JP3166474B2 - Heat pump type air conditioner for vehicles - Google Patents

Heat pump type air conditioner for vehicles

Info

Publication number
JP3166474B2
JP3166474B2 JP08062594A JP8062594A JP3166474B2 JP 3166474 B2 JP3166474 B2 JP 3166474B2 JP 08062594 A JP08062594 A JP 08062594A JP 8062594 A JP8062594 A JP 8062594A JP 3166474 B2 JP3166474 B2 JP 3166474B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
vehicle
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08062594A
Other languages
Japanese (ja)
Other versions
JPH07285317A (en
Inventor
潤一郎 原
孝佳 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP08062594A priority Critical patent/JP3166474B2/en
Publication of JPH07285317A publication Critical patent/JPH07285317A/en
Application granted granted Critical
Publication of JP3166474B2 publication Critical patent/JP3166474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コンプレッサからの吐
出冷媒を車室外熱交換器および車室内熱交換器に循環さ
せて空調風を加熱/冷却する蒸気圧縮式冷凍サイクルを
備えた車両用ヒートポンプ式冷暖房装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump for a vehicle having a vapor compression refrigeration cycle for heating / cooling conditioned air by circulating refrigerant discharged from a compressor through a heat exchanger outside the vehicle compartment and a heat exchanger inside the vehicle compartment. The present invention relates to a heating and cooling system.

【0002】[0002]

【従来の技術】従来の車両用ヒートポンプ式冷暖房装置
として、特開平2−290475号公報に開示されたも
のが知られている。この冷暖房装置は、コンプレッサで
圧送される冷媒を車室外熱交換器や車室内熱交換器など
に流通させる蒸気圧縮式冷凍サイクルを備え、四方弁で
冷媒の流れを暖房運転時と冷房運転時とで逆転させるこ
とにより、暖房運転時には車室外熱交換器を吸熱器とし
て使用するとともに、車室内熱交換器を放熱器として使
用し、冷房運転時には車室外熱交換器を放熱器として使
用するとともに、車室内熱交換器を吸熱器として使用す
る。また、この空調装置は2個の車室内熱交換器を有
し、暖房運転時には両車室内熱交換器を連通する冷媒配
管をエンジンの廃熱で加熱し、これにより冷媒を加熱し
て暖房性能を向上させるようにしている。
2. Description of the Related Art A conventional heat pump type air conditioner for a vehicle is disclosed in Japanese Patent Application Laid-Open No. 2-290475. This cooling / heating device is provided with a vapor compression refrigeration cycle that circulates a refrigerant pumped by a compressor to a heat exchanger outside the vehicle compartment or a heat exchanger inside the vehicle, and controls the flow of the refrigerant with a four-way valve during heating operation and cooling operation. By using the heat exchanger outside, the heat exchanger outside the vehicle compartment is used as a heat sink during the heating operation, the heat exchanger inside the vehicle is used as the radiator, and the heat exchanger outside the vehicle compartment is used as the radiator during the cooling operation, Use the vehicle interior heat exchanger as a heat sink. In addition, this air conditioner has two heat exchangers inside the vehicle, and in a heating operation, heats the refrigerant pipe connecting the heat exchangers inside the vehicle with the waste heat of the engine, thereby heating the refrigerant, thereby increasing the heating performance. I try to improve.

【0003】また、特開平1−296056号公報に開
示された車両用ヒートポンプ式冷暖房装置では、暖房運
転時には車室外熱交換器を用いず、エンジン廃熱から吸
熱する熱交換器により暖房を行うようにしている。
In a heat pump type air conditioner for a vehicle disclosed in Japanese Patent Application Laid-Open No. 1-296056, heating is performed by a heat exchanger that absorbs heat from engine waste heat without using a heat exchanger outside the vehicle compartment during a heating operation. I have to.

【0004】しかしながら、前者の冷暖房装置では、降
雨時や降雪時などのように外気温度が低い場合、あるい
は車両走行時には、車室外熱交換器での外気からの吸熱
量が少なく冷媒の温度があまり上昇せず、このため車室
内熱交換器での放熱量が少なく満足な暖房性能が得られ
ないという問題がある。また、前者および後者の冷暖房
装置は、共にエンジンの廃熱を利用して暖房性能を向上
させるようにしているが、暖房初期時にはエンジン自体
が冷えているためにエンジンの廃熱が殆どなく、このた
め初期暖房性能に問題があった。
However, in the former air conditioner, when the outside air temperature is low, such as during rainfall or snowfall, or when the vehicle is running, the amount of heat absorbed from the outside air by the outside heat exchanger in the vehicle interior heat exchanger is small and the temperature of the refrigerant is not so high. As a result, there is a problem that the amount of heat radiated by the heat exchanger inside the vehicle compartment is so small that satisfactory heating performance cannot be obtained. The former and latter air conditioners both use the waste heat of the engine to improve the heating performance.However, at the beginning of heating, the engine itself is cold, so there is almost no waste heat of the engine. Therefore, there was a problem in the initial heating performance.

【0005】そこで、上記問題点を解消するために本出
願人は、特願平3−345950号明細書に記載された
ようなヒートポンプ式冷暖房装置を提案した。図11は
このヒートポンプ式冷暖房装置の冷凍サイクルを示して
いる。図11において、冷房運転時には、三方弁32が
実線位置切換えられ、コンプレッサ31から吐出された
冷媒が、放熱用車室外熱交換器38→放熱用車室内熱交
換器33→液タンク36→膨張弁34→吸熱用車室内熱
交換器35→コンプレッサ31の順で循環し、吸熱用車
室内熱交換器35が空調風の熱を冷媒に吸熱して車室内
冷房用の冷風を作る。暖房運転時には、三方弁32が点
線位置に切換えられ、コンプレッサ31から吐出された
冷媒が、バイパス管路150→放熱用車室内熱交換器3
3→液タンク36→膨張弁34→吸熱用車室内熱交換器
35→コンプレッサ31の順で循環し、放熱用車室内熱
交換器33が冷媒の熱を空調風に放熱して車室内暖房用
の温風を作る。このように暖房運転時に車室外熱交換器
38を迂回させて冷媒を流し、車室内熱交換器35を吸
熱器として使用すれば、先の例のように車室外熱交換器
を吸熱器として使用する場合と比べて低外気温時であっ
ても冷媒への吸熱量を増加させることができ、暖房性能
の向上が図れる。
[0005] In order to solve the above problems, the present applicant has proposed a heat pump type cooling and heating apparatus as described in Japanese Patent Application No. 3-345950. FIG. 11 shows a refrigeration cycle of this heat pump type cooling / heating device. In FIG. 11, during the cooling operation, the three-way valve 32 is switched to the solid line position, and the refrigerant discharged from the compressor 31 is discharged from the heat exchanger 38 outside the heat radiating compartment → the heat exchanger 33 inside the heat radiating car → the liquid tank 36 → the expansion valve. The heat circulates in the order of 34 → heat absorbing heat exchanger 35 → compressor 31, and the heat absorbing heat exchanger 35 absorbs the heat of the conditioned air into the refrigerant to produce cool air for cooling the vehicle interior. During the heating operation, the three-way valve 32 is switched to the position indicated by the dotted line, and the refrigerant discharged from the compressor 31 is discharged from the bypass pipe 150 to the heat exchanger 3 for heat radiation inside the vehicle.
3 → liquid tank 36 → expansion valve 34 → heat-absorbing vehicle interior heat exchanger 35 → compressor 31 circulates in this order, and heat-radiating vehicle interior heat exchanger 33 radiates the heat of the refrigerant to air-conditioned air for vehicle interior heating. Make warm air. In this manner, when the heating operation is performed, the refrigerant is bypassed to bypass the exterior heat exchanger 38 and the interior heat exchanger 35 is used as a heat absorber, and the exterior heat exchanger is used as a heat absorber as in the previous example. In this case, the amount of heat absorbed by the refrigerant can be increased even at a low outside air temperature as compared with the case where the temperature is low, and the heating performance can be improved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た車室外熱交換器38は外気と直接接触しているため、
低外気温時には車室外熱交換器38の温度,圧力が冷凍
サイクルの他の部分と比べて低くなり、このため、三方
弁32や逆止弁70の隙間から車室外熱交換器内中に冷
媒が流入し、この冷媒が液状態で滞留する、いわゆる
「冷媒の寝込み」が起こり易い。このため、暖房時の冷
凍サイクル中の冷媒量が欠乏し、暖房能力が不足する場
合があった。
However, since the above-described exterior heat exchanger 38 is in direct contact with the outside air,
At a low outside air temperature, the temperature and pressure of the outside heat exchanger 38 are lower than those of other parts of the refrigeration cycle, so that the refrigerant enters the inside of the outside heat exchanger through the gap between the three-way valve 32 and the check valve 70. Flows, and the refrigerant stays in a liquid state, that is, so-called “cooling down of the refrigerant” easily occurs. For this reason, the refrigerant | coolant amount in the refrigeration cycle at the time of heating runs short, and the heating capacity may run short.

【0007】本発明の目的は、車室外熱交換器中に滞留
している冷媒を速やかに暖房時の冷凍サイクル中に復帰
させることが可能な車両用ヒートポンプ式冷暖房装置を
提供することにある。
It is an object of the present invention to provide a heat pump type cooling / heating apparatus for a vehicle which can quickly return a refrigerant staying in a heat exchanger outside a vehicle compartment to a refrigeration cycle during heating.

【0008】[0008]

【課題を解決するための手段】一実施例を示す図1に対
応付けて説明すると、本発明は、車室内に送風すべき空
調風を発生させる空調風発生手段37と、冷媒を圧送す
るコンプレッサ31と、このコンプレッサ31の冷媒吐
出側に冷媒流入側が接続され、冷媒の熱を外気に放熱す
る車室外熱交換器38と、コンプレッサ31の冷媒吐出
側および車室外熱交換器38の冷媒流出側に冷媒流入側
が接続され、冷媒の熱を空調風に放熱して温風を作る放
熱用車室内熱交換器33と、この放熱用車室内熱交換器
33の冷媒流出側に冷媒流入側が接続され、冷媒を断熱
膨張させる膨張手段34と、この膨張手段34の冷媒流
出側に冷媒流入側が接続されるとともに、コンプレッサ
31の冷媒流入側に冷媒流出側が接続され、空調風の熱
を、車室外熱交換器38および放熱用車室内熱交換器3
3の少なくともいずれか一方を経て膨張手段34で断熱
膨張された冷媒に吸熱して冷風を作る吸熱用車室内熱交
換器35と、冷房運転時にはコンプレッサ31の吐出冷
媒を少なくとも車室外熱交換器38に導き、暖房運転時
には、コンプレッサ31の吐出冷媒を車室外熱交換器3
8を迂回させて放熱用車室内熱交換器33に導く冷媒流
路切換手段100,101とを備えた車両用ヒートポン
プ式冷暖房装置に適用される。そして、暖房運転終了時
に車室外熱交換器38に冷媒を導くよう冷媒流路切換手
段を制御する切換制御手段を備え、これにより上記問題
点を解決する。請求項2の発明は、車両の稼働から停止
までの間に暖房運転が行われた場合には、コンプレッサ
の停止指令に応答して車室外熱交換器に冷媒を導くよう
冷媒流路切換手段を制御するようにしたものである。請
求項3の発明は、冷凍サイクルの高圧系または低圧系の
圧力あるいは温度に関連する物理量を検出する検出手段
を更に備え、検出された物理量が所定値以上に達した場
合にも車室外熱交換器に冷媒を導くよう冷媒流路切換手
段を制御するようにしたものである。請求項4の発明
は、暖房運転終了時に冷媒が所定時間あるいは所定量だ
け車室外熱交換器に導かれるよう冷媒流路切換手段を制
御するよう構成したものである。 請求項5の発明は、
切換制御手段の制御により車室外熱交換器に冷媒が導か
れるとき、コンプレッサの冷媒吐出量を徐々に低下させ
るコンプレッサ制御手段を更に備えるものである。請求
項6の発明は、コンプレッサの回転数または吐出容量を
徐々に低下させることにより冷媒吐出量を低下させるよ
うにしたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1 showing an embodiment, the present invention is directed to an air-conditioning air generating means 37 for generating air-conditioning air to be blown into a vehicle cabin, and a compressor for pumping refrigerant. A refrigerant inflow side connected to the refrigerant discharge side of the compressor 31 and radiating heat of the refrigerant to the outside air; a refrigerant discharge side of the compressor 31 and a refrigerant outflow side of the heat exchanger 38 outside the vehicle interior; A refrigerant inflow side is connected to the heat radiation interior heat exchanger 33 that radiates heat of the refrigerant to the conditioned air to generate warm air, and a refrigerant inflow side is connected to the refrigerant outflow side of the heat radiation interior heat exchanger 33. Expansion means 34 for adiabatically expanding the refrigerant, and a refrigerant inflow side connected to the refrigerant outflow side of the expansion means 34 and a refrigerant outflow side connected to the refrigerant inflow side of the compressor 31, thereby dissipating the heat of the air-conditioned wind Exchange 38 and the heat-radiating inner heat exchanger 3
3, a heat-absorbing vehicle interior heat exchanger 35 which absorbs the refrigerant adiabatically expanded by the expansion means 34 through at least one of the expansion means 34 to generate cool air, and a refrigerant discharged from the compressor 31 at least during the cooling operation. During the heating operation, the refrigerant discharged from the compressor 31 is transferred to the outside heat exchanger 3.
The present invention is applied to a heat pump type cooling / heating device for a vehicle including refrigerant flow path switching means 100 and 101 for bypassing the heat exchanger 8 and leading to the heat exchanger 33 for heat dissipation. Then, a switching control means for controlling the refrigerant flow switching means so as to guide the refrigerant to the exterior heat exchanger 38 at the end of the heating operation is provided, thereby solving the above problem. The invention according to claim 2 is characterized in that, when the heating operation is performed between the operation of the vehicle and the stop thereof, the refrigerant flow switching means is configured to guide the refrigerant to the exterior heat exchanger in response to the compressor stop command. It is intended to be controlled. The invention according to claim 3 further comprises a detecting means for detecting a physical quantity related to the pressure or temperature of the high pressure system or the low pressure system of the refrigeration cycle, and heat exchange outside the vehicle compartment even when the detected physical quantity reaches a predetermined value or more. The refrigerant flow switching means is controlled to guide the refrigerant to the vessel. According to a fourth aspect of the invention, the refrigerant flow switching means is controlled so that the refrigerant is guided to the exterior heat exchanger for a predetermined time or a predetermined amount at the end of the heating operation. The invention of claim 5 is
When the refrigerant is guided to the outside heat exchanger under the control of the switching control means, the compressor further includes compressor control means for gradually reducing the refrigerant discharge amount of the compressor. According to a sixth aspect of the present invention, the amount of refrigerant discharged is reduced by gradually lowering the rotation speed or the discharge capacity of the compressor.

【0009】[0009]

【作用】請求項1の発明においては、暖房運転終了時に
車室外熱交換器に冷媒が導かれる。請求項2の発明にお
いては、車両の稼働から停止までの間に暖房運転が行わ
れた場合には、コンプレッサの停止指令に応答して車室
外熱交換器に冷媒が導かれる。請求項3の発明において
は、冷凍サイクルの高圧系または低圧系の圧力あるいは
温度に関連する物理量が所定値以上に達した場合にも車
室外熱交換器に冷媒が導かれる。請求項4の発明におい
ては、暖房運転終了時に冷媒が所定時間あるいは所定量
だけ車室外熱交換器に導かれる。請求項5の発明におい
ては、車室外熱交換器に冷媒が導かれるとき、コンプレ
ッサの冷媒吐出量が徐々に低下される。請求項6の発明
においては、コンプレッサの回転数または吐出容量が徐
々に低下されることにより冷媒吐出量が低下される。
According to the first aspect of the present invention, the refrigerant is guided to the exterior heat exchanger at the end of the heating operation. According to the second aspect of the invention, when the heating operation is performed during the period from the operation of the vehicle to the stop thereof, the refrigerant is guided to the exterior heat exchanger in response to the compressor stop command. According to the third aspect of the present invention, even when the physical quantity related to the pressure or temperature of the high pressure system or the low pressure system of the refrigeration cycle reaches a predetermined value or more, the refrigerant is guided to the exterior heat exchanger. In the invention according to claim 4, the refrigerant is guided to the exterior heat exchanger for a predetermined time or a predetermined amount at the end of the heating operation. According to the fifth aspect of the invention, when the refrigerant is guided to the exterior heat exchanger, the refrigerant discharge amount of the compressor is gradually reduced. According to the sixth aspect of the present invention, the refrigerant discharge amount is reduced by gradually decreasing the rotation speed or the discharge capacity of the compressor.

【0010】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために一部実施例の図を用いたが、これにより本
発明が実施例に限定されるものではない。
[0010] In the means and means for solving the above-mentioned problems which explain the constitution of the present invention, figures of some embodiments are used to make the present invention easy to understand. It is not limited to the embodiment.

【0011】[0011]

【実施例】【Example】

(1)第1の実施例(請求項1〜3に対応する実施
例):図1〜図6により本発明の一実施例を説明する。
図1は本発明に係る車両用ヒートポンプ式冷暖房装置の
構成を示し、図11と同様の構成要素には同一の符号を
付してある。コンプレッサ31は、エンジンルームなど
の車室外箇所に設置され、例えば電動コンプレッサある
いは油圧駆動式コンプレッサのように回転数が変更可能
なものが用いられる。このコンプレッサ31の吐出側に
は、冷媒流路切換手段たる二方弁100を介して車室外
熱交換器38が接続され、車室外熱交換器38には、逆
止弁70を介して放熱用車室内熱交換器33が接続され
ている。
(1) First embodiment (an embodiment corresponding to claims 1 to 3): One embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a configuration of a vehicle heat pump type air conditioner according to the present invention, and the same components as those in FIG. 11 are denoted by the same reference numerals. The compressor 31 is installed at a location outside the vehicle compartment such as an engine room, and a compressor whose rotation speed can be changed, such as an electric compressor or a hydraulically driven compressor, is used. An external heat exchanger 38 is connected to the discharge side of the compressor 31 via a two-way valve 100 as a refrigerant flow switching means. The vehicle interior heat exchanger 33 is connected.

【0012】車室外熱交換器38は、エンジンルームな
どの車室外に設けられ、コンプレッサ31から吐出され
る冷媒の熱を空気に放熱して温風を作る車室外コンデン
サとされる。放熱用車室内熱交換器33は、インストル
メントパネルの裏側などの車室内前部に配置されたダク
ト39内に設けられ、コンプレッサ31から吐出される
冷媒の熱を空気に放熱する車室内コンデンサとされる。
The outside heat exchanger 38 is provided outside the vehicle room such as an engine room, and is a vehicle outside condenser that radiates heat of the refrigerant discharged from the compressor 31 to the air to generate warm air. The heat-dissipating vehicle interior heat exchanger 33 is provided in a duct 39 arranged at the front of the vehicle interior, such as the back side of the instrument panel, and dissipates heat of the refrigerant discharged from the compressor 31 to the air. Is done.

【0013】車室外熱交換器38の冷媒流入側管路およ
び車室外熱交換器38をバイパスするバイパス管路15
0には、二方弁101が介装され、この二方弁101お
よび上述の二方弁100は、それぞれバイパス管路15
0および車室外熱交換器38の冷媒流入側管路を連通す
る開位置と、遮断する閉位置とに切換可能とされる。暖
房運転時には、二方弁100が閉位置に、二方弁101
が開位置にそれぞれ切換えられ、このときコンプレッサ
31の吐出冷媒がバイパス管路150を介して、すなわ
ち車室外熱交換器38をバイパスして放熱用車室内熱交
換器33に流入される。
The refrigerant inlet side pipe of the exterior heat exchanger 38 and the bypass pipe 15 for bypassing the exterior heat exchanger 38
0, a two-way valve 101 is interposed. The two-way valve 101 and the above-described two-way valve 100
It can be switched between an open position communicating the refrigerant inflow pipe of the heat exchanger 38 and the outside heat exchanger 38, and a closed position closing the same. During the heating operation, the two-way valve 100 is in the closed position,
Is switched to the open position, and at this time, the refrigerant discharged from the compressor 31 flows into the heat-dissipating interior heat exchanger 33 via the bypass pipe 150, that is, bypasses the exterior heat exchanger 38.

【0014】一方、冷房運転時には、二方弁100が開
位置に、二方弁101が閉位置にそれぞれ切換えられ、
このときコンプレッサ31の吐出冷媒が車室外熱交換器
38に導かれ、車室外熱交換器38の流出冷媒が放熱用
車室内熱交換器33に導かれる。また、冷媒回収運転時
には、二方弁100,101が共に開位置に切換えら
れ、このときコンプレッサ31の吐出熱冷媒が車室外熱
交換器38とバイパス管路150の双方に流れる。車室
外熱交換器38に流れ込んだ熱冷媒は、車室外熱交換器
38に滞留している(寝込んでいる)液冷媒を蒸発させ
て車室外熱交換器38外に追出し、暖房運転時のサイク
ルに復帰させる。なお、逆止弁70は、放熱用車室内熱
交換器33から車室外熱交換器38への冷媒の逆流を阻
止するためのものである。
On the other hand, during the cooling operation, the two-way valve 100 is switched to the open position, and the two-way valve 101 is switched to the closed position.
At this time, the refrigerant discharged from the compressor 31 is guided to the exterior heat exchanger 38, and the refrigerant flowing out of the exterior heat exchanger 38 is guided to the heat radiation interior heat exchanger 33. Further, during the refrigerant recovery operation, both the two-way valves 100 and 101 are switched to the open position, and at this time, the heat refrigerant discharged from the compressor 31 flows to both the outside heat exchanger 38 and the bypass pipe 150. The heat refrigerant that has flowed into the exterior heat exchanger 38 evaporates the liquid refrigerant that is retained (sleeping) in the exterior heat exchanger 38 and is expelled to the outside of the exterior heat exchanger 38 to perform a heating operation cycle. To return to. The check valve 70 is for preventing the refrigerant from flowing backward from the heat-radiating interior heat exchanger 33 to the exterior heat exchanger 38.

【0015】放熱用車室内熱交換器33の冷媒流出側に
は、液タンク36および膨張弁34を介して吸熱用車室
内熱交換器35の冷媒流入側が接続されている。膨張弁
34は、放熱用車室内熱交換器33からの液体冷媒を断
熱膨張して霧状にして吸熱用車室内熱交換器35に流入
する。吸熱用車室内熱交換器35は、自身を通過する空
気の熱を膨張弁34から流入された冷媒に吸熱して冷風
を作るエバポレータとされる。吸熱用車室内熱交換器3
5の冷媒流出側にはコンプレッサ31の冷媒流入側が接
続される。
The refrigerant outflow side of the heat exchanger 33 is connected to the refrigerant inflow side of the heat exchanger 35 through a liquid tank 36 and an expansion valve 34. The expansion valve 34 adiabatically expands the liquid refrigerant from the heat-dissipating vehicle interior heat exchanger 33 into mist and flows into the heat-absorbing vehicle interior heat exchanger 35. The heat absorbing passenger compartment heat exchanger 35 is an evaporator that absorbs the heat of the air passing therethrough into the refrigerant flowing from the expansion valve 34 to generate cool air. Heat-exchanger interior heat exchanger 3
5 is connected to the refrigerant inflow side of the compressor 31.

【0016】空調ダクト39には、ブロアファンモータ
44によって駆動されるブロアファン37が設けられる
とともに、車室内空気を導入する内気導入管40と、走
行風圧を受けて外気を導入する外気導入管41とが接続
され、外気導入管41と空調ダクト39の境界部分には
インテークドア42が設けられている。導入管40,4
1から導入された外気,内気は、ブロアファン37によ
り吸熱用車室内熱交換器35側に送られ、この熱交換器
35を通過する際に冷却される。
The air-conditioning duct 39 is provided with a blower fan 37 driven by a blower fan motor 44, and also has an inside air introduction pipe 40 for introducing vehicle interior air, and an outside air introduction pipe 41 for receiving outside air under running wind pressure. Is connected, and an intake door 42 is provided at a boundary between the outside air introduction pipe 41 and the air conditioning duct 39. Introductory tubes 40, 4
The outside air and inside air introduced from 1 are sent to the heat-absorbing vehicle interior heat exchanger 35 by a blower fan 37 and are cooled when passing through the heat exchanger 35.

【0017】また空調ダクト39内には、放熱用車室内
熱交換器33と吸熱用車室内熱交換器35との間にエア
ミックスドア46が設けられる。このエアミックスドア
46は、制御装置43で駆動される不図示のエアミック
スドアアクチュエータにより開閉駆動され、放熱用車室
内熱交換器33を通過して加熱される空気量と、熱交換
器33を迂回して冷却されたままの空気量との混合比
(風量配分)を調節して吹出温度を調節する。
In the air conditioning duct 39, an air mix door 46 is provided between the heat exchanger 33 for heat dissipation and the heat exchanger 35 for heat absorption. The air mixing door 46 is driven to open and close by an air mixing door actuator (not shown) driven by the control device 43, and the amount of air that is heated by passing through the heat exchanger 33 for heat dissipation and the heat exchanger 33. The blowing temperature is adjusted by adjusting the mixture ratio (air volume distribution) with the amount of air that has been bypassed and still cooled.

【0018】空調ダクト39の放熱用熱交換器33より
も下流側には、上記冷風と温風とを十分に混合させて適
切な温度の空調風を作る部屋として、エアミックスチャ
ンバ47が設けられている。エアミックスチャンバ47
には、乗員の上半身に向けて空調風を吹出すベンチレー
タ吹出口51と、乗員の足元に向けて空調風を吹出すフ
ット吹出口52と、フロントウィンドウに向けて空調風
を吹出すデフロスタ吹出口53とが設けられるととも
に、ベンチレータ吹出口51を開閉するベンチレータド
ア55と、フット吹出口52を開閉するフットドア56
と、デフロスタ吹出口53を開閉するデフロスタドア5
7とが設けられている。ベンチレータドア55,フット
ドア56およびデフロスタドア57(以下、総称してモ
ードドアと呼ぶ)は、制御装置43で駆動される不図示
のモードドアアクチュエータにより駆動される。
An air mixing chamber 47 is provided downstream of the heat-dissipating heat exchanger 33 of the air-conditioning duct 39 as a room for sufficiently mixing the cold air and the hot air to produce an air-conditioned air at an appropriate temperature. ing. Air mix chamber 47
Includes a ventilator outlet 51 for blowing conditioned air toward the upper body of the occupant, a foot outlet 52 for blowing conditioned air toward the feet of the occupant, and a defroster outlet for blowing conditioned air toward the front window. A ventilator door 55 for opening and closing the ventilator outlet 51 and a foot door 56 for opening and closing the foot outlet 52 are provided.
And a defroster door 5 for opening and closing the defroster outlet 53
7 are provided. The ventilator door 55, the foot door 56, and the defroster door 57 (hereinafter, collectively referred to as a mode door) are driven by a mode door actuator (not shown) driven by the control device 43.

【0019】またエアミックスチャンバ47には、内気
導入管40に連通する循環通路71が接続されている。
循環通路71からエアミックスチャンバ47への開口部
72には、循環用通路71の入口側ドア74が設けら
れ、循環通路71と内気導入管40との分岐部73に
は、出口側ドア75が設けられている。入口側ドア74
および出口側ドア75は、制御装置43に接続された不
図示のアクチュエータにより駆動され、開口部72,分
岐部73をそれぞれ開閉する。すなわち、入口側ドア7
4および出口側ドア75が開放した状態において、エア
ミックスチャンバ47からブロアファン37の上流側へ
温調風が循環する。
A circulation passage 71 communicating with the inside air introduction pipe 40 is connected to the air mix chamber 47.
An opening 72 from the circulation passage 71 to the air mix chamber 47 is provided with an entrance door 74 of the circulation passage 71, and a branch 73 between the circulation passage 71 and the inside air introduction pipe 40 is provided with an exit door 75. Is provided. Entrance side door 74
The outlet door 75 is driven by an actuator (not shown) connected to the control device 43 to open and close the opening 72 and the branch 73, respectively. That is, the entrance side door 7
When the door 4 and the exit side door 75 are open, the temperature-controlled air circulates from the air mix chamber 47 to the upstream side of the blower fan 37.

【0020】制御装置43には、吸熱用車室内熱交換器
35の吸込口空気温度Tsucを検出する吸熱用車室内熱
交換器吸込風温センサ58と、吸熱用車室内熱交換器3
5の吹出空気温度Toutを検出する吸熱用車室内熱交換
器吹出し温度センサ59と、ベンチレータ吹出口51の
吹出空気温度Tventを検出するベンチレータ吹出口風温
センサ60とが接続されるとともに、車室内への日射量
Qsunを検出する日射量センサ61と、外気温度Tambを
検出する外気温センサ62と、車室内温度Ticを検出す
る室温センサ63とが接続され、各センサの出力が制御
装置43にそれぞれ入力される。
The control device 43 includes a heat-absorbing vehicle interior heat exchanger suction air temperature sensor 58 for detecting a suction air temperature Tsuc of the heat-absorbing vehicle interior heat exchanger 35, and a heat-absorbing vehicle interior heat exchanger 3
And a ventilator outlet air temperature sensor 60 for detecting the outlet air temperature Tvent of the ventilator outlet 51 and the ventilator outlet air temperature sensor 60 for detecting the outlet air temperature Tout of the ventilator. A solar radiation sensor 61 for detecting the solar radiation Qsun to the outside, an outside air temperature sensor 62 for detecting the outside air temperature Tamb, and a room temperature sensor 63 for detecting the vehicle interior temperature Tic are connected. Each is entered.

【0021】また制御装置43には、空調設定パネル8
9に設けられた室温設定器64と、吹出口モードスイッ
チ65と、ブロアファンスイッチ66とが接続され、室
温設定器64から不図示の温度設定レバーの操作位置
(設定温度Tptcに依存する)が制御装置43に入力さ
れる。ここで、車室内に空気を吹出す吹出口モードとし
ては、主として乗員の上半身に空気を吹出すベントモー
ド、主として乗員の足元に空気を吹出すフットモード、
乗員の上半身および足元の双方に空気を吹出すバイレベ
ルモードなどが設定可能とされ、上記吹出口モードスイ
ッチ65の操作によりいずれかのモードを選択可能とな
っている。またブロアファンスイッチ66は、ブロアフ
ァン37の風量を選択するためのものである。
The control device 43 includes an air conditioning setting panel 8.
9 is connected to a room temperature setting device 64, an air outlet mode switch 65, and a blower fan switch 66, and the operation position of a temperature setting lever (not shown) from the room temperature setting device 64 (depending on the set temperature Tptc). It is input to the control device 43. Here, as the outlet mode for blowing air into the passenger compartment, a vent mode for blowing air mainly to the upper body of the occupant, a foot mode for blowing air mainly to the feet of the occupant,
A bi-level mode for blowing air to both the upper body and the feet of the occupant can be set, and any of the modes can be selected by operating the outlet mode switch 65. The blower fan switch 66 is for selecting the air volume of the blower fan 37.

【0022】さらに制御装置43には、放熱用車室内熱
交換器33の出口側の冷媒吐出温度Tdを検出する冷媒
温度センサ67と、放熱用車室内熱交換器33の吹出空
気温度Tvを検出する放熱用車室内熱交換器吹出温度セ
ンサ68も接続されている。
Further, the control device 43 includes a refrigerant temperature sensor 67 for detecting a refrigerant discharge temperature Td at the outlet side of the heat exchanger 33 and a blow-off air temperature Tv of the heat exchanger 33 for heat radiation. A heat-discharged vehicle interior heat exchanger outlet temperature sensor 68 is also connected.

【0023】制御装置43は、上記各センサ61〜63
の検出出力や設定温度Tptcに基づいて目標吹出温度To
を演算し、その演算結果に基づいてエアミックスドア開
度、コンプレッサ31の入力値、ブロアファン風量、吹
出口モードなどを演算する。そして、各演算された値に
基づいてコンプレッサ31、ブロアファン44、エアミ
ックスドアアクチュエータ、モードドアアクチュエータ
などを駆動制御する。
The control device 43 includes the above-mentioned sensors 61 to 63
Target output temperature To on the basis of the detected output and the set temperature Tptc.
Is calculated, and based on the calculation result, the air mix door opening, the input value of the compressor 31, the blower fan air volume, the outlet mode, and the like are calculated. Then, the compressor 31, the blower fan 44, the air mix door actuator, the mode door actuator, and the like are driven and controlled based on the calculated values.

【0024】さらに制御装置43は、暖房運転時には上
記目標吹出温度に基づいてウォームアップ制御(暖房初
期時の急速加熱制御)か否かを判断し、ウォームアップ
制御の場合には、目標吹出温度Toと放熱用車室内熱交
換器33の吹出空気温度TvとからΔθ1を求めるとと
もに、吸熱用車室内熱交換器35が凍結を開始する限界
温度により定められた設定温度Tsetと吸熱用車室内熱
交換器35の吹出空気温度ToutとからΔθ2を求め、
Δθ1とΔθ2とに基づいて、吸熱用車室内熱交換器3
5の凍結を防止しつつコンプレッサ入力を増加させる制
御を行う。また制御装置43は切換制御手段を構成し、
後で詳述するように、外気温度が所定値以下のときに暖
房運転が行われると、冷媒吐出温度が所定値以上になっ
たときに(冷凍サイクルが所定の条件を満たした後に)
二方弁100,101を切換えて冷媒回収運転を行うと
ともに、その後も周期的に冷媒回収運転を行う。
Further, the control device 43 determines whether or not warm-up control (rapid heating control at the beginning of heating) is performed based on the target blow-out temperature during the heating operation, and in the case of warm-up control, the target blow-out temperature To. Δθ1 is obtained from the temperature Tv and the outlet air temperature Tv of the heat-dissipating vehicle interior heat exchanger 33, and the set temperature Tset determined by the limit temperature at which the heat-absorbing vehicle interior heat exchanger 35 starts freezing and the heat-absorbing vehicle interior heat exchange. Δθ2 is obtained from the blow-out air temperature Tout of the heater 35,
Based on Δθ1 and Δθ2, the heat absorbing interior heat exchanger 3
5 is controlled so as to increase the compressor input while preventing freezing. Further, the control device 43 constitutes a switching control means,
As will be described in detail later, if the heating operation is performed when the outside air temperature is equal to or lower than a predetermined value, the refrigerant discharge temperature becomes equal to or higher than a predetermined value (after the refrigeration cycle satisfies predetermined conditions).
The refrigerant recovery operation is performed by switching the two-way valves 100 and 101, and thereafter the refrigerant recovery operation is periodically performed.

【0025】以上の実施例の構成において、ブロアファ
ン37が空調風発生手段を、膨張弁34が膨張手段を、
二方弁100,101が冷媒流路切換手段を、外気温セ
ンサ62および冷媒温度センサ67が検出手段をそれぞ
れ構成する。
In the configuration of the above embodiment, the blower fan 37 functions as the air-conditioning air generating means, the expansion valve 34 functions as the expanding means,
The two-way valves 100 and 101 constitute refrigerant flow switching means, and the outside air temperature sensor 62 and the refrigerant temperature sensor 67 constitute detection means, respectively.

【0026】次に、図2〜図5のフローチャートを参照
して制御装置43による冷暖房制御の詳細手順を説明す
る。図2において、まずステップS201では、後述す
る比較式で用いる定数の設定を行う。ステップS202
では各種データの読み込みを行う。これらのデータは、
温度設定レバーの操作位置すなわち設定温度Tptc,日
射量Qsun,外気温Tamb,設定ファンスイッチの操作情
報Vfan-set、エアコンスイッチのオン・オフ情報A/
Csw、冷媒吐出温度Td、現在の運転モード判定Ope-mod
eである。ここで、現在運転モードは、冷房運転か暖房
運転かあるいは送風運転かを示すものである。
Next, the detailed procedure of the cooling / heating control by the control device 43 will be described with reference to the flowcharts of FIGS. In FIG. 2, first, in step S201, constants used in a comparison expression described later are set. Step S202
Then, various data are read. These data are
The operating position of the temperature setting lever, ie, the set temperature Tptc, the amount of solar radiation Qsun, the outside temperature Tamb, the set fan switch operation information Vfan-set, and the air conditioner switch on / off information A /
Csw, refrigerant discharge temperature Td, current operation mode judgment Ope-mod
e. Here, the current operation mode indicates a cooling operation, a heating operation, or a blowing operation.

【0027】ステップS203ではエアコンスイッチの
オン・オフを判定し、オンと判定されると、空調制御を
行うべくステップS204に進み、温度設定レバーの位
置を判定する。その結果、設定温度レバーが設定温度の
低い側にあればステップS205で冷房運転を行い、高
い側にあればステップS206で暖房運転を行い、中間
位置にあればステップS207で送風運転を行う。
In step S203, it is determined whether the air conditioner switch is on or off. If it is determined that the air conditioner switch is on, the process proceeds to step S204 to perform air conditioning control, and the position of the temperature setting lever is determined. As a result, if the set temperature lever is on the lower side of the set temperature, the cooling operation is performed in step S205, if it is on the higher side, the heating operation is performed in step S206, and if it is in the intermediate position, the air blowing operation is performed in step S207.

【0028】ステップS206の暖房運転では、二方弁
100を閉位置に、二方弁101を開位置にそれぞれ切
換え、コンプレッサ31の吐出冷媒を車室外熱交換器3
8を迂回させて放熱用車室内熱交換器33に導く。次い
でステップS208では、外気温Tambが所定温度以下
か否かを判定する。外気温Tambが所定温度以下であれ
ばステップS209に進み、冷媒吐出温度Tdが所定温
度以上か否かを判定する。冷媒吐出温度Tdが所定温度
以上であれば図3のステップS210に進む。すなわ
ち、外気温度Tambが所定温度以下ということは、液冷
媒が車室外熱交換器38内に滞留し易い条件であり、ま
た冷媒吐出温度Tdが所定温度以上ということは、車室
外熱交換器38に滞留している液冷媒を除去可能な温度
であることを意味しているから、上記冷媒回収運転の条
件が成立したと判断してステップS210に進む。
In the heating operation in step S206, the two-way valve 100 is switched to the closed position, and the two-way valve 101 is switched to the open position.
8 is led to the heat exchanger 33 for radiating heat inside the vehicle. Next, in step S208, it is determined whether or not the outside air temperature Tamb is equal to or lower than a predetermined temperature. If the outside air temperature Tamb is equal to or lower than the predetermined temperature, the process proceeds to step S209, and it is determined whether the refrigerant discharge temperature Td is equal to or higher than the predetermined temperature. If the refrigerant discharge temperature Td is equal to or higher than the predetermined temperature, the process proceeds to step S210 in FIG. That is, the condition that the outside air temperature Tamb is equal to or lower than the predetermined temperature is a condition in which the liquid refrigerant easily stays in the heat exchanger 38 outside the vehicle compartment. Therefore, it is determined that the condition for the refrigerant recovery operation has been satisfied, and the process proceeds to step S210.

【0029】ステップS210では、冷暖房装置の起動
時あるいは前回の冷房回収運転から所定時間が既に経過
しているか否かを判定する。ステップS210が肯定さ
れるとステップS211に進み、今回の冷媒回収運転が
既に予め設定された時間だけ行われているか否かを判定
する。今回の冷媒回収運転がまだ開始されていない場
合、あるいは開始されているがまだ所定時間行っていな
い場合にはステップS211が否定され、ステップS2
12の冷媒回収運転を行う。ステップS210〜S21
2の制御により、冷媒回収運転を予め決められた所定周
期で行うことができる。
In step S210, it is determined whether or not a predetermined time has already elapsed from the start of the cooling / heating device or from the previous cooling recovery operation. When step S210 is affirmed, the process proceeds to step S211 to determine whether or not the current refrigerant recovery operation has been performed for a preset time. If the current refrigerant recovery operation has not been started yet, or has been started but has not been performed for a predetermined time, step S211 is denied, and step S2 is performed.
Twelve refrigerant recovery operations are performed. Steps S210 to S21
By the control of 2, the refrigerant recovery operation can be performed at a predetermined cycle.

【0030】冷媒回収運転の内容は、図5にその詳細が
示される。まずステップS212Aで二方弁100,1
01が共に開位置に切換わっているか否か、すなわち車
室外熱交換器38に冷媒が流れる状態か否かを判定す
る。ステップS212Aが否定されると、つまり冷媒回
収運転がまだ行われていない場合には、ステップS21
2Bで二方弁100,101を共に開位置に切換え、そ
の後、図3の処理にリターンする。また、ステップS2
12Aが肯定されると、つまり冷媒回収運転中の場合に
は、ステップS121Bをスキップしてリターンする。
FIG. 5 shows the details of the refrigerant recovery operation. First, in step S212A, the two-way valves 100, 1
01 are both switched to the open position, that is, it is determined whether or not the refrigerant is flowing into the exterior heat exchanger 38. If step S212A is denied, that is, if the refrigerant recovery operation has not been performed yet, step S21
At 2B, both the two-way valves 100 and 101 are switched to the open position, and thereafter, the process returns to the processing of FIG. Step S2
If 12A is affirmative, that is, if the refrigerant recovery operation is being performed, step S121B is skipped and the process returns.

【0031】二方弁100,101の開位置への切換え
により、コンプレッサ31から吐出された所定温度以上
の熱冷媒は、大半がバイパス管路150に流れるが、一
部の冷媒が車室外熱交換器38に流れる。車室外熱交換
器38に流れ込んだ熱冷媒は、車室外熱交換器38に滞
留している(寝込んでいる)液冷媒を蒸発させて車室外
熱交換器38外に追出し、暖房運転時のサイクルに復帰
させる。これにより、暖房能力の向上が図れる。
When the two-way valves 100 and 101 are switched to the open positions, most of the heat refrigerant having a temperature equal to or higher than the predetermined temperature discharged from the compressor 31 flows through the bypass pipe 150, but a part of the heat refrigerant flows outside the vehicle compartment. To the vessel 38. The heat refrigerant that has flowed into the exterior heat exchanger 38 evaporates the liquid refrigerant that is retained (sleeping) in the exterior heat exchanger 38 and is expelled to the outside of the exterior heat exchanger 38 to perform a heating operation cycle. To return to. Thereby, the heating capacity can be improved.

【0032】その後、図3のステップS213ではコン
プレッサ31を制御し、ステップS214ではブロアフ
ァン37を制御し、ステップS215では、エアミック
スドアアクチュエータ,吹出口モードアクチュエータお
よび吸込み口アクチュエータを制御して、エアミックス
ドア開度,吹出口モードおよび吸込み口を制御する。そ
の後、処理は図2のステップS202に戻る。
Thereafter, in step S213 of FIG. 3, the compressor 31 is controlled, in step S214 the blower fan 37 is controlled, and in step S215, the air mix door actuator, the outlet mode actuator and the suction port actuator are controlled to control the air flow. Controls mix door opening, outlet mode and inlet. Thereafter, the process returns to step S202 in FIG.

【0033】一方、図2のステップS208で外気温度
Tambが所定値を超えると判断された場合には、車室外
熱交換器38の温度,圧力が高く液冷媒が車室外熱交換
器38に滞留する条件ではないので、ステップS210
〜S212をスキップしてステップS213に進む。ま
た、外気温度Tambが所定値以下であり液冷媒が車室外
熱交換器38に滞留する条件時であっても、ステップS
209で冷媒吐出温度Tdが所定値未満と判定された場
合には、滞留している冷媒を蒸発させて追出すことがで
きないため、この場合もステップS210〜S212を
スキップしてステップS213に進む。
On the other hand, if it is determined in step S208 in FIG. 2 that the outside air temperature Tamb exceeds the predetermined value, the temperature and pressure of the outside heat exchanger 38 are high and the liquid refrigerant stays in the outside heat exchanger 38. Since it is not the condition to execute, step S210
The process skips steps S212 to S213. Further, even when the outside air temperature Tamb is equal to or lower than the predetermined value and the liquid refrigerant stays in the heat exchanger 38 outside the vehicle, it is determined in step S
If it is determined in 209 that the refrigerant discharge temperature Td is lower than the predetermined value, it is not possible to evaporate and expel the staying refrigerant, and in this case also, skip steps S210 to S212 and proceed to step S213.

【0034】なお、ステップS205の冷房運転では、
二方弁100を開位置に、二方弁101を閉位置にそれ
ぞれ切換え、コンプレッサ31の吐出冷媒を全量、車室
外熱交換器38に導く。次いでステップS213〜S2
15でコンプレッサ31,ブロアファン37および各ド
アアクチュエータの制御を行う。冷房運転時には、冷媒
が車室外熱交換器38を常に流通しているので、冷媒が
車室外熱交換器38に滞留するという問題は発生せず、
冷媒回収運転は行われない。また、ステップS207の
送風運転では、二方弁100,101を共に開位置、つ
まり冷房回収運転の位置に切換え、その後、コンプレッ
サ31を停止状態に保持したままステップS214,S
215でブロアファンおよび各ドアアクチュエータを制
御する。この場合は、ブロアファン37からの空調風が
温度調節されずに車室内に吹出されることになる。さら
に、ステップS203でエアコンスイッチがオフと判定
された場合には、図4のステップS216〜S218で
上述した各アクチュエータ,ブロアファンおよびコンプ
レッサを停止する。
In the cooling operation in step S205,
The two-way valve 100 is switched to the open position, and the two-way valve 101 is switched to the closed position, and all the refrigerant discharged from the compressor 31 is guided to the exterior heat exchanger 38. Next, steps S213 to S2
At 15, the compressor 31, the blower fan 37 and each door actuator are controlled. During the cooling operation, since the refrigerant always flows through the outside heat exchanger 38, the problem that the refrigerant stays in the outside heat exchanger 38 does not occur.
No refrigerant recovery operation is performed. Further, in the air blowing operation of step S207, both the two-way valves 100 and 101 are switched to the open position, that is, the position of the cooling recovery operation, and thereafter, while the compressor 31 is kept stopped, the steps S214 and S214 are performed.
At 215, the blower fan and each door actuator are controlled. In this case, the conditioned air from the blower fan 37 is blown into the vehicle compartment without adjusting the temperature. Further, if it is determined in step S203 that the air conditioner switch is off, the above-described actuators, blower fans, and compressors are stopped in steps S216 to S218 in FIG.

【0035】以上の手順によれば、外気温度Tambが所
定値以下のときに暖房運転が行われると、冷媒吐出温度
Tdが所定値以上になったときに冷媒回収運転に切換わ
り、所定時間経過後に暖房運転に戻る。それ以降は、所
定時間おきに冷媒回収運転が周期的に行われる。このよ
うに冷媒回収運転を周期的に行うことにより、常に満足
な暖房能力を発揮させることができる。すなわち、第1
回目の冷媒回収運転によって車室外熱交換器38に滞留
していた冷媒の大部分を暖房時のサイクルに復帰させた
後も、二方弁100や逆止弁70の隙間から冷媒が少量
ずつ車室外熱交換器38内に流入し、液状態で滞留する
おそれがある。しかし、上述のように冷媒回収運転を周
期的に行えば、その都度、車室外熱交換器38内の液冷
媒を暖房運転時の冷凍サイクル内に復帰させることがで
きるので、暖房時の冷凍サイクル内の冷媒量を常に所定
量以上に保持することができ、常に満足な暖房性能が得
られる。以上の制御において、制御装置43にて行われ
るステップS208〜S212が切換制御手段に相当す
る。
According to the above procedure, if the heating operation is performed when the outside air temperature Tamb is equal to or lower than the predetermined value, the operation is switched to the refrigerant recovery operation when the refrigerant discharge temperature Td becomes equal to or higher than the predetermined value. Later, the operation returns to the heating operation. Thereafter, the refrigerant recovery operation is periodically performed at predetermined time intervals. By performing the refrigerant recovery operation periodically as described above, it is possible to always exert a satisfactory heating capacity. That is, the first
Even after most of the refrigerant that has accumulated in the exterior heat exchanger 38 during the second refrigerant recovery operation is returned to the heating cycle, the refrigerant is gradually removed from the gap between the two-way valve 100 and the check valve 70 little by little. It may flow into the outdoor heat exchanger 38 and stay in a liquid state. However, if the refrigerant recovery operation is performed periodically as described above, the liquid refrigerant in the exterior heat exchanger 38 can be returned to the refrigeration cycle during the heating operation each time. The amount of refrigerant in the inside can always be maintained at a predetermined amount or more, and satisfactory heating performance can always be obtained. In the above control, steps S208 to S212 performed by the control device 43 correspond to switching control means.

【0036】図6は本発明者らによる暖房運転時の実験
データを示し、(a)はコンプレッサ回転数と冷媒吐出
温度、(b)は冷暖房装置の運転状態の時間的変化をそ
れぞれ示している。なお、このデータは外気温度が0〜
2℃のとき、つまり液冷媒が車室外熱交換器38に滞留
し易い条件下での値である。この例では、暖房運転の開
始後、冷媒吐出温度が60℃に達すると第1回目の冷媒
回収運転が30秒間だけ行われ、その後、10分おきに
30秒間の冷媒回収運転が周期的に行われる。この冷媒
回収運転により、車室外熱交換器38内に滞留していた
液冷媒は徐々に気化し、車室外熱交換器38内の圧力が
上昇するため、気化した冷媒が車室外熱交換器38から
排出される。したがって冷媒回収運転後も暖房時のサイ
クル側には適正量の冷媒が循環し、暖房性能を十分に発
揮することができる。なお、適正量以上の冷媒は液タン
ク36あるいは不図示のアキュムレータ(通常はコンプ
レッサ31の冷媒吸込側に配置される)内に貯溜され、
サイクル内の冷媒循環量が適正に保持されるのは一般の
冷凍サイクルと同様である。以上では、10分おきに3
0秒間の冷媒回収運転を行う例を示したが、この時間間
隔や冷媒回収運転時間は適宜選択可能であり、例えば外
気温度が高いほど冷媒回収運転の時間間隔を長くし、冷
媒回収運転時間を短くしてもよい。また、冷媒回収運転
中に暖房性能が低下する場合には、例えばコンプレッサ
31の回転数を上昇させ、冷凍能力を向上させて暖房性
能を維持するようにしてもよい。
FIGS. 6A and 6B show experimental data during the heating operation by the present inventors. FIG. 6A shows the rotational speed of the compressor and the refrigerant discharge temperature, and FIG. . This data indicates that the outside air temperature is between 0 and
It is a value at 2 ° C., that is, under conditions where the liquid refrigerant easily stays in the heat exchanger 38 outside the vehicle compartment. In this example, after the start of the heating operation, when the refrigerant discharge temperature reaches 60 ° C., the first refrigerant recovery operation is performed only for 30 seconds, and thereafter, the refrigerant recovery operation is periodically performed every 10 minutes for 30 seconds. Will be As a result of the refrigerant recovery operation, the liquid refrigerant remaining in the exterior heat exchanger 38 is gradually vaporized, and the pressure in the exterior heat exchanger 38 is increased. Is discharged from Therefore, even after the refrigerant recovery operation, an appropriate amount of refrigerant circulates on the cycle side during heating, and heating performance can be sufficiently exhibited. Note that the refrigerant of an appropriate amount or more is stored in the liquid tank 36 or an accumulator (not shown) (usually arranged on the refrigerant suction side of the compressor 31).
It is the same as in a general refrigeration cycle that the refrigerant circulation amount in the cycle is properly maintained. Above, 3 every 10 minutes
Although the example in which the refrigerant recovery operation is performed for 0 seconds has been described, the time interval and the refrigerant recovery operation time can be appropriately selected. For example, the longer the outdoor air temperature, the longer the refrigerant recovery operation time interval, and the longer the refrigerant recovery operation time. It may be shorter. If the heating performance decreases during the refrigerant recovery operation, for example, the rotation speed of the compressor 31 may be increased to improve the refrigeration capacity and maintain the heating performance.

【0037】(2)第2の実施例(請求項4〜9に対応
する実施例):次に、図7〜図10により本発明の第2
の実施例を説明する。本実施例では、コンプレッサ31
の停止指令がなされた場合にも冷媒回収運転が行われ
る。
(2) Second Embodiment (Embodiment Corresponding to Claims 4 to 9): Next, the second embodiment of the present invention will be described with reference to FIGS.
An example will be described. In this embodiment, the compressor 31
Is performed, the refrigerant recovery operation is also performed.

【0038】図7のステップS301では、比較式に用
いられる定数のセットを行い、ステップS302では、
各種情報を読み込む。読み込まれる情報は、図2のステ
ップS202で説明した各情報と、イグニションキーの
オン・オフ状態Ignである。ステップS303では、イ
グニションキーがオンからオフに切換わった(コンプレ
ッサ停止が指令された)直後か否かを判定し、肯定され
ると図8のステップS323に進む。ステップS323
ではモードアクチュエータやエアミックスドアアクチュ
エータなどの各アクチュエータを停止する。
In step S301 of FIG. 7, constants used in the comparison expression are set, and in step S302,
Read various information. The information to be read is the information described in step S202 of FIG. 2 and the on / off state Ign of the ignition key. In step S303, it is determined whether or not the ignition key has just been switched from on to off (compressor stop command has been issued). If the result is affirmative, the process proceeds to step S323 in FIG. Step S323
Then, each actuator such as a mode actuator and an air mix door actuator is stopped.

【0039】ステップS324では、冷暖房装置の今回
の運転中に冷房運転が行われたか否かを判断する。これ
は、冷房運転が行われたことをフラグなどにより記憶し
ておくことにより判断できる。冷房運転が行われていな
い場合にはステップS325で冷媒回収運転を行う。こ
れによれば、暖房運転時にイグニションキーがオフされ
た場合、または暖房運転後に送風運転に切換わり、送風
運転時にイグニションキーがオフされた場合に冷媒回収
運転が行われる。冷媒回収運転の詳細は、図5に示した
処理と同様である。イグニションキーのオフ時に冷媒回
収運転を行うことにより、車室外熱交換器38内の冷媒
を暖房運転時のサイクルに復帰させることができ、次回
暖房時における車室外熱交換器38への冷媒滞留量を最
小限に減らすことができる。
In step S324, it is determined whether or not the cooling operation has been performed during the current operation of the cooling and heating apparatus. This can be determined by storing the fact that the cooling operation has been performed using a flag or the like. If the cooling operation is not being performed, a refrigerant recovery operation is performed in step S325. According to this, the refrigerant recovery operation is performed when the ignition key is turned off during the heating operation, or when the ignition key is turned off during the blowing operation after switching to the air blowing operation after the heating operation. The details of the refrigerant recovery operation are the same as the processing shown in FIG. By performing the refrigerant recovery operation when the ignition key is turned off, the refrigerant in the exterior heat exchanger 38 can be returned to the cycle during the heating operation, and the refrigerant retention amount in the exterior heat exchanger 38 at the next heating time Can be reduced to a minimum.

【0040】一方、ステップS324で冷房運転が行わ
れたと判定された場合には、ステップS325の冷媒回
収運転をスキップしてステップS326に進む。すなわ
ち、冷房運転が行われたということは、車室外熱交換器
38に冷媒が流通したということであり、この場合には
車室外熱交換器38への冷媒滞留量は極く僅かと考えら
れるので、冷媒回収運転は行わない。
On the other hand, if it is determined in step S324 that the cooling operation has been performed, the flow proceeds to step S326, skipping the refrigerant recovery operation in step S325. That is, the fact that the cooling operation is performed means that the refrigerant has circulated through the exterior heat exchanger 38, and in this case, the amount of the refrigerant retained in the exterior heat exchanger 38 is considered to be extremely small. Therefore, the refrigerant recovery operation is not performed.

【0041】ステップS326,S327では、ブロア
ファン37,コンプレッサ31を停止する。コンプレッ
サ停止にあたっては、コンプレッサ31の回転数を徐々
に減少させることにより、冷媒吐出量を徐々に減少させ
るようにする。これによれば、ステップS325で冷媒
回収運転を行った場合に熱冷媒を所定量だけ車室外熱交
換器38に導くことができるとともに、コンプレッサ3
1の急激な停止に起因する違和感を乗員に与えることが
ない。ステップS328では、イグニションキーがオフ
か否かを判定し、オンであればステップS302に戻
り、オフであればステップS329で車両を停止させて
処理を終了させる。
In steps S326 and S327, the blower fan 37 and the compressor 31 are stopped. When the compressor is stopped, the rotational speed of the compressor 31 is gradually reduced, so that the refrigerant discharge amount is gradually reduced. According to this, when the refrigerant recovery operation is performed in step S325, the heat refrigerant can be guided to the exterior heat exchanger 38 by a predetermined amount, and the compressor 3
The driver does not feel uncomfortable due to the sudden stop of the vehicle. In step S328, it is determined whether or not the ignition key is off. If it is on, the process returns to step S302. If it is off, the vehicle is stopped in step S329 and the process ends.

【0042】一方、図9のステップS303が否定され
た場合には、ステップS304に進む。ステップS30
4〜S316の処理は、上述したステップS203〜S
215の処理と同様である。すなわち本実施例において
も、外気温度Tambが所定値以下のときに暖房運転が行
われると、冷媒吐出温度Tdが所定値以上になったとき
に冷媒回収運転に切換わり、所定時間経過後に暖房運転
に戻る。それ以降は、所定時間おきに冷媒回収運転が周
期的に行われる。したがって、上述と同様に暖房時の冷
凍サイクル内の冷媒量を常に所定量以上に保持すること
ができ、常に満足な暖房性能が得られる。
On the other hand, if step S303 in FIG. 9 is denied, the process proceeds to step S304. Step S30
The processing in steps S203 to S316
215 is the same as the process. That is, also in the present embodiment, if the heating operation is performed when the outside air temperature Tamb is equal to or lower than the predetermined value, the operation is switched to the refrigerant recovery operation when the refrigerant discharge temperature Td becomes equal to or higher than the predetermined value, and the heating operation is performed after a predetermined time has elapsed. Return to Thereafter, the refrigerant recovery operation is periodically performed at predetermined time intervals. Therefore, as described above, the amount of refrigerant in the refrigeration cycle during heating can always be maintained at a predetermined amount or more, and satisfactory heating performance can always be obtained.

【0043】ステップS308で送風運転が行われる
と、図9のステップS317に進んで暖房運転から送風
運転に変更した直後か否かを判定する。ステップS31
7が否定されるとステップS315に進み、肯定される
とステップS313に進む。つまり暖房運転から送風運
転に変更された直後(コンプレッサの停止が指令された
直後)は、冷媒回収運転が行われる。これにより、車室
外熱交換器38内の冷媒を暖房運転時のサイクルに復帰
させることができ、次回暖房時における車室外熱交換器
38への冷媒滞留量を最小限に減らすことができる。
When the air blowing operation is performed in step S308, the process proceeds to step S317 in FIG. 9 to determine whether or not the air conditioner has just changed from the heating operation to the air blowing operation. Step S31
If the result is negative, the process proceeds to step S315, and if the result is positive, the process proceeds to step S313. That is, the refrigerant recovery operation is performed immediately after the operation is changed from the heating operation to the blow operation (immediately after the stop of the compressor is instructed). As a result, the refrigerant in the exterior heat exchanger 38 can be returned to the cycle during the heating operation, and the amount of refrigerant retained in the exterior heat exchanger 38 during the next heating can be reduced to a minimum.

【0044】ステップS304でエアコンスイッチがオ
フと判定されると、図8のステップS323に進む。す
なわち、エアコンスイッチがオンからオフに切換わった
(コンプレッサ停止指令が出力された)ときも、冷房運
転が行われていなければ冷媒回収運転が行われ、上述と
同様に次回暖房時における車室外熱交換器38への冷媒
滞留量を最小限に減らすことができる。
If it is determined in step S304 that the air conditioner switch is off, the flow advances to step S323 in FIG. That is, even when the air conditioner switch is switched from ON to OFF (compressor stop command is output), the refrigerant recovery operation is performed unless the cooling operation is performed, and the outside heat of the vehicle at the next heating is performed as described above. The amount of refrigerant retained in the exchanger 38 can be reduced to a minimum.

【0045】図10は本発明者らによる暖房運転時の実
験データを示し、(a)はコンプレッサ回転数と冷媒吐
出温度、(b)は冷暖房装置の運転状態の時間的変化を
それぞれ示している。このデータも外気温度が0〜2℃
のとき、つまり液冷媒が車室外熱交換器38に滞留し易
い条件時のものである。この例では、実験開始後、約3
1分に冷媒回収運転が行われ、40分経過時点でイグニ
ションキーがオフされると、冷媒回収運転が行われる。
その際、コンプレッサ回転数、すなわち冷媒吐出量は徐
々に低下し、43分付近でコンプレッサ31が停止す
る。このようにイグニションキーがオフされると、車室
外熱交換器38内へ冷媒を流す冷媒回収運転が行われ
る。これにより車室外熱交換器38内の液冷媒が温度,
圧力の上昇により気化し、大半は車室外熱交換器38内
から排出される。このように運転終了時に冷媒回収運転
を行うと、暖房性能に全く影響を与えずに冷媒回収運転
を行うことができるので、非常に効果的に冷媒回収運転
を行うことができる。ただし、運転終了後も冷凍サイク
ルが稼働するので、図10に示すように速やかにコンプ
レッサ回転数を低下させ、乗員に違和感を抱かせないよ
うにする必要がある。
FIGS. 10A and 10B show experimental data during the heating operation by the present inventors. FIG. 10A shows the rotational speed of the compressor and the refrigerant discharge temperature, and FIG. . This data also shows that the outside air temperature is 0 ~ 2 ℃
, That is, under the condition that the liquid refrigerant easily stays in the vehicle exterior heat exchanger 38. In this example, about 3 hours after the start of the experiment
The refrigerant recovery operation is performed in one minute, and when the ignition key is turned off after a lapse of 40 minutes, the refrigerant recovery operation is performed.
At that time, the compressor rotation speed, that is, the refrigerant discharge amount gradually decreases, and the compressor 31 stops around 43 minutes. When the ignition key is turned off in this way, a refrigerant recovery operation for flowing the refrigerant into the outside heat exchanger 38 is performed. As a result, the temperature of the liquid refrigerant in the heat exchanger 38 outside the vehicle compartment rises,
The gas is vaporized by the increase in the pressure, and is mostly discharged from the heat exchanger 38 outside the vehicle compartment. If the refrigerant recovery operation is performed at the end of the operation as described above, the refrigerant recovery operation can be performed without affecting the heating performance at all, so that the refrigerant recovery operation can be performed very effectively. However, since the refrigeration cycle operates even after the end of the operation, it is necessary to quickly reduce the compressor speed as shown in FIG. 10 so that the occupant does not feel uncomfortable.

【0046】なお、冷媒回収運転の時間や周期は、車室
内の熱環境や冷凍サイクルの状態に応じて種々変更可能
である。例えば、暖房運転開始後の2回目以降の冷媒回
収運転時間は、1回目よりも短くするようにしたり、冷
媒吐出温度が高いほど冷媒回収運転時間を短くするよう
にしてもよい。あるいは所定回数だけ冷媒回収運転を行
った後は、それ以上は行わないようにしたり、所定回数
だけ冷媒回収運転を行った後は、冷媒回収運転の周期を
長くするようにしたり、吐出温度と車室外熱交換器の温
度差に応じて冷媒回収運転時間を設定するようにしても
よい。また、暖房運転開始後の第1回目の冷媒回収運転
を行うか否かを放熱用車室内熱交換器33の冷媒吐出温
度Td、すなわち冷凍サイクルの高圧系の温度により判
定するようにしたが、例えば吸熱用車室内熱交換器35
の冷媒吐出温度といった低圧系の温度により判定するよ
うにしてもよい。あるいは冷媒吐出温度に代えて冷媒吐
出圧力によって判定してもよい。
The time and cycle of the refrigerant recovery operation can be variously changed according to the thermal environment in the vehicle compartment and the state of the refrigeration cycle. For example, the second and subsequent refrigerant recovery operation times after the start of the heating operation may be shorter than the first recovery operation time, or may be shorter as the refrigerant discharge temperature is higher. Alternatively, after the refrigerant recovery operation is performed a predetermined number of times, no more is performed, or after the refrigerant recovery operation is performed a predetermined number of times, the cycle of the refrigerant recovery operation is increased, or the discharge temperature and the vehicle The refrigerant recovery operation time may be set according to the temperature difference of the outdoor heat exchanger. Further, whether or not to perform the first refrigerant recovery operation after the start of the heating operation is determined based on the refrigerant discharge temperature Td of the heat-radiating vehicle interior heat exchanger 33, that is, the temperature of the high-pressure system of the refrigeration cycle. For example, the heat absorbing vehicle interior heat exchanger 35
The determination may be made based on the temperature of the low-pressure system such as the refrigerant discharge temperature. Alternatively, the determination may be made based on the refrigerant discharge pressure instead of the refrigerant discharge temperature.

【0047】請求項1の発明によれば、暖房運転終了時
に車室外熱交換器に冷媒を導くようにしたので、次回暖
房運転時における車室外熱交換器への冷媒滞留量を最小
限に減らすことができる。また、暖房運転終了時には、
通常、冷凍サイクルが高温,高圧となっているので、車
室外熱交換器に滞留していた熱冷媒を確実に暖房運転時
のサイクルに復帰させることができる。請求項2の発明
によれば、車両の稼働から停止までの間に暖房運転が行
われた場合、すなわち車室外熱交換器に冷媒が滞留して
いるおそれがある場合には、コンプレッサの停止指令に
応答して車室外熱交換器に冷媒を導くようにしたので、
上記滞留冷媒を暖房運転時のサイクルに復帰させること
ができ、次回暖房運転時における車室外熱交換器への冷
媒滞留量を最小限に減らすことができる。請求項3の発
明によれば、冷凍サイクルの高圧系または低圧系の圧力
あるいは温度に関連する物理量が所定値以上に達した場
合にも車室外熱交換器に冷媒を導くようにしたので、車
室外熱交換器に滞留していた熱冷媒の蒸発が促進されこ
れを確実に暖房運転時のサイクルに復帰させることがで
きる。また、上記物理量が所定値以上ということは、十
分な暖房能力が得られる状態であるから、冷媒の熱が車
室外熱交換器で外気に放熱されることによる暖房性能の
低下を最小限に抑制できる。請求項4の発明によれば、
暖房運転終了時に冷媒を所定時間あるいは所定量だけ車
室外熱交換器に導くようにしたので、車室外熱交換器に
おける外気への放熱量を最小限に抑制することができ、
暖房性能の低下を抑制できる。請求項5,6の発明によ
れば、暖房運転終了時に車室外熱交換器に冷媒を導く
際、コンプレッサの冷媒吐出量を徐々に低下するように
したので、コンプレッサの急激な停止に起因する違和感
を乗員に与えることがなくなる。
According to the first aspect of the present invention, the refrigerant is guided to the exterior heat exchanger at the end of the heating operation, so that the amount of refrigerant retained in the exterior heat exchanger during the next heating operation is reduced to a minimum. be able to. At the end of heating operation,
Normally, since the refrigeration cycle is at high temperature and high pressure, the heat refrigerant that has accumulated in the exterior heat exchanger can be reliably returned to the heating operation cycle. According to the second aspect of the present invention, when the heating operation is performed during the period from the operation of the vehicle to the stop thereof, that is, when there is a possibility that the refrigerant may remain in the heat exchanger outside the vehicle, the compressor stop instruction is issued. The refrigerant was guided to the heat exchanger outside the vehicle in response to
The accumulated refrigerant can be returned to the cycle during the heating operation, and the amount of refrigerant accumulated in the exterior heat exchanger during the next heating operation can be reduced to a minimum. According to the third aspect of the present invention, even when the physical quantity related to the pressure or the temperature of the high-pressure system or the low-pressure system of the refrigeration cycle reaches a predetermined value or more, the refrigerant is guided to the exterior heat exchanger. Evaporation of the heat refrigerant retained in the outdoor heat exchanger is promoted, and this can be reliably returned to the cycle during the heating operation. In addition, when the physical quantity is equal to or more than the predetermined value, a sufficient heating capacity is obtained, so that a decrease in the heating performance due to the heat of the refrigerant being radiated to the outside air by the heat exchanger outside the vehicle compartment is suppressed to a minimum. it can. According to the invention of claim 4,
Since the refrigerant is guided to the exterior heat exchanger for a predetermined time or a predetermined amount at the end of the heating operation, the amount of heat released to the outside air in the exterior heat exchanger can be suppressed to a minimum.
A decrease in heating performance can be suppressed. According to the fifth and sixth aspects of the present invention, when the refrigerant is introduced into the exterior heat exchanger at the end of the heating operation, the refrigerant discharge amount of the compressor is gradually reduced. Will not be given to the crew.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る車両用ヒートポンプ式冷暖房装置
の一実施例を示す構成図。
FIG. 1 is a configuration diagram showing one embodiment of a vehicle heat pump type air conditioner according to the present invention.

【図2】第1の実施例の動作を説明するフローチャー
ト。
FIG. 2 is a flowchart for explaining the operation of the first embodiment.

【図3】図2に続くフローチャート。FIG. 3 is a flowchart following FIG. 2;

【図4】図2に続くフローチャート。FIG. 4 is a flowchart following FIG. 2;

【図5】冷媒回収運転の詳細を示すフローチャート。FIG. 5 is a flowchart showing details of a refrigerant recovery operation.

【図6】第1の実施例における実験データを示す図。FIG. 6 is a view showing experimental data in the first embodiment.

【図7】第2の実施例の動作を説明するフローチャー
ト。
FIG. 7 is a flowchart illustrating the operation of the second embodiment.

【図8】図7に続くフローチャート。FIG. 8 is a flowchart following FIG. 7;

【図9】図7に続くフローチャート。FIG. 9 is a flowchart following FIG. 7;

【図10】第2の実施例における実験データを示す図。FIG. 10 is a view showing experimental data in the second embodiment.

【図11】従来の車両用ヒートポンプ式冷暖房装置の冷
凍サイクルの構成を示す図。
FIG. 11 is a diagram showing a configuration of a refrigeration cycle of a conventional vehicle heat pump air conditioner.

【符号の説明】[Explanation of symbols]

31 コンプレッサ 33 放熱用車室内熱交換器 34 膨張弁(膨張手段) 35 吸熱用車室内熱交換器 37 ブロアファン(空調風発生手段) 38 車室外熱交換器 43 制御装置(切換制御手段,コンプレッサ制御手
段) 44 ブロアファンモータ 46 エアミックスドア 51 ベンチレータ吹出口 52 フット吹出口 53 デフロスタ吹出口 61 日射センサ 62 外気温センサ(検出手段) 63 室温センサ 67 冷媒温度センサ(検出手段) 100,101 二方弁(冷媒流路切換手段)
REFERENCE SIGNS LIST 31 compressor 33 heat-dissipating vehicle interior heat exchanger 34 expansion valve (expansion means) 35 heat-absorbing vehicle interior heat exchanger 37 blower fan (air-conditioning wind generating means) 38 vehicle exterior heat exchanger 43 control device (switch control means, compressor control) Means) 44 Blower fan motor 46 Air mix door 51 Ventilator outlet 52 Foot outlet 53 Defroster outlet 61 Solar radiation sensor 62 Outside air temperature sensor (detection means) 63 Room temperature sensor 67 Refrigerant temperature sensor (detection means) 100, 101 Two-way valve (Refrigerant channel switching means)

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B60H 1/22 B60H 1/32 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) B60H 1/22 B60H 1/32

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 車室内に送風すべき空調風を発生させる
空調風発生手段と、 冷媒を圧送するコンプレッサと、 このコンプレッサの冷媒吐出側に冷媒流入側が接続さ
れ、冷媒の熱を外気に放熱する車室外熱交換器と、 前記コンプレッサの冷媒吐出側および前記車室外熱交換
器の冷媒流出側に冷媒流入側が接続され、冷媒の熱を前
記空調風に放熱して温風を作る放熱用車室内熱交換器
と、 この放熱用車室内熱交換器の冷媒流出側に冷媒流入側が
接続され、冷媒を断熱膨張させる膨張手段と、 この膨張手段の冷媒流出側に冷媒流入側が接続されると
ともに、前記コンプレッサの冷媒流入側に冷媒流出側が
接続され、前記空調風の熱を、前記車室外熱交換器およ
び放熱用車室内熱交換器の少なくともいずれか一方を経
て前記膨張手段で断熱膨張された冷媒に吸熱して冷風を
作る吸熱用車室内熱交換器と、 冷房運転時には前記コンプレッサの吐出冷媒を少なくと
も前記車室外熱交換器に導き、暖房運転時には、前記コ
ンプレッサの吐出冷媒を前記車室外熱交換器を迂回させ
て前記放熱用車室内熱交換器に導く冷媒流路切換手段と
を備えた車両用ヒートポンプ式冷暖房装置において、 前記暖房運転終了時に前記車室外熱交換器に冷媒を導く
よう前記冷媒流路切換手段を制御する切換制御手段を備
えたことを特徴とする車両用ヒートポンプ式冷暖房装
置。
And conditioned air generating means for 1. A generating conditioned air to be blown into the passenger compartment, a compressor for pumping refrigerant, the refrigerant inflow side is connected to the refrigerant discharge side of the compressor, for radiating heat of the refrigerant to the outside air An exterior heat exchanger, a refrigerant inflow side connected to a refrigerant discharge side of the compressor and a refrigerant outflow side of the exterior heat exchanger, and radiating heat of the refrigerant to the conditioned air to generate warm air. A heat exchanger; a refrigerant inflow side connected to the refrigerant outflow side of the heat-dissipating vehicle interior heat exchanger; expansion means for adiabatically expanding the refrigerant; and a refrigerant inflow side connected to the refrigerant outflow side of the expansion means; The refrigerant outflow side is connected to the refrigerant inflow side of the compressor, and the heat of the conditioned air is adiabatically expanded by the expansion means through at least one of the exterior heat exchanger and the heat radiation interior heat exchanger. A heat absorbing vehicle interior heat exchanger that absorbs heat into the refrigerant to produce cool air; and, during cooling operation, guides refrigerant discharged from the compressor to at least the vehicle exterior heat exchanger. During heating operation, discharges refrigerant from the compressor to the vehicle exterior heat exchanger. A heat pump type cooling / heating device for a vehicle, comprising: a refrigerant flow path switching unit that bypasses an exchanger and guides the refrigerant to the heat-radiating vehicle interior heat exchanger, wherein the refrigerant is guided to the vehicle exterior heat exchanger at the end of the heating operation. A heat pump type cooling and heating device for a vehicle, comprising a switching control means for controlling a refrigerant flow switching means.
【請求項2】 前記切換制御手段は、車両の稼働から停
止までの間に前記暖房運転が行われた場合には、コンプ
レッサの停止指令に応答して前記車室外熱交換器に冷媒
を導くよう前記冷媒流路切換手段を制御することを特徴
とする請求項1に記載の車両用ヒートポンプ式冷暖房装
置。
2. The switching control means according to claim 1, wherein said switching control means guides refrigerant to said heat exchanger outside said vehicle in response to a command to stop the compressor when said heating operation is performed during a period from a start of operation of said vehicle to a stop of said vehicle. The vehicle heat pump type cooling and heating apparatus according to claim 1 , wherein the refrigerant flow switching means is controlled.
【請求項3】 前記冷凍サイクルの高圧系または低圧系
の圧力あるいは温度に関連する物理量を検出する検出手
段を更に備え、 前記切換制御手段は、前記検出された物理量が所定値以
上に達した場合にも前記車室外熱交換器に冷媒を導くよ
う前記冷媒流路切換手段を制御することを特徴とする
求項1に記載の車両用ヒートポンプ式冷暖房装置。
3. A refrigeration cycle further comprising a detecting means for detecting a physical quantity related to a pressure or a temperature of a high-pressure system or a low-pressure system of the refrigeration cycle, wherein the switching control means determines that the detected physical quantity has reached a predetermined value or more. and controlling the refrigerant flow path switching means to direct coolant to the vehicle exterior heat exchanger also
The vehicle heat pump air conditioner according to claim 1 .
【請求項4】 前記切換制御手段は、前記暖房運転終了
時に前記冷媒が所定時間あるいは所定量だけ車室外熱交
換器に導かれるよう前記冷媒流路切換手段を制御するこ
とを特徴とする請求項1に記載の車両用ヒートポンプ式
冷暖房装置。
Wherein said switching control means, claims, characterized in that to control the refrigerant flow path switching means so that the refrigerant during the heating operation ends is led to the outer heat exchanger for a predetermined time or a predetermined amount 2. The heat pump type cooling and heating device for vehicles according to 1 .
【請求項5】 前記切換制御手段の制御により前記車室
外熱交換器に冷媒が導かれるとき、前記コンプレッサの
冷媒吐出量を徐々に低下させるコンプレッサ制御手段を
更に備えることを特徴とする請求項1に記載の車両用ヒ
ートポンプ式冷暖房装置。
Wherein when the refrigerant in the vehicle exterior heat exchanger by the control of the switching control means is guided, according to claim 1, further comprising a compressor control means for gradually decreasing the refrigerant discharge amount of the compressor 4. The heat pump type cooling / heating device for vehicles according to item 1.
【請求項6】 前記コンプレッサ制御手段は、前記コン
プレッサの回転数または吐出容量を徐々に低下させるこ
とにより冷媒吐出量を低下させることを特徴とする請求
項5に記載の車両用ヒートポンプ式冷暖房装置。
Wherein said compressor controlling means, wherein, characterized in that reducing the refrigerant discharge amount by lowering gradually the rotational speed or the discharge capacity of the compressor
Item 6. A heat pump air conditioner for vehicles according to item 5 .
JP08062594A 1994-04-19 1994-04-19 Heat pump type air conditioner for vehicles Expired - Fee Related JP3166474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08062594A JP3166474B2 (en) 1994-04-19 1994-04-19 Heat pump type air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08062594A JP3166474B2 (en) 1994-04-19 1994-04-19 Heat pump type air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JPH07285317A JPH07285317A (en) 1995-10-31
JP3166474B2 true JP3166474B2 (en) 2001-05-14

Family

ID=13723540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08062594A Expired - Fee Related JP3166474B2 (en) 1994-04-19 1994-04-19 Heat pump type air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP3166474B2 (en)

Also Published As

Publication number Publication date
JPH07285317A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
JP2745997B2 (en) Heat pump type air conditioner for vehicles
JP3463303B2 (en) Heat pump type air conditioner for vehicles
JP2882184B2 (en) Heat pump type air conditioner for vehicles
JP3587548B2 (en) Heat pump type air conditioner for vehicles
JP3404990B2 (en) Heat pump type air conditioner for vehicles
JP3716686B2 (en) Air conditioner for vehicles
JP3225724B2 (en) Vehicle air conditioner
JP3216357B2 (en) Heat pump type air conditioner for vehicles
JPH05201243A (en) Heat pump type cooling and heating device for vehicle
JP2746013B2 (en) Heat pump type air conditioner for vehicles
JP3166474B2 (en) Heat pump type air conditioner for vehicles
JP3301265B2 (en) Heat pump type air conditioner for vehicles
JP3275661B2 (en) Heat pump type air conditioner for vehicles
JP3460422B2 (en) Vehicle air conditioner
JP3360394B2 (en) Heat pump type air conditioner for vehicles
JP3351064B2 (en) Heat pump type air conditioner for vehicles
JP3301209B2 (en) Heat pump type air conditioner for vehicles
JP3267147B2 (en) Vehicle air conditioner
JP2002301928A (en) Air conditioner for vehicle
JP3301139B2 (en) Heat pump type air conditioner for vehicles
JP3269358B2 (en) Heat pump type air conditioner for vehicles
JP3049940B2 (en) Heat pump type air conditioner for vehicles
JP3301246B2 (en) Vehicle air conditioner
JP3360406B2 (en) Heat pump type air conditioner for vehicles
JPH0948235A (en) Air-conditioning and heating equipment for electric vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees