JP4009017B2 - Nitrogen oxide sensor - Google Patents

Nitrogen oxide sensor Download PDF

Info

Publication number
JP4009017B2
JP4009017B2 JP22840198A JP22840198A JP4009017B2 JP 4009017 B2 JP4009017 B2 JP 4009017B2 JP 22840198 A JP22840198 A JP 22840198A JP 22840198 A JP22840198 A JP 22840198A JP 4009017 B2 JP4009017 B2 JP 4009017B2
Authority
JP
Japan
Prior art keywords
nitrogen oxide
electrode
oxygen
gas
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22840198A
Other languages
Japanese (ja)
Other versions
JP2000055878A (en
Inventor
敬 小野
永鉄 巌
政治 長谷井
晃 国元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP22840198A priority Critical patent/JP4009017B2/en
Publication of JP2000055878A publication Critical patent/JP2000055878A/en
Application granted granted Critical
Publication of JP4009017B2 publication Critical patent/JP4009017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は窒素酸化物濃度を検出する窒素酸化物センサに関するものである。
【0002】
【従来の技術】
自動車や工業炉等の燃焼機器から排出されるNOxが、地球環境を破壊する汚染ガスの一つとされ、その低減が望まれる。そのため、発生源毎のNOx濃度の検知、さらにはNOx濃度に基づく燃焼制御等の必要性が高まっている。また、NOx濃度は、排気ガス中のNO、NO2等からなる窒素酸化物の和であるため燃焼状態によって変化するこれらの窒素酸化物ガスの濃度比に左右されることなく、NOx濃度を検出することが要求される。
【0003】
NOx濃度を検出する起電力型センサとして、本発明者らは特開平6−194605号公報、特開平6−216698号公報、特開平6−216699号公報等を提案してきた。しかしながら、これらの構成では、被検ガス中に混在するNO及びNO2ガスの相互干渉するためNOx濃度を精度良く検出することは困難であった。
【0004】
そこで、本発明者らは、被検ガス中に混在するNO及びNO2をNOガス或いはNO2ガスに効率良く変換するためのNOx変換ポンプ電極を具備した窒素酸化物センサを提案した(特願平9−329637号)。しかしながら、本構成の窒素酸化物センサのNOx変換ポンプ電極は、被検ガス中に混在するNO及びNO2をNOガス或いはNO2ガスに変換させる際に、缶室中に酸素を吐出或いは汲み込まれるため、缶室中の酸素濃度変動が大きく、NOx濃度を精度良く検知することは困難であった。
【0005】
【発明が解決しようとする課題】
このように、これまでに提案されている窒素酸化物センサは、NO及びNO2から成るNOx濃度を精度良く検出することが困難であった。
本発明は、検知対象雰囲気ガスに連通する缶室内の酸素濃度変動を小さくすることにより、NOx濃度を精度良く検出できる窒素酸化物センサを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の窒素酸化物センサは、図示されている如く、酸素イオン伝導性を有する固体電解質基板10、11に、窒素酸化物及び酸素に対して活性を有する窒素酸化物変換電極1、酸素にのみ活性を有する対極2、窒素酸化物及び酸素に対して活性を有する窒素酸化物検出電極3、酸素にのみ活性を有する対極4が形成されたセンサであって、 電極1から電極3がガス拡散抵抗体12により検知対象ガス雰囲気に連通する酸素イオン伝導性を有する固体電解質基板からなる同一缶室13内に形成された構造を有する。
【0007】
本発明の窒素酸化物変換電極1、対極2は、検知対象雰囲気ガスに連通する缶室13内に形成され、ガス拡散抵抗体12を介して流入するNO及びNO2が、NO単ガス或いはNO2単ガスに変換されるのに充分なポンプ能力を有し、電極間に所定の電圧を印加或いは電流を流すための手段を備える。
【0008】
窒素酸化物検出電極3は窒素酸化物及び酸素に対して活性をする電極材料により形成され、検知対象雰囲気ガスに連通する缶室13内に配置される。対極4は、酸素にのみ活性を有する電極材料により形成される。また、対極4は大気に接するように形成され且つ窒素酸化物検出電極3と固体電解質基板11を介して対向する位置に配置される。窒素酸化物検出電極3と対極4は、NO或いはNO2ガスの濃度変化に基づく電位差を測定するための手段を備える。
ガス拡散孔は、検知雰囲気ガス中のNO、NO2よりなる窒素酸化物が、窒素酸化物変換電極1、対極2によりNO或いはNO2の単ガスに変換されるのに十分な大きさに設定される。
【0009】
缶室内の酸素濃度を制御するための酸素濃度制御電極5、6は、一方の電極が測定雰囲気中に接する位置に形成され、もう一方の電極5は大気に接するように配置する。また、酸素制御ポンプ電極5、6は、酸素のみに対して活性であり、被検ガス中の酸素濃度が一定になるのに十分なポンプ能力を有する電極材料により形成され、電極5、6間に所定の電圧を印加或いは電流を流すための手段を備える。
【0010】
酸素濃度検出センサ電極7は缶室13内に形成され、大気に接する位置に設けられた対極4と固体電解質基板11を介して対向する位置に形成される。缶室13内酸素濃度は、酸素濃度の変化に基づき生じる窒素酸化物検出電極3と対極4間の電位差により測定される。窒素酸化物検出電極3には酸素濃度変化に基づく電位差を測定するための手段を備える。
【0011】
本発明の構成では、窒素酸化物変換電極1及び対極2が検知対象ガス雰囲気に連通する同一缶室13内に形成されている。また、缶室13内は酸素濃度制御ポンプ電極5、6により酸素濃度が一定になるように制御される。本発明の窒素酸化物センサの窒素酸化物検出電極3及び対極4間に生じる電位差は、酸素濃度変化に基づき生じる電位差とNO及びNO2濃度変化に基づき生じる電位差との混成電位により生じる。したがって、NO及びNO2濃度に基づき生じる電位差は、缶室内の酸素濃度が変動することにより変化する。
【0012】
本構成の窒素酸化物センサは、窒素酸化物変換電極1及び対極2が同一の缶室13内に形成されているため、窒素酸化物変換電極1と対極2間に電圧を印加した場合においても、缶室13中の酸素濃度の変動が小さく、NO及びNO2濃度を精度良く検出することができる。
【0013】
【発明の実施の形態】
以下本発明の窒素酸化物センサの実施形態について図面を参照しながら説明する。図1に本発明の窒素酸化物センサの基本構成を示す。
本発明の窒素酸化物センサは、酸素イオン伝導性を有する固体電解質基板10、11に、窒素酸化物及び酸素に対して活性を有する窒素酸化物変換電極1、酸素にのみ活性を有する対極2、酸素窒素酸化物及び酸素に対して活性を有する窒素酸化物検出電極3、酸素にのみ活性を有する対極4が形成されている。また、被検ガス導入口14には、被検ガスの流入を制限するためのガス拡散抵抗体12が形成されている。電極1から電極3は、ガス拡散抵抗体12により検知対象ガス雰囲気に連通する酸素イオン伝導性を有する固体電解質基板10、11からなる同一缶室13内に形成され、対極4は大気に接するように形成され且つ窒素酸化物検出電極3と固体電解質基板11を介して対向する位置に配置される。
【0014】
イオン伝導体は、酸素イオン伝導体10、11であり、酸化ジルコニウム、酸化ハフニウム、酸化トリウム、酸化セリウム等の酸化物に安定化剤を添加した固体電解質基板或いは酸化ビスマス等が適用できる。熱的安定性、化学的安定性の点から、好ましくは酸化イットリウム、酸化マグネシウム、酸化カルシウム等の安定化剤を用いた安定化ジルコニアを用いたほうが良い。
【0015】
ガス拡散抵抗体12は、検知雰囲気ガス中のNO、NO2よりなる窒素酸化物が、窒素酸化物変換電極1、対極2によりNO或いはNO2の単ガスに変換されるのに十分な大きさに設定される必要がある。ガス拡散拡散孔14は微細な孔が一つ形成されていても良く、複数の孔からなる多孔体であっても良い。
【0016】
窒素酸化物変換電極1及び窒素酸化物検出電極3は、酸素とNO、NO2に対して活性なPt、Rh、Ir、Pd、Ru、Au、Ag、Cr、Ni、Mn、Fe、Cu、W、Zn、Sn、Re、Mo等のうち、少なくとも一種の元素を含む合金或いは単体組成物、貴金属−酸化物サ−メット、遷移金属の酸化物等により形成される。
【0017】
対極2及び対極4は、酸素に活性を有するPt、Rh、Ir、Pd等の貴金属やそれらの合金、貴金属と金属酸化物とのサ−メット等の電極材料で形成される。電極材料は、熱的安定性、化学的安定性の点からPt系の材料を用いるほうが好ましい。
【0018】
本発明の窒素酸化物センサは、図2に示すように酸素濃度制御ポンプ5、6及び酸素濃度検出センサ電極7が具備された構造が好ましい。これらの電極を具備することで、缶室13内の酸素濃度検出及び酸素濃度制御が可能となるからである。
酸素濃度制御ポンプ5、6及び酸素濃度検出センサ電極7は、酸素に活性を有するPt、Rh、Ir、Pd等の貴金属やそれらの合金、貴金属と金属酸化物とのサ−メット等の電極材料で形成される。電極材料は、熱的安定性、化学的安定性の点からPt系の材料を用いるほうが好ましい。
また、図2から図4に示す構造においても、本発明における窒素酸化物センサの思想の範囲内である。
【0019】
図3に示す例は、酸素濃度制御電極6を缶室13内に位置させ、窒素酸化物変換電極1と対極2を窒素酸化物検出電極3と缶室13′を介して対向させ、対極4を缶室13′外に配するものである。缶室13と缶室13′を区分けする酸素イオン伝導体は窒素酸化物変換電極1の部で多孔質(拡散抵抗体)となっていることから、被検ガスが電極1を通過し、NO、NO2ガスへの変換効率を高め得る。
図4に示す例は、窒素酸化物検出電極3に、アルミナ絶縁層8、対極2、ジルコニア層9と窒素酸化物変換電極1とを図示の如く積層させたものである。
【0020】
本発明の窒素酸化物センサは、高温で酸素イオン導電性を発現する固体電解質基板を用いているため、センサを所定温度に加熱する必要がある。加熱手段としては、自己加熱装置を付加して所定温度に加熱しても良く、高温の排気ガス中で加熱しても良い。
【0021】
本発明の窒素酸化物センサは、検知対象雰囲気ガスは前室拡散抵抗体12を介して缶室13へ流入する。缶室13へ流入したNO、NO2よりなる窒素酸化物ガスは、窒素酸化物変換電極1と対極2間に電圧を印加することにより酸化或いは還元しNO単ガス或いはNO2単ガスに変換される。缶室13内の酸素濃度は酸素濃度制御ポンプ電極5、6及び酸素濃度検出センサ7により制御される。本発明の窒素酸化物センサは、窒素酸化物変換電極1と対極2間に電圧を印加すると、所定の酸素濃度に制御された缶室内でのみ酸素ポンピングが行われる。したがって、雰囲気大気等から酸素が流入することがなく、窒素酸化物変換電極1、対極2間に電圧を印加しても、缶室中の酸素濃度変動がほとんと生じず、検知対象雰囲気ガス中のNO及びNO2濃度を精度良く検出することができる。
