JP3165499B2 - Microalgae culturing apparatus and culturing method - Google Patents

Microalgae culturing apparatus and culturing method

Info

Publication number
JP3165499B2
JP3165499B2 JP9419592A JP9419592A JP3165499B2 JP 3165499 B2 JP3165499 B2 JP 3165499B2 JP 9419592 A JP9419592 A JP 9419592A JP 9419592 A JP9419592 A JP 9419592A JP 3165499 B2 JP3165499 B2 JP 3165499B2
Authority
JP
Japan
Prior art keywords
microalgae
culture solution
concentration
culturing
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9419592A
Other languages
Japanese (ja)
Other versions
JPH05284959A (en
Inventor
孝平 平山
裕之 松崎
義則 福田
則夫 塩地
正明 根来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP9419592A priority Critical patent/JP3165499B2/en
Publication of JPH05284959A publication Critical patent/JPH05284959A/en
Application granted granted Critical
Publication of JP3165499B2 publication Critical patent/JP3165499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/18Open ponds; Greenhouse type or underground installations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Environmental & Geological Engineering (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光合成反応を利用した微
細藻類の大量培養装置及び同方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for mass-culture of microalgae utilizing a photosynthetic reaction.

【0002】[0002]

【従来の技術】微細藻類(大きさ数ミクロン〜数十ミク
ロンの植物プランクトン)を光合成反応で増殖させ、生
産物を資源とすることは従来から実用化されている。例
えばスピルリナ(藍藻)は蛋白質源として、クロレラ
(緑藻)は健康食品として、またドナリエラ(緑藻)は
色素あるいはビタミンAとしての用途があり、大量培養
するための工業規模の培養システムが完成している。
2. Description of the Related Art Microalgae (phytoplankton having a size of several microns to several tens of microns) are multiplied by a photosynthetic reaction, and a product is used as a resource. For example, Spirulina (blue-green algae) is used as a protein source, Chlorella (green algae) is used as a health food, and Donariella (green algae) is used as a pigment or vitamin A. An industrial-scale culture system for large-scale culture has been completed. .

【0003】図4は工業化されている微細藻類の大量培
養装置に関する従来技術の例を示すものであり、代表的
なスピルリナ培養について説明する。図4において、1
は微細藻類の培養槽であり、通常30cm程度の浅い水
深で太陽光受光面積を広くとる構造である。培養液2は
微細藻類30の種と栄養培地4を導入したもので、パド
ル3で培養液を攪拌混合するようにされており、培地タ
ンク5に貯蔵した栄養培地4は弁6を開き、ポンプ7で
培養槽1に流入させるようにされている。生産された藻
体は弁8を開き、ポンプ9で引抜き、引抜いた量だけ新
しい液、すなわち栄養培地4を補給するようにされてい
る。
FIG. 4 shows an example of the prior art relating to a mass-cultivation apparatus for microalgae which is industrialized, and a typical spirulina culture will be described. In FIG. 4, 1
Is a culture tank for microalgae and has a structure in which the sunlight receiving area is wide at a shallow water depth of usually about 30 cm. The culture medium 2 is a mixture of the seeds of the microalgae 30 and the nutrient medium 4 introduced therein. The culture medium is stirred and mixed with a paddle 3. The nutrient medium 4 stored in the medium tank 5 opens the valve 6, and the pump 6 At 7, it is made to flow into the culture tank 1. The produced algal body is opened by opening the valve 8 and withdrawn by the pump 9, and a new liquid, that is, the nutrient medium 4 is replenished by the withdrawn amount.

【0004】〇従来技術の制約条件:従来の方法は日照
量が安定し(晴天が続く)、降雨量の少ない立地条件下
で行われているので、微細藻類(藻体)の増殖は比較的
安定しており、したがって増殖した藻体を少しずつ連続
的に抜き出し、一方で減った量だけ少しずつ連続的に注
入することが可能であるが、気候条件に恵まれた場合に
限られる。
[0004] Restrictions of the prior art: Since the conventional method is performed under the condition of stable sunlight (continuous sunny weather) and low rainfall, the growth of microalgae (algae) is relatively high. It is stable and thus it is possible to continuously withdraw the growing alga bodies little by little, while injecting them continuously little by little, but only in favorable climatic conditions.

【0005】〇従来技術の不具合点:降雨量が多く、日
照量、日照時間などが変動する気候条件にある我が国で
は一定期間(例えば1日1回、2日に1回など)ごとに
定常的に生産物を引抜く操作、あるいは連続的に引抜く
ような運転を行うことは実際上不可能であり、培養槽内
の微生物が弱ったり、機能低下を起こすことにもなる。
[0005] (1) Problems of the prior art: In Japan, where the amount of rainfall is large, the amount of sunshine, the length of sunshine and the like fluctuates, in Japan, the state is constant at regular intervals (for example, once a day, once every two days, etc.). It is practically impossible to perform the operation of extracting the product or to perform the operation of continuously extracting the product, and the microorganisms in the culture tank may be weakened or the function may be reduced.

【0006】[0006]

【発明が解決しようとする課題】微細藻類の増殖速度
(生産速度)は日照量(光の強さ)、水深および培養槽
内の微細藻類(藻体)の濃度によって変化する。 〇 日照量(Ly/D=ラングレ/日=10kcal/
2 日で表わす)は大きく影響を及ぼし、日照量大なる
ほど増殖速度は大となる。水深は深くなるほど、微細藻
類の濃度は薄くなる。換言すると、水深が大であれば表
面からの光の透過が悪くなるため高濃度にならない。 〇 このように環境条件の変化に対応して微細藻類が安
定増殖し、しかも生産藻体をタイミングよく回収する
(引抜く)方法については従来から検討がなされてはい
ない。
The growth rate (production rate) of microalgae varies depending on the amount of sunlight (light intensity), water depth, and the concentration of microalgae (algae) in the culture tank. 〇 Insolation (Ly / D = Langre / day = 10 kcal /
(expressed in m 2 days) has a significant effect, and the growth rate increases as the amount of sunlight increases. The deeper the water, the lower the concentration of microalgae. In other words, if the water depth is large, the transmission of light from the surface becomes poor, so that the concentration does not become high.方法 There has been no study on a method for stably growing microalgae in response to changes in environmental conditions and for collecting (pulling out) the produced alga bodies in a timely manner.

【0007】本発明は上記技術水準に鑑み、微細藻類が
安定増殖し、生産藻体をタイミングよく回収することの
できる装置及び方法を提供しようとするものである。
The present invention has been made in view of the above-mentioned technical level, and aims to provide an apparatus and a method capable of stably growing microalgae and recovering the produced algal bodies with good timing.

【0008】[0008]

【課題を解決するための手段】本発明は次の(1)〜
(3)の構成を採ることにより上記課題を解決するもの
である。 (1)微細藻類が生息する培養液中に二酸化炭素を供給
し、光を照射して微細藻類を培養する微細藻類の培養装
置において、培養液中の微細藻濃度を測定する微細藻濃
度計と、光の照射量を測定する照射量計と、培養液の液
深を測定する液深計と、前記照射量計および液深計の測
定値と予め入力した日照量及び液深と培養液を引抜き回
収すべき限界濃度との関係情報から限界濃度を演算し、
前記微細藻濃度計の測定値が限界濃度に達しているか否
かを判断する演算器とを具備することを特徴とする微細
藻類の培養装置。
Means for Solving the Problems The present invention provides the following (1)-
A solution to the above problem by adopting the configuration of (3)
It is. (1) A microalgae concentration meter for measuring the microalgae concentration in a culture solution by supplying carbon dioxide into a culture solution in which the microalgae inhabit and irradiating the carbon dioxide with light to culture the microalgae. A dosimeter for measuring the light irradiation amount, a liquid depth meter for measuring the liquid depth of the culture solution, and a measurement of the irradiation amount meter and the liquid depth meter.
Extraction of constant value, pre-input sunshine amount, liquid depth and culture solution
Calculate the limit concentration from the relationship information with the limit concentration to be collected,
Whether the measured value of the microalgae densitometer has reached the limit concentration
A microalgae culturing apparatus, comprising: a computing unit for determining whether the microalgae is in the microalgae.

【0009】(2)微細藻類が生息する培養液中に二酸
化炭素を供給し、光を照射して微細藻類を培養する微細
藻類の培養方法において、光の照射量を測定する照射量
計からの光の照射量信号と前記培養液の液深を測定する
液深計からの液深信号との演算処理により得られる予め
設定された微細藻類の到達限界濃度信号と、該培養液中
の微細藻濃度を測定する微細藻濃度計からの微細藻濃度
信号を演算処理し、該微細藻濃度が前記微細藻類の測定
時の光の照射量と培養液の液深における到達限界濃度以
上になった場合に該培養液の一部を回収し、培養液の回
収量に応じて微細藻濃度の小さい培養液または微細藻類
が生息しない栄養培地を補充することを特徴とする微細
藻類の培養方法。
(2) In a method of culturing microalgae by supplying carbon dioxide into a culture solution in which microalgae inhabit and irradiating the microalgae with light, a radiation meter for measuring the amount of light irradiation is used. A predetermined limit concentration signal of microalgae obtained by arithmetic processing of a light irradiation amount signal and a liquid depth signal from a liquid depth meter that measures the liquid depth of the culture solution, and a microalgae in the culture solution. The microalgae concentration signal from the microalgae densitometer for measuring the concentration is arithmetically processed, and the microalgae concentration is measured for the microalgae.
A part of the culture solution is collected when the concentration of the light reaches the maximum limit in the irradiation amount of the light and the culture solution depth , and the culture solution or the microalgae having a low microalga concentration depending on the amount of the culture solution recovered. A method for culturing microalgae, which comprises supplementing a nutrient medium in which no microorganisms live.

【0010】(3)それぞれの測定や演算処理、培養液
の回収、培養液または栄養培地の補充が自動コントロー
ルシステムになっていることを特徴とする上記(2)に
記載の微細藻類の培養方法
(3) The method for culturing microalgae according to the above (2), wherein each measurement and calculation processing, collection of the culture solution, and replenishment of the culture solution or the nutrient medium are performed by an automatic control system. .

【0011】[0011]

【作用】(1)藻体が増殖して行く場合の濃度増加のパ
ターンは日照量が常に一定でない限り複雑な挙動を示
し、予測が困難である。したがって、予め日照量に対す
る限界濃度の情報データを取得しシステム機器に導入し
ておけば実際に天候が悪く日照量が低下して藻体が弱く
なりかけた時点で引抜き回収することができる。こゝで
いう限界濃度とは藻体が所定濃度以上になると光が充分
に中に入らず、藻体は光合成とは逆の反応、すなわち呼
吸反応が起こり、そのために藻体は弱くなって活性が低
下する現象が発生する濃度を意味する。
(1) The pattern of the concentration increase when the algal body grows shows a complicated behavior unless the amount of sunshine is always constant, and is difficult to predict. Therefore, if information data on the limit concentration with respect to the amount of sunlight is acquired in advance and introduced into the system equipment, it can be pulled out and collected at the time when the weather is actually bad and the amount of sunlight decreases and the algal cells are becoming weak. The limit concentration here means that when the algal cells exceed a predetermined concentration, light does not enter sufficiently, and the algal cells undergo a reaction opposite to photosynthesis, that is, a respiratory reaction, and as a result, the algal cells become weak and active Means the concentration at which the phenomenon of decrease occurs.

【0012】(2)また降雨による液深の増大あるいは
蒸発による液深の低下に遭遇しても液深と引き抜くべき
限界濃度の関係をインプットしてあるから、増殖を継続
させるか引抜くかを自動的に判断することができる。
(2) Since the relationship between the liquid depth and the limit concentration to be withdrawn is input even when the liquid depth is increased due to rainfall or the liquid depth is decreased due to evaporation, it is necessary to determine whether the growth is continued or withdrawn. It can be determined automatically.

【0013】[0013]

【実施例】以下、本発明の一実施例を図1によって説明
する。図1において、1は微細藻類の培養槽、2は培養
液、3はパドル、4は栄養培地、5は培地タンク、7,
9及び22はポンプ、10は日照量計、11,16は液
深計、12は藻体濃度計、13は演算器、14,17は
電磁弁、15,18はタイマー、19はコントローラ、
21はガスタンク、23は散気装置、30は微細藻類で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG. In FIG. 1, 1 is a micro algae culture tank, 2 is a culture solution, 3 is a paddle, 4 is a nutrient medium, 5 is a medium tank, 7,
9 and 22 are pumps, 10 is a sunshine meter, 11 and 16 are a liquid depth meter, 12 is an algal body densitometer, 13 is a calculator, 14 and 17 are solenoid valves, 15 and 18 are timers, 19 is a controller,
21 is a gas tank, 23 is an air diffuser, and 30 is microalgae.

【0014】微細藻類光合成の炭素源としてガスタンク
21内にCO2 ガスまたは燃焼排ガスを貯蔵し、これを
ポンプ22で培養槽1内に導入する。これは光合成反応
によるCO2 の供給不足が生じないようにCO2 を強制
的に吹込み増殖速度を高くとるための手段である。
A CO 2 gas or a combustion exhaust gas is stored in a gas tank 21 as a carbon source for microalgae photosynthesis, and is introduced into the culture tank 1 by a pump 22. This is a means for forcibly blowing CO 2 to increase the growth rate so as to prevent the supply of CO 2 from being insufficient due to the photosynthetic reaction.

【0015】培養槽1の表面上部には日照量計10を設
置し、併せて液深計11と藻体濃度計12を配置する。
培養開始後、経過日数とともに藻体が増殖するが、図2
に示すように培養槽液深(H)と日照量の変化に応じて
藻体の到達限界濃度が異なるので、日照量(その日の平
均日照量)と液深および藻体濃度を検出して、このデー
タを演算機13で処理し、実際に計測する藻体濃度が限
界濃度に到達するか、あるいはそれを越えれば藻体を引
抜くべく作動するシステム構成とする。
A solar radiation meter 10 is installed on the upper surface of the culture tank 1, and a liquid depth meter 11 and an algal cell densitometer 12 are also arranged.
After the start of the culture, algal cells proliferate with the passage of days.
As shown in, the ultimate concentration of algal cells differs according to the change in the culture tank liquid depth (H) and the amount of sunlight, so the amount of sunlight (average amount of sunlight on that day), the liquid depth, and the concentration of algal cells are detected. This data is processed by the arithmetic unit 13, and a system is configured to operate so as to pull out algal bodies when the actually measured algal body concentration reaches or exceeds the limit concentration.

【0016】したがって、この限界濃度到達時点を見極
めて引抜く手段を採ることとし、これに併せて引抜く量
および時間を制御するのであるが、図1に示すように演
算機13の信号を受けて電磁弁14が開き、タイマー1
5でセットされた時間だけポンプ9が作動するように構
成する。
Accordingly, a means for extracting the time when the limit concentration is reached is adopted, and the amount and time of the extraction are controlled in accordance with the means. As shown in FIG. The solenoid valve 14 opens and the timer 1
The pump 9 is configured to operate only for the time set at 5.

【0017】限界濃度に到達した藻体を所定量引抜いた
後は液深計16でレベルを検知し培地タンク5内に貯蔵
した栄養培地4をポンプ7で培養槽1に補充する。この
場合、コントローラ19により電磁弁17に信号を送
り、弁17を開くと同時に、タイマー18に連動したポ
ンプ7を作動させる機能を付加すればよい。
After extracting a predetermined amount of algal cells reaching the limit concentration, the level is detected by the liquid depth gauge 16 and the nutrient medium 4 stored in the medium tank 5 is replenished to the culture tank 1 by the pump 7. In this case, a function of sending a signal to the electromagnetic valve 17 by the controller 19 to open the valve 17 and simultaneously operating the pump 7 linked to the timer 18 may be added.

【0018】図3は本発明の基本的考え方に基づく試験
の具体例を示すものであり、液深20cmの培養槽によ
る海産性の真正眼点藻を使用して培養した結果を示す。
運転初期から約8日経過後、藻体濃度が限界濃度250
mg/リットルに達したため、培養液を全量の約半分量
引抜き、その後新しい栄養培地を補充して再運転するこ
ととしたが、このときの藻体濃度は新しい栄養培地(海
水ベース)で希釈されたため約140mg/リットルに
なった。このように限界濃度に到達すれば引抜いて新し
い栄養培地を供給することを繰返しする半連続運転方法
により、安定した培養が可能となった。
FIG. 3 shows a specific example of a test based on the basic concept of the present invention, and shows the results of cultivation using a marine genuine eucalypt algae in a culture tank having a liquid depth of 20 cm.
Approximately 8 days after the initial operation, the algal body concentration was
mg / liter, the culture broth was withdrawn about half of the total volume and then re-started with fresh nutrient medium, but the algal cell concentration at this time was diluted with the new nutrient medium (seawater base). Therefore, it became about 140 mg / liter. As described above, a stable cultivation was made possible by the semi-continuous operation method of repeatedly extracting and supplying a new nutrient medium when the concentration reached the limit concentration.

【0019】さらに、引抜き量は培養液全量の1/4〜
3/4量の範囲で引抜くことにより安定した培養ができ
た。
Further, the amount to be withdrawn is 1/4 of the total amount of the culture solution.
By extracting in the range of 3/4 amount, stable culture was possible.

【0020】[0020]

【発明の効果】(1)培養液の藻体限界濃度を検出しこ
れによって生産藻体の引抜きを行うので引抜き前の藻体
がダメージを受けることなく、次の運転サイクルがスム
ーズに立上がる。 (2)日照量、液深、藻体濃度を検出し、生産藻体の引
抜きタイミングを適切に設定すること、及び引抜き量を
培養液全量の1/4〜3/4量の範囲とすることにより
安定した半連続運転が可能となる。 (3)これらの一連のシステム構成により微細藻の培養
を自動的に行うことも可能となる。
According to the present invention, (1) the algal cell limit concentration of the culture solution is detected, and the produced algal cells are extracted. Therefore, the algal cells before the extraction are not damaged, and the next operation cycle can be started up smoothly. (2) Detecting the amount of sunshine, liquid depth, and algal concentration, appropriately setting the timing for extracting the produced algal cells, and setting the amount of extraction within a range of 1/4 to 3/4 of the total amount of the culture solution. As a result, stable semi-continuous operation becomes possible. (3) The microalgae can be cultured automatically by these series of system configurations.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の説明図FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】本発明の培養槽液深と日照量に対応する藻体の
到達限界濃度の関係を示す図表
FIG. 2 is a table showing the relation between the ultimate concentration of algal cells corresponding to the amount of sunshine and the liquid depth of the culture tank of the present invention.

【図3】本発明の具体的な試験データを示す図表FIG. 3 is a table showing specific test data of the present invention.

【図4】従来の微細藻類の培養システムの一態様の説明
FIG. 4 is an explanatory view of one embodiment of a conventional microalgal culture system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 義則 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社 本社内 (72)発明者 塩地 則夫 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社 高砂研究所内 (72)発明者 根来 正明 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社 高砂研究所内 (56)参考文献 特開 昭50−101576(JP,A) 実開 昭61−160656(JP,U) 国際公開91/5849(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C12M 1/00 C12M 1/36 C12N 1/12 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshinori Fukuda 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Heavy Industries, Ltd. Head Office (72) Inventor Norio Shioji 2-1-1 Shinama, Araimachi, Takasago-shi, Hyogo Prefecture No. Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory (72) Inventor Masaaki Negoro 2-1-1, Shinaihama, Arai-machi, Takasago City, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory (56) References JP 50-101576 (JP, A) 61-160656 (JP, U) WO 91/5849 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) C12M 1/00 C12M 1/36 C12N 1/12 JICST File (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 微細藻類が生息する培養液中に二酸化炭
素を供給し、光を照射して微細藻類を培養する微細藻類
の培養装置において、培養液中の微細藻濃度を測定する
微細藻濃度計と、光の照射量を測定する照射量計と、培
養液の液深を測定する液深計と、前記照射量計および液
深計の測定値と予め入力した日照量及び液深と培養液を
引抜き回収すべき限界濃度との関係情報から限界濃度を
演算し、前記微細藻濃度計の測定値が限界濃度に達して
いるか否かを判断する演算器とを具備することを特徴と
する微細藻類の培養装置。
1. A microalga culturing device for culturing microalgae by supplying carbon dioxide to a culture solution in which microalgae inhabit and irradiating the microalgae with light to measure the microalgae concentration in the culture solution. Meter, a radiation meter for measuring the light irradiation amount, a liquid depth meter for measuring the liquid depth of the culture solution , the radiation meter and the liquid
The measured value of the depth gauge, the sunshine amount,
Extract the limit concentration from the information on the relationship with the limit concentration to be withdrawn and collected.
Calculate and the measured value of the microalgae densitometer reaches the limit concentration
A microalgae culturing device, comprising: an arithmetic unit for determining whether or not the microalgae is present.
【請求項2】 微細藻類が生息する培養液中に二酸化炭
素を供給し、光を照射して微細藻類を培養する微細藻類
の培養方法において、光の照射量を測定する照射量計か
らの光の照射量信号と前記培養液の液深を測定する液深
計からの液深信号との演算処理により得られる予め設定
された微細藻類の到達限界濃度信号と、該培養液中の微
細藻濃度を測定する微細藻濃度計からの微細藻濃度信号
を演算処理し、該微細藻濃度が前記微細藻類の測定時の
光の照射量と培養液の液深における到達限界濃度以上に
なった場合に該培養液の一部を回収し、培養液の回収量
に応じて微細藻濃度の小さい培養液または微細藻類が生
息しない栄養培地を補充することを特徴とする微細藻類
の培養方法。
2. A method for culturing microalgae by supplying carbon dioxide into a culture solution in which microalgae inhabit and irradiating the microalgae with light, the light from a dosimeter for measuring the amount of light irradiation. A predetermined limit concentration signal of microalgae obtained by the arithmetic processing of the irradiation amount signal and the liquid depth signal from the liquid depth meter for measuring the liquid depth of the culture solution, and the microalga concentration in the culture solution The microalgae concentration signal from the microalgae concentration meter that measures the microalgae is calculated, and the microalgae concentration is measured when the microalgae is measured.
A portion of the culture solution is collected when the concentration of the culture solution reaches the limit in the light irradiation amount and the culture solution depth , and a culture solution or microalgae with a low microalga concentration inhabits according to the collected amount of the culture solution. A method for culturing microalgae, which comprises supplementing a nutrient medium which is not used.
【請求項3】 それぞれの測定や演算処理、培養液の回
収、培養液または栄養培地の補充が自動コントロールシ
ステムになっていることを特徴とする請求項2に記載の
微細藻類の培養方法。
3. The method for culturing microalgae according to claim 2, wherein each of the measurement and calculation processing, the collection of the culture solution, and the replenishment of the culture solution or the nutrient medium are performed by an automatic control system.
JP9419592A 1992-04-14 1992-04-14 Microalgae culturing apparatus and culturing method Expired - Fee Related JP3165499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9419592A JP3165499B2 (en) 1992-04-14 1992-04-14 Microalgae culturing apparatus and culturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9419592A JP3165499B2 (en) 1992-04-14 1992-04-14 Microalgae culturing apparatus and culturing method

Publications (2)

Publication Number Publication Date
JPH05284959A JPH05284959A (en) 1993-11-02
JP3165499B2 true JP3165499B2 (en) 2001-05-14

Family

ID=14103522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9419592A Expired - Fee Related JP3165499B2 (en) 1992-04-14 1992-04-14 Microalgae culturing apparatus and culturing method

Country Status (1)

Country Link
JP (1) JP3165499B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322553A (en) * 1995-05-29 1996-12-10 Kawasaki Heavy Ind Ltd Cultivation of fine algae and equipment therefor
JP6052483B2 (en) * 2012-02-01 2016-12-27 パナソニックIpマネジメント株式会社 Waste liquid treatment system

Also Published As

Publication number Publication date
JPH05284959A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
Hu et al. A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs
JP3600250B2 (en) Method for the production of biomass using photosynthesis
Chen et al. A strategy for high cell density culture of heterotrophic microalgae with inhibitory substrates
Toma et al. Inhibition of microbial growth and metabolism by excess turbulence
Kaštánek et al. In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide
WO2009037683A1 (en) A system and apparatus for growing cultures
CN103756886A (en) High-density continuous culture method and device for microalgae
JP2014509188A (en) Process for the production of microalgae, cyanobacteria and their metabolites
CN102533528B (en) Sealed continuous culture experimental apparatus based on simulation of microalgae amplification culture
CN105316217A (en) Artificial light source microalgae culture equipment
CN105316235A (en) Freshwater eukaryoticmicroalgae culture method
Molina Grima et al. Biomass and icosapentaenoic acid productivities from an outdoor batch culture of Phaeodactylum tricornutum UTEX 640 in an airlift tubular photobioreactor
Carlozzi Hydrodynamic aspects and Arthrospira growth in two outdoor tubular undulating row photobioreactors
CN104017726A (en) Built-in light source bioreactor and microalgae culture method
Magdaong et al. Effect of aeration rate and light cycle on the growth characteristics of Chlorella sorokiniana in a photobioreactor
Alhaboubi CO2 sequestration using a novel Belt Conveyor Reactor with rotating sieve trays compared with Airlift Bubble Column as photobioreactors
CN105002085A (en) Culture farm special-purpose microalgae photo-biological culture system and culture method
CN104328053A (en) Scenedesmus capable of highly yielding oil as well as culture method and application thereof
JP3165499B2 (en) Microalgae culturing apparatus and culturing method
CN101643700A (en) Algae growth system device with two-step photobiologic reactors
CN104232559B (en) The method of cultivating microalgae and the method for producing grease
CN109097283A (en) A kind of method of microalgae alkalinity flocculation harvest and Cyclic culture
CN100375783C (en) Method for culturing 'Yuanshizao' alga in large scale outdoor, and its processing method
CN204097489U (en) A kind of built-in light source bio-reactor and production cultivation equipment
US9738869B2 (en) Method and system for the culture of microalgae

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010130

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees