JP3162422U - Multistage liquid storage device with automatic liquid replenisher - Google Patents

Multistage liquid storage device with automatic liquid replenisher Download PDF

Info

Publication number
JP3162422U
JP3162422U JP2010004152U JP2010004152U JP3162422U JP 3162422 U JP3162422 U JP 3162422U JP 2010004152 U JP2010004152 U JP 2010004152U JP 2010004152 U JP2010004152 U JP 2010004152U JP 3162422 U JP3162422 U JP 3162422U
Authority
JP
Japan
Prior art keywords
liquid
storage container
pipe
overflow
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010004152U
Other languages
Japanese (ja)
Inventor
明毅 愛甲
明毅 愛甲
Original Assignee
明毅 愛甲
明毅 愛甲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明毅 愛甲, 明毅 愛甲 filed Critical 明毅 愛甲
Priority to JP2010004152U priority Critical patent/JP3162422U/en
Application granted granted Critical
Publication of JP3162422U publication Critical patent/JP3162422U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

【課題】省エネルギーで安価な自動液体補給器付き複数段液体貯留装置を提供する。【解決手段】密閉できる液体注入口19と上部に通気口15を持つ密閉液体タンクと、そのタンク底部に開口した流出管25と、溢流管35a,35bが接続された溢流口36a,36bを持ちタンクより低く設置された複数の液体の貯留容器30a,30bと、上記通気口に接続され、他端が貯留容器の数に分岐した通気管14を用いて、最上段の貯留容器には分岐した通気管の一開口を、その貯留容器の溢流口よりも下に配置するとともに、その分岐通気管開口33a,33bよりもさらに下に流出管出口24を配置し、また最上段貯留容器のすぐ下の次段貯留容器には、最上段貯留容器の溢流管出口37aを入れるとともに、分岐通気管の他の一開口をその貯留容器の溢流口よりも下に配置し、以降、順に低い位置の貯留容器に、そのすぐ上の貯留容器の溢流管出口と、分岐通気管の一開口を、次段貯留容器と同様に配置する。【選択図】図1An energy saving and inexpensive multi-stage liquid storage device with an automatic liquid replenisher is provided. A liquid inlet 19 that can be sealed, a sealed liquid tank having a vent 15 at the top, an outflow pipe 25 that opens to the bottom of the tank, and overflow ports 36a and 36b to which overflow pipes 35a and 35b are connected. The uppermost storage container includes a plurality of liquid storage containers 30a and 30b installed lower than the tank and the vent pipe 14 connected to the vent and having the other end branched to the number of the storage containers. One opening of the branched vent pipe is disposed below the overflow port of the storage container, and the outlet pipe outlet 24 is disposed further below the branch vent pipe openings 33a and 33b. In the next storage container immediately below, the overflow pipe outlet 37a of the uppermost storage container is placed and another opening of the branch vent pipe is disposed below the overflow opening of the storage container. The storage container in the lower position in order And overflow tube outlet of the storage container on ingredients, an opening of the branch gas pipes, arranged similarly to the next stage reservoir. [Selection] Figure 1

Description

本考案は省エネルギーで安価な自動液体補給器付き複数段液体貯留装置に関するものである。 The present invention relates to a multistage liquid storage device with an automatic liquid replenisher that is energy-saving and inexpensive.

従来、自動的に液体が補給あるいは供給される複数段の液体貯留装置は、先行技術文献にあげたように種々知られている。これらをみると、液体を補給あるいは供給するトリガーとしては、タイマーを使った時間経過によるトリガー、水位センサーやフロート弁による液位低下の検知、あるいはトリガーではなく循環ポンプを常時動作させる方法などがある。また補給方法には、最上段に供給してオーバーフローさせて順次下段に流す方法、各水槽等にそれぞれ設置した電磁弁やフロート弁の開閉により供給する方法などがある。   Conventionally, various stages of liquid storage devices in which liquid is automatically replenished or supplied are known as described in the prior art documents. Looking at these, there are triggers for replenishing or supplying liquids, such as triggers based on the passage of time using a timer, detection of a drop in liquid level using a water level sensor or float valve, or a method of constantly operating a circulation pump instead of a trigger. . In addition, the replenishment method includes a method of supplying to the uppermost stage, causing the overflow to flow sequentially to the lower stage, and a method of supplying by opening / closing an electromagnetic valve or a float valve respectively installed in each water tank.

これらを低コスト、省エネルギー、節水という条件で考察すると、各水槽にフロート弁や電磁弁をつける方法、常時ポンプを動作させる方法、そして最下段の水槽もオーバーフローさせる方法は好ましくなく、上記の条件をすべて満足している装置は実現していない。 Considering these conditions under the conditions of low cost, energy saving, and water saving, the method of attaching a float valve or a solenoid valve to each tank, the method of operating the pump at all times, and the method of overflowing the bottom tank are not preferable. A device that is completely satisfactory has not been realized.

特開2001―095375公報JP 2001-095375 A 特開平11−243780公報JP-A-11-243780 特開2007−166911公報JP 2007-166911 A

本考案は、省エネルギーで安価な自動液体補給器付き複数段液体貯留装置を提供することを目的としている。 An object of the present invention is to provide an energy saving and inexpensive multi-stage liquid storage device with an automatic liquid replenisher.

密閉できる液体注入口と上部に通気口を持つ密閉液体タンクと、そのタンク底部に開口した流出管と、溢流管が接続された溢流口を持ちタンクより低く設置された複数の液体の貯留容器と、上記通気口に接続され、他端が貯留容器の数に分岐した通気管を用いて、最上段の貯留容器には分岐した通気管の一開口を、その貯留容器の溢流口よりも下に配置するとともに、その分岐通気管開口よりもさらに下に流出管出口を配置し、また最上段貯留容器のすぐ下の次段貯留容器には、最上段貯留容器の溢流管出口を入れるとともに、分岐通気管の他の一開口をその貯留容器の溢流口よりも下に配置し、以降、順に低い位置の貯留容器に、そのすぐ上の貯留容器の溢流管出口と、分岐通気管の一開口を、次段貯留容器と同様に配置して、自動液体補給器付き複数段液体貯留装置を構成する。 A closed liquid tank with a liquid inlet that can be sealed and a vent at the top, an outflow pipe that opens at the bottom of the tank, and an overflow that is connected to the overflow pipe. Using a container and a vent pipe connected to the vent and having the other end branched into the number of storage containers, one opening of the branched vent pipe is connected to the uppermost storage container from the overflow outlet of the storage container. The outlet pipe outlet is arranged further below the opening of the branch vent pipe, and the overflow pipe outlet of the uppermost storage container is connected to the next stage storage container immediately below the uppermost storage container. At the same time, the other opening of the branch vent pipe is arranged below the overflow port of the storage container. Thereafter, the storage container is placed in the lower position in order, and the overflow pipe outlet of the storage container immediately above is branched. Place one opening of the vent pipe in the same way as the next-stage storage container, Constituting the vessel with multistage liquid storage device.

本考案にあっては次に列挙する効果が得られる。
(1)構造が簡単で、導入コストが非常に低い。
(2)液体の補給・供給に、外部エネルギーを全く必要としない。
(3)水密・気密が保たれていれば安定に動作し、メンテナンスフリーである。
In the present invention, the following effects can be obtained.
(1) The structure is simple and the introduction cost is very low.
(2) No external energy is required to replenish and supply liquids.
(3) If it is kept watertight and airtight, it operates stably and is maintenance-free.

図1は本考案の実施例1を示す断面図である。FIG. 1 is a sectional view showing Embodiment 1 of the present invention. 図2は本考案の実施例2を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the present invention. 図3は本考案の実施例3を示す断面図である。FIG. 3 is a sectional view showing Embodiment 3 of the present invention. 図4は本考案の実施例4を示す断面図である。FIG. 4 is a sectional view showing Embodiment 4 of the present invention. 図5は本考案の実施例5を示す断面図である。FIG. 5 is a sectional view showing Embodiment 5 of the present invention. 図6は本考案の実施例6を示す断面図である。FIG. 6 is a sectional view showing Embodiment 6 of the present invention. 図7は本考案の実施例7を示す断面図である。FIG. 7 is a sectional view showing Embodiment 7 of the present invention.

以下、本考案の実施の形態を図に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本考案「自動液体補給器付き複数段液体貯留装置」の実施例1で、ここでは液体の貯留容器二段の場合の断面図を示している。その構成は次のとおりである。先ず、上部に気密を保てる蓋のついた液体注入口19と、通気口15を持ち、下部に流出管25のついた気密・水密な液体タンク10を用意する。次に液体タンク10よりも低い位置に、溢流管35が接続された溢流口36を持つ二段の貯留容器30a、30bを配置する。流出管25には、サイホン管21を接続し、サイホン管21の頂部は液体タンク10の上面より少し低く設定する。 FIG. 1 is a first embodiment of the “multi-stage liquid storage device with automatic liquid replenisher” of the present invention, and shows a cross-sectional view in the case of two stages of liquid storage containers. The configuration is as follows. First, an airtight / watertight liquid tank 10 having a liquid inlet 19 with a lid for keeping airtight at the top and a vent 15 and having an outlet pipe 25 at the bottom is prepared. Next, two-stage storage containers 30 a and 30 b each having an overflow port 36 to which an overflow pipe 35 is connected are arranged at a position lower than the liquid tank 10. A siphon tube 21 is connected to the outflow tube 25, and the top of the siphon tube 21 is set slightly lower than the upper surface of the liquid tank 10.

通気口15には通気管14を接続し、その他端は貯留容器の数に分岐、即ちこの場合は二分岐する。最上段の貯留容器30aには、分岐通気管開口33aを溢流口36aよりも下に設置するとともに、その分岐通気管開口33aよりもさらに下にサイホン管出口24を設置し、また、最上段貯留容器30aのすぐ下の次段貯留容器30bには、上段貯留容器30aの溢流管出口37aを入れるとともに、分岐通気管開口33bを溢流口36bよりも下に設置する。このように設置することで「自動液体補給器付き複数段液体貯留装置」が構成される。なお、最下段の溢流口および溢流管は、その下に貯留容器を増設する計画が無ければ不要である。 A vent pipe 14 is connected to the vent 15 and the other end branches into the number of storage containers, that is, in this case, branches into two. In the uppermost storage container 30a, a branch vent pipe opening 33a is installed below the overflow port 36a, and a siphon pipe outlet 24 is installed further below the branch vent pipe opening 33a. The next-stage storage container 30b immediately below the storage container 30a is filled with the overflow pipe outlet 37a of the upper-stage storage container 30a, and the branch vent pipe opening 33b is installed below the overflow port 36b. By installing in this way, a “multi-stage liquid storage device with an automatic liquid replenisher” is configured. Note that the bottom overflow port and overflow pipe are not necessary unless there is a plan to add a storage container below.

装置の設置が終わり、初めて使う時は装置全体に液体を供給する。まず液体注入口19から液体タンク10に液体を注入する。液体タンク液面12がサイホン管21の頂部を越えた時、注入される液体の流量が多ければ、越えた液体はサイホン管21内の空気を押し流しサイホン条件が成立する。
次にサイホン管出口から液体が流出した時点で液体注入口19の蓋を閉じる。液体の注入を止めても分岐通気管開口33a、33bが開いており、液体タンク空間13に空気が流入するので、サイホン機能により液体タンク10の液体は流出し続ける。
After the installation of the device is completed, the liquid is supplied to the entire device for the first use. First, a liquid is injected into the liquid tank 10 from the liquid injection port 19. When the liquid tank liquid level 12 exceeds the top of the siphon tube 21, if the flow rate of the injected liquid is large, the excess liquid pushes the air in the siphon tube 21 and the siphon condition is established.
Next, when the liquid flows out from the siphon tube outlet, the lid of the liquid inlet 19 is closed. Even if the liquid injection is stopped, the branch vent pipe openings 33a and 33b are open and air flows into the liquid tank space 13, so that the liquid in the liquid tank 10 continues to flow out due to the siphon function.

流出した液体により上段貯留容器液面31aが分岐通気管開口33aを塞いでも、まだ次段貯留容器30bには液体が全くないので分岐通気管開口33bは開いており液体の流出は継続する。上段貯留容器液面31aが溢流口36aを超えると次段貯留容器30bにも液体が流入する。そして次段貯留容器30bの液面31bが分岐通気管開口33bを塞ぐと、液体タンク空間13への空気の流入は止まるが、液体タンク液面12は上段貯留容器液面31aより高いので、その高さ相当の圧力によって液体はまだ流出する。 Even if the liquid level 31a of the upper storage container blocks the branch vent pipe opening 33a by the liquid that has flowed out, the branch vent pipe opening 33b is still open because the next stage storage container 30b does not contain any liquid, and the outflow of liquid continues. When the upper storage container liquid level 31a exceeds the overflow port 36a, the liquid also flows into the next storage container 30b. When the liquid level 31b of the next-stage storage container 30b blocks the branch vent pipe opening 33b, the inflow of air into the liquid tank space 13 stops, but the liquid tank liquid level 12 is higher than the upper-stage storage container liquid level 31a. The liquid still flows out due to the pressure corresponding to the height.

すると液体タンク空間13内の圧力は大気圧より低くなり、分岐通気管32a、32bには液体が吸い上げられる。その吸い上げられた液体の液面、即ち、分岐通気管内液面34と貯留容器液面31の高低差に相当する圧力が、液体タンク空間13の圧力と大気圧の差に等しくなると液体の流出は停止する。その時、上段貯留容器30aの分岐通気管内液面34aと液体タンク液面12は同じ高さとなる。 Then, the pressure in the liquid tank space 13 becomes lower than the atmospheric pressure, and the liquid is sucked into the branch vent pipes 32a and 32b. When the liquid level of the sucked liquid, that is, the pressure corresponding to the height difference between the liquid level 34 in the branch vent pipe and the liquid level 31 of the storage container becomes equal to the difference between the pressure in the liquid tank space 13 and the atmospheric pressure, the outflow of the liquid Stop. At that time, the liquid level 34a in the branch vent pipe of the upper storage container 30a and the liquid level 12 in the liquid tank are the same height.

以上で初めて使う時の液体供給が終わるが、供給完了時の貯留容器液面は、分岐通気管開口より高い位置になるので、貯留容器の溢流口36は、この供給完了時の液位より少し上に設けなければならない。この供給完了時の液位は次のようにして求めることができる。 Although the liquid supply at the time of the first use is completed, the liquid level of the storage container at the completion of the supply is higher than the opening of the branch vent pipe. Therefore, the overflow port 36 of the storage container is higher than the liquid level at the completion of the supply. Must be a little above. The liquid level at the completion of the supply can be obtained as follows.

分岐通気管32への液体の吸い上げ直前と直後を比べると、次のことが成り立っている。
(1)貯留容器30に増えた液体と分岐通気管32内に吸い込まれた液体の合計量は、液体タンク液体11の減少量に等しい。
(2)吸い上げ直後の液体タンク空間13と、通気管14および分岐通気管32の空間の合計体積は、吸い上げ直前の空間体積に、液体タンク液体11の減少体積を加え、分岐通気管32に吸い上げられた液体の体積を引いた値になる。
(3)分岐通気管32に吸い上げられた水の高さは、大気圧と液体タンク空間13の圧力差に相当する。
以上の3事象を式で表し解くことにより、供給完了時の液面が分岐通気管開口33の位置からどの位上昇するかを計算できる。
Comparing immediately before and after sucking the liquid into the branch vent pipe 32, the following is true.
(1) The total amount of the liquid increased in the storage container 30 and the liquid sucked into the branch vent pipe 32 is equal to the decrease amount of the liquid tank liquid 11.
(2) The total volume of the liquid tank space 13 immediately after the suction, the space of the vent pipe 14 and the branch vent pipe 32 is added to the volume of the space immediately before the suction by adding the reduced volume of the liquid tank liquid 11 and sucked into the branch vent pipe 32. The value obtained by subtracting the volume of the liquid obtained.
(3) The height of the water sucked up by the branch vent pipe 32 corresponds to the pressure difference between the atmospheric pressure and the liquid tank space 13.
By expressing and solving the above three events as equations, it is possible to calculate how much the liquid level at the completion of the supply rises from the position of the branch vent opening 33.

例えば、複数の貯留容器30の液面面積の合計が液体タンク10の液面面積の2倍、上段貯留容器30aの分岐通気管開口33aの位置から液体タンク10の上限液位までの高さが50cmの場合の液位上昇値は最大3mm程度である。この液位上昇値は、複数の貯留容器30の合計液面面積が広くなれば小さくなり、上段貯留容器の分岐通気管開口33aの位置から液体タンク10の上限液位までの高さが高くなれば大きくなる。 For example, the total liquid surface area of the plurality of storage containers 30 is twice the liquid surface area of the liquid tank 10, and the height from the position of the branch vent pipe opening 33 a of the upper storage container 30 a to the upper limit liquid level of the liquid tank 10 is high. The liquid level rise value in the case of 50 cm is about 3 mm at the maximum. The liquid level increase value decreases as the total liquid surface area of the plurality of storage containers 30 increases, and the height from the position of the branch vent pipe opening 33a of the upper storage container to the upper limit liquid level of the liquid tank 10 can be increased. Will grow.

自動補給は以下のように行われる。先ず、上段貯留容器30aの液体が少なくなった場合であるが、上段貯留容器液面31aが低くなり分岐通気管開口33aが空気中に露出すると、分岐通気管32a内の液体は流れ落ち、液体タンク空間13に空気が流れ込み、液体タンク10から液体が流出する。流出した液体で上段貯留容器液面31aが上昇して分岐通気管開口33aが塞がれると、前述したように液体タンク空間13が大気圧より陰圧になって液体流出が止まるまで補給されることになる。 Automatic replenishment is performed as follows. First, in the case where the liquid in the upper storage container 30a is low, when the liquid level 31a in the upper storage container is lowered and the branch vent pipe opening 33a is exposed to the air, the liquid in the branch vent pipe 32a flows down, and the liquid tank Air flows into the space 13 and the liquid flows out of the liquid tank 10. When the upper storage container liquid level 31a rises with the outflowed liquid and the branch vent pipe opening 33a is blocked, the liquid tank space 13 is replenished until the liquid outflow stops from the atmospheric pressure and the liquid outflow stops as described above. It will be.

次に上段貯留容器以外の容器(ここでは次段貯留容器30b)の液体が少なくなった場合を説明する。分岐通気管開口33bが空気中に露出すると、液体タンク空間13に空気が流れ込むのでタンクから液体が流出する。上段貯留容器液面31aが上昇し、上段貯留容器溢流口36aから液体が溢れ出て次段貯留容器30bに流れ込む。これにより次段貯留容器液面31bが上昇し、分岐通気管開口33bを塞ぐと前述と同じく液体流出が止まるまで補給される。 Next, a case where the liquid in the container other than the upper storage container (here, the next storage container 30b) is reduced will be described. When the branch vent pipe opening 33b is exposed to the air, the air flows into the liquid tank space 13, so that the liquid flows out of the tank. The upper storage container liquid level 31a rises, and the liquid overflows from the upper storage container overflow port 36a and flows into the next storage container 30b. As a result, the liquid level 31b of the next-stage storage container rises, and when the branch vent pipe opening 33b is closed, the liquid is replenished until the liquid outflow stops as described above.

上記の補給が繰り返されると液体タンク液体11が減り、その液面12が流出管入口23まで下がった時点で、サイホン管21に空気が流れ込み流出が止まる。そこで液体注入口19を開いて液体タンク10に液体を注入しなければならないが、その注入の間、液体タンク液面12がサイホン管21の頂部を超えるまでは液体が流出しないのが、この構成の利点である。 When the above replenishment is repeated, the liquid tank liquid 11 decreases, and when the liquid level 12 falls to the outflow pipe inlet 23, air flows into the siphon pipe 21 and the outflow stops. Therefore, the liquid inlet 19 must be opened to inject liquid into the liquid tank 10. During this injection, the liquid does not flow out until the liquid tank liquid level 12 exceeds the top of the siphon tube 21. Is the advantage.

このように本考案においては、貯留容器30のどれか一つでも、その液面31が分岐通気管開口33より低くなれば、液体タンク空間13に空気が流れ込んで液体11が流出し、溢流管35で直列に配置された貯留容器30に順次流れ込み、空気中に露出した分岐通気管開口33を塞ぎ、液体タンク空間13が大気圧より陰圧になって流出が止まるという閉回路型の自動制御機能が形成されている。この機能に外部エネルギーは不要である。 Thus, in the present invention, if any one of the storage containers 30 has a liquid level 31 lower than the branch vent pipe opening 33, air flows into the liquid tank space 13 and the liquid 11 flows out. A closed circuit type automatic in which the pipe 35 sequentially flows into the storage container 30 arranged in series, blocks the branch vent pipe opening 33 exposed in the air, and the liquid tank space 13 becomes a negative pressure from the atmospheric pressure and the outflow stops. A control function is formed. No external energy is required for this function.

実施例1におけるサイホン管21は無くても自動補給機能は動作する。それが図2に示した実施例2である。ただ、液体注入口19を開いて液体タンク10に液体を注ぐ時に液体が流出するので、それを止めるための流出管バルブ26が必要になる。流出管バルブ26を閉じて液体タンク10に液体を注ぎ、満杯になったところで流出管バルブ26を閉じれば、あとは実施例1と同じ機能を果たす。 Even if the siphon tube 21 in the first embodiment is not provided, the automatic replenishment function operates. This is the second embodiment shown in FIG. However, since the liquid flows out when the liquid inlet 19 is opened and the liquid is poured into the liquid tank 10, the outflow pipe valve 26 for stopping the liquid is required. If the outflow pipe valve 26 is closed and the liquid is poured into the liquid tank 10 and the outflow pipe valve 26 is closed when the liquid tank 10 is full, the same functions as those in the first embodiment are performed.

図3に示す実施例3は、実施例1の変形で、液体注入口19がない液体タンク10を用いた場合の構成を示す断面図である。この場合は、サイホン管分岐部20のあるサイホン管21を使い、その分岐部20に開閉バルブ17を介して注入管18を接続し水道などにつなぐ。 A third embodiment shown in FIG. 3 is a cross-sectional view showing a configuration in a case where a liquid tank 10 without a liquid inlet 19 is used as a modification of the first embodiment. In this case, the siphon tube 21 having the siphon tube branching section 20 is used, and the injection pipe 18 is connected to the branching section 20 via the open / close valve 17 and connected to water.

液体タンク10に液体が無い状態で開閉バルブ17を開くと、液体はサイホン揚水管22を流れ下って液体タンク10に流入する。液体タンク液面12がサイホン管分岐部20と同じ高さになると、分岐部20から流入した液体はサイホン管21の頂部の方にも流れる。注入管からの液体の流量が多ければサイホン管21内の空気は押し流される。液体がサイホン管出口24から流れ出てきた時点で開閉バルブ17を閉じる。液体注入は停止するが、サイホン機能が働いているので液体タンク10から液体が流出する。あとは実施例1に記述したように機能する。 When the opening / closing valve 17 is opened when there is no liquid in the liquid tank 10, the liquid flows down the siphon pumping pipe 22 and flows into the liquid tank 10. When the liquid tank liquid level 12 becomes the same height as the siphon tube branching portion 20, the liquid flowing in from the branching portion 20 also flows toward the top of the siphon tube 21. If the flow rate of the liquid from the injection tube is large, the air in the siphon tube 21 is pushed away. When the liquid flows out from the siphon tube outlet 24, the open / close valve 17 is closed. The liquid injection stops, but the liquid flows out from the liquid tank 10 because the siphon function is working. The rest functions as described in the first embodiment.

図4は、上部に2個の開口部があるが、流出管は無い液体タンク10を用いた実施例4の断面図である。この実施例4は次のように構成している。即ち、開口部のひとつに、分岐部20のあるサイホン管21のサイホン揚水管22を差し込み、その入口23が液体タンク10の底部に開口するように取り付ける。分岐部20に開閉バルブ17を介して注入管18を取り付け水道などに接続する。残り一つの開口部15にフロート弁16を介して通気管14を取り付ける。フロート弁16はサイホン管21の頂部よりやや低い位置に設置する。開口部はすべて気密・水密処理を行う。そのほかの構成要素の配置・接続は実施例1と同じである。 FIG. 4 is a cross-sectional view of Example 4 using a liquid tank 10 having two openings at the top but no outflow pipe. The fourth embodiment is configured as follows. That is, the siphon pumping pipe 22 of the siphon pipe 21 having the branching part 20 is inserted into one of the openings, and the inlet 23 is attached so as to open to the bottom of the liquid tank 10. An injection pipe 18 is attached to the branch portion 20 via an opening / closing valve 17 and connected to a water supply or the like. A vent pipe 14 is attached to the remaining one opening 15 via a float valve 16. The float valve 16 is installed at a position slightly lower than the top of the siphon tube 21. All openings are airtight and watertight. Other components are arranged and connected in the same manner as in the first embodiment.

この構成で開閉バルブ17を開くと、液体はサイホン管21のサイホン揚水管22を流れ下って液体タンク10に注入される。液体タンク10が満杯になると、液体は通気口15、およびサイホン管21の中で上に向かい、フロート弁16が閉じる。その後はサイホン管21にのみ流れて頂部を超えてサイホン管出口24から流れ出す。注入管からの液体の流量が多ければサイホン管21のサイホン条件が成り立つ。そこで開閉バルブ17を閉じるが、サイホン管からの液体流出は止まらない。フロート弁16は開閉バルブ17を閉じた直後に開き、通気口15から空気は流れ込むので液体流出は続く。そのあとは実施例1と同じ経過をたどる。 When the on-off valve 17 is opened with this configuration, the liquid flows down the siphon pumping pipe 22 of the siphon pipe 21 and is injected into the liquid tank 10. When the liquid tank 10 is full, the liquid flows upward in the vent 15 and the siphon tube 21, and the float valve 16 is closed. After that, it flows only to the siphon tube 21 and flows out from the siphon tube outlet 24 beyond the top. If the flow rate of the liquid from the injection tube is large, the siphon condition of the siphon tube 21 is satisfied. Therefore, the on-off valve 17 is closed, but the liquid outflow from the siphon tube does not stop. The float valve 16 opens immediately after closing the open / close valve 17 and air flows in from the vent 15 so that liquid outflow continues. Thereafter, the same process as in Example 1 is followed.

なお、この構成におけるフロート弁16は次のような場合は不要である。即ち、通気管14の最高部がサイホン管21の頂部よりも高く、かつ、液体が通気管14に流れ込んでも、液体の注入が停止すると、その流れ込んだ液体が通気管から流出し通気管を塞がないこと。このような場合、フロート弁は無くても良い。 Note that the float valve 16 in this configuration is not necessary in the following cases. That is, even if the highest part of the vent pipe 14 is higher than the top part of the siphon pipe 21 and the liquid flows into the vent pipe 14 and the liquid injection is stopped, the poured liquid flows out of the vent pipe and blocks the vent pipe. There is no. In such a case, the float valve may not be provided.

図5は液体タンク10内の液体が空になった場合に、水道などの液体源から自動的に液体タンク10に液体を注入するように構成した実施例5を示す断面図である。ここでは実施例4の構成の開閉バルブ17を注入管電磁弁17に替え、フロートスイッチ29を内蔵したセンサー容器28などからなる破線27で囲んだ液位検知部を追加し、フロートスイッチ29のフロートが下がると注入管電磁弁17が開くように制御回路を接続してある。この破線27で囲んだ部分とサイホン管21は、本考案の出願人が、別途、実用新案登録出願した「流出系接続型液位検知装置」を構成している。 FIG. 5 is a cross-sectional view showing a fifth embodiment configured to automatically inject liquid into a liquid tank 10 from a liquid source such as water supply when the liquid in the liquid tank 10 becomes empty. Here, the opening / closing valve 17 having the configuration of the fourth embodiment is replaced with the injection pipe electromagnetic valve 17, and a liquid level detection unit surrounded by a broken line 27 including a sensor container 28 with a built-in float switch 29 is added. The control circuit is connected so that the injection pipe solenoid valve 17 opens when the pressure drops. The portion surrounded by the broken line 27 and the siphon tube 21 constitute an “outflow system connection type liquid level detection device” for which the applicant of the present invention has applied for a utility model registration separately.

この構成の装置を初めて使う時、制御回路の電源を入れると、フロートスイッチ29のフロートは下がっているので注入管電磁弁17が開き、注入管18から液体が流れ込む。液体がセンサー容器28にまで流れ込むと、フロートが浮き注入管電磁弁17が閉じて液体注入が停止する。これ以降の貯留容器への自動補給の仕組みは実施例1などで説明したとおりである。 When the apparatus having this configuration is used for the first time, when the control circuit is turned on, the float of the float switch 29 is lowered, so that the injection pipe solenoid valve 17 is opened and the liquid flows from the injection pipe 18. When the liquid flows into the sensor container 28, the float floats, the injection pipe solenoid valve 17 is closed, and the liquid injection is stopped. The subsequent automatic replenishment mechanism for the storage container is as described in the first embodiment.

液体タンク液体11が空になった時の自動液体注入は次のように行われる。液体タンク液面12がサイホン管入口23より下がると、サイホン管21内の液体が流れ落ち、センサー容器28内の液体も流出し、フロートスイッチ29のフロートも下がる。これにより注入管電磁弁17が開き、注入管18から液体が液体タンク10に流れ込むことになる。 Automatic liquid injection when the liquid tank liquid 11 becomes empty is performed as follows. When the liquid tank liquid level 12 falls below the siphon tube inlet 23, the liquid in the siphon tube 21 flows down, the liquid in the sensor container 28 also flows out, and the float of the float switch 29 also falls. As a result, the injection pipe electromagnetic valve 17 is opened, and the liquid flows from the injection pipe 18 into the liquid tank 10.

今までの実施例は貯留容器二段の場合であったが、実施例1を三段にした実施例6の断面図を図6に示す。ただし、液体タンク部分は省略してある。このように段数を増やすのは容易である。 Although the previous example was a case of two storage containers, FIG. 6 shows a cross-sectional view of Example 6 in which Example 1 has three levels. However, the liquid tank portion is omitted. Thus, it is easy to increase the number of stages.

図7は、二段に配置された多数の鉢植え植物に底面潅水するために、本考案の複数段(ここでは二段)液体貯留装置を使った実施例7を示す概略の断面図である。貯留容器30a、30bの底部に接続したパイプ40a、40bを水平に伸ばし、植物44の大きさに応じた適当な間隔で必要な本数の潅水パイプ41a、41bを立ち上げる。植物44を植えた鉢43の底から吸水布42を垂らし、その布を潅水パイプ41の中に浸す。 FIG. 7 is a schematic cross-sectional view showing a seventh embodiment in which a multi-stage (here, two-stage) liquid storage device of the present invention is used to irrigate a large number of potted plants arranged in two stages. The pipes 40a and 40b connected to the bottoms of the storage containers 30a and 30b are horizontally extended, and the necessary number of irrigation pipes 41a and 41b are started at an appropriate interval according to the size of the plant 44. The water absorbent cloth 42 is hung from the bottom of the pot 43 in which the plant 44 is planted, and the cloth is immersed in the irrigation pipe 41.

植物44が水を吸い上げて貯留容器30aや30bの液面が下がり分岐通気管開口33aや33bが空気中に露出すると、液体タンク10から水や養液などが貯留容器30aや30bに補給される。実施例5で示した液体タンク10への液体自動注入機能を使えば多数の鉢植え植物への潅水作業が大幅に省力化される。 When the plant 44 sucks up water and the liquid level of the storage containers 30a and 30b falls and the branch vent pipe openings 33a and 33b are exposed to the air, water, nutrient solution and the like are supplied from the liquid tank 10 to the storage containers 30a and 30b. . If the automatic liquid injection function to the liquid tank 10 shown in the fifth embodiment is used, irrigation work for a large number of potted plants can be greatly saved.

低コスト、省エネルギーであるうえに、構造が簡単で故障の恐れがほぼ無いので、ベランダや店舗店頭に多数の鉢植え植物を多段配置する場合の潅水等に気軽に導入し安心して使える。また、規模の大きい栽培事業においても有効に利用できる。 In addition to low cost and energy saving, the structure is simple and there is almost no risk of failure, so it can be easily used for irrigation, etc. when many potted plants are placed on the veranda or store fronts. It can also be used effectively in large-scale cultivation businesses.

10 液体タンク
11 液体タンク内の液体
12 液体タンク内の液面
13 液体タンク空間
14 通気管
15 通気口
16 フロート弁
17 開閉バルブ、注入管電磁弁
18 注入管
19 液体注入口
20 サイホン管分岐部
21 サイホン管
22 サイホン揚水管
23 サイホン管入口、流出管入口
24 サイホン管出口、流出管出口
25 流出管
26 流出管バルブ
27 流出系接続型液位検知装置検知部
28 センサー容器
29 フロートスイッチ
30a、30b、30c 貯留容器
31a、31b、31c 貯留容器液面
32a、32b、32c 分岐通気管
33a、33b、33c 分岐通気管開口
34a、34b、34c 分岐通気管内液面
35a、35b、35c 溢流管
36a、36b、36c 溢流口
37a、37b、37c 溢流管出口
40a、40b パイプ
41a、41b 潅水パイプ
42 吸水布
43 鉢
44 植物
DESCRIPTION OF SYMBOLS 10 Liquid tank 11 Liquid in liquid tank 12 Liquid surface in liquid tank 13 Liquid tank space 14 Vent pipe 15 Vent 16 Float valve 17 Opening and closing valve, injection pipe solenoid valve 18 Injection pipe 19 Liquid inlet 20 Siphon pipe branching part 21 Siphon pipe 22 Siphon pumping pipe 23 Siphon pipe inlet, outflow pipe inlet 24 Siphon pipe outlet, outflow pipe outlet 25 Outflow pipe 26 Outflow pipe valve 27 Outflow system connection type liquid level detection device detector 28 Sensor container 29 Float switches 30a, 30b, 30c Reservoir 31a, 31b, 31c Reservoir liquid level 32a, 32b, 32c Branch vent pipe 33a, 33b, 33c Branch vent pipe opening 34a, 34b, 34c Branch vent pipe inner liquid level 35a, 35b, 35c Overflow pipe 36a, 36b 36c Overflow port 37a, 37b, 37c Overflow tube outlet 40a, 40b Pi 41a, 41b irrigation pipe 42 water-absorbing cloth 43 pot 44 plant

Claims (1)

密閉できる液体注入口と上部に通気口を持つ密閉液体タンクと、そのタンク底部に開口した流出管と、溢流管が接続された溢流口を持ちタンクより低く設置された複数の液体の貯留容器と、上記通気口に接続され、他端が貯留容器の数に分岐した通気管を用いて、最上段の貯留容器には分岐した通気管の一開口を、その貯留容器の溢流口よりも下に配置するとともに、その分岐通気管開口よりもさらに下に流出管出口を配置し、また最上段貯留容器のすぐ下の次段貯留容器には、最上段貯留容器の溢流管出口を入れるとともに、分岐通気管の他の一開口をその貯留容器の溢流口よりも下に配置し、以降、順に低い位置の貯留容器に、そのすぐ上の貯留容器の溢流管出口と、分岐通気管の一開口を、次段貯留容器と同様に配置してあることを特徴とする複数段液体貯留装置。 A closed liquid tank with a liquid inlet that can be sealed and a vent at the top, an outflow pipe that opens at the bottom of the tank, and an overflow that is connected to the overflow pipe. Using a container and a vent pipe connected to the vent and having the other end branched into the number of storage containers, one opening of the branched vent pipe is connected to the uppermost storage container from the overflow outlet of the storage container. The outlet pipe outlet is arranged further below the opening of the branch vent pipe, and the overflow pipe outlet of the uppermost storage container is connected to the next stage storage container immediately below the uppermost storage container. At the same time, the other opening of the branch vent pipe is arranged below the overflow port of the storage container. Thereafter, the storage container is placed in the lower position in order, and the overflow pipe outlet of the storage container immediately above is branched. One opening of the vent pipe is arranged in the same way as the next-stage storage container. A plurality of stages the liquid accumulating device to.
JP2010004152U 2010-06-18 2010-06-18 Multistage liquid storage device with automatic liquid replenisher Expired - Fee Related JP3162422U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010004152U JP3162422U (en) 2010-06-18 2010-06-18 Multistage liquid storage device with automatic liquid replenisher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010004152U JP3162422U (en) 2010-06-18 2010-06-18 Multistage liquid storage device with automatic liquid replenisher

Publications (1)

Publication Number Publication Date
JP3162422U true JP3162422U (en) 2010-09-02

Family

ID=54865246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010004152U Expired - Fee Related JP3162422U (en) 2010-06-18 2010-06-18 Multistage liquid storage device with automatic liquid replenisher

Country Status (1)

Country Link
JP (1) JP3162422U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163374A (en) * 2013-02-21 2014-09-08 Tamaki Oikawa Water circulation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163374A (en) * 2013-02-21 2014-09-08 Tamaki Oikawa Water circulation device

Similar Documents

Publication Publication Date Title
JP6013724B2 (en) Plant cultivation equipment
JP2016123418A (en) Pot with water reserve for plant
JP3162422U (en) Multistage liquid storage device with automatic liquid replenisher
CN103233448B (en) Siphonic weir capable of controlling water level automatically
KR101643649B1 (en) Wall planter for recording
CN210317789U (en) Pressure control negative suction system
JP2012055218A (en) Automatic water supply planter
WO2014035294A1 (en) Method for self-acting watering of plants and hydroponic device for carrying out said method
JP4896189B2 (en) Hydroponics equipment
CN210240007U (en) Horizontal mixed flow pump is from inhaling pressure device that intakes
CN213369449U (en) Fish bowl overflow offal circulating device
CN103606711A (en) Storage battery acid circulation adjusting formation method and adjusting system
CN114568277A (en) Tidal hydroponic planting disc and planting method
SE537978C2 (en) Pump station for wastewater and insert therefor
JPH05137471A (en) Water feed system for hanging flowerpot
JP6338058B2 (en) Remote natural water pot with soil water content display
CN105532388A (en) Automatic water replenisher
RU128450U1 (en) HYDROPONIC DEVICE FOR AUTONOMOUS IRRIGATION OF PLANTS
CN220953649U (en) Water diversion device
CN217884644U (en) Automatic water replenishing system for edible fungus sticks
RU2251255C1 (en) Apparatus for automatic irrigation of plants in pots
CN220978199U (en) Siphon type overflow-proof self-starting water circulation device
KR200236771Y1 (en) Automatic fertilizer mixing system having a inflowing air excluding device
KR20240082546A (en) Multistage vertical garden device with climate data measurement and control method thereof
CN207182117U (en) Water level is from maintenance type pump water diversion tank

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees