JPH0570123A - Production of composite fine particle of metal oxide and apparatus therefor - Google Patents

Production of composite fine particle of metal oxide and apparatus therefor

Info

Publication number
JPH0570123A
JPH0570123A JP23446591A JP23446591A JPH0570123A JP H0570123 A JPH0570123 A JP H0570123A JP 23446591 A JP23446591 A JP 23446591A JP 23446591 A JP23446591 A JP 23446591A JP H0570123 A JPH0570123 A JP H0570123A
Authority
JP
Japan
Prior art keywords
fine particles
metal oxide
metal
salt
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23446591A
Other languages
Japanese (ja)
Inventor
Kentaro Oshima
賢太郎 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP23446591A priority Critical patent/JPH0570123A/en
Publication of JPH0570123A publication Critical patent/JPH0570123A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce composite fine particles of a metal oxide in high yield using simple and safe process and apparatus. CONSTITUTION:A solution containing metal oxide fine particles and a metal salt is formed to small droplets having diameter of 0.1-100mum. The droplets are introduced in a state of mixed gaseous, liquid and solid phases using a carrier gas into a high-temperature reaction furnace, in which the fine particles of the metal oxide dispersed in the liquid droplet form composite fine particles of metal oxide together with metal oxide fine particles formed by the thermal decomposition of the droplet containing the metal salt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属酸化物複合微粒子
の製造方法及び装置に関する。更に詳しくは、紫外線遮
蔽能を有する金属酸化物複合微粒子の製造方法及びその
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing metal oxide composite fine particles. More specifically, it relates to a method and an apparatus for producing metal oxide composite fine particles having an ultraviolet shielding ability.

【0002】[0002]

【従来の技術】一般に金属酸化物微粒子は、光導電性、
圧電性、蛍光性、触媒効果等の性能を利用して様々な工
業分野で利用されている。
2. Description of the Related Art Generally, fine particles of metal oxide are photoconductive,
It is used in various industrial fields by utilizing its properties such as piezoelectricity, fluorescence, and catalytic effect.

【0003】金属酸化物微粒子の中で、例えば酸化亜鉛
微粒子は種々の工業製品、医薬品、ゴムの加硫促進剤、
触媒、バリスター(可変抵抗器)、塗料、最近では紫外線
遮蔽材としてUV化粧品に用いられている。
Among the metal oxide fine particles, for example, zinc oxide fine particles are various industrial products, pharmaceuticals, vulcanization accelerators for rubber,
It is used in UV cosmetics as a catalyst, varistor (variable resistor), paint, and recently as an ultraviolet shielding material.

【0004】また、酸化チタン微粒子も広範な工業製品
価値を有し、白色顔料、磁気原料、研摩剤、医薬品、最
近では酸化亜微粒子と同様に紫外線遮蔽材として用いら
れている。その他の金属酸化物微粒子も、様々の工業的
価値を持つ。
Further, titanium oxide fine particles have a wide range of industrial product values and are used as an ultraviolet shielding material like white pigments, magnetic raw materials, abrasives, pharmaceuticals, and recently, suboxide fine particles. Other metal oxide fine particles also have various industrial values.

【0005】以上の様に、金属酸化物はその工業的価値
が極めて大きく、その機能を最大限に発現させるには微
粒子化が重要である。すなわち、微粒子化することによ
り、比表面積が増大したり、微粒子を構成する全分子数
中に占める微粒子表面に位置する分子数の割合が大きく
なる為に微粒子の表面エネルギーが増大するから、その
機能が極めて大きく発現される。更には、幾つかの相異
なる金属酸化物同士の複合化により、各々の機能が複合
化されたり、あるいは新規な機能が発現されたりする。
すなわち、そのような複合化により、金属酸化物はその
工業的価値を飛躍的に向上させられることになる。
As described above, the metal oxide has a great industrial value, and in order to maximize its function, fine particle formation is important. That is, by making the particles finer, the specific surface area increases, and the ratio of the number of molecules located on the surface of the fine particles in the total number of molecules constituting the fine particles increases, so that the surface energy of the fine particles increases. Is extremely greatly expressed. Furthermore, by compositing several different metal oxides, each function is compounded or a new function is expressed.
That is, such a composite makes the metal oxide dramatically improve its industrial value.

【0006】前述のように、極めて重要な工業的価値を
有する金属酸化物複合微粒子の製造法には、大きく分け
て、液相法と気相法がある。
As described above, the methods for producing metal oxide composite fine particles having extremely important industrial value are roughly classified into a liquid phase method and a gas phase method.

【0007】液相法では、例えば複合金属酸化物超微粒
子の製造法として、特定のW/O型マイクロエマルジョ
ン相に、2種以上の異なる金属のアルコキシド又はそれ
らの前駆体を添加し、加水分解反応を行うことにより、
所望の複合微粒子を得る方法(特開平3−69506号
公報)がある。又、一般的には、古くから、種々の金属
塩に酸・アルカリの溶液を加えて液相内反応を起こすこ
とにより、所望の金属酸化物の複合体を得る方法があ
る。
In the liquid phase method, for example, as a method for producing ultrafine composite metal oxide particles, alkoxides of two or more different metals or their precursors are added to a specific W / O type microemulsion phase and hydrolyzed. By carrying out the reaction,
There is a method for obtaining desired composite fine particles (JP-A-3-69506). In general, there has been a method for obtaining a desired metal oxide complex by adding an acid / alkali solution to various metal salts and causing a reaction in a liquid phase.

【0008】気相法では、例えば2種以上の金属を含む
金属酸化物前駆体を不活性ガス雰囲気中で加熱してガス
化させ、酸素含有ガスと水蒸気とを導入して気相中で反
応させた後、冷却して水蒸気を凝縮させ、所望の複合微
粒子を得る方法(特開昭59−107904号公報)があ
る。
In the gas phase method, for example, a metal oxide precursor containing two or more kinds of metals is heated in an inert gas atmosphere to be gasified, and an oxygen-containing gas and water vapor are introduced to react in a gas phase. After that, there is a method (Japanese Patent Laid-Open No. 59-107904) for obtaining desired composite fine particles by cooling and condensing water vapor.

【0009】上記の液相法と気相法以外に、噴霧乾燥法
があり、例えば、無機酸化物および/又は含水酸化物を
2種類以上含有し、1種類の含有量が特定量以上のコロ
イド液を気流中に噴霧して乾燥し、平均粒子径が1〜2
0μmである所望の複合微粒子を得る方法(特開昭61
−168503号公報)がある。
In addition to the liquid phase method and the vapor phase method, there is a spray drying method, for example, a colloid containing two or more kinds of inorganic oxides and / or hydrous oxides, and one kind of content is a specific amount or more. The liquid is sprayed in an air stream and dried, and the average particle size is 1-2.
Method for obtaining desired composite fine particles having a size of 0 μm
No. 168503).

【0010】[0010]

【発明が解決しようとする課題】以上の従来技術を考え
た場合、液相法では、その出発原料の選定をするのに、
所望とする金属酸化物複合微粒子について、その金属を
含む金属アルコキシド又はそれらの前駆体を合成するの
には限界が有り、換言すれば金属アルコキシド化できな
い金属も有り、広範な金属酸化物複合微粒子を製造でき
るとは言い難い。また、古くから行なわれている金属塩
を用いる方法では、出発原料の選定にはほとんど制限が
無いものの、それらを液相内反応させる為には各種の酸
・アルカリ溶液を経験的に選んで合成しなければなら
ず、その合成過程を決定するのに複雑で長期間を要す
る。そして、これらの液相法による製造プロセスについ
ては、バッチ式が基本となる為自動化が困難で、しかも
生成微粒子は固液混相の状態で得られる為、製品として
得るには、必ず濾過、乾燥の工程が加わり、製造プロセ
ス全体が複雑となり、低コスト化が困難である。
In consideration of the above-mentioned conventional techniques, in the liquid phase method, the starting material for selecting the starting material is
Regarding the desired metal oxide composite fine particles, there is a limit in synthesizing a metal alkoxide containing the metal or a precursor thereof, in other words, there is a metal that cannot be metal alkoxide, and a wide range of metal oxide composite fine particles can be obtained. It is hard to say that it can be manufactured. In addition, in the method using metal salts, which has been used for a long time, there are almost no restrictions on the selection of starting materials, but in order to react them in the liquid phase, various acid / alkali solutions are empirically selected and synthesized. It is complicated and takes a long time to determine the synthetic process. Since the manufacturing process by these liquid phase methods is basically a batch system, it is difficult to automate, and since the produced fine particles are obtained in a solid-liquid mixed phase state, filtration and drying are required to obtain the product. The process is added, the whole manufacturing process becomes complicated, and it is difficult to reduce the cost.

【0011】一方、気相法では、原料に純度の高い金属
酸化物前駆体を用いることが製品の純度を高めるために
必要であるが、その分コスト高となる。また、前述の方
法(特開昭59−107904号公報)の様に、気液固混
相状態で得られた微粒子については、微粒子が液濡れ状
態となり易い。従って、微粒子のみを得るには乾燥工程
を必要とし、その為に低コスト化が困難である。
On the other hand, in the vapor phase method, it is necessary to use a high-purity metal oxide precursor as a raw material in order to increase the purity of the product, but the cost is increased accordingly. Further, as in the method described above (Japanese Patent Laid-Open No. 59-107904), the fine particles obtained in the gas-liquid solid phase are likely to be in a liquid wet state. Therefore, a drying step is required to obtain only the fine particles, which makes it difficult to reduce the cost.

【0012】また、前記噴霧乾燥法では、出発原料に最
初から無機酸化物および/又は含水酸化物を用いている
ので、噴霧溶液にはそれらが懸濁した状態である。その
噴霧溶液内では、無機酸化物や含水酸化物の凝縮・沈殿
が起こり易く、そのような溶液を噴霧した場合、各々の
液滴の組成が均一でなく、生成微粒子の組成も均一でな
いと言える。従って、製品においてはロットぶれが発生
し易く、その為に複合微粒子の製造には適していないと
言える。
Further, in the spray drying method, since the inorganic oxide and / or the hydrous oxide is used as the starting material from the beginning, they are suspended in the spray solution. In the spray solution, condensation / precipitation of inorganic oxides and hydrous oxides easily occurs, and when such a solution is sprayed, the composition of each droplet is not uniform, and the composition of the produced fine particles is not uniform. .. Therefore, it can be said that lot deviation occurs in the product, which is not suitable for the production of composite fine particles.

【0013】本発明の目的は、 1) 金属酸化物微粒子およびそれと異なる金属の塩を
原料とするので、広範な金属酸化物複合微粒子を製造で
きる、 2) 簡便で安全な製造プロセスにより、かつ微粒子の
回収には静電捕集器を用いるので製造装置の長時間、連
続運転が可能であることにより、低コストで金属酸化物
複合微粒子を製造できる、ことである。
The objects of the present invention are: 1) Since metal oxide fine particles and salts of metals different from them are used as raw materials, a wide range of metal oxide composite fine particles can be produced. 2) By a simple and safe production process, and fine particles Since the electrostatic collector is used for the recovery of, the production apparatus can be continuously operated for a long time, and thus the metal oxide composite fine particles can be produced at low cost.

【0014】[0014]

【課題を解決する為の手段】本発明者らは、広範な金属
酸化物複合微粒子を連続的に製造し、かつ簡便なプロセ
スにより低コストで金属酸化物複合微粒子を得るという
ことに着目して本発明を完成した。すなわち本発明は、
金属酸化物微粒子およびそれと異なる金属の塩を含む溶
液を液滴径が0.1μmから100μmの微小な液滴と
し、その液滴をキャリアーガスを用いて気液固混相の状
態で高温反応炉内へ送り、該反応炉内で、該液滴中に分
散している該金属酸化物微粒子と、液滴に含まれる金属
塩の熱分解により生成する金属酸化物微粒子との金属酸
化物複合微粒子を生成することを特徴とする金属酸化物
複合微粒子の製造方法およびそれを実施する製造装置を
提供することを特徴とする。
DISCLOSURE OF THE INVENTION The present inventors have paid attention to the fact that a wide range of metal oxide composite fine particles are continuously produced and the metal oxide composite fine particles are obtained at a low cost by a simple process. The present invention has been completed. That is, the present invention is
A solution containing metal oxide fine particles and a salt of a different metal is made into fine droplets having a droplet diameter of 0.1 μm to 100 μm, and the droplets are used in a high-temperature reaction furnace in a gas-liquid solid mixed state using a carrier gas. To the reaction furnace, metal oxide composite fine particles of the metal oxide fine particles dispersed in the droplets and the metal oxide fine particles generated by thermal decomposition of the metal salt contained in the droplets A method for producing metal oxide composite fine particles, which is characterized by being produced, and a production apparatus for carrying out the method.

【0015】以下、図面に基づいて本発明方法及びその
装置を詳細に説明する。
The method and apparatus of the present invention will be described in detail below with reference to the drawings.

【0016】図1は、本発明の装置の一例の概略図を示
すものである。液槽1内にある金属酸化物微粒子および
金属塩を含む溶液を液送用循環ポンプ2を用いて、微小
な液滴を発生する液滴供給装置3へ連続供給し、その発
生した液滴をキャリアーガス供給装置4より送られてく
るキャリアーガスに同伴させて高温加熱体5を有する反
応管6へ送り込み、反応管6内で液滴の熱分解反応を行
なわせて気固混相状態で金属酸化物複合微粒子を生成さ
せ、該微粒子をコロナ放電体8を有する静電捕集器7内
にある捕集板上へ静電沈着させ、該微粒子を得る方法で
ある。なお、静電捕集器7を出る水蒸気を含むガスは、
コールドトラップ9及びフィルター10へ通されて水分
を除去して、ポンプ11により強制的に排気される。
FIG. 1 shows a schematic view of an example of the apparatus of the present invention. The solution containing the metal oxide fine particles and the metal salt in the liquid tank 1 is continuously supplied to the droplet supply device 3 for generating fine droplets by using the liquid circulation pump 2, and the generated droplets are The carrier gas sent from the carrier gas supply device 4 is sent along with the carrier gas into the reaction tube 6 having the high-temperature heating body 5, and the thermal decomposition reaction of the droplets is carried out in the reaction tube 6 to oxidize the metal in the gas-solid mixed phase state. Object fine particles, and the fine particles are electrostatically deposited on a collector plate in an electrostatic collector 7 having a corona discharge body 8 to obtain the fine particles. In addition, the gas containing water vapor that exits the electrostatic collector 7 is
It is passed through a cold trap 9 and a filter 10 to remove water, and is forcibly exhausted by a pump 11.

【0017】金属酸化物微粒子として用いられるもの
は、水あるいは有機溶媒に不溶性のものであり、具体的
にはアルカリ金属、アルカリ土類金属、遷移金属の酸化
物微粒子である。それらの金属元素の例として、アルカ
リ金属は、Li、Na、K、Rb、Cs、Fr、アルカリ土
類金属は、Be、Mg、Ca、Sr、Ba、Ra、遷移金属
は、周期表第4周期のSc、Ti、V、Cr、Mn、Fe、
Co、Ni、Cu、Zn、第5周期のY、Zr、Nb、Mo、
Tc、Ru、Rh、Pd、Ag、Cd、第6周期のLa、Hf、
Ta、W、Re、Os、Ir、Pt、Au、Hgが挙げられ
る。
What is used as the metal oxide fine particles is insoluble in water or an organic solvent, specifically, oxide fine particles of an alkali metal, an alkaline earth metal or a transition metal. As examples of these metal elements, alkali metals are Li, Na, K, Rb, Cs, Fr, alkaline earth metals are Be, Mg, Ca, Sr, Ba, Ra, and transition metals are Periodic Table 4. Period Sc, Ti, V, Cr, Mn, Fe,
Co, Ni, Cu, Zn, Y, Zr, Nb, Mo in the fifth period,
Tc, Ru, Rh, Pd, Ag, Cd, La, Hf of the sixth period,
Ta, W, Re, Os, Ir, Pt, Au and Hg can be mentioned.

【0018】金属酸化物微粒子の粒子径は0.001μ
mから100μmの範囲で、粒子径分布はなるべく狭い
ものが好ましい。粒子径が0.001μmより小さい場
合、微粒子同士の凝集力が強く、金属塩溶液中で微粒子
を高分散させるのが困難となり、生成複合微粒子の組成
が均一にならない。又、粒子径が100μmより大きい
場合、液滴内に粒子が入れず、その為に複合微粒子の生
成が困難になる。
The particle diameter of the metal oxide fine particles is 0.001 μm.
It is preferable that the particle size distribution is as narrow as possible in the range of m to 100 μm. When the particle size is smaller than 0.001 μm, the cohesive force between the fine particles is strong, it becomes difficult to highly disperse the fine particles in the metal salt solution, and the composition of the resulting composite fine particles is not uniform. On the other hand, if the particle size is larger than 100 μm, the particles do not enter the droplets, which makes it difficult to form the composite fine particles.

【0019】金属塩として用いられる金属元素は、具体
的にはアルカリ金属、アルカリ土類金属、遷移金属であ
る。例えば、アルカリ金属は、Li、Na、K、Rb、C
s、Fr、アルカリ土類金属は、Be、Mg、Ca、Sr、B
a、Ra、遷移金属は、周期表第4周期のSc、Ti、V、
Cr、Mn、Fe、Co、Ni、Cu、Zn、第5周期のY、
Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、第6
周期のLa、Hf、Ta、W、Re、Os、Ir、Pt、Au、
Hgが挙げられる。
The metal element used as the metal salt is specifically an alkali metal, an alkaline earth metal or a transition metal. For example, alkali metals include Li, Na, K, Rb and C.
Be, Mg, Ca, Sr, B for s, Fr, and alkaline earth metals
a, Ra and transition metals are Sc, Ti, V of the 4th period of the periodic table,
Cr, Mn, Fe, Co, Ni, Cu, Zn, Y in the fifth period,
Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, 6th
Period La, Hf, Ta, W, Re, Os, Ir, Pt, Au,
Hg is mentioned.

【0020】また、塩の種類としては、水あるいは有機
溶媒に溶解する塩酸塩、硝酸塩、硫酸塩、リン酸塩、炭
酸塩、酢酸塩、また2種類以上の塩で構成されている複
塩、錯イオンを含む錯塩などで、無水塩および含水塩の
どちらでも良い。金属塩の具体例としては、Ti(SO4)
2、CuSO4・5H2O、Zn(NO3)2・6H2O、Ca(N
3)2・4H2O、CaCl2、MgCO3、Fe3(PO4)2
Cu(CH3COO)2、複塩ではKMgCl3、AlK(SO4)
2など錯塩では、K3[Fe(CN)6]、[CoCl(NH3)5]C
l2などが挙げられる。これらの中で、紫外線遮蔽能を向
上させるための組み合わせとして、金属酸化物微粒子と
しては酸化亜鉛又は二酸化チタンが好ましく、また金属
塩としては、亜鉛又はチタンの塩が好ましい。
The types of salts include hydrochlorides, nitrates, sulfates, phosphates, carbonates, acetates, and double salts composed of two or more salts, which are soluble in water or an organic solvent. A complex salt containing a complex ion or the like, which may be either an anhydrous salt or a hydrous salt. Specific examples of the metal salt include Ti (SO 4 )
2, CuSO 4 · 5H 2 O , Zn (NO 3) 2 · 6H 2 O, Ca (N
O 3) 2 · 4H 2 O , CaCl 2, MgCO 3, Fe 3 (PO 4) 2,
Cu (CH 3 COO) 2 , double salt KMGCl 3 , AlK (SO 4 ).
For complex salts such as 2 , K 3 [Fe (CN) 6 ], [CoCl (NH 3 ) 5 ] C
l 2 and the like. Among these, zinc oxide or titanium dioxide is preferable as the metal oxide fine particles, and zinc or titanium salt is preferable as the metal salt, as a combination for improving the ultraviolet shielding ability.

【0021】本発明においてはこれら金属酸化物微粒子
と金属塩は混合物で用いられる。例えば、金属酸化物微
粒子として二酸化チタン微粒子を用い、又、金属塩とし
て亜鉛塩を用いた場合は、反応炉内温度の高低により、
チタン酸亜鉛(Zn2TiO4)の結晶相をもつ複合微粒
子、又は酸化チタンと酸化亜鉛の両方の結晶相をもつ複
合微粒子が得られる。
In the present invention, the metal oxide fine particles and the metal salt are used as a mixture. For example, when titanium dioxide fine particles are used as the metal oxide fine particles and zinc salt is used as the metal salt, the temperature inside the reaction furnace may be high or low.
Composite fine particles having a crystal phase of zinc titanate (Zn 2 TiO 4 ) or composite fine particles having a crystal phase of both titanium oxide and zinc oxide are obtained.