【0022】
【実施例】
(実施例1)
以下に本発明の窒素酸化物センサの実施例を、図5を参照しながら説明する。
ドクタ−ブレ−ド法により作製した6mol%イットリア安定化ジルコニアグリ−ンシ−ト(厚さ200μm)を幅10mm×長さ80mmに切断した。切断の際、ジルコニアグリ−ンシ−ト15、16には、大気が導入するために開放口17、18を設けた。また、グリ−ンシ−ト12には、検知対象ガスの導入を制限するための拡散孔14及び缶室13を形成した。
また、シ−ト10の缶室13面にスクリ−ン印刷法でPt/Rh電極(窒素酸化物変換電極1)及びPt電極(対極2)を形成した。さらに、シ−ト11の缶室面には、スクリ−ン印刷法でPt/Rh電極(窒素酸化物検出電極3)及びPt電極(酸素濃度検出センサ電極7)、大気開放面にはPt電極(対極4)を形成した。
【0023】
次に、それぞれの電極に、幅1mm×厚さ0.05mm×長さ10mmのPtリボン線を取り付けた後、19から20の順にジルコニアグリ−ンシ−トを重ね合わせた。ジルコニアグリ−ンシ−トを重ね合わせる際、開放口17、18及び拡散孔14及び缶室13の部分には、シ−ト形状を保持するための厚さ200μmテオブロミンシ−ト21を挿入した。
積層した成形体を600℃、5時間保持(昇降温速度2℃/min)で脱脂を行った。脱脂が終了した試料を1400℃、5時間保持(昇降温速度2℃/min)、N2/5%O2の雰囲気下で焼成して試料を作製した。作製した試料を被検ガス導入口、大気導入口からそれぞれNO50ppm/O25%、NO250ppm/O25%、25ppmNO+25ppmNO2/5%O2の被検ガス、大気が入るように管状炉にセットし、600℃に加熱した。
【0024】
測定の際、窒素酸化物変換電極1がアノ−ド、対極2がカソ−ドになるように、窒素酸化物変換電極1及び対極2間に0.5Vの直流電圧を印加し、窒素酸化物検出電極3と対極4の間に生じた起電力を測定した。缶室中の酸素濃度は、酸素濃度検出センサ電極7と対極4間に生じた起電力を測定し、ネルンストの式より算出した。
また、比較例として、ジルコニアグリ−ンシ−ト10の大気開放面に対極2を印刷した試料を作製し、実施例と同様の測定を行った。
【0025】
図6は、缶室13に50ppmNO、50ppmNO2、25ppmNO+25ppmNO2のガスを導入した際の応答曲線を示す。いずれのガスを導入した場合も起電力は正方向に応答し、起電力値もほぼ同等であり、NOガスがNO2ガスに充分変換されていることが確認された。また、比較例に比べて、窒素酸化物検出電極3と対極4間の起電力は格段に大きくなった。
【0026】
図7に、窒素酸化物変換電極1がアノ−ド、対極2がカソ−ドになるように、窒素酸化物変換電極1及び対極2間に0.1から0.5Vの直流電圧を印加したときの、印加電圧と酸素濃度検出センサ電極7と対極4間に生じた起電力から求めた酸素濃度及び窒素酸化物検出電極3と対極4間の起電力値の関係を示す。このとき、被検ガスはNO250ppm、酸素濃度5%、センサ素子温度は600℃とした。本発明の窒素酸化物センサは、窒素酸化物変換電極1と対極2間の印加電圧を大きくするほどNO2起電力が大きくなった。また、印加電圧を大きくしても缶室内の酸素濃度はほとんど変化しなかった。
一方、比較例の窒素酸化物センサは、実施例に比べNO2起電力が小さくなり、印加電圧が0.3V以上NO2起電力が低下した。また、缶室内の酸素濃度は、印加電圧を大きくすると上昇し、0.5Vの印加電圧では65%であった。
【0027】
(実施例2)
図8に実施例2の窒素酸化物センサの構造図示す。実施例1と同様の方法でジルコニアグリ−ンシ−トを切断した。次に、実施例1と同様に酸素濃度制御ポンプ電極5、6、窒素酸化物検出電極3、対極4、酸素濃度検出センサ電極7を形成した。さらに、窒素酸化物検出電極3の上に、スクリ−ン印刷法でアルミナ絶縁層8、対極2、6mol%イットリア安定化ジルコニア層9及び窒素酸化物変換電極1を順次積層した。印刷したグリ−ンシ−トを実施例1と同様の方法で積層・脱脂・焼成し、窒素酸化物センサを作製した。作製した窒素酸化物センサを実施例1と同様の方法で評価した。
【0028】
図9に缶室に50ppmNO、50ppmNO2、25ppmNO+25ppmNO2のガスを導入した際の応答曲線を示す。いずれのガスを導入した場合も起電力は正方向に応答し、起電力値もほぼ同等であり、NOガスがNO2ガスに充分変換されていることが確認された。また、比較例に比べて、窒素酸化物検出電極3と対極4間の起電力は格段に大きくなり、実施例1と同様の結果が得られた。
【0029】
図10に、窒素酸化物変換電極1がアノ−ド、対極2がカソ−ドになるように、窒素酸化物変換電極1及び対極2間に0.1から0.5Vの直流電圧を印加したときの、印加電圧と酸素濃度検出センサ電極7と対極4間に生じた起電力から求めた酸素濃度及び窒素酸化物検出電極3と対極4間の起電力値の関係を示す。本実施例の窒素酸化物センサは、実施例1に比べて、窒素酸化物変換電極1と対極2間に電圧を印加したことによる酸素濃度変化は大きくなったが、比較例に比べるとその変化は格段に小さかった。また、比較例に比べ、本実施例の窒素酸化物センサはNO2起電力が大きくなり実施例1と同様の傾向にあることが確認された。
【0030】
本発明の窒素酸化物センサは、窒素酸化物変換電極1と対極2間に電圧を印加すると、所定の酸素濃度に制御された缶室内でのみ酸素ポンピングが行われる。したがって、雰囲気大気等から酸素が流入することがなく、窒素酸化物変換電極1、対極2間に電圧を印加しても、缶室中の酸素濃度変動がほとんと生じず、検知対象雰囲気ガス中のNO及びNO2濃度を精度良く検出することができる。
【図面の簡単な説明】
【図1】図1は、本発明の窒素酸化物センサの断面を示す図である。
【図2】図2は、本発明の窒素酸化物センサの断面を示す図である。
【図3】図3は、本発明の窒素酸化物センサの断面を示す図である。
【図4】図4は、本発明の窒素酸化物センサの断面を示す図である。
【図5】図5は実施例の窒素酸化物センサの断面を示す図である。
【図6】図6は、本発明の窒素酸化物センサの缶室に、50ppmNO、50ppmNO2、25ppmNO+25ppmNO2ガスを導入した際の、600℃におけるNOx応答曲線を示す図である。
【図7】図7は、本発明の窒素酸化物センサの、窒素酸化物変換電極印加電圧とNO2感度及び缶室内酸素濃度との関係を示す図である。
【図8】図8は実施例の窒素酸化物センサの断面を示す図である。
【図9】図9は、本発明の窒素酸化物センサの缶室に、50ppmNO、50ppmNO2、25ppmNO+25ppmNO2ガスを導入した際の、600℃におけるNOx応答曲線を示す図である。
【図10】図10は、本発明の窒素酸化物センサの、窒素酸化物変換電極印加電圧とNO2感度及び缶室内酸素濃度との関係を示す図である。
【符号の説明】
1、3、5、6、7 電極
2、4 対極
10、11 固体電解質基板
12 拡散抵抗体
13 缶室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitrogen oxide sensor for detecting a nitrogen oxide concentration.
[0002]
[Prior art]
NOx discharged from combustion equipment such as automobiles and industrial furnaces is regarded as one of the polluting gases that destroy the global environment, and its reduction is desired. For this reason, there is an increasing need for detection of NOx concentration for each generation source, and combustion control based on the NOx concentration. Further, NOx concentration, NO in the exhaust gas, Without being influenced by the concentration ratio of these nitrogen oxide gas which varies by the combustion state for the sum of the nitrogen oxides consisting of NO 2 or the like, detects the NOx concentration It is required to do.
[0003]
As the electromotive force type sensor for detecting the NOx concentration, the present inventors have proposed JP-A-6-194605, JP-A-6-216698, JP-A-6-216699, and the like. However, in these configurations, it is difficult to detect the NOx concentration with high accuracy because of the mutual interference between NO and NO 2 gas mixed in the test gas.
[0004]
In view of this, the present inventors have proposed a nitrogen oxide sensor having a NOx conversion pump electrode for efficiently converting NO and NO 2 mixed in the test gas into NO gas or NO 2 gas (Japanese Patent Application). Hei 9-329637). However, the NOx conversion pump electrode of the nitrogen oxide sensor of this configuration discharges or pumps oxygen into the can chamber when converting NO and NO 2 mixed in the test gas into NO gas or NO 2 gas. Therefore, the oxygen concentration fluctuation in the can chamber is large, and it is difficult to accurately detect the NOx concentration.
[0005]
[Problems to be solved by the invention]
Thus, this nitrogen oxide sensor have been proposed, it is difficult to accurately detect the NOx concentration consisting NO and NO 2.
An object of this invention is to provide the nitrogen oxide sensor which can detect a NOx density | concentration accurately by reducing the oxygen concentration fluctuation | variation in the can chamber connected to detection object atmosphere gas.
[0006]
[Means for Solving the Problems]
As shown in the figure, the nitrogen oxide sensor according to the present invention has a solid electrolyte substrate 10 and 11 having oxygen ion conductivity, a nitrogen oxide conversion electrode 1 having activity against nitrogen oxide and oxygen, and oxygen only. A sensor in which a counter electrode 2 having activity, a nitrogen oxide detection electrode 3 having activity against nitrogen oxides and oxygen, and a counter electrode 4 having activity only on oxygen are formed, and electrodes 1 to 3 are gas diffusion resistors. The body 12 has a structure formed in the same can chamber 13 made of a solid electrolyte substrate having oxygen ion conductivity communicating with the detection target gas atmosphere.
[0007]
The nitrogen oxide conversion electrode 1 and the counter electrode 2 of the present invention are formed in a can chamber 13 that communicates with the detection target atmospheric gas, and NO and NO 2 flowing in through the gas diffusion resistor 12 are either NO single gas or NO 2. It has a pumping capacity sufficient to be converted into a single gas, and has means for applying a predetermined voltage or passing a current between the electrodes.
[0008]
The nitrogen oxide detection electrode 3 is formed of an electrode material that is active against nitrogen oxides and oxygen, and is disposed in a can chamber 13 that communicates with the detection target atmospheric gas. The counter electrode 4 is formed of an electrode material having activity only for oxygen. The counter electrode 4 is formed so as to be in contact with the atmosphere and is disposed at a position facing the nitrogen oxide detection electrode 3 with the solid electrolyte substrate 11 interposed therebetween. The nitrogen oxide detection electrode 3 and the counter electrode 4 are provided with means for measuring a potential difference based on the concentration change of NO or NO 2 gas.
The gas diffusion hole is set to a size large enough for nitrogen oxides composed of NO and NO 2 in the detected atmosphere gas to be converted into NO or NO 2 single gas by the nitrogen oxide conversion electrode 1 and the counter electrode 2. Is done.
[0009]
The oxygen concentration control electrodes 5 and 6 for controlling the oxygen concentration in the can chamber are formed at a position where one electrode is in contact with the measurement atmosphere, and the other electrode 5 is disposed so as to be in contact with the atmosphere. The oxygen control pump electrodes 5 and 6 are active only with respect to oxygen, and are formed of an electrode material having a pumping capacity sufficient to make the oxygen concentration in the test gas constant. Are provided with means for applying a predetermined voltage or passing a current.
[0010]
The oxygen concentration detection sensor electrode 7 is formed in the can chamber 13 and is formed at a position facing the counter electrode 4 provided at a position in contact with the atmosphere with the solid electrolyte substrate 11 interposed therebetween. The oxygen concentration in the can chamber 13 is measured by a potential difference between the nitrogen oxide detection electrode 3 and the counter electrode 4 generated based on a change in the oxygen concentration. The nitrogen oxide detection electrode 3 includes means for measuring a potential difference based on a change in oxygen concentration.
[0011]
In the configuration of the present invention, the nitrogen oxide conversion electrode 1 and the counter electrode 2 are formed in the same can chamber 13 communicating with the detection target gas atmosphere. The inside of the can chamber 13 is controlled by the oxygen concentration control pump electrodes 5 and 6 so that the oxygen concentration becomes constant. The potential difference generated between the nitrogen oxide detection electrode 3 and the counter electrode 4 of the nitrogen oxide sensor of the present invention is generated by a mixed potential of a potential difference generated based on a change in oxygen concentration and a potential difference generated based on a change in NO and NO 2 concentrations. Therefore, the potential difference generated based on the NO and NO 2 concentrations changes as the oxygen concentration in the can chamber fluctuates.
[0012]
In the nitrogen oxide sensor of this configuration, since the nitrogen oxide conversion electrode 1 and the counter electrode 2 are formed in the same can chamber 13, even when a voltage is applied between the nitrogen oxide conversion electrode 1 and the counter electrode 2. The variation of the oxygen concentration in the can chamber 13 is small, and the NO and NO 2 concentrations can be detected with high accuracy.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the nitrogen oxide sensor of the present invention will be described with reference to the drawings. FIG. 1 shows a basic configuration of a nitrogen oxide sensor of the present invention.
The nitrogen oxide sensor of the present invention includes a solid electrolyte substrate 10 and 11 having oxygen ion conductivity, a nitrogen oxide conversion electrode 1 having activity against nitrogen oxide and oxygen, a counter electrode 2 having activity only against oxygen, An oxygen nitrogen oxide, a nitrogen oxide detection electrode 3 having activity with respect to oxygen, and a counter electrode 4 having activity only with oxygen are formed. Further, a gas diffusion resistor 12 for restricting the flow of the test gas is formed at the test gas introduction port 14. The electrodes 1 to 3 are formed in the same can chamber 13 composed of the solid electrolyte substrates 10 and 11 having oxygen ion conductivity communicating with the detection target gas atmosphere by the gas diffusion resistor 12, and the counter electrode 4 is in contact with the atmosphere. And is disposed at a position facing the nitrogen oxide detection electrode 3 with the solid electrolyte substrate 11 therebetween.
[0014]
The ion conductors are oxygen ion conductors 10 and 11, and a solid electrolyte substrate or bismuth oxide or the like obtained by adding a stabilizer to an oxide such as zirconium oxide, hafnium oxide, thorium oxide, or cerium oxide can be applied. From the viewpoint of thermal stability and chemical stability, it is preferable to use stabilized zirconia using a stabilizer such as yttrium oxide, magnesium oxide, calcium oxide or the like.
[0015]
The gas diffusion resistor 12 is large enough to convert nitrogen oxide composed of NO and NO 2 in the detected atmospheric gas into a single gas of NO or NO 2 by the nitrogen oxide conversion electrode 1 and the counter electrode 2. Needs to be set to The gas diffusion / diffusion hole 14 may be formed with one fine hole or may be a porous body composed of a plurality of holes.
[0016]
The nitrogen oxide conversion electrode 1 and the nitrogen oxide detection electrode 3 are Pt, Rh, Ir, Pd, Ru, Au, Ag, Cr, Ni, Mn, Fe, Cu, active against oxygen, NO, and NO 2 . Of W, Zn, Sn, Re, Mo, or the like, an alloy or a simple composition containing at least one element, a noble metal-oxide cermet, a transition metal oxide, or the like is used.
[0017]
The counter electrode 2 and the counter electrode 4 are formed of an electrode material such as a noble metal such as Pt, Rh, Ir, or Pd having an activity on oxygen, an alloy thereof, or a cermet of a noble metal and a metal oxide. The electrode material is preferably a Pt-based material from the viewpoint of thermal stability and chemical stability.
[0018]
The nitrogen oxide sensor of the present invention preferably has a structure including oxygen concentration control pumps 5 and 6 and an oxygen concentration detection sensor electrode 7 as shown in FIG. This is because by providing these electrodes, it is possible to detect the oxygen concentration in the can chamber 13 and control the oxygen concentration.
The oxygen concentration control pumps 5 and 6 and the oxygen concentration detection sensor electrode 7 are made of electrode materials such as Pt, Rh, Ir, Pd and other precious metals having an activity on oxygen, and alloys thereof, and cermets of precious metals and metal oxides. Formed with. The electrode material is preferably a Pt-based material from the viewpoint of thermal stability and chemical stability.
The structures shown in FIGS. 2 to 4 are also within the scope of the idea of the nitrogen oxide sensor of the present invention.
[0019]
In the example shown in FIG. 3, the oxygen concentration control electrode 6 is positioned in the can chamber 13, the nitrogen oxide conversion electrode 1 and the counter electrode 2 are opposed to each other via the nitrogen oxide detection electrode 3 and the can chamber 13 ′, and the counter electrode 4. Is disposed outside the can chamber 13 '. Since the oxygen ion conductor that separates the can chamber 13 and the can chamber 13 'is porous (diffusion resistor) at the portion of the nitrogen oxide conversion electrode 1, the test gas passes through the electrode 1 and NO. The conversion efficiency into NO 2 gas can be improved.
In the example shown in FIG. 4, an alumina insulating layer 8, a counter electrode 2, a zirconia layer 9 and a nitrogen oxide conversion electrode 1 are laminated on a nitrogen oxide detection electrode 3 as shown in the figure.
[0020]
Since the nitrogen oxide sensor of the present invention uses a solid electrolyte substrate that exhibits oxygen ion conductivity at a high temperature, it is necessary to heat the sensor to a predetermined temperature. As a heating means, a self-heating device may be added and heated to a predetermined temperature, or may be heated in high-temperature exhaust gas.
[0021]
In the nitrogen oxide sensor of the present invention, the detection target atmospheric gas flows into the can chamber 13 through the front chamber diffusion resistor 12. The nitrogen oxide gas composed of NO and NO 2 flowing into the can chamber 13 is oxidized or reduced by applying a voltage between the nitrogen oxide conversion electrode 1 and the counter electrode 2 to be converted into NO single gas or NO 2 single gas. The The oxygen concentration in the can chamber 13 is controlled by the oxygen concentration control pump electrodes 5 and 6 and the oxygen concentration detection sensor 7. In the nitrogen oxide sensor of the present invention, when a voltage is applied between the nitrogen oxide conversion electrode 1 and the counter electrode 2, oxygen pumping is performed only in a can chamber controlled to a predetermined oxygen concentration. Therefore, oxygen does not flow from the atmospheric air or the like, and even if a voltage is applied between the nitrogen oxide conversion electrode 1 and the counter electrode 2, the oxygen concentration in the can chamber hardly fluctuates, and the atmosphere gas to be detected NO and NO 2 concentrations can be accurately detected.
[0022]
【Example】
Example 1
An embodiment of the nitrogen oxide sensor of the present invention will be described below with reference to FIG.
A 6 mol% yttria-stabilized zirconia green sheet (thickness: 200 μm) produced by the doctor blade method was cut into a width of 10 mm and a length of 80 mm. At the time of cutting, the zirconia green sheets 15 and 16 were provided with open ports 17 and 18 for introducing air. Further, the green sheet 12 was formed with a diffusion hole 14 and a can chamber 13 for restricting the introduction of the detection target gas.
Further, a Pt / Rh electrode (nitrogen oxide conversion electrode 1) and a Pt electrode (counter electrode 2) were formed on the surface of the can chamber 13 of the sheet 10 by a screen printing method. Further, a Pt / Rh electrode (nitrogen oxide detection electrode 3) and a Pt electrode (oxygen concentration detection sensor electrode 7) are formed on the surface of the can chamber of the sheet 11 by a screen printing method, and a Pt electrode is formed on the open surface of the atmosphere. (Counter electrode 4) was formed.
[0023]
Next, after attaching a Pt ribbon wire having a width of 1 mm, a thickness of 0.05 mm and a length of 10 mm to each electrode, zirconia green sheets were superposed in the order of 19 to 20. When the zirconia green sheets were overlapped, a 200 μm-thick theobromine sheet 21 was inserted into the openings 17 and 18 and the diffusion holes 14 and the can chamber 13 to maintain the sheet shape.
The laminated molded body was degreased at 600 ° C. for 5 hours (temperature raising / lowering rate 2 ° C./min). The sample after degreasing was calcined in an atmosphere of N 2 /5% O 2 at 1400 ° C. for 5 hours (temperature raising / lowering rate 2 ° C./min) to prepare a sample. Tubular furnace so that the sample gas into the test gas inlet and the atmosphere inlet can be filled with NO50 ppm / O 2 5%, NO 2 50 ppm / O 2 5%, 25 ppm NO + 25 ppm NO 2 /5% O 2 And heated to 600 ° C.
[0024]
At the time of measurement, a direct current voltage of 0.5 V was applied between the nitrogen oxide conversion electrode 1 and the counter electrode 2 so that the nitrogen oxide conversion electrode 1 was an anode and the counter electrode 2 was a cathode. The electromotive force generated between the detection electrode 3 and the counter electrode 4 was measured. The oxygen concentration in the can chamber was calculated from the Nernst equation by measuring the electromotive force generated between the oxygen concentration detection sensor electrode 7 and the counter electrode 4.
Further, as a comparative example, a sample in which the counter electrode 2 was printed on the air release surface of the zirconia green sheet 10 was produced, and the same measurement as in the example was performed.
[0025]
FIG. 6 shows a response curve when gas of 50 ppm NO, 50 ppm NO 2 , 25 ppm NO + 25 ppm NO 2 is introduced into the can chamber 13. When any gas was introduced, the electromotive force responded in the positive direction, the electromotive force values were almost the same, and it was confirmed that NO gas was sufficiently converted to NO 2 gas. Moreover, compared with the comparative example, the electromotive force between the nitrogen oxide detection electrode 3 and the counter electrode 4 was significantly increased.
[0026]
In FIG. 7, a DC voltage of 0.1 to 0.5 V was applied between the nitrogen oxide conversion electrode 1 and the counter electrode 2 so that the nitrogen oxide conversion electrode 1 was an anode and the counter electrode 2 was a cathode. The relationship between the applied voltage and the oxygen concentration obtained from the electromotive force generated between the oxygen concentration detection sensor electrode 7 and the counter electrode 4 and the electromotive force value between the nitrogen oxide detection electrode 3 and the counter electrode 4 is shown. At this time, the test gas was NO 2 50 ppm, the oxygen concentration was 5%, and the sensor element temperature was 600 ° C. In the nitrogen oxide sensor of the present invention, the NO 2 electromotive force increased as the applied voltage between the nitrogen oxide conversion electrode 1 and the counter electrode 2 was increased. Further, even when the applied voltage was increased, the oxygen concentration in the can chamber hardly changed.
On the other hand, the NO 2 electromotive force of the nitrogen oxide sensor of the comparative example was smaller than that of the example, and the applied voltage was 0.3 V or more and the NO 2 electromotive force was reduced. Further, the oxygen concentration in the can chamber increased as the applied voltage was increased, and was 65% at an applied voltage of 0.5V.
[0027]
(Example 2)
FIG. 8 is a structural diagram of the nitrogen oxide sensor of Example 2. The zirconia green sheet was cut in the same manner as in Example 1. Next, similarly to Example 1, oxygen concentration control pump electrodes 5 and 6, a nitrogen oxide detection electrode 3, a counter electrode 4, and an oxygen concentration detection sensor electrode 7 were formed. Further, an alumina insulating layer 8, a counter electrode 2, a 6 mol% yttria stabilized zirconia layer 9, and a nitrogen oxide conversion electrode 1 were sequentially laminated on the nitrogen oxide detection electrode 3 by a screen printing method. The printed green sheet was laminated, degreased and fired in the same manner as in Example 1 to produce a nitrogen oxide sensor. The produced nitrogen oxide sensor was evaluated in the same manner as in Example 1.
[0028]
FIG. 9 shows a response curve when 50 ppm NO, 50 ppm NO 2 , 25 ppm NO + 25 ppm NO 2 gas is introduced into the can chamber. When any gas was introduced, the electromotive force responded in the positive direction, the electromotive force values were almost the same, and it was confirmed that NO gas was sufficiently converted to NO 2 gas. Moreover, compared with the comparative example, the electromotive force between the nitrogen oxide detection electrode 3 and the counter electrode 4 was significantly increased, and the same result as in Example 1 was obtained.
[0029]
In FIG. 10, a DC voltage of 0.1 to 0.5 V was applied between the nitrogen oxide conversion electrode 1 and the counter electrode 2 so that the nitrogen oxide conversion electrode 1 was an anode and the counter electrode 2 was a cathode. The relationship between the applied voltage and the oxygen concentration obtained from the electromotive force generated between the oxygen concentration detection sensor electrode 7 and the counter electrode 4 and the electromotive force value between the nitrogen oxide detection electrode 3 and the counter electrode 4 is shown. In the nitrogen oxide sensor of this example, the oxygen concentration change caused by applying a voltage between the nitrogen oxide conversion electrode 1 and the counter electrode 2 was larger than that in Example 1, but the change was more than that in the comparative example. Was much smaller. Further, it was confirmed that the NO 2 electromotive force of the nitrogen oxide sensor of this example was larger than that of the comparative example, and the same tendency as in Example 1 was observed.
[0030]
In the nitrogen oxide sensor of the present invention, when a voltage is applied between the nitrogen oxide conversion electrode 1 and the counter electrode 2, oxygen pumping is performed only in a can chamber controlled to a predetermined oxygen concentration. Therefore, oxygen does not flow from the atmospheric air or the like, and even if a voltage is applied between the nitrogen oxide conversion electrode 1 and the counter electrode 2, the oxygen concentration in the can chamber hardly fluctuates, and the atmosphere gas to be detected NO and NO 2 concentrations can be accurately detected.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a nitrogen oxide sensor of the present invention.
FIG. 2 is a view showing a cross section of the nitrogen oxide sensor of the present invention.
FIG. 3 is a cross-sectional view of the nitrogen oxide sensor of the present invention.
FIG. 4 is a view showing a cross section of the nitrogen oxide sensor of the present invention.
FIG. 5 is a view showing a cross section of the nitrogen oxide sensor of the example.
FIG. 6 is a diagram showing a NOx response curve at 600 ° C. when 50 ppm NO, 50 ppm NO 2 , 25 ppm NO + 25 ppm NO 2 gas is introduced into the can chamber of the nitrogen oxide sensor of the present invention.
FIG. 7 is a graph showing the relationship between the voltage applied to the nitrogen oxide conversion electrode, the NO 2 sensitivity, and the oxygen concentration in the can of the nitrogen oxide sensor of the present invention.
FIG. 8 is a view showing a cross section of the nitrogen oxide sensor of the example.
FIG. 9 is a graph showing a NOx response curve at 600 ° C. when 50 ppm NO, 50 ppm NO 2 , 25 ppm NO + 25 ppm NO 2 gas is introduced into the can chamber of the nitrogen oxide sensor of the present invention.
FIG. 10 is a graph showing the relationship between the voltage applied to the nitrogen oxide conversion electrode, the NO 2 sensitivity, and the oxygen concentration in the can of the nitrogen oxide sensor of the present invention.
[Explanation of symbols]
1, 3, 5, 6, 7 Electrode 2, 4 Counter electrode 10, 11 Solid electrolyte substrate 12 Diffusion resistor 13 Can chamber

Claims (1)

酸素イオン伝導性を有する固体電解質基板に、窒素酸化物及び酸素に対して活性を有する窒素酸化物変換電極、酸素にのみ活性を有する窒素酸化物変換電極の対極、窒素酸化物及び酸素に対して活性を有する窒素酸化物検出電極及び酸素にのみ活性を有するか、被検ガスから遮断された大気に通じる別室に配置される窒素酸化物検出電極の対極が形成された窒素酸化物センサであって、ガス拡散抵抗体を介して検知対象ガス雰囲気に連通し、酸素イオン伝導性を有する固体電解質基板からなる同一の缶室内に、窒素酸化物変換電極)、窒素酸化物変換電極の対極(2)、及び窒素酸化物検出電極成されたとを特徴とする窒素酸化物センサ。A solid oxide substrate having oxygen ion conductivity, a nitrogen oxide conversion electrode having activity against nitrogen oxide and oxygen ( 1 ) , a counter electrode of the nitrogen oxide conversion electrode having activity only against oxygen ( 2 ) , nitrogen oxidation nitrogen oxide sensing electrode active against objects and oxygen (3), and only one having an active oxygen, nitrogen oxide sensing electrode that will be located in a separate room leading to the atmosphere which is shielded from the test gas counter ( 4 ) is a nitrogen oxide sensor formed, which is connected to a gas atmosphere to be detected through a gas diffusion resistor and is converted into nitrogen oxide in the same can chamber made of a solid electrolyte substrate having oxygen ion conductivity. electrodes (1), a counter electrode of the nitrogen oxides conversion electrode (2), and nitrogen oxide sensors which nitrogen oxide sensing electrode (3) is characterized that you have made form.
JP22840198A 1998-08-12 1998-08-12 Nitrogen oxide sensor Expired - Fee Related JP4009017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22840198A JP4009017B2 (en) 1998-08-12 1998-08-12 Nitrogen oxide sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22840198A JP4009017B2 (en) 1998-08-12 1998-08-12 Nitrogen oxide sensor

Publications (2)

Publication Number Publication Date
JP2000055878A JP2000055878A (en) 2000-02-25
JP4009017B2 true JP4009017B2 (en) 2007-11-14

Family

ID=16875898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22840198A Expired - Fee Related JP4009017B2 (en) 1998-08-12 1998-08-12 Nitrogen oxide sensor

Country Status (1)

Country Link
JP (1) JP4009017B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632506B2 (en) * 2000-02-29 2011-02-16 株式会社豊田中央研究所 NOx gas detector
JP2011058834A (en) * 2009-09-07 2011-03-24 Denso Corp Gas sensor element

Also Published As

Publication number Publication date
JP2000055878A (en) 2000-02-25

Similar Documents

Publication Publication Date Title
US6773565B2 (en) NOx sensor
US6319377B1 (en) Nitrogen oxide sensor
US7153412B2 (en) Electrodes, electrochemical elements, gas sensors, and gas measurement methods
US6673223B2 (en) Gas sensing and oxygen pumping device, and apparatus using the same
JP3128114B2 (en) Nitrogen oxide detector
EP1635171B1 (en) Hydrocarbon sensor
JP4456839B2 (en) NOx detection cell, manufacturing method thereof, and NOx detection apparatus including the cell
JP2010261855A (en) Nitrogen oxide sensor and nitrogen oxide detection method
JP2002243692A (en) Nitrogen oxide gas sensor
JP4009017B2 (en) Nitrogen oxide sensor
JPH1172476A (en) Nitrogen oxide gas sensor
JP2006133039A (en) Nitrogen oxide sensor
JP4153238B2 (en) Electrochemical oxygen pump cell and nitrogen oxide detector using the same
JP3943262B2 (en) NOx gas concentration measuring apparatus and NOx gas concentration measuring method
JP4060448B2 (en) Nitrogen oxide sensor
JP2002005883A (en) Nitrogen oxide gas sensor
JP3086211B2 (en) Nitrogen oxide sensor
JP2003254924A (en) Nitrogen oxide sensor
JP4213939B2 (en) Gas detector
JPH11132995A (en) Nitrogen oxide detector
JP2001083117A (en) Nitrogen oxide gas sensor
JP2002071641A (en) Complex gas detector
JP2001041927A (en) Nitrogen oxide gas sensor
JP2001221772A (en) Electrochemical sensor
JP3865498B2 (en) Limit current type oxygen sensor and oxygen detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070831

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees