JP3163533B2 - Stretch stimulation load device for cultured cells using silicon belt - Google Patents

Stretch stimulation load device for cultured cells using silicon belt

Info

Publication number
JP3163533B2
JP3163533B2 JP35478696A JP35478696A JP3163533B2 JP 3163533 B2 JP3163533 B2 JP 3163533B2 JP 35478696 A JP35478696 A JP 35478696A JP 35478696 A JP35478696 A JP 35478696A JP 3163533 B2 JP3163533 B2 JP 3163533B2
Authority
JP
Japan
Prior art keywords
belt
silicon
cultured cells
extension
load device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35478696A
Other languages
Japanese (ja)
Other versions
JPH10155475A (en
Inventor
徹 武政
正雄 市川
Original Assignee
徹 武政
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徹 武政 filed Critical 徹 武政
Priority to JP35478696A priority Critical patent/JP3163533B2/en
Publication of JPH10155475A publication Critical patent/JPH10155475A/en
Application granted granted Critical
Publication of JP3163533B2 publication Critical patent/JP3163533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/04Mechanical means, e.g. sonic waves, stretching forces, pressure or shear stimuli

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、培養細胞や組織
に伸縮刺激や伸展刺激を与える技術に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for applying a stretching stimulus or a stretching stimulus to cultured cells or tissues.

【0002】[0002]

【従来の技術】一般に、培養細胞などに伸縮刺激を与え
るには細胞外マトリックスなどをコーティングしたシリ
コン膜上に細胞を培養し、それをシリコン膜ごと伸縮さ
せる方法が採られている。従来シリコン膜を伸展させる
装置としては、伸展の方向性から考えて一方向性のもの
[図4]と、放射状のもの[図5]が使われてきた。
2. Description of the Related Art In general, in order to apply a stretching stimulus to cultured cells and the like, a method has been adopted in which cells are cultured on a silicon film coated with an extracellular matrix or the like, and the cells are stretched together with the silicon film. Conventionally, as a device for extending a silicon film, a unidirectional device (FIG. 4) and a radial device (FIG. 5) have been used in consideration of the direction of extension.

【0003】一方向性のものは長方形のシリコン膜
(9)の両端をクリップ(11)を使ってきつく固定
し、それをカム(12)を使ったシンクロナスモーター
の回転運動をピストン運動に変える機構により引き伸ば
したり(10)、元の長さに戻したり(9)する方法
[従来の方法1]が使われている[図4]。
In the case of a unidirectional one, both ends of a rectangular silicon film (9) are tightly fixed using clips (11), and the rotational motion of a synchronous motor using a cam (12) is converted into piston motion. A method of stretching (10) or returning to the original length (9) by a mechanism [conventional method 1] is used [FIG. 4].

【0004】放射状のものは底面(13)だけがシリコ
ン膜でできているシャーレ(15)を、下から吸引する
ことで底のシリコン膜を引き伸ばしたり(14)元の状
態に戻したり(13)する方法[従来の方法2]が使わ
れている(米国フレックスセル社:特許番号47896
01、4822741、4839280)[図5]。
[0004] In the case of a radial one, a petri dish (15) having only a bottom surface (13) made of a silicon film is drawn from below to stretch the bottom silicon film (14) or to return to the original state (13). [Conventional method 2] is used (Flexcell Corp., US: Patent No. 47896)
01, 4822741, 4839280) [FIG. 5].

【0005】[0005]

【発明が解決しようとする課題】[Problems to be solved by the invention]

[従来の方法1]について シリコン膜(9)の両端は
引き伸ばしても離れないようにクリップ(11)できつ
く固定されているため、引き伸ばした際には(10)の
ような糸巻き状のひずみを生じ、場所によって変形の具
合が異なるため伸展方向の解析をしにくくしていた。そ
してクリップなどの固定器具を含む機材には滅菌操作が
必要であったが、繰り返し高温・高圧・高湿度のオート
クレーブ滅菌などに耐え、かつ加工などもやりやすい材
質のバネやネジは少なく、さらに実験のたびの固定操作
は煩雑であった。またシンクロナスモーターとカムを使
ったデバイスは振幅の変更もハードウエア自身を組み替
えなくてはならないため面倒で、かつ[周期的に一時停
止を含む伸縮運動]の設定や伸縮加速度の変更は不可能
であった。
[Conventional method 1] Since both ends of the silicon film (9) are tightly fixed so that they do not separate even when stretched, a pincushion-like distortion like (10) occurs when the silicon film (9) is stretched. Because the degree of deformation differs depending on the location, it has been difficult to analyze the extension direction. Equipment that includes fixing devices such as clips required sterilization operations.However, there are few springs and screws made of materials that can withstand repeated high-temperature, high-pressure, and high-humidity autoclave sterilization, and are easy to process. Each time the fixing operation was complicated. Also, for devices using synchronous motors and cams, changing the amplitude requires changing the hardware itself, which is troublesome, and it is not possible to set [expansion and retraction including cyclic pause] and change the expansion / contraction acceleration. Met.

【0006】[従来の方法2]について 引き伸ばされ
たシリコン膜(14)には放射状に張力がかかるため、
場所により張力方向が異なり伸展方向の解析をしにくく
していた。また伸展されているのはシリコン膜の周辺部
のみで中央部はほとんど引き伸ばされないことも指摘さ
れていた。さらに周辺部においても伸展率は構造的に2
4%までしか得られないという制限もあった。そして吸
引という間接的な方法でシリコンを引き伸ばしているの
で、パッキングの磨耗やゴミの付着などにより、設定し
た伸展率に比べて実際の伸展率に狂いが出る可能性があ
った。また既製のシリコンシャーレは大きさが決まって
いるため自由度が少なく、かつ高価であった。さらに吸
引ユニット(含コンピューター、吸引ポンプ)も大がか
りなもので場所をとり、かつ高価であった。
[Conventional method 2] Since the stretched silicon film (14) is radially tensioned,
The tension direction differs depending on the location, making it difficult to analyze the extension direction. It was also pointed out that only the peripheral portion of the silicon film was extended, and the central portion was hardly stretched. Furthermore, the extension rate is 2 structurally in the peripheral area.
There was also a restriction that only 4% could be obtained. Since the silicone is stretched by an indirect method of suction, the actual stretching rate may be deviated compared to the set stretching rate due to abrasion of packing or adhesion of dust. In addition, ready-made silicon petri dishes have a fixed size, and thus have a low degree of freedom and are expensive. Further, the suction unit (including the computer and the suction pump) was also large-scale, took up space, and was expensive.

【0007】[0007]

【課題を解決するための手段】本発明はこのような課題
を解決するために担体のシリコン膜をベルト状にしたも
の(1)を用い、それを高トルクステッピングモーター
とリードスクリューを使って伸縮させるものである[図
1]。細胞などが付着しているシリコンベルト(1)の
内側に二本のロッド(2)を挿入し、そのロッドをそれ
ぞれ左右のアーム(3)に引っかける。高トルクステッ
ピングモーターの時計回り・反時計回りの回転運動はリ
ードスクリュー(4)を使ってアームのピストン運動に
変換する。アームを左右に振ることでシリコンベルトを
伸縮させることができる。
In order to solve the above-mentioned problems, the present invention uses a belt-shaped silicon film of a carrier (1) and expands and contracts it using a high-torque stepping motor and a lead screw. [FIG. 1]. Two rods (2) are inserted inside the silicon belt (1) to which cells and the like are attached, and the rods are hooked on the left and right arms (3), respectively. The clockwise and counterclockwise rotational motion of the high torque stepping motor is converted into arm piston motion using a lead screw (4). The silicon belt can be expanded and contracted by swinging the arm left and right.

【0008】[0008]

【実施例】シリコンベルトはダウコーニングアジア社の
シルポット184W/Cを用い、ガラスの試験管、もし
くはシリコン棒をテンプレートにしてディッピング法で
皮膜を作り、熱をかけて硬化させる。剥ぎ取った袋状の
シリコンを輪切りにすればシリコンベルトができる。
EXAMPLE A silicon belt is formed by a dipping method using a glass test tube or a silicon rod as a template using a sill pot 184W / C manufactured by Dow Corning Asia Co., Ltd., and cured by applying heat. If the stripped bag-shaped silicon is sliced, a silicon belt can be formed.

【0009】シリコンベルトはオートクレーブ滅菌、ロ
ッドとアームは乾熱滅菌をそれぞれ独立に行うが、無菌
的に組み立てるのも簡単である。
The silicon belt is autoclaved, and the rod and the arm are dry-heat sterilized independently, but it is also easy to assemble them aseptically.

【0010】高トルクステッピングモーターの回転運動
はカーク社のリードスクリューを使って直線運動に変換
した。
The rotary motion of the high torque stepper motor was converted to linear motion using a Kirk lead screw.

【0011】高トルクステッピングモーターの回転運動
はタイミングベルトを使って直線運動に変換する事も可
能である。
The rotational motion of the high torque stepping motor can be converted to linear motion using a timing belt.

【0012】日本サーボ株式会社のステッピングモータ
ーの動きは、同社のインテリジェントコントロールドラ
イバを使って制御することで、0%から少なくとも11
0%の範囲で0.1%刻みの高い精度で伸展率が設定可
能となり、伸縮加速度・伸展時間・一時停止・伸縮頻度
などの変換を含むプログラムの変更も滅菌済みのハード
ウエアを組み替えることなく容易に設定できた。
The movement of the stepping motor of Japan Servo Co., Ltd. can be controlled from 0% to at least 11
The extension rate can be set with a high accuracy of 0.1% increments in the range of 0%, and changes in programs including conversion of expansion / contraction acceleration / extension time / pause / expansion / reduction frequency can be performed without changing sterilized hardware. It was easy to set.

【0013】アームのロッドを引っかける部分は滅菌の
必要があるため、リードスクリューにつながる可動部分
からネジなどを使って脱着可能にした方が便利である。
Since the portion of the arm where the rod is hooked needs to be sterilized, it is more convenient to make the movable portion connected to the lead screw detachable using a screw or the like.

【0014】顕微鏡観察の必要のない場合にはラテック
スシリコンの代わりにラテックスゴムを用いればさらに
高い伸展率が上げられることが期待できる。
When microscopic observation is unnecessary, it is expected that a higher extension rate can be obtained by using latex rubber instead of latex silicon.

【0015】[0015]

【発明の効果】このようにしたことで従来の装置では問
題であった以下の点が改善された。
As described above, the following problems, which have been problems in the conventional apparatus, have been improved.

【0016】シリコンベルトには継ぎ目がないから切れ
にくく、伸展率が上げられるようになった(110%、
即ちオリジナルの長さの倍以上の伸展を確認済み)。
Since the silicone belt has no seams, it is difficult to cut and the extension rate can be increased (110%,
That is, the extension more than double the original length has been confirmed).

【0017】シリコンベルトは押さえていないから伸展
しても糸巻き型のひずみはなく(6)、ベルト上のどの
位置でも伸展方向・伸展率は同じで解析がしやすくなっ
た[図2]。
Since the silicon belt is not pressed, there is no distortion of the pincushion type even when the silicon belt is extended (6), and the extension direction and the extension ratio are the same at any position on the belt, making analysis easy [FIG. 2].

【0018】シリコンベルトはテンプレートを変えるこ
とで自由な大きさのものを安い値段で作成できるように
なり、滅菌や装置への装着も簡単になった。
By changing the template, the silicon belt can be made in any size at a low price, and the sterilization and the attachment to the device are simplified.

【0019】細胞を引き伸ばした状態での顕微鏡観察は
従来の方法では不可能であったが、シリコンベルトの中
にいろいろな長さのガラス板(7)を挿入することで任
意の伸展率で引き伸ばした状態(8)の細胞も観察可能
となった[図3]。
Microscopic observation in a state where the cells are stretched was not possible by the conventional method. However, by inserting glass plates (7) of various lengths into a silicon belt, the cells were stretched at an arbitrary stretching rate. The cells in the state (8) were also observable [FIG. 3].

【0020】高トルクステッピングモーターはその名の
通り力が強く、また通常プリンターの印字ヘッドの位置
決めなどに使われている精度の高いモーターなので、伸
展率を細かいステップでかつ広範囲に設定可能になっ
た。さらにシリコンベルトを直接引き伸ばしているので
精度は高く、狂いが出る余地はなくなった。
As the name suggests, a high-torque stepping motor has a strong power, and is a highly accurate motor usually used for positioning a print head of a printer, so that the extension ratio can be set in small steps and over a wide range. . Furthermore, since the silicon belt was stretched directly, the accuracy was high, and there was no room for inconvenience.

【0021】ステッピングモーターの動きはコントロー
ラを使って簡単にプログラムでき、伸展率・伸縮加速度
・伸展時間・一時停止・伸縮頻度などが簡単に変更でき
るようになった。[丸一日かけて細胞を伸展]させた
り、[一定時間伸展させた後にさらに伸縮刺激を与え
る]ことも本発明を使うことで初めてできるようになっ
た。
The movement of the stepping motor can be easily programmed using a controller, and the extension rate, expansion / contraction acceleration, extension time, pause, expansion / contraction frequency, etc. can be easily changed. By using the present invention, it has become possible for the first time to extend cells over a whole day or to give a stretching stimulus after stretching for a certain period of time.

【0022】ステッピングモーターの動きはハードウエ
アを触ることなしにコントローラーのプログラムのみで
操作可能であり、伸縮途中のプログラムの変更でも滅菌
済みのパーツを触らずに行えるようになった。
The movement of the stepping motor can be operated only by the controller program without touching the hardware, and even if the program is changed during expansion and contraction, it can be performed without touching the sterilized parts.

【0023】シリコンベルトを伸展した状態で細胞を培
養し、それを元の状態に戻すことで、基底面の収縮が細
胞に及ぼす影響も観察できるようになった。
By culturing the cells with the silicon belt extended and returning the cells to the original state, the influence of the shrinkage of the basal plane on the cells can be observed.

【0024】血管の断片(リング状)を直接デバイスに
つないで実験できるようになった。
It has become possible to conduct experiments by directly connecting a fragment (ring) of a blood vessel to a device.

【0025】シリコンベルトを使った伸展機構はとても
単純であり、[従来の方法2]と比べると機材の面での
簡素化が図られ(ダウンサイジング)、システムの金額
は10分の1以下になった。
The extension mechanism using a silicon belt is very simple, and can be simplified in terms of equipment (downsizing) as compared with [Conventional method 2], and the cost of the system is less than 1/10. became.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のデバイスの斜視図である。FIG. 1 is a perspective view of the device of the present invention.

【図2】A 伸縮前のシリコンベルトの平面図である。 B 伸縮後のシリコンベルトの平面図である。FIG. 2A is a plan view of a silicon belt before expansion and contraction. B is a plan view of the silicon belt after expansion and contraction.

【図3】伸展時点でシリコンベルトを固定している斜視
図である。
FIG. 3 is a perspective view in which a silicon belt is fixed at the time of extension.

【図4】一方向性の伸縮デバイスの平面図である。 C 伸縮前の平面図である。 D 伸縮後の平面図である。FIG. 4 is a plan view of a unidirectional telescopic device. C is a plan view before expansion and contraction. D is a plan view after expansion and contraction.

【図5】放射方向性の伸縮デバイスの斜視図である。 E 伸縮前の斜視図である。 F 伸縮後の斜視図である。FIG. 5 is a perspective view of a radial stretching device. E is a perspective view before expansion and contraction. F It is a perspective view after expansion and contraction.

【符号の説明】[Explanation of symbols]

1 シリコンベルト 2 ロッド 3 アーム 4 リードスクリュー 5 伸展前のシリコンベルト 6 伸展後のシリコンベルト 7 ガラス板 8 伸展した状態で固定されたシリコンベルト 9 伸展前のシリコン膜 10 伸展後のシリコン膜 11 クリップ 12 カム 13 伸展前のシリコン膜性の底 14 伸展後のシリコン膜性の底 15 シャーレ(側面) DESCRIPTION OF SYMBOLS 1 Silicon belt 2 Rod 3 Arm 4 Lead screw 5 Silicon belt before extension 6 Silicon belt after extension 7 Glass plate 8 Silicon belt fixed in an extended state 9 Silicon film before extension 10 Silicon film after extension 11 Clip 12 Cam 13 Silicon film bottom before extension 14 Silicon film bottom after extension 15 Petri dish (side)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 担体にベルト状のシリコン膜(1)を使
い、それに2本のロッド(2)を挿入してそれぞれのロ
ッドを引き離したり戻したりしてベルト状のシリコン膜
を伸縮させる培養細胞用伸縮刺激負荷装置。
1. A cultured cell in which a belt-like silicon film (1) is used as a carrier, two rods (2) are inserted into the carrier, and each rod is pulled apart and returned to expand and contract the belt-like silicon film. Telescopic stimulus load device.
【請求項2】 動力にステッピングモーターを使い、そ
の回転運動をリードスクリュー(4)で直線往復運動に
変え、それに付帯したロッド(2)をシリコンベルト
(1)に挿入することで実現する請求項1記載の培養細
胞用伸縮刺激負荷装置。
2. The method according to claim 1, wherein a stepping motor is used as power, the rotation of the stepping motor is changed to a linear reciprocating movement by a lead screw, and a rod attached thereto is inserted into the silicon belt. 2. The stretch stimulation loading device for cultured cells according to 1.
【請求項3】 動力にステッピングモーターを使い、そ
の回転運動をタイミングベルトで直線往復運動に変え、
それに付帯したロッド(2)をシリコンベルト(1)に
挿入することで実現する請求項1記載の培養細胞用伸縮
刺激負荷装置。
3. A stepping motor is used as power, and its rotational motion is changed to linear reciprocating motion by a timing belt.
The stretching stimulus load device for cultured cells according to claim 1, wherein the device is realized by inserting a rod (2) attached to the silicon belt (1).
JP35478696A 1996-12-02 1996-12-02 Stretch stimulation load device for cultured cells using silicon belt Expired - Fee Related JP3163533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35478696A JP3163533B2 (en) 1996-12-02 1996-12-02 Stretch stimulation load device for cultured cells using silicon belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35478696A JP3163533B2 (en) 1996-12-02 1996-12-02 Stretch stimulation load device for cultured cells using silicon belt

Publications (2)

Publication Number Publication Date
JPH10155475A JPH10155475A (en) 1998-06-16
JP3163533B2 true JP3163533B2 (en) 2001-05-08

Family

ID=18439902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35478696A Expired - Fee Related JP3163533B2 (en) 1996-12-02 1996-12-02 Stretch stimulation load device for cultured cells using silicon belt

Country Status (1)

Country Link
JP (1) JP3163533B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029398A1 (en) 2001-08-30 2003-04-10 Takagi Industrial Co., Ltd. Cell and structure incubator
US8431401B2 (en) 2006-07-10 2013-04-30 Takagi Industrial Co., Ltd. Method of cultivating cell or tissue
US9005958B2 (en) 2006-07-10 2015-04-14 Purpose Company Limited Cell or tissue cultivation apparatus and method of cultivation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4061149B2 (en) * 2002-07-24 2008-03-12 株式会社ティッシュエンジニアリングイニシアティブ Cell culture device and cell culture method
KR100452403B1 (en) * 2002-11-19 2004-10-12 한국과학기술연구원 Hybrid bioreactor for cell culture
WO2005090548A1 (en) * 2004-03-19 2005-09-29 Nagoya Industrial Science Research Institute Holding device for incubator
WO2007123035A1 (en) * 2006-04-18 2007-11-01 Strex Incorporation Incubator
JP4931017B2 (en) * 2008-01-10 2012-05-16 国立大学法人山口大学 Cell extension stimulation load device
ITTO20080395A1 (en) * 2008-05-26 2009-11-27 Techfab S R L SYSTEM AND DEVICE FOR DYNAMIC STIMULATION AND / OR CONTROL OF CELLS AND FABRICS IN CULTURE
CA3198597A1 (en) * 2008-07-16 2010-01-21 Donald E. Ingber Organ mimic device with microchannels and methods of use and manufacturing thereof
IT1395109B1 (en) * 2009-07-28 2012-09-05 Univ Bologna Alma Mater BIOREACTOR FOR THE STIMULATION OF STEM CELLS
JP2018023375A (en) * 2016-08-04 2018-02-15 日本毛織株式会社 Oriented cell aggregate, production method therefor, and support rod for use therewith
KR102085820B1 (en) * 2018-08-06 2020-03-06 고려대학교 산학협력단 Apparatus for providing complex stimulation to cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029398A1 (en) 2001-08-30 2003-04-10 Takagi Industrial Co., Ltd. Cell and structure incubator
US8431401B2 (en) 2006-07-10 2013-04-30 Takagi Industrial Co., Ltd. Method of cultivating cell or tissue
US9005958B2 (en) 2006-07-10 2015-04-14 Purpose Company Limited Cell or tissue cultivation apparatus and method of cultivation
US9670450B2 (en) 2006-07-10 2017-06-06 Purpose Company Limited Cell or tissue cultivation apparatus and method of cultivation

Also Published As

Publication number Publication date
JPH10155475A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
JP3163533B2 (en) Stretch stimulation load device for cultured cells using silicon belt
CN102185519B (en) Mode conversion type piezoelectric thread transmission linear ultrasonic motor
US5217899A (en) Cell stretching apparatus
CN105232149B (en) The flexible Minimally Invasive Surgery motion arm and preparation method of combination drive
PT1221180E (en) Electroactive polymers
KR950034541A (en) Guideless stage with isolated reaction stage
CN110763580A (en) 360-degree multi-directional synchronous stretching equipment and method for flexible device
WO2018149795A1 (en) Cell stretching device
CN113604348B (en) Automatic bacterial colony selection instrument and selection method
JPH04251989A (en) Electric drive for segmented transducer use
CN106388937A (en) Multi-degree-of-freedom rigidity-adjustable pneumatic flexible operation motion arm
US20190150985A1 (en) Fracture Reduction System
CN109973342A (en) Shape memory drive-type software driver and its control method, production method
CN107404254B (en) Friction self-matching high-symmetry rotary piezoelectric motor and control method thereof
CN114176828A (en) Fixing mechanism for animal experiments and medical detection device with fixing mechanism
CN106817046B (en) A kind of rotating driver based on piezoelectric fabric
CN111030504A (en) Piezoelectric ceramic composite driving actuator with two fixedly-mounted ends
CN202406060U (en) Multi-freedom-degree micro-operator driven by multi-polarized type piezoelectric driver
CN103009387A (en) Droplet microoperation manipulator and control method thereof
CN109544814A (en) A kind of Pharmacy's automation medicine taking device
CN115445489A (en) Heparin tube mixing appearance
Kurata et al. Open-source cell extension system assembled from laser-cut plates
CN203031608U (en) Drop micro operation mechanical arm
CN106591122B (en) It is realized with electric cam and continues tensile stress and myocardial bridge period sexual oppression simulator
CN106206384A (en) A kind of device and method preparing extending electronics

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees