JP3152699B2 - Limit current type gas sensor - Google Patents

Limit current type gas sensor

Info

Publication number
JP3152699B2
JP3152699B2 JP25557091A JP25557091A JP3152699B2 JP 3152699 B2 JP3152699 B2 JP 3152699B2 JP 25557091 A JP25557091 A JP 25557091A JP 25557091 A JP25557091 A JP 25557091A JP 3152699 B2 JP3152699 B2 JP 3152699B2
Authority
JP
Japan
Prior art keywords
gas
measured
probe
limiting current
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25557091A
Other languages
Japanese (ja)
Other versions
JPH0593706A (en
Inventor
秀明 八木
圭一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP25557091A priority Critical patent/JP3152699B2/en
Publication of JPH0593706A publication Critical patent/JPH0593706A/en
Application granted granted Critical
Publication of JP3152699B2 publication Critical patent/JP3152699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、限界電流の大きさに拠
りガス濃度を測定する、限界電流式ガスセンサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a limiting current type gas sensor for measuring a gas concentration depending on a magnitude of a limiting current.

【0002】[0002]

【従来の技術】安定化ジルコニア板、白金陰電極および
陽電極、およびセラミックヒータを備える限界電流式の
センサ本体にガス流が当たると、安定化ジルコニア板の
温度が低下し、被測定ガス中の酸素濃度に変化が無くて
も、酸素イオン伝導率が下がり、電流値が減少し、正確
なガス濃度を測定できなくなる。このため、従来よりセ
ンサ本体を、筒状(先端閉塞)の金属メッシュフィルタ
ーで包囲し、応答性を著しく低下させずにガス流の影響
を少なくした限界電流式ガスセンサが提案されている。
2. Description of the Related Art When a gas flow is applied to a limiting current type sensor body including a stabilized zirconia plate, a platinum negative electrode and a positive electrode, and a ceramic heater, the temperature of the stabilized zirconia plate decreases, and the temperature of the gas to be measured decreases. Even if there is no change in the oxygen concentration, the oxygen ion conductivity decreases, the current value decreases, and accurate gas concentration cannot be measured. For this reason, conventionally, a limiting current type gas sensor in which the sensor main body is surrounded by a tubular (closed tip) metal mesh filter and the influence of gas flow is reduced without significantly reducing responsiveness has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかるに、この限界電
流式ガスセンサは以下の様な欠点がある。 (あ)ガス流の影響の防止効果に劣り、図9に示す様
に、被測定ガス中の酸素濃度に変化が無くても、ガス流
の流速が0.8m/S以上になると電流値が減少すし、
正確なガス濃度が測定できなくなる。 (い)金属メッシュフィルターを二重にすると、ガス流
の影響の防止効果が増す(2m/S程度迄)が、限界電
流式ガスセンサの体格の増大を招くとともに、材料代が
大幅にかさむ。本発明の目的は、低コストでガス流の影
響を防止できる、限界電流式ガスセンサの提供にある。
However, this limiting current gas sensor has the following disadvantages. (A) The effect of preventing the influence of the gas flow is inferior, and as shown in FIG. 9, even if the oxygen concentration in the gas to be measured does not change, the current value increases when the gas flow velocity becomes 0.8 m / S or more. Decrease
Accurate gas concentration cannot be measured. (I) When the metal mesh filter is doubled, the effect of preventing the influence of the gas flow is increased (up to about 2 m / S), but the size of the limiting current type gas sensor is increased and the material cost is greatly increased. An object of the present invention is to provide a limiting current type gas sensor which can prevent the influence of gas flow at low cost.

【0004】[0004]

【課題を解決するための手段】上記課題を解決する為、
本発明は、棒状のプローブと、酸素イオン良導電性の固
体電解質板、該固体電解質板に密着して配され被測定ガ
ス中の酸素濃度に対応した大きさの限界電流が得られる
電圧が印加される多孔質の陰電極および陽電極、これら
電極の検出部に位置する前記固体電解質板を加熱する電
熱ヒータ、及び前記陰電極に対して被測定ガスの拡散を
制限するガス供給制限手段を備え、前記プローブの先端
面に突設されるセンサ本体と、該センサ本体を包囲する
とともに、開口端が前記プローブの先端に固定され、前
記検出部から離れた位置に通気用小穴を形成した、先端
が閉じた筒状の耐熱性プロテクターと、開口端が前記プ
ローブの先端に固定され、前記耐熱性プロテクターを包
囲する多孔質フィルターとを備える。
In order to solve the above-mentioned problems,
The present invention relates to a rod-shaped probe, a solid electrolyte plate having good conductivity of oxygen ions, and a voltage applied to the solid electrolyte plate, which is disposed in close contact with the solid electrolyte plate and provides a limit current having a size corresponding to the oxygen concentration in the gas to be measured. A porous negative electrode and a positive electrode to be provided, an electric heater for heating the solid electrolyte plate located at a detection portion of these electrodes, and gas supply restricting means for restricting diffusion of the gas to be measured with respect to the negative electrode. A sensor main body protruding from the distal end surface of the probe, a sensor body surrounding the sensor main body, an open end fixed to the distal end of the probe, and a small vent for ventilation formed at a position away from the detection section; And a porous filter having an open end fixed to the tip of the probe and surrounding the heat-resistant protector.

【0005】[0005]

【作用】限界電流式ガスセンサを被測定ガス中に配し、
電熱ヒータに通電すると、陰電極、陽電極の検出部に位
置する固体電解質板の酸素イオン導電性が高まる。多孔
質フィルターは、限界電流式ガスセンサ内へ侵入する被
測定ガスの流速を略ゼロにするとともに、被測定ガス中
の微細な塵を捕捉し、その侵入を防ぐ。多孔質フィルタ
ー内に進入した被測定ガスは、通気用小穴からプロテク
ター内部に入り、センサ本体に達する。ここで、耐熱性
プロテクターの通気用小穴が、陰電極、陽電極の検出部
から離れた位置に形成されているので、プロテクター内
部に被測定ガスが入る際、検出部近傍の温度低下を殆ど
生じさせない。被測定ガス中の酸素は、陰電極の検出部
内に拡散し、ここでイオン化されて酸素イオンとなり、
印加電圧に応じて陽電極へポンピングされる。印加電圧
を或る値にすると、ガス供給制限手段に拠り、陰電極の
検出部内ヘの酸素拡散量が、被測定ガス中の酸素濃度に
応じて決まる値で頭打ちとなり、印加電圧を上げても電
流値が増大しなくなる(限界電流)。この限界電流の大
きさに基づいて被測定ガス中の酸素濃度が求められる。
[Function] A limiting current type gas sensor is arranged in a gas to be measured,
When the electric heater is energized, the oxygen ion conductivity of the solid electrolyte plate located at the detection part of the cathode and the anode increases. The porous filter makes the flow rate of the gas to be measured entering the limiting current type gas sensor substantially zero, captures fine dust in the gas to be measured, and prevents the intrusion. The gas to be measured that has entered the porous filter enters the inside of the protector through the small hole for ventilation, and reaches the sensor body. Here, since the small holes for ventilation of the heat-resistant protector are formed at positions away from the detection part of the negative electrode and the positive electrode, when the gas to be measured enters the inside of the protector, the temperature drop near the detection part almost occurs. Do not let. Oxygen in the gas to be measured diffuses into the detection section of the negative electrode, where it is ionized into oxygen ions,
Pumped to the positive electrode according to the applied voltage. When the applied voltage is set to a certain value, the amount of oxygen diffusion into the detection unit of the negative electrode reaches a plateau at a value determined according to the oxygen concentration in the gas to be measured, due to the gas supply restricting means. The current value does not increase (limit current). The oxygen concentration in the gas to be measured is determined based on the magnitude of the limiting current.

【0006】[0006]

【発明の効果】限界電流式ガスセンサが被測定ガスのガ
ス流に晒されても、検出部近傍の温度が殆ど低下しな
い。この為、被測定ガス中の酸素濃度に変化が無い場
合、陰電極、陽電極の検出部に位置する固体電解質板の
酸素イオン導電性も略一定値を保持し、限界電流値もガ
ス流ゼロの場合と略同一となる。よって、限界電流式ガ
スセンサは、被測定ガスの流速に関わらず、被測定ガス
中の酸素濃度を正確に検出できる。先端が閉じた筒状の
耐熱性プロテクターに通気用小穴を穿設しただけなの
で、材料代や加工代も安く済み、また、プローブヘの固
定も容易に行える。このため、限界電流式ガスセンサの
製造コストを著しく増大させない。
According to the present invention, even if the limiting current type gas sensor is exposed to the gas flow of the gas to be measured, the temperature in the vicinity of the detecting portion hardly drops. For this reason, when the oxygen concentration in the gas to be measured does not change, the oxygen ion conductivity of the solid electrolyte plate located at the detection part of the cathode and the anode also keeps a substantially constant value, and the limiting current value and the gas flow are zero. Is almost the same as in the case of Therefore, the limiting current gas sensor can accurately detect the oxygen concentration in the measured gas regardless of the flow rate of the measured gas. Since only a small hole for ventilation is formed in the cylindrical heat-resistant protector with a closed end, the cost for materials and processing is reduced, and the probe can be easily fixed. For this reason, the manufacturing cost of the limiting current gas sensor is not significantly increased.

【0007】[0007]

【実施例】本発明の一実施例を図1〜図8に基づいて説
明する。図1、図2に示す如く、限界電流式ガスセンサ
Aは、丸棒状のプローブ1と、プローブ1の先端面11
に突出状態に挿着されるセンサ本体2と、センサ本体2
を包囲するプロテクター3と、プロテクター3を包囲す
る金属焼結フィルター4とを備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1 and 2, the limiting current type gas sensor A includes a round bar-shaped probe 1 and a tip surface 11 of the probe 1.
Sensor main body 2 inserted in a protruding state to sensor body 2 and sensor main body 2
And a sintered metal filter 4 surrounding the protector 3.

【0008】プローブ1は、中空の金属で形成され、先
端には、プロテクター3、金属焼結フィルター4を嵌着
する、円盤状の嵌合部12、13が形成されている。
The probe 1 is formed of a hollow metal, and has disk-shaped fitting portions 12 and 13 for fitting the protector 3 and the sintered metal filter 4 at the tip.

【0009】センサ本体2は、図2〜図4に示す様に、
安定化ジルコニア板21、多孔質の陰電極22および陽
電極23、これら電極の検出部221、231に位置す
る安定化ジルコニア板21を加熱するセラミックヒータ
24、及びガス供給制限手段25を有する。
The sensor body 2 is, as shown in FIGS.
It has a stabilized zirconia plate 21, a porous negative electrode 22 and a positive electrode 23, a ceramic heater 24 for heating the stabilized zirconia plate 21 located at the detecting portions 221 and 231 of these electrodes, and a gas supply restricting means 25.

【0010】図3に示す、安定化ジルコニア板21は、
酸化ジルコニウムに安定化剤として酸化イットリウムを
添加固溶させた酸素イオン良導電性の固体電解質であ
り、本実施例では、縦5mm、横7mm、厚さ0.3m
mの大きさのものを使用している。
The stabilized zirconia plate 21 shown in FIG.
A solid electrolyte having good conductivity of oxygen ions obtained by adding yttrium oxide as a stabilizer to zirconium oxide and forming a solid solution. In this embodiment, the length is 5 mm, the width is 7 mm, and the thickness is 0.3 m.
The size of m is used.

【0011】図3、図4に示す様に、陰電極22、陽電
極23は、多孔質をなす白金電極であり、安定化ジルコ
ニア板21の図示上面に密着して並設されている。本実
施例では、陰電極22、陽電極23の厚さは20μmで
あり、その検出部221、231の大きさは、一辺2.
5mm、また、接続部222、232の大きさは、幅1
mm、長さ2mmである。
As shown in FIGS. 3 and 4, the negative electrode 22 and the positive electrode 23 are porous platinum electrodes and are juxtaposed on the upper surface of the stabilized zirconia plate 21 in close contact with the drawing. In the present embodiment, the thickness of the negative electrode 22 and the positive electrode 23 is 20 μm, and the size of the detection units 221 and 231 is 2.
5 mm, and the size of the connection portions 222 and 232 is 1 width.
mm and a length of 2 mm.

【0012】図3に示すセラミックヒータ24は、アル
ミナを主体とするセラミック中にタングステンを埋設し
たものであり、通電に拠り検出部221、231を30
0℃〜700℃に局所加熱する。尚、241は通電用露
出部、242は安定化ジルコニア板21の加熱効率を上
げる為の通気口である。
The ceramic heater 24 shown in FIG. 3 has a structure in which tungsten is buried in a ceramic mainly composed of alumina.
Locally heat to 0 ° C to 700 ° C. Incidentally, reference numeral 241 denotes an exposed portion for energization, and 242 denotes a vent for improving the heating efficiency of the stabilized zirconia plate 21.

【0013】ガス供給制限手段25は、陰電極22の接
続部222の一部および検出部221を覆うアルミナ多
孔質層251、被測定ガスが検出部221に直接侵入し
ない様にアルミナ多孔質層251を含む検出部221の
周辺を覆うグレーズ層252、及びグレーズ層252に
覆われない接続部222の露出部に拠り構成される。
The gas supply restricting means 25 includes an alumina porous layer 251 covering a part of the connecting portion 222 of the cathode 22 and the detecting portion 221, and an alumina porous layer 251 so that the gas to be measured does not directly enter the detecting portion 221. Is formed based on the glaze layer 252 covering the periphery of the detection unit 221 including the

【0014】ここで、センサ本体2の製造方法を述べ
る。焼成後に安定化ジルコニア板21となるグリーンシ
ート上に、焼成後に陰電極22、陽電極23となる白金
ペーストを印刷し、1500℃で一体焼成する。陰電極
22、陽電極23を形成した安定化ジルコニア板21上
に、アルミナ粉末にガラスを混ぜてなるペースト(焼成
後にアルミナ多孔質層251となる)を、陰電極22の
接続部222の一部および検出部221を覆う様に塗布
し、さらに、この上にガラス粉末(焼成後にグレーズ層
252となる)をばらまき、850℃〜900℃で焼き
付け、センサ体チップを製造する。焼成後に通気口24
2となる窓243を穿設したアルミナ96重量%のグリ
ーンシート244の上面にタングステンペーストでヒー
タパターン245を印刷し、この上に、焼成後に通電用
露出部241となる導電ペースト246および焼成後に
センサ電極247、248となる酸化ルテニウム製ペー
ストを印刷した同様のグリーンシート249を被せ、こ
れを焼成一体化してセラミックヒータ24を製造する
(図5参照)。センサ体チップとセラミックヒータ24
とを、封着ガラスを用いて約800℃で接合(約800
℃)する。センサ電極247、248と、接続部22
2、232とをろう付けする。
Here, a method for manufacturing the sensor main body 2 will be described. On the green sheet that becomes the stabilized zirconia plate 21 after firing, a platinum paste that becomes the negative electrode 22 and the positive electrode 23 after firing is printed and integrally fired at 1500 ° C. On a stabilized zirconia plate 21 on which the negative electrode 22 and the positive electrode 23 are formed, a paste obtained by mixing glass with alumina powder (to become an alumina porous layer 251 after firing) is partly connected to the connecting portion 222 of the negative electrode 22. Then, a coating is applied so as to cover the detection unit 221, and further, glass powder (which becomes the glaze layer 252 after firing) is scattered thereon and baked at 850 ° C. to 900 ° C. to manufacture a sensor body chip. Vent 24 after firing
A heater pattern 245 is printed with a tungsten paste on the upper surface of a 96% by weight alumina green sheet 244 having a window 243 formed therein. A similar green sheet 249 on which a paste made of ruthenium oxide serving as the electrodes 247 and 248 is printed is covered, and this is fired and integrated to manufacture the ceramic heater 24 (see FIG. 5). Sensor chip and ceramic heater 24
And about 800 ° C. using a sealing glass (about 800 ° C.).
° C). The sensor electrodes 247 and 248 and the connection section 22
2, 232 and brazing.

【0015】プロテクター3は、一定温度の加熱が必要
な部分の後端(図示P−P’ライン)から、後部方向に
所定距離(本実施例では穴周縁部との距離2mm)離れ
た側面位置に、90°間隔で四個、直径1mmの通気用
小穴32を穿設したステンレス製の有底円筒体であり、
開口端31がプローブ1の嵌合部12に無機系接着剤で
固着されている。
The protector 3 is located at a side position spaced a predetermined distance (in the present embodiment, 2 mm from the periphery of the hole) rearward from a rear end (a line PP 'in the drawing) of a portion requiring heating at a constant temperature. A stainless-steel bottomed cylindrical body having four small holes for ventilation with a diameter of 1 mm at intervals of 90 °;
The open end 31 is fixed to the fitting portion 12 of the probe 1 with an inorganic adhesive.

【0016】金属焼結フィルター4(ポア径70μm)
は、プロテクター3を包囲する有底円筒状を呈するとと
もに、開口端41がプローブ1の嵌合部13に差し込ま
れて止着される。
Metal sintered filter 4 (pore diameter 70 μm)
Has a bottomed cylindrical shape surrounding the protector 3, and has an open end 41 inserted into the fitting portion 13 of the probe 1 and fixed.

【0017】つぎに、限界電流式ガスセンサAの動作を
説明する。限界電流式ガスセンサAを被測定ガス中に配
し、セラミックヒータ24に通電し、陽電極23- 陰電
極22間に電圧を印加する。陰電極22の検出部221
内部の酸素は、イオン化されて酸素イオンとなり、被測
定ガス中の酸素は、印加電圧Vに応じ、陰電極22から
陽電極23にポンピングされる。この時、検出部221
の安定化ジルコニア板21のみ局所加熱され、接続部2
22の安定化ジルコニア板21は酸素イオン導電性を示
す程充分に加熱されない為、酸素はグレーズ層252に
覆われない接続部222の露出部からグレーズ層252
に覆われた検出部221内に拡散する。ここで、陽電極
23- 陰電極22間に流れる出力電流Iは、図6に示す
様に変化する。印加電圧Vが電圧値V1〜V2において
は、検出部221内への酸素拡散量は、陰電極22のガ
ス供給制限手段25で制御され、被測定ガス中の酸素濃
度に応じて制限されるため拡散量が制限され、それに伴
い電流値も制限されて拡散制限電流値IL1となり、第1
の平坦部F1となる。印加電圧Vが拡散制限電流値IL1
が得られる電圧値V2よりさらに高くなると、被測定ガ
ス中の水蒸気(水分)が分解され、その分解で生じた酸
素イオンが陽電極23にポンピングされるため、水蒸気
も、グレーズ層252に覆われない接続部222の露出
部からグレーズ層252に覆われた検出部221内に拡
散し、拡散量に応じて電流値が増大する。印加電圧Vを
さらに高くして電圧値V3〜V4にすると出力電流値I
は水蒸気濃度に応じてさらに増大するが、陰電極22の
ガス供給制限手段25で水蒸気の拡散量が制限され、そ
れに伴い電流値も制限され、水蒸気濃度に応じた拡散制
限電流値IL2となり、第2の平坦部F2を示す。ここ
で、陽電極23- 陰電極22間にV1〜V2の電圧を印
加して拡散制限電流値IL1を測定すれば拡散制限電流値
L1の大きさから酸素濃度が検出できる。また、V3〜
V4の電圧を印加して拡散制限電流値IL2を測定すれば
拡散制限電流値IL2の大きさから湿度が検出できる。
Next, the operation of the limiting current type gas sensor A will be described. The limiting current type gas sensor A is arranged in the gas to be measured, and a current is supplied to the ceramic heater 24 to apply a voltage between the positive electrode 23 and the negative electrode 22. Detection unit 221 of cathode 22
The oxygen inside is ionized into oxygen ions, and the oxygen in the gas to be measured is pumped from the negative electrode 22 to the positive electrode 23 according to the applied voltage V. At this time, the detecting unit 221
Only the stabilized zirconia plate 21 is locally heated, and the connection 2
Since the stabilized zirconia plate 22 of FIG. 22 is not heated sufficiently to exhibit oxygen ion conductivity, oxygen is exposed from the exposed portion of the connection portion 222 which is not covered by the glaze layer 252.
And diffuses into the detection unit 221 covered with the light. Here, the output current I flowing between the positive electrode 23 and the negative electrode 22 changes as shown in FIG. When the applied voltage V is between the voltage values V1 and V2, the amount of oxygen diffusion into the detection unit 221 is controlled by the gas supply restricting means 25 of the negative electrode 22, and is limited according to the oxygen concentration in the gas to be measured. The amount of diffusion is limited, and the current value is also limited accordingly, resulting in a diffusion-limited current value IL1 .
Becomes the flat portion F1. The applied voltage V is the diffusion limiting current value I L1
Is higher than the obtained voltage value V2, the water vapor (moisture) in the gas to be measured is decomposed, and oxygen ions generated by the decomposition are pumped to the positive electrode 23, so that the water vapor is also covered by the glaze layer 252. The non-exposed portion of the connection portion 222 diffuses into the detection portion 221 covered with the glaze layer 252, and the current value increases according to the diffusion amount. When the applied voltage V is further increased to a voltage value V3 to V4, the output current value I
Is further increased according to the water vapor concentration, but the amount of diffusion of water vapor is restricted by the gas supply restricting means 25 of the negative electrode 22, and the current value is also restricted accordingly, resulting in a diffusion limited current value IL2 corresponding to the water vapor concentration, The second flat portion F2 is shown. Here, if a voltage of V1 to V2 is applied between the positive electrode 23 and the negative electrode 22, and the diffusion limiting current value IL1 is measured, the oxygen concentration can be detected from the magnitude of the diffusion limiting current value IL1 . Also, V3 ~
By measuring the diffusion limiting current value I L2 by applying the voltage V4, the humidity can be detected from the magnitude of the diffusion limiting current value I L2 .

【0018】つぎに、通気用小穴32と限界電流および
応答性との関係について述べる。発明者は、通気用小穴
32の穿設位置、穴数n、穴直径dなどを様々変更した
プロテクター3を製造し、以下に示す、通気用小穴32
の最適範囲を見出した。 (1)一定温度の加熱が必要な部分の後端(図示P−
P’ライン)から穴周縁部迄の距離が2.0mm未満の
場合、通気用小穴32の穴数nが少なく穴直径dが小さ
くても、通気用小穴32から被測定ガスが進入した際、
検出部221、231位置の安定化ジルコニア板21の
温度が低下し易い。 (2)通気用小穴32の総開口面積{n×π×(d/
2)2 }を、プロテクター3の有効長Lの占める外側面
の面積(L×πD)から一定温度の加熱が必要な部分の
後端(図示P−P’ライン)およびその先端(図示Q−
Q’ライン)から、軸方向に前後各2mmとった長さm
(本実施例では10mm)の占める外側面の面積(m×
πD)をひいたプロテクター3の外側面の面積{π×D
×(L−m)}で割った値をRとすると、R≦4.5×
10-2であれば、流速3m/S迄のガス流に対して、拡
散制限電流値を殆ど低下させない(図7参照)。尚、R
=4.5×10-2は、本実施例の場合、穴直径d=3m
mの通気用小穴32を3個穿設したものに相当する。 (3)R≧4×10-4であれば、図8に示す様に、実用
上差し使えない程度の応答性を示す。尚、R=4×10
-4は、本実施例の場合、穴直径d=0.5mmの通気用
小穴32を1個穿設したものに相当する。
Next, the relationship between the vent hole 32 and the limit current and response will be described. The inventor manufactured the protector 3 in which the drilling position, the number of holes n, and the hole diameter d of the small holes for ventilation 32 were variously changed, and the small holes for ventilation 32 shown below were manufactured.
The optimal range was found. (1) The rear end of the portion requiring heating at a constant temperature (P-
When the distance from the P ′ line) to the periphery of the hole is less than 2.0 mm, even when the number of holes n of the small holes for ventilation 32 is small and the hole diameter d is small, when the gas to be measured enters through the small holes for ventilation 32,
The temperature of the stabilized zirconia plate 21 at the positions of the detection units 221 and 231 tends to decrease. (2) Total opening area of ventilation small holes 32 {n × π × (d /
2) From the area (L × πD) of the outer surface occupied by the effective length L of the protector 3, 2 } is calculated as the rear end (PP ′ line in FIG.
From the Q 'line), the length m, which is 2 mm each before and after in the axial direction
(10 mm in this embodiment) occupies the area of the outer surface (mx
πD) Area of outer surface of protector 3 minus π × D
× (L−m)}, where R is 4.5 ×
If it is 10 -2 , the diffusion limiting current value is hardly reduced for gas flows up to a flow velocity of 3 m / S (see FIG. 7). Note that R
= 4.5 × 10 −2 is the hole diameter d = 3 m in this embodiment.
This is equivalent to three small holes 32 for ventilation. (3) If R ≧ 4 × 10 −4 , as shown in FIG. Note that R = 4 × 10
In the present embodiment, -4 corresponds to a case where one small ventilation hole 32 having a hole diameter d = 0.5 mm is formed.

【0019】以下、限界電流式ガスセンサAの作用効果
を述べる。 (ア)上記(1)〜(3)の条件を通気用小穴32が全
て満たせば、実用上差し使えない程度の応答性が得られ
るとともに、流速3m/S迄のガス流に対して拡散制限
電流を低下させないという効果を奏することが判明し
た。 (イ)金属焼結フィルター4のポア径を小さくする必要
がないので、金属焼結フィルター4の目詰まりが起こり
難い。 (ウ)プロテクター3は、単なる有底円筒体であるの
で、これと遊嵌する金属焼結フィルター4の径を大きく
したり長さを長くしたりする必要が無く、限界電流式ガ
スセンサAの体格の増大を招かない。また、ステンレス
製のプロテクター3を付加しただけなのでコストの上昇
が僅かである。
The operation and effect of the limiting current type gas sensor A will be described below. (A) If the small holes for ventilation 32 satisfy all of the above conditions (1) to (3), responsiveness that cannot be practically used can be obtained, and diffusion is limited for gas flows up to a flow velocity of 3 m / S. It has been found that an effect of not lowering the current is obtained. (A) Since it is not necessary to reduce the pore diameter of the metal sintered filter 4, clogging of the metal sintered filter 4 hardly occurs. (C) Since the protector 3 is simply a bottomed cylindrical body, there is no need to increase the diameter or length of the metal sintered filter 4 to be loosely fitted with the protector 3, and the physical size of the limiting current type gas sensor A is eliminated. Does not lead to an increase in In addition, since the protector 3 made of stainless steel is merely added, the cost is slightly increased.

【0020】本発明は、上記実施例以外に、つぎの実施
態様を含む。 a.上記実施例では、通気用小穴32をプロテクター3
の後部側に形成したが、プロテクター3の前部側に形成
しても良い。 b.上記実施例では、多孔質フィルターに、金属焼結フ
ィルター4を使用したが、ガラスやテフロンなどの高分
子フィルター、金属メッシュフィルタ等を使用しても良
い。 c.限界電流式ガスセンサAは、酸素濃度や水蒸気量以
外に、CO2 やNO2 濃度を測定しても良い。 d.陰電極、陽電極は、固体電解質板中に埋設されてい
ても良い。 e.限界電流式ガスセンサのセンサ本体2は、図10に
示す様に、被測定ガスの拡散を制限する微小穴261
(ガス供給制限手段)を陰電極22側に形成した、空隙
部262を有するハウジング260を備えたものであっ
ても良い。
The present invention includes the following embodiments in addition to the above embodiment. a. In the above embodiment, the small holes 32 for ventilation are connected to the protector 3.
However, it may be formed on the front side of the protector 3. b. In the above embodiment, the metal sintered filter 4 is used as the porous filter, but a polymer filter such as glass or Teflon, a metal mesh filter, or the like may be used. c. The limiting current type gas sensor A may measure the CO 2 and NO 2 concentrations in addition to the oxygen concentration and the water vapor amount. d. The negative electrode and the positive electrode may be embedded in a solid electrolyte plate. e. As shown in FIG. 10, the sensor body 2 of the limiting current type gas sensor has a minute hole 261 for limiting the diffusion of the gas to be measured.
(Gas supply restricting means) may be provided on the negative electrode 22 side, and may include a housing 260 having a cavity 262.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る限界電流式ガスセンサ
の組み付け図である。
FIG. 1 is an assembly diagram of a limiting current type gas sensor according to an embodiment of the present invention.

【図2】その限界電流式ガスセンサの構造説明図であ
る。
FIG. 2 is a structural explanatory view of the limiting current type gas sensor.

【図3】その限界電流式ガスセンサのセンサ本体の構造
説明図である。
FIG. 3 is a structural explanatory view of a sensor main body of the limiting current type gas sensor.

【図4】そのセンサ本体の断面図である。FIG. 4 is a sectional view of the sensor main body.

【図5】その限界電流式ガスセンサのセラミックヒータ
の製造方法を説明する為の説明図である。
FIG. 5 is an explanatory diagram for explaining a method of manufacturing the ceramic heater of the limiting current type gas sensor.

【図6】その限界電流式ガスセンサの作動を説明するグ
ラフである。
FIG. 6 is a graph illustrating the operation of the limiting current type gas sensor.

【図7】その限界電流式ガスセンサのガス流の影響の防
止効果を示すグラフである。
FIG. 7 is a graph showing the effect of the limiting current gas sensor to prevent the influence of gas flow.

【図8】その限界電流式ガスセンサの応答性を示すグラ
フである。
FIG. 8 is a graph showing the response of the limiting current type gas sensor.

【図9】従来の限界電流式ガスセンサのガス流の影響の
防止効果を示すグラフである。
FIG. 9 is a graph showing the effect of a conventional limiting current gas sensor to prevent the influence of gas flow.

【図10】本発明に係る限界電流式ガスセンサのセンサ
本体の他の実施例の構造説明図である。
FIG. 10 is a structural explanatory view of another embodiment of the sensor main body of the limiting current type gas sensor according to the present invention.

【符号の説明】[Explanation of symbols]

1 プローブ 2 センサ本体 3 プロテクター(耐熱性プロテクター) 4 金属焼結フィルター(多孔質フィルター) 11 先端面 21 安定化ジルコニア板(固体電解質板) 22 陰電極 23 陽電極 24 セラミックヒータ(電熱ヒータ) 25 ガス供給制限手段 31、41 開口端 32 通気用小穴 221、231 検出部 A 限界電流式ガスセンサ IL1、IL2 拡散制限電流値(限界電流)DESCRIPTION OF SYMBOLS 1 Probe 2 Sensor main body 3 Protector (heat-resistant protector) 4 Sintered metal filter (porous filter) 11 Tip surface 21 Stabilized zirconia plate (solid electrolyte plate) 22 Negative electrode 23 Positive electrode 24 Ceramic heater (electrothermal heater) 25 Gas supply limiting means 31 and 41 open end eyelet for 32 vent 221, 231 detecting section A limiting current type gas sensor I L1, I L2 diffusion limiting current value (limit current)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−72163(JP,A) 特開 昭61−25051(JP,A) 特開 平1−305350(JP,A) 特開 平3−138559(JP,A) 実開 昭59−194059(JP,U) 実開 昭60−107757(JP,U) 実開 昭62−91237(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 27/41 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-57-72163 (JP, A) JP-A-61-25051 (JP, A) JP-A-1-305350 (JP, A) JP-A-3-305 138559 (JP, A) Fully open sho 59-194059 (JP, U) Fully open sho 60-107757 (JP, U) Really open sho 62-91237 (JP, U) (58) Fields investigated (Int. 7 , DB name) G01N 27/41

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 棒状のプローブと、 酸素イオン良導電性の固体電解質板、該固体電解質板に
密着して配され被測定ガス中の酸素濃度に対応した大き
さの限界電流が得られる電圧が印加される多孔質の陰電
極および陽電極、これら電極の検出部に位置する前記固
体電解質板を加熱する電熱ヒータ、及び前記陰電極に対
して被測定ガスの拡散を制限するガス供給制限手段を備
え、前記プローブの先端面に突設されるセンサ本体と、 該センサ本体を包囲するとともに、開口端が前記プロー
ブの先端に固定され、前記検出部から離れた位置に通気
用小穴を形成した、先端が閉じた筒状の耐熱性プロテク
ターと、 開口端が前記プローブの先端に固定され、前記耐熱性プ
ロテクターを包囲する多孔質フィルターとを備える限界
電流式ガスセンサ。
1. A rod-shaped probe, a solid electrolyte plate having good oxygen ion conductivity, and a voltage which is disposed in close contact with the solid electrolyte plate and which can obtain a limit current having a magnitude corresponding to the oxygen concentration in the gas to be measured. A porous negative electrode and a positive electrode to be applied, an electric heater for heating the solid electrolyte plate located at a detection section of these electrodes, and gas supply restricting means for restricting diffusion of a gas to be measured with respect to the negative electrode. A sensor main body protruding from the distal end surface of the probe, and surrounding the sensor main body, an open end is fixed to the distal end of the probe, and a small vent for ventilation is formed at a position distant from the detection unit. A limiting current gas sensor comprising: a tubular heat-resistant protector having a closed end; and a porous filter having an open end fixed to the tip of the probe and surrounding the heat-resistant protector.
JP25557091A 1991-10-02 1991-10-02 Limit current type gas sensor Expired - Fee Related JP3152699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25557091A JP3152699B2 (en) 1991-10-02 1991-10-02 Limit current type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25557091A JP3152699B2 (en) 1991-10-02 1991-10-02 Limit current type gas sensor

Publications (2)

Publication Number Publication Date
JPH0593706A JPH0593706A (en) 1993-04-16
JP3152699B2 true JP3152699B2 (en) 2001-04-03

Family

ID=17280555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25557091A Expired - Fee Related JP3152699B2 (en) 1991-10-02 1991-10-02 Limit current type gas sensor

Country Status (1)

Country Link
JP (1) JP3152699B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005058194A1 (en) * 2005-12-06 2007-06-21 Testo Ag Protective device for a sensor for measuring parameters of a fluid
DE102007052705A1 (en) * 2007-11-06 2009-05-07 Robert Bosch Gmbh exhaust gas sensor
KR101876641B1 (en) * 2016-11-11 2018-07-09 박지성 the protective device of hygrometer against high-humidity

Also Published As

Publication number Publication date
JPH0593706A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
US4224113A (en) Method of detecting air/fuel ratio in combustor by detecting oxygen in combustion gas
US4207159A (en) Apparatus for measurement of oxygen concentration
JP3090479B2 (en) Gas sensor
US4629549A (en) Oxygen sensor
US6824661B2 (en) Combined oxygen and NOx sensor
US4528086A (en) Oxygen sensor with heater
EP0959348B1 (en) Sensor element and gas sensor
JPH0617891B2 (en) Oxygen concentration detector
CN108318563A (en) A kind of oxygenerator oxygen concentration detection sensor
US5302275A (en) Sensor element for an oxygen limiting current probe in order to determine the λ value of gas mixtures
JP2003517605A (en) Electrochemical measurement sensor
EP0737860B1 (en) A method of determining a zero-humidity reference current level for an electrochemical cell humidity measurement device
US4938861A (en) Limiting current-type oxygen sensor
JP3152699B2 (en) Limit current type gas sensor
JP7229204B2 (en) Sensor element, gas sensor and gas sensor unit
JPH0660884B2 (en) Humidity measuring device
US4485369A (en) Sensor for measuring air-fuel ratio
JP2788640B2 (en) Gas concentration detection sensor
JP2001141690A (en) Gas sensor
JP2881426B2 (en) Oxygen sensor
JPS5819554A (en) Oxygen concentration detector
JP3263153B2 (en) Limit current type gas sensor
JP4009017B2 (en) Nitrogen oxide sensor
JPH0234605Y2 (en)
JPH0514912U (en) Oxygen sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees