JP3167756B2 - Hollow fine particles of zinc oxide, method for producing the same and apparatus therefor - Google Patents

Hollow fine particles of zinc oxide, method for producing the same and apparatus therefor

Info

Publication number
JP3167756B2
JP3167756B2 JP29711391A JP29711391A JP3167756B2 JP 3167756 B2 JP3167756 B2 JP 3167756B2 JP 29711391 A JP29711391 A JP 29711391A JP 29711391 A JP29711391 A JP 29711391A JP 3167756 B2 JP3167756 B2 JP 3167756B2
Authority
JP
Japan
Prior art keywords
fine particles
zinc oxide
droplets
hollow
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29711391A
Other languages
Japanese (ja)
Other versions
JPH05139738A (en
Inventor
賢太郎 大島
慶一 傳
喜久夫 奥山
登 峠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP29711391A priority Critical patent/JP3167756B2/en
Publication of JPH05139738A publication Critical patent/JPH05139738A/en
Application granted granted Critical
Publication of JP3167756B2 publication Critical patent/JP3167756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化亜鉛中空微粒子、
その製造方法および装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to zinc oxide hollow fine particles,
The present invention relates to a method and an apparatus for manufacturing the same.

【0002】[0002]

【従来の技術】一般に、金属酸化物微粒子は、光導電
性、圧電性、蛍光性、触媒効果等の性能を利用して様々
な工業分野で利用されており、その中でも、酸化亜鉛微
粒子は、種々の工業製品、医薬品、ゴムの加硫促進剤、
触媒、バリスター(可変抵抗器)、塗料等に用いられ、最
近では紫外線遮蔽材としてUV化粧品にも用いられてい
る。
2. Description of the Related Art In general, metal oxide fine particles are used in various industrial fields by utilizing performances such as photoconductivity, piezoelectricity, fluorescence, and catalytic effect. Among them, zinc oxide fine particles are used. Various industrial products, pharmaceuticals, rubber vulcanization accelerator,
It is used for catalysts, varistors (variable resistors), paints, etc., and recently used for UV cosmetics as an ultraviolet shielding material.

【0003】したがって、酸化亜鉛はその工業的価値は
極めて大きく、その機能を最大限に発現させるには多孔
質化および微粒子化が重要である。すなわち、多孔質化
および微粒子化することにより、比表面積が極めて増大
し、微粒子を構成する全分子数中に占める微粒子表面に
位置する分子数の割合が大きくなって微粒子の表面エネ
ルギーが増大するため、その機能が極めて大きく発現さ
れる。また、酸化亜鉛微粒子の微細構造を中空化するこ
とにより、その中空部を利用して従来の機能がより大き
く発現したり、あるいは新規な機能が発現する。さらに
は、酸化亜鉛微粒子を一次粒子の凝集体とすることによ
って単結晶粒子の機能が集合するため、その機能が増幅
される。
[0003] Therefore, zinc oxide has an extremely high industrial value, and it is important to make it porous and finely divided in order to maximize its function. In other words, by making porous and fine particles, the specific surface area is extremely increased, and the ratio of the number of molecules located on the surface of the fine particles to the total number of molecules constituting the fine particles is increased, so that the surface energy of the fine particles is increased. , Its function is extremely greatly expressed. In addition, by hollowing out the fine structure of the zinc oxide fine particles, the conventional function can be more greatly expressed or a new function can be expressed by utilizing the hollow portion. Furthermore, since the functions of the single crystal particles are gathered by making the zinc oxide fine particles into the aggregate of the primary particles, the functions are amplified.

【0004】前述のように、極めて重要な工業的価値を
有する酸化亜鉛微粒子の製造法には、大きく分けて、液
相法と気相法がある。
As described above, methods for producing zinc oxide fine particles having extremely important industrial value are roughly classified into a liquid phase method and a gas phase method.

【0005】液相法では、亜鉛アルコキシドまたは亜鉛
アルコキシアルコキシドを加水分解して酸化亜鉛超微粒
子を得る方法(特開平2−59425号公報)がある。ま
た、一般的には、古くから、亜鉛塩に酸・アルカリの溶
液を加えて液相内反応を起こすことにより、酸化亜鉛微
粒子を得る方法がある。
In the liquid phase method, there is a method of hydrolyzing zinc alkoxide or zinc alkoxide to obtain ultrafine zinc oxide particles (JP-A-2-59425). In general, there has been a method for obtaining zinc oxide fine particles by adding an acid / alkali solution to a zinc salt and causing a reaction in a liquid phase.

【0006】気相法では、一般に金属亜鉛を蒸気化し、
その蒸気と酸素を含有するガスとを混合して酸化亜鉛微
粒子を得る方法(特開平1−286919号公報および
特開平2−208369号公報)がある。
In the gas phase method, generally, metal zinc is vaporized,
There is a method of mixing the vapor with a gas containing oxygen to obtain zinc oxide fine particles (Japanese Patent Application Laid-Open Nos. 1-286919 and 2-208369).

【0007】前記の液相法と気相法以外に、噴霧熱分解
法があり、これは金属の無機酸塩又は有機酸塩を含む水
溶液あるいは有機溶媒溶液を霧化し、この霧状液体粒子
を加熱炉に搬送して、熱分解反応により2種以上の金属
酸化物系複合微粒子を得る方法(例えば、酸化物系超電
導体の製造では、特開平2−196023号公報)であ
る。
[0007] In addition to the liquid phase method and the gas phase method, there is a spray pyrolysis method in which an aqueous solution or an organic solvent solution containing an inorganic acid salt or an organic acid salt of a metal is atomized, and the atomized liquid particles are formed. This is a method in which the particles are transported to a heating furnace to obtain two or more kinds of metal oxide-based composite fine particles by a thermal decomposition reaction (for example, in the production of an oxide-based superconductor, JP-A-2-19623).

【0008】前記の従来の液相法により得られる酸化亜
鉛微粒子の構造は単結晶であり、多孔質または中空形状
のものは得られない。そして、これらの液相法による製
造プロセスについては、バッチ式が基本となるために自
動化が困難で、しかも生成微粒子は固液混相の状態で得
られるため、製品として得るには、濾過、乾燥の工程が
必要となる。そのため、製造プロセス全体が複雑とな
り、低コスト化が困難である。
[0008] The structure of the zinc oxide fine particles obtained by the above-mentioned conventional liquid phase method is a single crystal, and a porous or hollow shape cannot be obtained. The production process using these liquid-phase methods is difficult to automate because it is based on a batch process, and the produced fine particles are obtained in a solid-liquid mixed phase. A process is required. Therefore, the entire manufacturing process becomes complicated, and it is difficult to reduce the cost.

【0009】また、前記気相法においても、液相法と同
様に、多孔質または中空形状の酸化亜鉛微粒子は得られ
ない。一般に、気相法では、原料に純度の高い金属亜鉛
を用いることが製品の純度を高めるために必要である
が、その分コスト高となる。また、金属亜鉛を蒸気化す
るにはかなり高温化する必要が有り、装置の設計におい
ても高温を維持できるような材質を選定しなければなら
ず、製造プロセスの安全性の面からも好ましくはない。
Further, in the above-mentioned vapor phase method, similarly to the liquid phase method, porous or hollow zinc oxide fine particles cannot be obtained. Generally, in the gas phase method, it is necessary to use high-purity metallic zinc as a raw material in order to increase the purity of a product, but the cost increases accordingly. Further, in order to vaporize metallic zinc, it is necessary to raise the temperature considerably, and it is necessary to select a material that can maintain the high temperature even in the design of the apparatus, which is not preferable in terms of safety of the manufacturing process. .

【0010】また、前記噴霧熱分解法では、2種以上の
金属酸化物複合微粒子の製造方法が開示されており、多
孔質または中空形状の酸化亜鉛微粒子の製造については
記載されていない。製造方法としては、気固混相の状態
で得られた酸化物系微粒子を回収するのに、霧状原料液
体の粒子を放射線照射等の手段により荷電した後、加熱
炉に搬送して熱分解反応により酸化物系帯電微粒子と
し、この帯電微粒子を所定の加温された基体上に堆積さ
せる方法を用いている。しかし、その方法では、荷電装
置内に液滴が入るため、運転時間の経過につれて電荷発
生部が液濡れ状態となり、荷電装置の動作不良が起こっ
たり、また基体を加熱炉内に設置するため、その基体の
大きさが制限され、かつ装置系が複雑となる。従って、
連続運転が困難で、大量生産に適さない。
In the above-mentioned spray pyrolysis method, a method for producing two or more kinds of metal oxide composite fine particles is disclosed, but no description is made on the production of porous or hollow zinc oxide fine particles. As a production method, in order to collect the oxide-based fine particles obtained in a gas-solid mixed phase, the particles of the atomized raw material liquid are charged by means of irradiation or the like, and then transported to a heating furnace to carry out a thermal decomposition reaction. To form oxide-based charged fine particles, and deposit the charged fine particles on a predetermined heated substrate. However, in that method, since the droplets enter the charging device, the charge generation unit becomes wet with the operation time, and the charging device malfunctions, or the base is placed in the heating furnace. The size of the base is limited, and the apparatus system becomes complicated. Therefore,
Continuous operation is difficult and unsuitable for mass production.

【0011】[0011]

【発明が解決しようとする課題】本発明者らは、酸化亜
鉛中空微粒子の製造におけるこれらの問題点を解消する
ために鋭意研究を重ねた。その結果、硝酸亜鉛を出発原
料として、その水溶液から微小液滴を作り、該液滴を高
温反応炉内で熱分解させ、生成した微粒子を静電捕集器
により回収するという簡便な製造プロセスを用いると、
その目的が達成できることを見い出し、本発明を完成す
るに至った。
DISCLOSURE OF THE INVENTION The present inventors have conducted intensive studies to solve these problems in the production of hollow zinc oxide particles. As a result, a simple manufacturing process of forming minute droplets from an aqueous solution using zinc nitrate as a starting material, thermally decomposing the droplets in a high-temperature reactor, and collecting the generated fine particles by an electrostatic collector. When used,
The inventors have found that the object can be achieved, and have completed the present invention.

【0012】[0012]

【課題を解決するための手段】すなわち本発明は、酸化
亜鉛の1次粒子の凝集体からなる微粒子であって、中空
球状であることを特徴とする酸化亜鉛中空微粒子;
That is, the present invention is a fine particle comprising an aggregate of primary particles of zinc oxide, wherein the fine zinc oxide particles are hollow spheres;

【0013】硝酸亜鉛水溶液を液滴径が0.1μmから1
00μmの微小な液滴とし、該液滴を窒素または空気の
キャリアーガスを用いて気液混相の状態で高温反応炉内
へ送り、該反応炉内部で液滴に含まれる硝酸亜鉛を熱分
解して酸化亜鉛中空微粒子を生成することを特徴とする
酸化亜鉛中空微粒子の製造方法;および
A zinc nitrate aqueous solution having a droplet diameter of 0.1 μm to 1
The droplets are sent into a high-temperature reactor in a gas-liquid mixed phase using a carrier gas of nitrogen or air, and the zinc nitrate contained in the droplets is thermally decomposed inside the reactor. A method for producing zinc oxide hollow microparticles, wherein the method produces zinc oxide hollow microparticles;

【0014】硝酸亜鉛水溶液の連続供給装置と、該溶液
を微小液滴化して液滴を窒素または空気のキャリアーガ
スと混合する液滴供給装置と、供給された液滴に含まれ
る酸化亜鉛の熱分解反応を行なわせる高温反応炉と、該
反応炉の外部に設けられた、反応により得られた酸化亜
鉛中空微粒子を回収する静電捕集器とからなることを特
徴とする酸化亜鉛中空微粒子の製造装置を提供するもの
である。
A continuous supply apparatus for an aqueous zinc nitrate solution, a liquid droplet supply apparatus for forming the liquid droplets into fine droplets and mixing the liquid droplets with a carrier gas of nitrogen or air, and a heat source for supplying zinc oxide contained in the supplied liquid droplets A high-temperature reactor for performing a decomposition reaction, and a zinc oxide hollow fine particle, which is provided outside the reactor and comprises an electrostatic collector that collects zinc oxide hollow fine particles obtained by the reaction. A manufacturing apparatus is provided.

【0015】以下、添付図面を参照して本発明を具体的
に説明する。図1は、本発明の装置の一具体例を示す概
略図を示すものである。本発明の方法においては、液槽
1内にある硝酸亜鉛水溶液を液送用循環ポンプ2を用い
て、微小な液滴を発生する液滴供給装置3へ連続供給
し、発生した液滴をキャリアーガス供給装置4より送ら
れてくるキャリアーガスに同伴させて高温加熱体5を有
する反応管6へ送り込み、反応管6内で液滴の熱分解反
応を行なわせて気固混相状態で酸化亜鉛中空微粒子を生
成させ、該微粒子をコロナ放電体8を有する静電捕集器
7内にある捕集板上へ静電沈着させる。なお、静電捕集
器7を出る水蒸気を含むガスは、コールドトラップ9お
よびフィルター10を通すことにより水分が除かれ、ポ
ンプ11により強制的に排気される。また、ガス流量は
ガス流量計12によりモニターされる。反応管6および
反応管を出た後の保温部14は温度制御器13により温
度調節される。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing one specific example of the apparatus of the present invention. In the method of the present invention, an aqueous solution of zinc nitrate in a liquid tank 1 is continuously supplied to a droplet supply device 3 for generating fine droplets by using a circulating pump 2 for liquid transport, and the generated droplets are transferred to a carrier. The carrier gas sent from the gas supply device 4 is sent to a reaction tube 6 having a high-temperature heating body 5 accompanying the carrier gas, and a thermal decomposition reaction of droplets is performed in the reaction tube 6 to form a zinc oxide hollow in a gas-solid mixed phase state. Fine particles are generated, and the fine particles are electrostatically deposited on a collecting plate in an electrostatic collector 7 having a corona discharger 8. The gas containing water vapor that exits the electrostatic trap 7 is passed through the cold trap 9 and the filter 10 to remove moisture, and is forcibly exhausted by the pump 11. The gas flow rate is monitored by the gas flow meter 12. The temperature of the reaction tube 6 and the heat retaining section 14 after leaving the reaction tube are controlled by the temperature controller 13.

【0016】本発明に用いる硝酸亜鉛水溶液の濃度は1
-5モル/リットルから20モル/リットルの範囲であ
り、好ましくは、10-4モル/リットル〜10モル/リ
ットルの範囲がよい。溶液濃度が10-5モル/リットル
より薄い場合、酸化亜鉛微粒子の生成量が極端に少なく
なり、また、溶液濃度が20モル/リットルより濃い場
合、溶液粘度が増加しすぎて微小液滴化が困難となる。
The concentration of the aqueous zinc nitrate solution used in the present invention is 1
0 in the range of 5 mol / l of 20 mol / l, preferably, be in the range of 10 -4 mol / l to 10 mol / liter. When the solution concentration is lower than 10 -5 mol / l, the amount of generated zinc oxide fine particles becomes extremely small. When the solution concentration is higher than 20 mol / l, the solution viscosity is excessively increased and fine droplets are formed. It will be difficult.

【0017】キャリアーガスとしては、窒素または空気
が用いられ、キャリアーガスの流量は、反応管6内での
硝酸亜鉛を含む液滴の滞留時間が1秒より短くならない
ようにその流量を調節しなければならない。
Nitrogen or air is used as the carrier gas, and the flow rate of the carrier gas must be adjusted so that the residence time of the droplet containing zinc nitrate in the reaction tube 6 does not become shorter than 1 second. Must.

【0018】硝酸亜鉛水溶液の微小液滴化方法として
は、超音波振動による方法や噴霧ノズルを用いる方法等
があるが、液滴径分布が狭くかつ微小な液滴を得るに
は、好ましくは超音波振動による方法が良い。
As a method for forming a fine droplet of an aqueous solution of zinc nitrate, there are a method using ultrasonic vibration, a method using a spray nozzle, and the like. A method using sound wave vibration is preferable.

【0019】液滴径は、0.1μmから100μmの範
囲で、液滴径分布はなるべく狭いものが好ましい。液滴
径が0.1μmより小さい場合、生成微粒子径は最大で
も0.01μm程度で、その領域の微粒子は超微粒子と
呼ばれ、ブラウン拡散が大きいために反応管内壁への沈
着量が非常に多くなり、生成微粒子の歩留まりが悪くな
る。また、液滴径が100μmより大きい場合、生成微
粒子径は小さくても数十μm程度で、粒子の微粒化が困
難となる。なお液滴径は気液混相の状態で測定すること
が好ましく、例えば光散乱式粒度分布計測機で測定でき
る。
The droplet diameter is in the range of 0.1 μm to 100 μm, and the droplet diameter distribution is preferably as narrow as possible. If the droplet diameter is smaller than 0.1 μm, the diameter of the generated fine particles is at most about 0.01 μm, and the fine particles in that region are called ultrafine particles, and the amount of deposition on the inner wall of the reaction tube is extremely large due to large Brownian diffusion. As a result, the yield of the produced fine particles deteriorates. When the diameter of the droplet is larger than 100 μm, the diameter of the generated fine particles is about several tens μm even if it is small, making it difficult to atomize the particles. The droplet diameter is preferably measured in a gas-liquid mixed phase state, for example, by a light scattering type particle size distribution analyzer.

【0020】本発明により得られる酸化亜鉛中空微粒子
は、単分散性が良く、噴霧溶液の濃度調整により、0.
001μmから数十μmの範囲のものが得られるが、生
成微粒子の歩留まりや微粒化による機能向上を考慮した
場合、好ましくは0.01μmから1μmの範囲が良
い。なお酸化亜鉛微粒子径は、種々の方法で測定できる
が、例えば走査型電子顕微鏡で測定できる。
The zinc oxide hollow fine particles obtained by the present invention have good monodispersibility, and can be adjusted to a concentration of 0.1 by adjusting the concentration of the spray solution.
A range of 001 μm to several tens μm can be obtained. However, in consideration of the yield of the produced fine particles and improvement of the function due to atomization, the range of 0.01 μm to 1 μm is preferable. The zinc oxide fine particle diameter can be measured by various methods, for example, by a scanning electron microscope.

【0021】反応炉は、反応管6において、管軸方向お
よび半径方向に対して、等温部がなるべく広く保たれる
ように加熱体5を温度制御できるようにしなくてはなら
ない。反応炉の温度は、好ましくは200℃から200
0℃の範囲が良い。200℃より低いと硝酸亜鉛の熱分
解が進行しにくく、2000℃より高いと酸化亜鉛微粒
子が溶融して中空微粒子とならないため、好ましくな
い。また、本発明における熱分解反応は、 Zn(NO3)2 → ZnO+NOx である。
In the reaction furnace, the temperature of the heating element 5 must be controlled in the reaction tube 6 so that the isothermal portion is kept as wide as possible in the tube axis direction and the radial direction. The temperature of the reactor is preferably between 200 ° C and 200 ° C.
A range of 0 ° C. is good. If the temperature is lower than 200 ° C., thermal decomposition of zinc nitrate hardly proceeds, and if the temperature is higher than 2000 ° C., zinc oxide fine particles are not melted to form hollow fine particles, which is not preferable. Further, the thermal decomposition reaction in the present invention is Zn (NO 3 ) 2 → ZnO + NOx.

【0022】微粒子捕集器には、フィルター式、静電捕
集式があるが、フィルター式では、長時間使用すると目
詰まりを起こして本装置系におけるガスの流入および流
出のバランスを崩してしまうため、装置が長時間正常に
作動しなくなる恐れがある。しかし、静電捕集式では、
コロナ放電体8から発せられる電荷により微粒子は荷電
し、接地された捕集板と帯電微粒子との静電引力によ
り、微粒子は捕集板上に集められ、ガスは捕集板に設け
られた穴を通して系外へ排出される。本発明装置では反
応炉の外部に静電捕集器が設けられているので、捕集板
の面積を大きくすることができる。したがって、長時間
の使用にも十分対応できる。また、静電捕集器を複数個
設けることによりそれらを切り換えて使えば、更に連続
長時間運転が可能である。静電捕集器を反応炉内に設置
する方法も考えられるが、その場合、前記のように捕集
板の面積を増大したり、捕集器を複数個設けることがで
きない。本発明の装置では静電捕集器を反応管の外部に
設けるので、微粒子の捕集効率が飛躍的に向上する。
There are a filter type and an electrostatic collection type in the fine particle collector. However, in the filter type, when used for a long time, clogging occurs and the balance between the inflow and outflow of gas in the present system is lost. Therefore, the device may not operate normally for a long time. However, in the electrostatic collection type,
The fine particles are charged by the electric charge generated from the corona discharger 8, the fine particles are collected on the collecting plate by the electrostatic attraction between the grounded collecting plate and the charged fine particles, and the gas is supplied to a hole provided in the collecting plate. Through the system. In the apparatus of the present invention, since the electrostatic collector is provided outside the reaction furnace, the area of the collecting plate can be increased. Therefore, it can sufficiently cope with long-term use. Further, by providing a plurality of electrostatic collectors and switching between them, a further continuous long-time operation is possible. A method of installing an electrostatic collector in the reaction furnace is also conceivable, but in that case, the area of the collecting plate cannot be increased or a plurality of collectors cannot be provided as described above. In the apparatus of the present invention, since the electrostatic collector is provided outside the reaction tube, the collection efficiency of the fine particles is dramatically improved.

【0023】[0023]

【実施例】つぎに、実施例を挙げて本発明をさらに詳し
く説明するが、これらに限定するものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples, but it should not be construed that the invention is limited thereto.

【0024】実施例1 Zn(NO3)2・6H2O(硝酸亜鉛六水和物)と純水を用
いて、硝酸亜鉛水溶液を10-3モル/リットルに調整し
たものを作成し、キャリアーガスには窒素ガスを使用
し、前記方法にしたがって酸化亜鉛微粒子を作成した。
平均液滴径は5μmであった。この平均液滴径は光散乱
式粒度分布計測機(パーティクルサイザー、(株)日本
レーザー製)を用いて測定した。後記実施例2でも同様
の方法で測定した。また、反応管は内径30mm、長さ
1000mmのセラミック製であり、縦型電気加熱炉
(加熱長さ600mm)内に設置されている。キャリア
ーガス流量はlリットル/分で一定とし、反応炉温度は
900℃で一定とした。
Example 1 An aqueous solution of zinc nitrate was adjusted to 10 -3 mol / l using Zn (NO 3 ) 2 .6H 2 O (zinc nitrate hexahydrate) and pure water to prepare a carrier. Nitrogen gas was used as the gas, and zinc oxide fine particles were prepared according to the above method.
The average droplet diameter was 5 μm. The average droplet diameter was measured using a light scattering particle size distribution analyzer (Particle Sizer, manufactured by Nippon Laser Co., Ltd.). The measurement was performed in the same manner in Example 2 described later. The reaction tube is made of ceramic having an inner diameter of 30 mm and a length of 1000 mm, and is installed in a vertical electric heating furnace (heating length: 600 mm). The carrier gas flow rate was constant at 1 liter / min, and the reactor temperature was constant at 900 ° C.

【0025】前記条件で生成した酸化亜鉛中空微粒子の
結晶形は六方晶系ウルツ鉱型であった。酸化亜鉛粒子径
は平均径(個数基準)で約0.32μmであり、粒径分
布(個数基準)は、0.2μm以下が10%、0.2〜
0.3μmが40%、0.3〜0.4μmが40%、0.4
μm以上が20%であった。つぎに、この酸化亜鉛微粒
子の粒子構造を示す粒子断面の透過型電子顕微鏡写真を
図2の図面代用写真に示す。この図より明らかなよう
に、生成微粒子は酸化亜鉛の1次粒子の凝集体からなる
多孔質の中空球状微粒子であり、また、1次粒子の大き
さは20〜40nm程度である。なお、生成した酸化亜
鉛微粒子の結晶形はX線回折装置で測定し、また、微粒
子径は走査型電子顕微鏡で測定した。後記実施例2でも
同様の方法で測定した。
The crystal form of the hollow zinc oxide fine particles produced under the above conditions was a hexagonal wurtzite type. The average particle diameter (number basis) of the zinc oxide particles is about 0.32 μm, and the particle diameter distribution (number basis) is 0.2 μm or less, 10%, 0.2 to 0.2 μm.
0.3 μm is 40%, 0.3 to 0.4 μm is 40%, 0.4
It was 20% for μm or more. Next, a transmission electron micrograph of a cross section of the particles showing the particle structure of the zinc oxide fine particles is shown in FIG. As apparent from this figure, the produced fine particles are porous hollow spherical fine particles composed of aggregates of primary particles of zinc oxide, and the size of the primary particles is about 20 to 40 nm. The crystal form of the generated zinc oxide fine particles was measured with an X-ray diffractometer, and the fine particle diameter was measured with a scanning electron microscope. In Example 2 described later, the measurement was performed in the same manner.

【0026】実施例2 Zn(NO3)2・6H2Oと純水を用いて硝酸亜鉛水溶液
を10-2モル/リットルに調整したものを使用し、実施
例1と同様の方法で酸化亜鉛中空微粒子を作製した。硝
酸亜鉛水溶液の平均液滴径は5μmであった。キャリア
ーガス流量は1リットル/分で一定とし、反応炉温度は
900℃で一定として、反応管は実施例1と同じものを
用いた。
Example 2 Zinc oxide was prepared in the same manner as in Example 1 by using an aqueous solution of zinc nitrate adjusted to 10 −2 mol / L using Zn (NO 3 ) 2 .6H 2 O and pure water. Hollow fine particles were produced. The average droplet diameter of the aqueous zinc nitrate solution was 5 μm. The carrier gas flow rate was constant at 1 liter / min, the reactor temperature was constant at 900 ° C., and the same reaction tube as in Example 1 was used.

【0027】前記条件で生成した酸化亜鉛中空微粒子の
結晶形は六方晶系ウルツ鉱型であった。粒子径は平均径
(個数基準)で約0.45μmであり、粒径分布(個数
基準)は、0.3μm以下が10%、0.3〜0.4μm
が30%、0.4〜0.5μmが50%、0.5μm以上
が10%であった。
The crystal form of the zinc oxide hollow fine particles produced under the above conditions was a hexagonal wurtzite type. The average particle diameter (number basis) is about 0.45 μm, and the particle diameter distribution (number basis) is 0.3 μm or less, 10%, 0.3 to 0.4 μm.
Was 30%, 0.4 to 0.5 μm was 50%, and 0.5% or more was 10%.

【0028】つぎに、この酸化亜鉛微粒子の粒子構造を
示す透過型電子顕微鏡写真を図3の図面代用写真に示
す。この図より明らかなように、生成微粒子は酸化亜鉛
の一次粒子の凝集体からなる多孔質の中空球状微粒子で
ある。なお、顕微鏡用試料作成にあたっては、樹脂中に
酸化亜鉛微粒子を分散させ、その樹脂の超薄切片を切り
出すため、微粒子によっては中空部を切断できずに中空
部の無い微粒子のように見えるものもある。
Next, a transmission electron micrograph showing the particle structure of the zinc oxide fine particles is shown in FIG. As is apparent from this figure, the produced fine particles are porous hollow spherical fine particles composed of aggregates of primary particles of zinc oxide. In preparing a sample for a microscope, zinc oxide fine particles are dispersed in a resin, and an ultra-thin section of the resin is cut out. is there.

【0029】[0029]

【発明の効果】以上のように、本発明によれば、硝酸亜
鉛を出発原料として、その水溶液から微小液滴を作り、
該液滴を高温反応炉内で熱分解反応させ、生成した微粒
子を静電捕集器により回収するという簡便な製造プロセ
スにより、酸化亜鉛の一次粒子の凝集体からなる多孔質
の酸化亜鉛中空微粒子を連続生産でき、しかも低コスト
で製品が得られる。
As described above, according to the present invention, microdroplets are formed from an aqueous solution of zinc nitrate as a starting material,
The droplets are subjected to a thermal decomposition reaction in a high-temperature reactor, and the produced fine particles are collected by an electrostatic collector. Can be produced continuously, and products can be obtained at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の装置の一具体例を示す概略図であ
る。
FIG. 1 is a schematic view showing a specific example of the device of the present invention.

【図2】 実施例1の酸化亜鉛微粒子の粒子構造を示す
粒子断面の図面代用写真である。
FIG. 2 is a drawing substitute photograph of a particle cross section showing the particle structure of the zinc oxide fine particles of Example 1.

【図3】 実施例2の酸化亜鉛微粒子の粒子構造を示す
粒子断面の図面代用写真である。
FIG. 3 is a drawing substitute photograph of a particle cross section showing the particle structure of the zinc oxide fine particles of Example 2.

【符号の説明】[Explanation of symbols]

1;液槽 2;液送用循環ポンプ 3;液滴供給装置
4;キャリアーガス供給装置 5;高温加熱体 6;反
応管 7;静電捕集器 8;コロナ放電体 9;コールドトラップ 10;フィルター 11;ポン
プ 12;ガス流量計 13;温度制御器 14;保温部
Reference Signs List 1; liquid tank 2: liquid circulation pump 3; droplet supply device
4; Carrier gas supply device 5; High temperature heater 6; Reaction tube 7; Electrostatic collector 8; Corona discharger 9; Cold trap 10; Filter 11; Pump 12; Gas flow meter 13; Temperature controller 14; Department

フロントページの続き (72)発明者 峠 登 奈良県大和郡山市小泉町547−12 (58)調査した分野(Int.Cl.7,DB名) C01G 9/03 Continued on the front page (72) Noboru Toge Inventor 547-12 Koizumi-cho, Yamatokoriyama-shi, Nara Prefecture (58) Field surveyed (Int. Cl. 7 , DB name) C01G 9/03

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化亜鉛の1次粒子の凝集体からなる微
粒子であって、中空球状であることを特徴とする酸化亜
鉛中空微粒子。
1. Fine particles of hollow zinc oxide, wherein the fine particles are composed of aggregates of primary particles of zinc oxide and have a hollow spherical shape.
【請求項2】 硝酸亜鉛水溶液を液滴径が0.1μmから
100μmの微小な液滴とし、該液滴を窒素または空気
のキャリアーガスを用いて気液混相の状態で高温反応炉
内へ送り、該反応炉内部で液滴に含まれる硝酸亜鉛を熱
分解して酸化亜鉛中空微粒子を生成することを特徴とす
る酸化亜鉛中空微粒子の製造方法。
2. An aqueous zinc nitrate solution is formed into fine droplets having a droplet diameter of 0.1 μm to 100 μm, and the droplets are fed into a high-temperature reactor in a gas-liquid mixed phase using a carrier gas of nitrogen or air. A method for producing zinc oxide hollow fine particles by thermally decomposing zinc nitrate contained in droplets inside the reaction furnace.
【請求項3】 硝酸亜鉛水溶液の連続供給装置と、該溶
液を微小液滴化して液滴を窒素または空気のキャリアー
ガスと混合する液滴供給装置と、供給された液滴に含ま
れる硝酸亜鉛の熱分解反応を行なわせる高温反応炉と、
該反応炉の外部に設けられた、反応により得られた酸化
亜鉛中空微粒子を回収する静電捕集器とからなることを
特徴とする酸化亜鉛中空微粒子の製造装置。
3. A continuous supply device for an aqueous solution of zinc nitrate, a droplet supply device for making the solution into fine droplets and mixing the droplets with a carrier gas of nitrogen or air, and zinc nitrate contained in the supplied droplets. A high-temperature reactor for performing a thermal decomposition reaction of
An apparatus for producing hollow zinc oxide particles, comprising: an electrostatic collector provided outside the reactor for collecting hollow zinc oxide particles obtained by the reaction.
JP29711391A 1991-11-13 1991-11-13 Hollow fine particles of zinc oxide, method for producing the same and apparatus therefor Expired - Fee Related JP3167756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29711391A JP3167756B2 (en) 1991-11-13 1991-11-13 Hollow fine particles of zinc oxide, method for producing the same and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29711391A JP3167756B2 (en) 1991-11-13 1991-11-13 Hollow fine particles of zinc oxide, method for producing the same and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH05139738A JPH05139738A (en) 1993-06-08
JP3167756B2 true JP3167756B2 (en) 2001-05-21

Family

ID=17842383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29711391A Expired - Fee Related JP3167756B2 (en) 1991-11-13 1991-11-13 Hollow fine particles of zinc oxide, method for producing the same and apparatus therefor

Country Status (1)

Country Link
JP (1) JP3167756B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249285A (en) * 2011-05-25 2011-11-23 云南大学 Method for preparing hollow spindle-shaped micro-structured zinc oxide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241994B2 (en) 2004-11-05 2013-07-17 戸田工業株式会社 Titanium oxide particle powder and photocatalyst
WO2006129793A1 (en) 2005-06-02 2006-12-07 Shiseido Co., Ltd. Degradable zinc oxide powder and process for production thereof
JP6767654B2 (en) * 2016-07-29 2020-10-14 キョーラク株式会社 Multi-layer container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249285A (en) * 2011-05-25 2011-11-23 云南大学 Method for preparing hollow spindle-shaped micro-structured zinc oxide

Also Published As

Publication number Publication date
JPH05139738A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
CN101370734B (en) Carbon nanotubes functionalized with fullerenes
EP2063997B1 (en) Apparatus and method for electrostatically depositing aerosol particles
CN109647310A (en) A method of the spray pyrolysis unit with microwave heating and ternary precursor is prepared with it
US8187562B2 (en) Method for producing cerium dioxide nanopowder by flame spray pyrolysis and cerium dioxide nanopowder produced by the method
Ozcelik et al. Synthesis of ZnO nanoparticles by an aerosol process
EP2114577B1 (en) System and method for electrostatically depositing particles
Workie et al. An comprehensive review on the spray pyrolysis technique: Historical context, operational factors, classifications, and product applications
EP0677326A1 (en) Method of manufacturing fine ceramic particles and apparatus therefor
JP3167756B2 (en) Hollow fine particles of zinc oxide, method for producing the same and apparatus therefor
CN104690295B (en) The method for preparing monodisperse superfine particle
Majumder Synthesis methods of nanomaterials for visible light photocatalysis
CN102139911A (en) Reaction device and method for preparing nano zinc oxide
Primc et al. Recent advances in the plasma-assisted synthesis of zinc oxide nanoparticles
JP2016537291A (en) Synthesis of Si-based nanomaterials using liquid silane
JPH06199502A (en) Production of metal oxide particulte and device therefor
JP5413898B2 (en) Method for producing metal oxide or metal fine particles
JPH0570123A (en) Production of composite fine particle of metal oxide and apparatus therefor
JPH0725614A (en) Ultrafine zinc oxide particle and production thereof
JP3890403B2 (en) Nitrogen-containing zinc oxide powder and method for producing the same
JPH05310425A (en) Production of metal oxide fine particle
US20230278884A1 (en) Aerosol-assisted synthesis of crystalline tungsten bronze particles
KR20100128628A (en) Manufacturing method of silica powder using ultrasonic spray pyrolysis method
CN1663660A (en) Preparation of multicomponent nano material by ultrasonic spray technology
KR101401531B1 (en) Production appararatus of gas-phase hollow nanoparticle using non-metallic template particle and method thereof
CN201864775U (en) Instrument for preparing nano materials with gas phase method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees