducing the current density in the flow path it can.

【0035】(c) 上述のような深い拡散部分がもつ耐圧
の向上効果と,浅い拡散部分がもつオン電圧の低減効果
は実施例で説明したように相互に干渉しないしは互いに
減殺されることがないので、ウエルに深い拡散部分と浅
い拡散部分の双方を形成することにより、絶縁ゲート制
御半導体装置の耐圧の向上とオン電圧の低減を同時に達
成することができる。
(C) The effect of improving the breakdown voltage of the deep diffusion part and the effect of reducing the on-voltage of the shallow diffusion part do not interfere with each other or are mutually reduced as described in the embodiment. Therefore, by forming both a deep diffusion portion and a shallow diffusion portion in the well, it is possible to simultaneously improve the withstand voltage and reduce the on-voltage of the insulated gate control semiconductor device.

【0036】(d) 溝ないしは絶縁ゲートを配列するピッ
チを縮小することにより電流容量を増加させるだけでな
くオン電圧も低減できるので、絶縁ゲート制御半導体装
置の微細パターン化を一層進めてその高周波特性を高め
かつオン時の電流特性を向上させることができる。 また、本発明による絶縁ゲート制御半導体装置の製造方
法では、ウエルを作り込むべき範囲の周縁部に深い拡散
部分を所定深さにまず拡散した後、この範囲の表面に浅
い拡散部分用の不純物を低いドーズ量で,周縁部の内側
の表面の一部に不純物を所定ドーズ量でそれぞれイオン
注入した上でそれらを同時熱拡散させることにより、深
い拡散部分と浅い拡散部分と絶縁ゲート用部分を備える
ウエルを少ない工程数でかつこれら各部分の深さをそれ
ぞれ所望値に正確に管理しながら作り込むことができ
る。
(D) Since not only the current capacity can be increased but also the on-voltage can be reduced by reducing the pitch at which the grooves or the insulating gates are arranged, the fine patterning of the insulated gate control semiconductor device can be further promoted and its high frequency characteristics can be improved. And the on-time current characteristics can be improved. Further, in the method of manufacturing an insulated gate control semiconductor device according to the present invention, a deep diffusion portion is first diffused to a predetermined depth in a peripheral portion of a region where a well is to be formed, and then an impurity for a shallow diffusion portion is doped on a surface in this range. Impurities are ion-implanted into a part of the inner surface of the peripheral portion at a low dose at a predetermined dose, and are simultaneously thermally diffused, thereby providing a deep diffusion portion, a shallow diffusion portion, and an insulating gate portion. Wells can be formed with a small number of steps and while precisely controlling the depth of each of these portions to desired values.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による絶縁ゲート制御半導体装置の一部
拡大断面図である。
FIG. 1 is a partially enlarged cross-sectional view of an insulated gate control semiconductor device according to the present invention.

【図2】図1の絶縁ゲート制御半導体装置のオフ時とオ
ン時の状態を示し、同図(a) はオフ時の等電位面の分布
を,同図(b) はオン時の電流流路の分布をそれぞれ示す
図1の要部拡大断面図である。
FIGS. 2A and 2B show the state of the insulated gate control semiconductor device shown in FIG. 1 when it is turned off and when it is turned on. FIG. 2A shows the distribution of equipotential surfaces when it is off, and FIG. It is a principal part expanded sectional view of FIG. 1 which respectively shows the distribution of a road.

【図3】図1の絶縁ゲート制御半導体装置の耐圧特性を
示す特性線図である。
FIG. 3 is a characteristic diagram showing a breakdown voltage characteristic of the insulated gate control semiconductor device of FIG. 1;

【図4】図1の絶縁ゲート制御半導体装置のオン電圧特
性を示す特性線図である。
FIG. 4 is a characteristic diagram showing on-voltage characteristics of the insulated gate control semiconductor device of FIG. 1;

【図5】図1の絶縁ゲート制御半導体装置に対する本発
明の製造方法を主な工程ごとの状態で示し、同図(a) は
深い拡散部分の拡散工程,同図(b) は浅い拡散部分用の
不純物の導入工程,同図(c) はウエル用の不純物の導入
工程,同図(d) は熱拡散工程,同図(e) は溝掘り込み工
程,同図(f) は絶縁ゲート配設工程,同図(g) はソース
層拡散工程,同図(h) は電極膜の配設工程の状態をそれ
ぞれ示すウエハの要部拡大断面図である。
FIGS. 5A and 5B show the manufacturing method of the present invention for the insulated gate control semiconductor device of FIG. 1 in the state of each of main steps, wherein FIG. 5A shows a deep diffusion part diffusion step, and FIG. (C) is a process for introducing impurities for wells, (d) is a thermal diffusion process, (e) is a trench excavation process, and (f) is an insulating gate. FIG. 7 (g) is an enlarged cross-sectional view of a principal part of the wafer showing the state of the source layer diffusion step, and FIG. 7 (h) shows the state of the electrode film arrangement step.

【図6】従来の絶縁ゲート制御半導体装置の一部拡大断
面図である。
FIG. 6 is a partially enlarged sectional view of a conventional insulated gate control semiconductor device.

【図7】図6の絶縁ゲート制御半導体装置のオフ時とオ
ン時の状態を示し、同図(a) はオフ時の等電位面の分布
を,同図(b) はオン時の電流流路の分布をそれぞれ示す
図6の要部拡大断面図である。
7A and 7B show states of the insulated gate control semiconductor device shown in FIG. 6 when it is turned off and when it is turned on. FIG. 7A shows the distribution of equipotential surfaces when it is off, and FIG. It is a principal part enlarged sectional view of FIG. 6 which shows the distribution of a road, respectively.

【符号の説明】[Explanation of symbols]

10 半導体基体ないしはウエハ 12 半導体領域ないしはエピタキシャル層 20 ウエル 21 ウエルの深い拡散部分 22 ウエルの浅い拡散部分 30 溝 40 絶縁ゲート 50 ソース層 A 本発明の絶縁ゲート制御半導体装置の耐圧特性 A1 本発明の絶縁ゲート制御半導体装置のオン電圧
特性 A2 本発明の絶縁ゲート制御半導体装置のオン電圧
特性 B 従来の絶縁ゲート制御半導体装置の耐圧とオン
電圧特性 BV 絶縁ゲート制御半導体装置の耐圧 CP オン時の電流流路 D 他方の主端子ないしはドレイン端子 d 溝の深さ DZ 空乏領域 EP オフ時の等電位面 FV 絶縁ゲート制御半導体装置のオン電圧 G 制御端子 p 溝の配列ピッチ S 一方の主端子ないしはソース端子
Reference Signs List 10 semiconductor substrate or wafer 12 semiconductor region or epitaxial layer 20 well 21 well deep diffusion portion 22 well shallow diffusion portion 30 groove 40 insulating gate 50 source layer A Withstand voltage characteristic of insulated gate control semiconductor device of the present invention A1 Insulation of the present invention On-voltage characteristics of gate control semiconductor device A2 On-voltage characteristics of insulated gate control semiconductor device of the present invention B Withstand voltage and on-voltage characteristics of conventional insulated gate control semiconductor device BV Withstand voltage of insulated gate control semiconductor device CP Current path when on D Other main terminal or drain terminal d Depth of groove DZ Depletion region EP Equipotential surface when off FV ON voltage of insulated gate control semiconductor device G Control terminal p Arrangement pitch of groove S One main terminal or source terminal

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基体の表面側に形成された一導電形
の半導体領域と、該半導体領域の所定範囲に形成された
他導電形のウエルと、前記ウエルの表面から前記半導体
領域に達するまで掘り込まれた溝と、該溝内に埋め込ま
れた絶縁ゲートと、前記ウエルの表面から前記溝に接し
て拡散された一導電形のソース層と、前記ウエルの表面
および前記ソース層から導出された第1主端子と、前記
半導体基体の裏面側から導出した第2主端子と、前記絶
縁ゲートから導出された制御端子とを備えた絶縁ゲート
制御半導体装置において、 前記ウエルの前記溝の近傍に、前記溝が形成される部分
のウエルの深さより浅く拡散された浅拡散部分を有する
ことを特徴とする絶縁ゲート制御半導体装置。
1. A semiconductor region of one conductivity type formed on a surface side of a semiconductor substrate, a well of another conductivity type formed in a predetermined range of the semiconductor region, and a well from the surface of the well to the semiconductor region. A trench, an insulated gate embedded in the trench, a source layer of one conductivity type diffused from the surface of the well in contact with the trench, and a source layer derived from the surface of the well and the source layer. An insulated gate control semiconductor device including a first main terminal, a second main terminal derived from the back side of the semiconductor substrate, and a control terminal derived from the insulated gate. An insulated gate control semiconductor device having a shallow diffusion portion that is diffused shallower than a depth of a well where the groove is formed.
【請求項2】請求項1に記載の絶縁ゲート制御半導体装
置において、 前記ウエルの周縁部に、前記溝より深く拡散された深拡
散部分を有することを特徴とする絶縁ゲート制御半導体
装置。
2. The insulated gate control semiconductor device according to claim 1 , wherein the well has a deeply diffused portion deeper than the groove at a peripheral portion of the well.
【請求項3】半導体基体の表面側の一導電形の半導体領
域の表面の所定範囲の周縁部に、他導電形のウエルを絶
縁ゲートが埋め込まれる溝より深く拡散する工程と、前
記所定範囲の表面の前記溝の近傍に、該溝が形成される
部分のウエルの深さより浅く拡散されるウエル領域のた
めに他導電形の不純物を、前記深く拡散するウエル領域
を形成するときより低いドーズ量でイオン注入する工程
と、前記溝が形成される領域の表面に他導電形の不純物
をイオン注入する工程と、これらイオン注入した不純物
を熱拡散させて周縁部の深い拡散部分の内側に前記溝よ
り浅く拡散される領域を含んだウエルを形成する工程
と、前記ウエルの表面から下側の半導体領域に達するま
で前記溝を掘り込む工程と、この溝内に絶縁ゲートを埋
め込む工程と、ウエルの表面の溝に接する部分に一導電
形のソース層を浅く拡散する工程とを含み、かつウエル
およびソース層から第1主端子を, 半導体基体の裏面側
から第2主端子を, 絶縁ゲートから制御端子をそれぞれ
導出するようにしたことを特徴とする絶縁ゲート制御半
導体装置の製造方法。
3. A step of diffusing a well of another conductivity type deeper than a groove in which an insulating gate is buried in a peripheral portion of a predetermined range on a surface of a semiconductor region of one conductivity type on a surface side of a semiconductor substrate; The groove is formed near the groove on the surface
A well region which diffuses impurities of another conductivity type to the well region which is diffused shallower than the depth of the well of the portion;
A step of ion-implanting at a lower dose than forming a step, a step of ion-implanting impurities of another conductivity type into the surface of the region where the groove is formed, and a step of thermally diffusing these ion-implanted impurities to form a peripheral portion. Forming a well including a region diffused shallower than the groove inside the deep diffusion portion, digging the groove from the surface of the well to a lower semiconductor region, insulating in the groove; A step of embedding a gate and a step of shallowly diffusing a source layer of one conductivity type in a portion in contact with the groove on the surface of the well, and forming a first main terminal from the well and the source layer in a second direction from the back side of the semiconductor substrate. A method for manufacturing an insulated gate control semiconductor device, wherein a main terminal is derived from a control terminal from an insulated gate.
JP20979393A 1993-08-25 1993-08-25 Insulated gate control semiconductor device and manufacturing method thereof Expired - Lifetime JP3170966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20979393A JP3170966B2 (en) 1993-08-25 1993-08-25 Insulated gate control semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20979393A JP3170966B2 (en) 1993-08-25 1993-08-25 Insulated gate control semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0766395A JPH0766395A (en) 1995-03-10
JP3170966B2 true JP3170966B2 (en) 2001-05-28

Family

ID=16578688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20979393A Expired - Lifetime JP3170966B2 (en) 1993-08-25 1993-08-25 Insulated gate control semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3170966B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096608A (en) * 1997-06-30 2000-08-01 Siliconix Incorporated Bidirectional trench gated power mosfet with submerged body bus extending underneath gate trench
KR100510096B1 (en) * 1997-10-31 2006-02-28 실리코닉스 인코퍼레이티드 Trench-gated power mosfet
US6548860B1 (en) * 2000-02-29 2003-04-15 General Semiconductor, Inc. DMOS transistor structure having improved performance
JP4865194B2 (en) * 2004-03-29 2012-02-01 ルネサスエレクトロニクス株式会社 Super junction semiconductor device
JP5676923B2 (en) * 2010-06-02 2015-02-25 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
KR101388706B1 (en) * 2012-08-30 2014-04-24 삼성전기주식회사 Power semiconductor device and method of manufacturing the same
DE112013006639T5 (en) * 2013-02-25 2015-10-29 Hitachi, Ltd. Semiconductor device, semiconductor device driving device, and power conversion device
JP6229511B2 (en) * 2014-01-27 2017-11-15 トヨタ自動車株式会社 Semiconductor device
CN112071905B (en) * 2020-09-07 2021-05-25 上海陆芯电子科技有限公司 Terminal structure of semiconductor device and insulated gate bipolar transistor

Also Published As

Publication number Publication date
JPH0766395A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
US7858478B2 (en) Method for producing an integrated circuit including a trench transistor and integrated circuit
US5981343A (en) Single feature size mos technology power device
US6534367B2 (en) Trench-gate semiconductor devices and their manufacture
US6521497B2 (en) Method of manufacturing a field effect transistor
US6992350B2 (en) High voltage power MOSFET having low on-resistance
US7560368B2 (en) Insulated gate planar integrated power device with co-integrated Schottky diode and process
KR100270796B1 (en) Process for manufacture of mos gated device with selef aligned cells
EP1132970A2 (en) Power semiconductor element capable of improving short circuit withstand capability while maintaining low on-voltage and method of fabricating the same
US5663079A (en) Method of making increased density MOS-gated semiconductor devices
US20010041407A1 (en) Trench-gate semiconductor devices
JP3915180B2 (en) Trench type MOS semiconductor device and manufacturing method thereof
JPH03145138A (en) Formation of dmos transistor
KR20070120974A (en) Semiconductor device having enhanced performance and method
US11522075B2 (en) Semiconductor device and method of manufacturing same
US5940721A (en) Termination structure for semiconductor devices and process for manufacture thereof
JP4469524B2 (en) Manufacturing method of semiconductor device
JP3170966B2 (en) Insulated gate control semiconductor device and manufacturing method thereof
KR100272051B1 (en) Process for manufacture of a p-channel mos gated device with base implant through the contact window
US7696061B2 (en) Semiconductor device and method for manufacturing same
US5990518A (en) MOS device
US20220123132A1 (en) Semiconductor device and method for manufacturing semiconductor device
US6913977B2 (en) Triple-diffused trench MOSFET and method of fabricating the same
US6180981B1 (en) Termination structure for semiconductor devices and process for manufacture thereof
JP2002505811A (en) Method for manufacturing field effect semiconductor device
JPH0888232A (en) Manufacture of vertical mos semiconductor element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12