【0022】また、金属塩溶液の溶媒としては、水、有
機溶媒あるいはそれらの混合物を用いる。有機溶媒の例
としてはメタノール、エタノール等のアルコールや、
N,N−ジメチルホルムアミド、ジメチルスルホキシ
ド、ヘキサメチルホスホルアミド等の極性溶媒が挙げら
れる。金属塩溶液濃度は10-5mol/lから20mol/lの
範囲で、望ましくは、10-4mol/l〜10mol/lの範囲
が良い。その理由は、溶液濃度が10-5mol/lより薄い
場合、金属酸化物微粒子の生成量が極端に少なくなり、
また溶液濃度が20mol/lより濃い場合、溶液粘度が増
加しすぎて微小液滴化が困難となるからである。又、金
属塩溶液中での金属酸化物微粒子の濃度は10-5mol/l
から10mol/lの範囲で、望ましくは10-4mol/l〜5
mol/lの範囲が良い。その理由は、その微粒子濃度が1
-5mol/lより薄い場合、金属酸化物複合微粒子の生成
量が極めて少なく、また微粒子濃度が10mol/lより濃
い場合、溶液粘度が増加しすぎて微小液滴化が困難とな
るからである。本発明において反応管に供給される液滴
中では、金属酸化物微粒子は上記の溶媒に不溶性であ
り、固形物粒子として分散しており、また金属塩は上記
溶媒に溶解して存在している。
As the solvent for the metal salt solution, water, an organic solvent or a mixture thereof is used. Examples of organic solvents include alcohols such as methanol and ethanol,
Examples include polar solvents such as N, N-dimethylformamide, dimethylsulfoxide, and hexamethylphosphoramide. The concentration of the metal salt solution is in the range of 10 -5 mol / l to 20 mol / l, preferably 10 -4 mol / l to 10 mol / l. The reason is that when the solution concentration is lower than 10 -5 mol / l, the amount of metal oxide fine particles produced is extremely small,
In addition, if the solution concentration is higher than 20 mol / l, the solution viscosity increases excessively and it becomes difficult to form fine droplets. The concentration of the metal oxide fine particles in the metal salt solution is 10 -5 mol / l.
To 10 mol / l, preferably 10 -4 mol / l to 5
Good mol / l range. The reason is that the particle concentration is 1
If it is thinner than 0 -5 mol / l, the amount of the metal oxide composite fine particles produced is extremely small, and if the concentration of the fine particles is higher than 10 mol / l, the solution viscosity increases excessively and it becomes difficult to form fine droplets. is there. In the droplets supplied to the reaction tube in the present invention, the metal oxide fine particles are insoluble in the above solvent and are dispersed as solid particles, and the metal salt is dissolved in the above solvent and is present. ..

【0023】キャリアーガスとは、不活性ガスあるいは
熱分解反応の進行をさまたげないガスを言い、例えばヘ
リウム、空気、窒素等が用いられ、キャリアーガスの流
量は、反応管6内での金属酸化物微粒子および金属塩を
含む液滴の滞留時間が1secより短くならないようにそ
の流量を調節しなければならない。
The carrier gas is an inert gas or a gas that does not interfere with the progress of the thermal decomposition reaction, and for example, helium, air, nitrogen or the like is used, and the flow rate of the carrier gas is the metal oxide in the reaction tube 6. The flow rate must be adjusted so that the residence time of the droplets containing fine particles and metal salts does not become shorter than 1 second.

【0024】溶液の微小液滴化方法には、超音波振動に
よる方法や噴霧ノズルを用いる方法等があるが、液滴径
分布が狭くかつ微小な液滴を得るには、好ましくは超音
波振動による方法が良い。
There are various methods for forming a solution into fine droplets, such as a method using ultrasonic vibration and a method using a spray nozzle. In order to obtain fine droplets having a narrow droplet diameter distribution, ultrasonic vibration is preferable. Method is better.

【0025】液滴径は、0.1μmから100μmの範囲
で、液滴径分布はなるべく狭いもののが好ましい。液滴
径が0.1μmより小さい場合、熱分解により生成する微
粒子径は最大でも0.01μm程度で、その領域の微粒子
は超微粒子と呼ばれ、ブラウン拡散が大きい為反応管内
壁への沈着量が非常に多くなり、生成微粒子の歩留まり
が悪くなる。また、液滴径が100μmより大きい場
合、熱分解により生成する微粒子径は小さくても数十μ
m程度で、粒子の微粒化が困難となる。なお液滴径は気
液混相の状態で測定することが好ましく、例えば光散乱
式粒度分布計測機で測定できる。
The droplet diameter is preferably in the range of 0.1 μm to 100 μm, and the droplet diameter distribution is preferably as narrow as possible. When the droplet diameter is smaller than 0.1 μm, the diameter of fine particles generated by thermal decomposition is about 0.01 μm at the maximum, and the fine particles in that area are called ultrafine particles, and the amount of deposition on the inner wall of the reaction tube is large because of Brownian diffusion. Becomes very large, and the yield of the produced fine particles deteriorates. Also, when the droplet size is larger than 100 μm, the particle size generated by thermal decomposition is a few dozen μ even if it is small.
At about m, it becomes difficult to atomize the particles. The droplet size is preferably measured in a gas-liquid mixed phase, and can be measured, for example, by a light scattering type particle size distribution measuring instrument.

【0026】本発明により得られる金属酸化物複合微粒
子は、単分散性が良く、噴霧溶液の濃度調整により、
0.01μmから100μmの範囲のものが得られるが、
生成微粒子の歩留まりや微粒化による機能向上を考慮し
た場合、好ましくは0.01μmから10μmの範囲が良
い。なお金属酸化物複合微粒子径は、種々の方法で測定
できるが、例えば走査型電子顕微鏡で測定できる。
The metal oxide composite fine particles obtained by the present invention have good monodispersibility, and by adjusting the concentration of the spray solution,
The range from 0.01 μm to 100 μm can be obtained,
Considering the yield of the produced fine particles and the function improvement due to atomization, the range of 0.01 μm to 10 μm is preferable. The diameter of the metal oxide composite fine particles can be measured by various methods, for example, a scanning electron microscope.

【0027】反応炉は、反応管6において、管軸方向お
よび半径方向に対して、等温部がなるべく広く保たれる
ように加熱体5を温度制御できるようにしなくてはなら
ない。反応炉の温度は、溶媒を水とした時、望ましくは
80℃から2000℃の範囲が良い。また、溶媒をアル
コールとした時、望ましくは、50℃から400℃の範
囲が良い。その理由として、溶媒が水の場合、80℃よ
り低いと液滴の水分が蒸発しにくく、また2000℃よ
り高いと水蒸気爆発の可能性があり、溶媒がアルコール
の場合、50℃より低いと液滴のアルコール分が蒸発し
にくく、また400℃より高いとススが発生するからで
ある。
In the reaction furnace, the temperature of the heating element 5 must be controlled so that the isothermal portion of the reaction tube 6 is kept as wide as possible in the axial direction and the radial direction. The temperature of the reaction furnace is preferably in the range of 80 ° C to 2000 ° C when water is used as the solvent. Further, when alcohol is used as the solvent, it is preferably in the range of 50 ° C to 400 ° C. The reason for this is that when the solvent is water, if the temperature is lower than 80 ° C., the water content of the droplets is hard to evaporate, and if it is higher than 2000 ° C., there is a possibility of steam explosion, and if the solvent is alcohol, the liquid temperature is lower than 50 ° C. This is because the alcohol content of the droplets is hard to evaporate and soot is generated when the temperature is higher than 400 ° C.

【0028】熱分解反応を例示すると、 1) Ti(SO4)2 → TiO2+SOx 2) CuSO4 → CuO+SOx 3) Zn(NO3)2 → ZnO+NOx 4) Ca(NO3)2 → CaO+NOx 5) MgCO3 → MgO+CO2 などが挙げられる。The thermal decomposition reaction is exemplified as follows: 1) Ti (SOFour)2 → TiO2+ SOx 2) CuSOFour → CuO + SOx 3) Zn (NO3)2 → ZnO + NOx 4) Ca (NO3)2 → CaO + NOx 5) MgCO3 → MgO + CO2  And so on.

【0029】微粒子捕集器には、フィルター式、静電捕
集式があるが、フィルター式では、長時間使用すると目
詰まりを起こして本装置系におけるガスの流入および流
出のバランスを崩してしまう為、装置が長時間正常に作
動しなくなる恐れがある。しかし、静電捕集式では、コ
ロナ放電体8から発せられる電荷により微粒子は荷電
し、接地された捕集板と帯電微粒子との静電引力によ
り、微粒子は捕集板上に集められ、ガスは捕集板に設け
られた穴を通して系外へ排出される。本発明装置では反
応炉の外部に静電捕集器が設けられているので、捕集板
の面積を大きくすることができる。したがって、長時間
の使用にも十分対応できる。また、静電捕集器を複数個
具備することによりそれらを切り換えて使えば、更に連
続長時間運転が可能である。静電捕集器を反応炉内に設
置する方法も考えられるが、その場合、上述のような捕
集板の面積を増大したり、捕集器を複数個設けることが
できない。本発明の装置では静電捕集器を反応管の外部
に設けるので、捕集効率が飛躍的に向上する。
The fine particle collector includes a filter type and an electrostatic type, but in the filter type, if used for a long time, clogging occurs and the balance of gas inflow and outflow in the system of the present device is lost. Therefore, the device may not operate normally for a long time. However, in the electrostatic collection type, the fine particles are charged by the electric charge generated from the corona discharger 8, and the fine particles are collected on the collection plate by the electrostatic attraction between the grounded collection plate and the charged fine particles. Is discharged to the outside of the system through a hole provided in the collecting plate. In the device of the present invention, since the electrostatic collector is provided outside the reaction furnace, the area of the collector plate can be increased. Therefore, it can be sufficiently used for a long time. Further, if a plurality of electrostatic collectors are provided and they are switched and used, further continuous long-time operation is possible. A method of installing the electrostatic collector in the reaction furnace may be considered, but in that case, the area of the collector plate as described above cannot be increased or a plurality of collectors cannot be provided. In the device of the present invention, since the electrostatic collector is provided outside the reaction tube, the collection efficiency is dramatically improved.

【0030】紫外線遮蔽能とは、機構的には紫外線吸収
と紫外線散乱とに分かれ、前者は金属酸化物特有の半導
性に基づくもので、バンドギャップエネルギーに相当す
る紫外線を吸収し、後者は微粒子化に基づくもので粒子
径が紫外線波長と同程度である時、最も効率良く紫外線
を散乱する。本発明製造法により作成された金属酸化物
複合微粒子は半導性を有する為紫外線を吸収し、かつ微
粒子として得られるので紫外線を効率良く散乱する為紫
外線遮蔽能が極めて高いと言える。更には、異なった金
属酸化物同士の複合化により、各々の紫外線遮蔽能が複
合化されると言える。生成する金属酸化物複合微粒子の
形態としては、原料溶液中に分散させて反応管に供給す
る金属酸化物微粒子の周囲に、原料溶液中に溶解させた
金属塩が反応管内で熱分解して生成する金属酸化物が付
着したものが考えられる。また上記原料溶液中の金属酸
化物微粒子の複数個の間および表面に熱分解で生成した
金属酸化物が存在する形態も考えられる。
The ultraviolet blocking ability is mechanically divided into ultraviolet absorption and ultraviolet scattering. The former is based on the semiconductivity peculiar to metal oxides, and absorbs ultraviolet rays corresponding to the band gap energy, and the latter is It is based on atomization, and when the particle size is about the same as the ultraviolet wavelength, it scatters ultraviolet rays most efficiently. It can be said that the metal oxide composite fine particles produced by the production method of the present invention have a semiconducting property and thus absorb ultraviolet rays, and since they are obtained as fine particles, they efficiently scatter ultraviolet rays and thus have an extremely high ultraviolet shielding ability. Furthermore, it can be said that by combining different metal oxides, the respective ultraviolet ray shielding functions are combined. As the form of the metal oxide composite fine particles to be generated, the metal salt dissolved in the raw material solution is thermally decomposed and generated in the reaction tube around the metal oxide fine particles dispersed in the raw material solution and supplied to the reaction tube. It is conceivable that a metal oxide that adheres to the surface is attached. It is also conceivable that a metal oxide produced by thermal decomposition exists between a plurality of metal oxide fine particles in the raw material solution and on the surface thereof.

【0031】[0031]

【実施例】本発明を実施例により更に詳細に説明する。
本発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail by way of examples.
The present invention is not limited to these examples.

【0032】[0032]

【実施例1】Zn(NO3)2・6H2O(硝酸亜鉛六水和物)
と純水を用いて、硝酸亜鉛水溶液を10-3mol/lに調整
し、その水溶液にTiO2微粒子(アナターゼ型、平均粒
子径0.02μm)を分散させ、TiO2微粒子の濃度を7
×10-4mol/lに調整したものを作成し、キャリアーガ
スには窒素ガスを使用し、図1に示されるような方法で
二酸化チタンおよび酸化亜鉛の複合微粒子を作成した。
平均液滴径は5μmであった。この平均液滴径は光散乱
式粒度分布計測機(パーティクルサイザー、(株)日本
レーザー製)を用いて測定した。以下実施例2、3でも
同様の方法で測定した。さらに詳しく説明すると、反応
管には磁製チューブ(内径35mm、長さ1m)を用い、キ
ャリアーガス流量は2l/minで一定とし、反応炉温度は
800℃で一定として、図1に示されるような方法で二
酸化チタンおよび酸化亜鉛の複合微粒子を作成した。
Example 1 Zn (NO 3 ) 2 .6H 2 O (zinc nitrate hexahydrate)
An aqueous solution of zinc nitrate was adjusted to 10 -3 mol / l using water and pure water, and TiO 2 fine particles (anatase type, average particle diameter 0.02 μm) were dispersed in the aqueous solution to adjust the concentration of TiO 2 fine particles to 7
A composite fine particle of titanium dioxide and zinc oxide was prepared by the method as shown in FIG. 1 using nitrogen gas as a carrier gas prepared at a concentration of × 10 -4 mol / l.
The average droplet diameter was 5 μm. The average droplet diameter was measured using a light scattering type particle size distribution measuring device (Particlesizer, manufactured by Nippon Laser Co., Ltd.). The same method was used in Examples 2 and 3 below. More specifically, a porcelain tube (inner diameter 35 mm, length 1 m) is used as the reaction tube, the carrier gas flow rate is kept constant at 2 l / min, and the reaction furnace temperature is kept constant at 800 ° C. as shown in FIG. Composite particles of titanium dioxide and zinc oxide were prepared by various methods.

【0033】上記条件で生成した二酸化チタンおよび酸
化亜鉛の複合微粒子は、その結晶性はアモルファスで一
部にアナターゼ型およびヘキサゴナル型が混在してお
り、その粒子径は平均径(個数基準)で約0.26μmで、
その粒径分布(個数基準)は、0.1μm以下が10%、
0.1〜0.2μmが40%、0.2〜0.3μmが40%、
0.3μm以上は10%であった。なお、生成した複合微
粒子の結晶形はX線回折装置で測定し、また微粒子径は
走査型電子顕微鏡で測定した。以下実施例2、3でも同
様の方法で測定した。
The composite fine particles of titanium dioxide and zinc oxide produced under the above conditions have an amorphous crystallinity, and anatase type and hexagonal type are partially mixed, and the particle diameter is about the average diameter (number basis). 0.26 μm,
The particle size distribution (number basis) is 0.1% or less is 10%,
0.1-0.2 μm is 40%, 0.2-0.3 μm is 40%,
It was 10% at 0.3 μm or more. The crystal form of the produced composite fine particles was measured with an X-ray diffractometer, and the fine particle diameter was measured with a scanning electron microscope. The same method was used in Examples 2 and 3 below.

【0034】該複合微粒子の紫外線遮蔽能を測定する為
に、以下に述べる方法を用いて評価した。
In order to measure the ultraviolet shielding ability of the composite fine particles, evaluation was carried out using the method described below.

【0035】まず、該複合微粒子10mgを分取し、それ
を純水:グリセリンを1:1に混合したグリセリン水溶液
10g中に入れて、超音波分散器を用いて該水溶液内で
微粒子を良く分散させる。次に、微粒子懸濁液を、光路
長1mmの石英ガラス製セルに入れて、分光計にて光波長
200nmから800nmまでの光に対して透過率を測定す
る。その測定結果を図2に示す。
First, 10 mg of the composite fine particles were taken and put in 10 g of an aqueous glycerin solution in which pure water: glycerin was mixed at a ratio of 1: 1, and the fine particles were well dispersed in the aqueous solution using an ultrasonic disperser. Let Next, the fine particle suspension is put into a quartz glass cell having an optical path length of 1 mm, and the transmittance is measured with a spectrometer for light having a light wavelength of 200 nm to 800 nm. The measurement result is shown in FIG.

【0036】図2において、詳細に説明すると、可視光
域、すなわち400nm〜800nmで、光透過率が18%
〜85%となっており、透明性に優れており、かつ、紫
外線域において、370nm以下で光透過率が6%以下と
なり、紫外線A領域(320〜400nm)、紫外線B領域
(290nm〜320nm)において非常に遮蔽性に優れたも
のになっているのがわかる。
Referring to FIG. 2 in detail, the light transmittance is 18% in the visible light region, that is, 400 nm to 800 nm.
~ 85%, excellent transparency, and light transmittance of 370 nm or less in the ultraviolet region is 6% or less, ultraviolet A region (320 to 400 nm), ultraviolet B region
It can be seen that at (290 nm to 320 nm), the shielding property is extremely excellent.

【0037】[0037]

【実施例2】Zn(NO3)2・6H2Oと純水を用いて、硝
酸亜鉛水溶液を10-4mol/lに調整し、その水溶液にT
iO2微粒子(アナターゼ型、平均粒子径0.02μm)を
分散させ、TiO2その金属酸化物微粒子の濃度を10-4
mol/lに調整したものを使用し、キャリアーガスには窒
素ガスを使用し、図1に示されるような方法で二酸化チ
タンおよび酸化亜鉛の複合微粒子を作成した。平均液滴
径は1μmであった。キャリアーガス流量は2l/minで
一定とし、反応炉温度は900℃で一定として、反応管
は実施例1と同じものを用いた。
Example 2 Zn (NO 3 ) 2 .6H 2 O and pure water were used to adjust the zinc nitrate aqueous solution to 10 -4 mol / l, and the aqueous solution was treated with T
TiO 2 fine particles (anatase type, average particle diameter 0.02 μm) are dispersed, and the concentration of TiO 2 metal oxide fine particles is adjusted to 10 −4.
Using those adjusted to mol / l, nitrogen gas was used as a carrier gas, and composite particles of titanium dioxide and zinc oxide were prepared by the method as shown in FIG. The average droplet diameter was 1 μm. The carrier gas flow rate was kept constant at 2 l / min, the reaction furnace temperature was kept constant at 900 ° C., and the same reaction tube as in Example 1 was used.

【0038】上記条件で生成した二酸化チタンおよび酸
化亜鉛の複合微粒子は、その結晶形はアナターゼ型およ
びヘキサゴナル型が混在しており、その粒子径は平均径
(個数基準)で約0.1μmで、その粒径分布(個数基準)
は、0.05μm以下が10%、0.05〜0.1μmが4
0%、0.1〜0.15μmが40%、0.15μm以上は
10%であった。
The composite fine particles of titanium dioxide and zinc oxide produced under the above conditions have anatase type and hexagonal type mixed crystal forms, and their particle diameters are average diameters.
Approximately 0.1 μm (based on number), particle size distribution (based on number)
Is less than 0.05 μm, 10%, 0.05-0.1 μm is 4
0%, 0.1 to 0.15 μm was 40%, and 0.15 μm or more was 10%.

【0039】該複合微粒子の紫外線遮蔽能を測定する為
に、実施例1で述べた方法と同様にして光透過率を測定
した結果を図3に示す。
FIG. 3 shows the result of measuring the light transmittance in the same manner as the method described in Example 1 in order to measure the ultraviolet shielding ability of the composite fine particles.

【0040】図3に示すように、可視光域すなわち40
0nm〜800nmで、光透過率が23%〜92%となって
おり、非常に透明性に優れており、かつ紫外線域におい
ては、370nm以下で光透過率が3%以下となり、紫外
線A領域およびB領域において、非常に遮蔽性に優れた
ものになっているのがわかる。
As shown in FIG. 3, the visible light range, that is, 40
From 0 nm to 800 nm, the light transmittance is 23% to 92%, which is very excellent in transparency, and in the ultraviolet region, the light transmittance is 3% or less at 370 nm or less. It can be seen that in the region B, the shielding property is extremely excellent.

【0041】[0041]

【実施例3】Ti(SO4)2・と純水を用いて硫酸チタン
水溶液を10-3mol/lに調整し、その水溶液にZnO微
粒子(ヘキサゴナル型、平均粒子径0.03μm)を分散
させ、ZnO微粒子の濃度を7×10-4mol/lに調整し
たものを作成し、キャリアーガスには空気を使用し、図
1に示されるような方法で、酸化亜鉛と二酸化チタンの
複合微粒子を作成した。平均液滴径は5μmであった。
キャリアーガス流量は1l/minで一定とし、反応炉温度
は1100℃で一定とし、反応管は実施例1と同じもの
を用いた。
Example 3 An aqueous titanium sulfate solution was adjusted to 10 −3 mol / l using Ti (SO 4 ) 2 and pure water, and ZnO fine particles (hexagonal type, average particle size 0.03 μm) were dispersed in the aqueous solution. Then, the concentration of ZnO fine particles was adjusted to 7 × 10 −4 mol / l, air was used as the carrier gas, and the composite fine particles of zinc oxide and titanium dioxide were prepared by the method shown in FIG. It was created. The average droplet diameter was 5 μm.
The carrier gas flow rate was constant at 1 l / min, the reaction furnace temperature was constant at 1100 ° C., and the same reaction tube as in Example 1 was used.

【0042】上記条件で生成した酸化亜鉛と二酸化チタ
ンの複合微粒子は、その結晶性はアモルファスで一部に
ヘキサゴナル型およびアナターゼ型が混在しており、そ
の粒子径は平均径(個数基準)で約0.1μmで、その粒
径分布(個数基準)は、0.05μm以下が10%、0.0
5〜0.1μmが40%、0.1〜0.15μmが40%、
0.15μm以上は10%であった。
The zinc oxide-titanium dioxide composite fine particles produced under the above conditions have an amorphous crystallinity and a mixture of hexagonal type and anatase type particles, and their particle diameters are about an average diameter (number basis). 0.1 μm, the particle size distribution (number basis) is 0.05% or less 10%, 0.0
5 ~ 0.1μm 40%, 0.1 ~ 0.15μm 40%,
It was 10% at 0.15 μm or more.

【0043】前記の複合微粒子の紫外線遮蔽能を測定す
る為に、実施例1で述べた方法と同様にして光透過率を
測定した結果を図4に示す。図4に示されるように、可
視光域すなわち400〜800nmで、光透過率が52%
〜91%となり、非常に透明性に優れており、紫外線域
においては、370nm以下で光透過率は20%以下とな
り、本微粒子は紫外線A領域およびB領域において、遮
蔽性に優れたものになっているのがわかる。
FIG. 4 shows the results of measuring the light transmittance in the same manner as in the method described in Example 1 in order to measure the ultraviolet shielding ability of the composite fine particles. As shown in FIG. 4, the light transmittance is 52% in the visible light range, that is, 400 to 800 nm.
It is up to 91% and is very excellent in transparency, and the light transmittance is 370 nm or less in the ultraviolet region, and the light transmittance is 20% or less, and the fine particles have excellent shielding properties in the ultraviolet regions A and B. I understand.

【0044】[0044]

【発明の効果】以上のように、本発明によれば、種々の
金属酸化物微粒子および金属塩を出発原料として、それ
らの懸濁水溶液又は懸濁有機溶媒溶液から微小液滴を作
り、それらを高温反応炉内で熱分解反応させ、静電捕集
器により微粒子を回収するという簡便な製造プロセスに
より、種々の金属酸化物複合微粒子を連続生産でき、し
かも低コストで製品が得られることになる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, various metal oxide fine particles and metal salts are used as starting materials, and fine droplets are formed from a suspension aqueous solution or a suspension organic solvent solution thereof, By a simple manufacturing process of pyrolyzing reaction in a high temperature reactor and collecting fine particles by an electrostatic collector, various metal oxide composite fine particles can be continuously produced and products can be obtained at low cost. ..

【0045】そして、本方法により製造した金属酸化物
複合微粒子は、その紫外線遮蔽能において、非常に優れ
た機能をもつ。
The metal oxide composite fine particles produced by this method have a very excellent function in terms of its ultraviolet ray shielding ability.

【0046】尚、本方法により製造した金属酸化物複合
微粒子は、半導性を有するので、紫外線遮蔽能の他に、
光導電性、蛍光性、圧電性等の金属酸化物特有の機能を
数多く持つ。
Since the metal oxide composite fine particles produced by this method have semiconductivity, in addition to the ability to block ultraviolet rays,
It has many functions unique to metal oxides such as photoconductivity, fluorescence, and piezoelectricity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明における製造装置の概略図である。FIG. 1 is a schematic view of a manufacturing apparatus according to the present invention.

【図2】 実施例1の二酸化チタンおよび酸化亜鉛の複
合微粒子の紫外線および可視光透過率を表わすチャート
図である。
2 is a chart showing the ultraviolet and visible light transmittance of the composite fine particles of titanium dioxide and zinc oxide of Example 1. FIG.

【図3】 実施例2の二酸化チタンおよび酸化亜鉛の複
合微粒子の紫外線および可視光透過率を表わすチャート
図である。
FIG. 3 is a chart showing the ultraviolet and visible light transmittance of composite fine particles of titanium dioxide and zinc oxide of Example 2.

【図4】 実施例3の酸化亜鉛および二酸化チタンの複
合微粒子の紫外線および可視光透過率を表わすチャート
図である。
FIG. 4 is a chart showing ultraviolet and visible light transmittances of composite fine particles of zinc oxide and titanium dioxide of Example 3.

【符号の説明】[Explanation of symbols]

1; 液槽 2; 液送用循環ポンプ 3; 液
滴供給装置 4; キャリアーガス供給装置 5; 高温加熱体
6; 反応管 7; 静電捕集器 8; コロナ放電体 9;
コールドトラップ 10; フィルター 11; ポンプ
1; Liquid tank 2; Circulation pump for liquid supply 3; Droplet supply device 4; Carrier gas supply device 5; High temperature heating body 6; Reaction tube 7; Electrostatic collector 8; Corona discharge body 9;
Cold trap 10; Filter 11; Pump

【手続補正書】[Procedure amendment]

【提出日】平成3年10月11日[Submission date] October 11, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Name of item to be corrected] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0037】[0037]

【実施例2】Zn(NO・6HOと純水を用い
て、硝酸亜鉛水溶液を10−4mol/1に調整し、そ
の水溶液にTiO微粒子(アナターゼ型、平均粒子径
0.02μm)を分散させ、TiO微粒子の濃度を1
−4mol/1に調整したものを使用し、キャリアー
ガスには窒素ガスを使用し、図1に示されるような方法
で二酸化チタンおよび酸化亜鉛の複合微粒子を作成し
た。平均液滴径は1μmであった。キャリアーガス流量
は21/minで一定とし、反応炉温度は900℃で一
定として、反応管は実施例1と同じものを用いた。
Example 2 Zn (NO 3) using a 2 · 6H 2 O and pure water, a zinc nitrate aqueous solution was adjusted to 10 -4 mol / 1, TiO 2 particles (anatase form to its aqueous solution, the average particle diameter 0 0.02 μm) and the concentration of TiO 2 particles is set to 1
The mixture was adjusted to 0 −4 mol / 1, nitrogen gas was used as a carrier gas, and composite particles of titanium dioxide and zinc oxide were prepared by the method shown in FIG. 1. The average droplet diameter was 1 μm. The carrier gas flow rate was constant at 21 / min, the reaction furnace temperature was constant at 900 ° C., and the same reaction tube as in Example 1 was used.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物微粒子およびそれと異なる金
属の塩を含む溶液を液滴径が0.1μmから100μmの
微小な液滴とし、その液滴をキャリアーガスを用いて気
液固混相の状態で高温反応炉内へ送り、該反応炉内で、
該液滴中に分散している該金属酸化物微粒子と、液滴に
含まれる金属塩の熱分解により生成する金属酸化物微粒
子との金属酸化物複合微粒子を生成することを特徴とす
る金属酸化物複合微粒子の製造方法。
1. A solution containing metal oxide fine particles and a salt of a metal different from the metal oxide is made into fine droplets having a droplet diameter of 0.1 μm to 100 μm, and the droplets are in a gas-liquid solid mixed phase using a carrier gas. In a high temperature reactor, and in the reactor,
A metal oxide complex fine particle, which is characterized in that it forms a metal oxide composite fine particle of the metal oxide fine particle dispersed in the droplet and the metal oxide fine particle generated by thermal decomposition of a metal salt contained in the droplet. For producing fine composite particles.
【請求項2】 金属酸化物微粒子が酸化亜鉛微粒子であ
り、金属塩がチタンの塩、又は金属酸化物微粒子が二酸
化チタン微粒子、金属塩が亜鉛の塩である請求項1記載
の金属酸化物複合微粒子の製造方法。
2. The metal oxide composite according to claim 1, wherein the metal oxide fine particles are zinc oxide fine particles, the metal salt is a titanium salt, or the metal oxide fine particles are titanium dioxide fine particles and the metal salt is a zinc salt. Method for producing fine particles.
【請求項3】 金属酸化物微粒子およびそれと異なる金
属の塩を含む溶液の連続供給装置、その溶液を微小液滴
化して、その液滴をキャリアーガスと混合する液滴供給
装置、供給された液滴に含まれる金属塩の熱分解反応を
行なわせる高温反応炉、および該反応炉の外部に設けら
れた反応により得られた金属酸化物複合微粒子を回収す
る静電捕集器を具備することを特徴とする金属酸化物複
合微粒子の製造装置。
3. A device for continuously supplying a solution containing metal oxide fine particles and a salt of a metal different from the metal oxide, a liquid droplet supplying device for forming the solution into fine liquid droplets and mixing the liquid droplets with a carrier gas, and a liquid supplied. A high temperature reactor for performing a thermal decomposition reaction of a metal salt contained in the droplets; and an electrostatic collector for recovering the metal oxide composite fine particles obtained by the reaction provided outside the reactor. Characteristic metal oxide composite fine particle manufacturing apparatus.
JP23446591A 1991-09-13 1991-09-13 Production of composite fine particle of metal oxide and apparatus therefor Pending JPH0570123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23446591A JPH0570123A (en) 1991-09-13 1991-09-13 Production of composite fine particle of metal oxide and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23446591A JPH0570123A (en) 1991-09-13 1991-09-13 Production of composite fine particle of metal oxide and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH0570123A true JPH0570123A (en) 1993-03-23

Family

ID=16971433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23446591A Pending JPH0570123A (en) 1991-09-13 1991-09-13 Production of composite fine particle of metal oxide and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0570123A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358407A (en) * 1986-08-29 1988-03-14 Sumitomo Electric Ind Ltd Working method for optical fiber positioning member
US6796809B2 (en) 2002-05-24 2004-09-28 The Furukawa Electric Co., Ltd. Electrical junction box
EP1718421A2 (en) * 2004-02-27 2006-11-08 The Regents Of The University Of Michigan Liquid feed flame spray modification of nanoparticles
JP2007534586A (en) * 2004-02-27 2007-11-29 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Nanoparticle modification by liquid delivery flame spraying
WO2014017571A1 (en) 2012-07-27 2014-01-30 矢崎総業株式会社 Electrical connection box
WO2015098992A1 (en) * 2013-12-27 2015-07-02 堺化学工業株式会社 Zinc oxide particles, production method for same, ultraviolet ray shielding agent, and cosmetic material
WO2015098993A1 (en) * 2013-12-27 2015-07-02 堺化学工業株式会社 Zinc oxide particles, production method for same, ultraviolet ray shielding agent, and cosmetic material
US10483516B2 (en) * 2017-04-18 2019-11-19 Autonetworks Technologies, Ltd. Electricity storage module and electricity storage pack

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358407A (en) * 1986-08-29 1988-03-14 Sumitomo Electric Ind Ltd Working method for optical fiber positioning member
JPH087304B2 (en) * 1986-08-29 1996-01-29 住友電気工業株式会社 Processing method for optical fiber positioning member
US6796809B2 (en) 2002-05-24 2004-09-28 The Furukawa Electric Co., Ltd. Electrical junction box
EP1718421A2 (en) * 2004-02-27 2006-11-08 The Regents Of The University Of Michigan Liquid feed flame spray modification of nanoparticles
JP2007534586A (en) * 2004-02-27 2007-11-29 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Nanoparticle modification by liquid delivery flame spraying
EP1718421A4 (en) * 2004-02-27 2012-03-07 Univ Michigan Liquid feed flame spray modification of nanoparticles
WO2014017571A1 (en) 2012-07-27 2014-01-30 矢崎総業株式会社 Electrical connection box
WO2015098992A1 (en) * 2013-12-27 2015-07-02 堺化学工業株式会社 Zinc oxide particles, production method for same, ultraviolet ray shielding agent, and cosmetic material
WO2015098993A1 (en) * 2013-12-27 2015-07-02 堺化学工業株式会社 Zinc oxide particles, production method for same, ultraviolet ray shielding agent, and cosmetic material
JP5854176B2 (en) * 2013-12-27 2016-02-09 堺化学工業株式会社 Zinc oxide particles, method for producing them, UV screening agent and cosmetics
JP5854175B2 (en) * 2013-12-27 2016-02-09 堺化学工業株式会社 Zinc oxide particles, method for producing them, UV screening agent and cosmetics
JPWO2015098993A1 (en) * 2013-12-27 2017-03-23 堺化学工業株式会社 Zinc oxide particles, method for producing them, UV screening agent and cosmetics
JPWO2015098992A1 (en) * 2013-12-27 2017-03-23 堺化学工業株式会社 Zinc oxide particles, method for producing them, UV screening agent and cosmetics
US9775787B2 (en) 2013-12-27 2017-10-03 Sakai Chemical Industry Co., Ltd. Zinc oxide particle, method for producing the same, ultraviolet shielding agent, and cosmetic
US9789037B2 (en) 2013-12-27 2017-10-17 Sakai Chemical Industry Co., Ltd. Zinc oxide particle, method for producing the same, ultraviolet shielding agent, and cosmetic
US10483516B2 (en) * 2017-04-18 2019-11-19 Autonetworks Technologies, Ltd. Electricity storage module and electricity storage pack

Similar Documents

Publication Publication Date Title
US8187562B2 (en) Method for producing cerium dioxide nanopowder by flame spray pyrolysis and cerium dioxide nanopowder produced by the method
KR19980042353A (en) Spherical colored pigments, methods for their preparation and uses thereof
US5833892A (en) Formation of TiO2 pigment by spray calcination
JP2005138008A (en) Visible light responding type titanium oxide composite photocatalyst and its manufacturing method
US6835455B2 (en) Ultrafine particulate complex oxide containing titanium oxide
JP2009519813A (en) DeNOx catalyst preparation method
WO2004063431A1 (en) Titanium oxide grain, process and apparatus for producing the same, and method of treating with the titanium oxide
WO1994014530A1 (en) Method of manufacturing fine ceramic particles and apparatus therefor
JP2005504701A (en) Aluminum oxide powder
JPH0570123A (en) Production of composite fine particle of metal oxide and apparatus therefor
JPH06199502A (en) Production of metal oxide particulte and device therefor
Majumder Synthesis methods of nanomaterials for visible light photocatalysis
CN101224419A (en) Photocatalyst synthesis method, photocatalyst material, photocatalyst coating and photocatalyst
DE10394356B4 (en) Synthesis of ultrafine titania particles in rutile phase at low temperature
ITMI952452A1 (en) PROCESS TO PRODUCE NANOMETRIC POWDERS OF METALLIC OXIDES FROM METALLIC CHLORIDES
US7413726B2 (en) Synthesis of ultrafine rutile phase titanium dioxide particles
JP4631013B2 (en) Acicular titanium oxide fine particles, production method thereof and use thereof
JP4979174B2 (en) Method for producing titanium oxide-containing particulate oxide composite
JPH0244766B2 (en)
KR20040089578A (en) Domains in a metal oxide matrix
JPH0725614A (en) Ultrafine zinc oxide particle and production thereof
JPH05310425A (en) Production of metal oxide fine particle
US20230278884A1 (en) Aerosol-assisted synthesis of crystalline tungsten bronze particles
Wang et al. Flame aerosol synthesis of tungsten trioxide powder: Particle morphology control and photodegradation activity under visible light irradiation
KR100462073B1 (en) An ultrasonic spray pyrolysis apparatus for the production of ultrafine particles