JP3151627B2 - Oxygen production apparatus and method for heating raw material air - Google Patents
Oxygen production apparatus and method for heating raw material airInfo
- Publication number
- JP3151627B2 JP3151627B2 JP03625691A JP3625691A JP3151627B2 JP 3151627 B2 JP3151627 B2 JP 3151627B2 JP 03625691 A JP03625691 A JP 03625691A JP 3625691 A JP3625691 A JP 3625691A JP 3151627 B2 JP3151627 B2 JP 3151627B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- raw material
- material air
- temperature
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Separation Of Gases By Adsorption (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、酸素製造装置及びその
原料空気の昇温方法に関し、詳しくは、圧力変動式吸着
分離法により空気中の酸素を窒素と分離して製品酸素を
得る酸素製造装置であって、特に原料空気圧力が1kg/
cm2 G以下である大型装置において、その原料空気を吸
着分離操作に適した温度に加熱する手段に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing oxygen and a method for raising the temperature of the raw material air, and more particularly, to an oxygen production apparatus for separating oxygen from air into nitrogen by pressure fluctuation type adsorption separation to obtain product oxygen. Equipment, especially when the raw material air pressure is 1 kg /
The present invention relates to a means for heating a raw material air to a temperature suitable for an adsorption / separation operation in a large-sized apparatus having a size of cm 2 G or less.
【0002】[0002]
【従来の技術】圧力変動式吸着分離法により空気中の酸
素を窒素と分離して製品酸素を得る酸素製造装置(以
下、酸素PSAと称する)は、例えば酸素を難吸着成
分、窒素を易吸着成分とするゼオライト等の吸着剤を充
填した複数の吸着塔を有しており、該複数の吸着塔につ
いて、原料空気中の窒素分を吸着剤に吸着させて酸素を
取出す吸着工程と、該吸着工程終了後に吸着塔内を減圧
し、次に製品ガスの一部を使用して吸着剤に吸着してい
る窒素分をパージ脱着させる再生工程とからなる基本操
作を順次繰り返して酸素を製造するものである。2. Description of the Related Art An oxygen production apparatus (hereinafter referred to as oxygen PSA) which obtains product oxygen by separating oxygen in air from nitrogen by a pressure fluctuation type adsorption separation method is, for example, a component which hardly adsorbs oxygen and easily adsorbs nitrogen. A plurality of adsorption towers filled with an adsorbent such as zeolite as a component, and for the plurality of adsorption towers, an adsorption step of adsorbing nitrogen in the raw material air to the adsorbent to obtain oxygen, After the end of the process, the pressure inside the adsorption tower is reduced, and then the regeneration operation of purging and desorbing the nitrogen content adsorbed on the adsorbent using a part of the product gas is repeated in order to produce oxygen by repeating the basic operation. It is.
【0003】例えば、図3は吸着塔を3基備えた酸素P
SAを示すもので、空気送風機1から供給される原料空
気は、吸着塔A,B,Cのそれぞれの入口弁2a,2
b,2cのいずれかから吸着塔に導入され、吸着塔上部
から導出された製品酸素ガスは、圧縮機3で所定圧力に
昇圧される。このとき、製品酸素は、昇圧に伴い温度上
昇するため、アフタークーラー4で冷却されて需要先に
供給される。For example, FIG. 3 shows an oxygen P having three adsorption towers.
The feed air supplied from the air blower 1 is supplied to the inlet valves 2a, 2a of the adsorption towers A, B, C.
The product oxygen gas introduced into the adsorption tower from one of b and 2c and led out from the upper part of the adsorption tower is pressurized by the compressor 3 to a predetermined pressure. At this time, the product oxygen rises in temperature as the pressure rises, so it is cooled by the aftercooler 4 and supplied to the demand destination.
【0004】例えば、吸着塔Aが吸着工程にある時は、
他の二つの吸着塔B,Cは、加圧工程あるいは真空減圧
工程にあり、これらの切換えは、前記入口弁2a,2
b,2c、真空排気弁5a,5b,5c、製品取出し弁
6a,6b,6cを順次所定の順序で開閉することによ
り行われる。真空減圧工程中の吸着塔内のガスは、真空
ポンプ7,消音塔8を経て外気に放出される。For example, when the adsorption tower A is in the adsorption step,
The other two adsorption towers B and C are in the pressurizing step or the vacuum depressurizing step, and these are switched by the inlet valves 2a and 2b.
b, 2c, the vacuum exhaust valves 5a, 5b, 5c, and the product take-out valves 6a, 6b, 6c are sequentially opened and closed in a predetermined order. The gas in the adsorption tower during the vacuum depressurization step is discharged to the outside air via the vacuum pump 7 and the silencer 8.
【0005】このような酸素PSAには、従来から、種
々の吸着剤が用いられており、その吸着特性や運転圧力
により、酸素と窒素とを分離するための最適な運転温度
がある。図4は、温度に対する吸着剤の一般的な特性を
示すもので、線Aに示すように、吸着剤単位量当たりの
吸着量は、温度が低いほど高くなるが、分離係数(O2
/N2 )は、線Bに示すように、温度が高いほど高い値
となる。酸素PSAから得られる製品酸素の収量は、吸
着量と分離係数の両者の関係から、線Cに示すように、
ある温度で最大値を示す。Various adsorbents have been used in such an oxygen PSA, and there is an optimum operating temperature for separating oxygen and nitrogen depending on the adsorption characteristics and the operating pressure. FIG. 4 shows the general characteristics of the adsorbent with respect to the temperature. As shown by the line A, the adsorption amount per unit amount of the adsorbent increases as the temperature decreases, but the separation coefficient (O 2
/ N 2 ), as indicated by the line B, becomes higher as the temperature becomes higher. The yield of the product oxygen obtained from the oxygen PSA was determined by the relationship between the adsorption amount and the separation coefficient, as shown in line C.
It shows the maximum value at a certain temperature.
【0006】一方、真空ポンプを用いて再生を行う酸素
PSAにおいては、真空ポンプの吸引量を、ある温度に
おける値を決めて設定する。その設定温度より大気温
(原料空気温度)が低くなると吸着量が大となり、吸引
すべき量が大となる。逆に高温になると、その逆の現象
が起きる。On the other hand, in an oxygen PSA in which regeneration is performed using a vacuum pump, the suction amount of the vacuum pump is set by determining a value at a certain temperature. When the ambient temperature (raw material air temperature) becomes lower than the set temperature, the amount of adsorption increases, and the amount to be sucked increases. Conversely, when the temperature becomes high, the opposite phenomenon occurs.
【0007】また、真空再生を行わずに、製品ガスの一
部を用いてパージ再生を行う酸素PSAの場合にも、温
度が低くなると、原料空気量が増加し、吸着剤の吸着量
が増加するため、再生のためのパージ用製品ガスが多量
に必要になり、製品量が減少する。温度が高い場合に
は、逆の減少が起きる。[0007] Further, also in the case of an oxygen PSA in which purge regeneration is performed using a part of the product gas without performing vacuum regeneration, when the temperature is lowered, the amount of raw material air increases, and the amount of adsorbent adsorbed increases. Therefore, a large amount of purge product gas is required for regeneration, and the amount of product is reduced. At higher temperatures, the opposite decrease occurs.
【0008】これらの様々な要因を全て勘案して、装置
の運転コストが最低になるような最適温度を求めると、
30℃前後となる。空気圧力が1kg/cm2 G以下である
大型装置においては、通常は、30〜40℃の間に設定
されることが多い。これは、空気送風機1から供給され
る原料空気の温度が、圧縮熱等により外気温+5℃程度
となり、また、装置が設置されている室内から吸気を行
う場合には、外気温+10℃程度となるためである。運
転温度を低く設定すると、夏期には冷凍機等の高価な設
備を必要とし、経済的ではないからである。In consideration of all of these various factors, an optimum temperature that minimizes the operation cost of the apparatus is obtained.
It will be around 30 ° C. In a large-sized apparatus having an air pressure of 1 kg / cm 2 G or less, the temperature is usually set to 30 to 40 ° C. This is because the temperature of the raw material air supplied from the air blower 1 becomes approximately + 5 ° C. outside air temperature due to heat of compression and the like, and when air is taken in from the room where the device is installed, it is approximately + 10 ° C. outside air temperature. It is because it becomes. This is because if the operating temperature is set low, expensive equipment such as a refrigerator is required in the summer, which is not economical.
【0009】尚、原料空気圧力を高くすれば温度も上昇
するが、冷凍機を必要とするだけでなく、圧力の上昇に
伴い吸着塔をはじめとする各構成部品の設備コストが上
昇し、さらに圧縮機の運転コストも増大するため、大型
装置においては、前述のように原料空気圧力を1kg/cm
2 G以下にするのが一般的である。If the pressure of the raw material air is increased, the temperature is also increased. However, not only a refrigerator is required, but also the equipment cost of each component such as the adsorption tower increases with the increase of the pressure. Since the operating cost of the compressor also increases, in a large-scale apparatus, as described above, the raw material air pressure is set to 1 kg / cm.
Generally, it is set to 2 G or less.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、上記の
ように、運転温度を30〜40℃の間に設定すると、外
気温が低く、空気送風機1から出た原料空気が30℃以
下の場合には、所定の性能が得られなくなるので、原料
空気を加熱器で30℃以上に加熱して吸着塔に導入する
必要があり、加熱器等の加熱設備だけでなく、加熱源と
しての電力やスチーム等のユーティリティを必要として
いた。However, as described above, when the operating temperature is set between 30 and 40 ° C., when the outside air temperature is low and the raw material air discharged from the air blower 1 is 30 ° C. or less, Since the specified performance cannot be obtained, it is necessary to heat the raw material air to a temperature of 30 ° C. or higher with a heater and introduce it into the adsorption tower. Not only heating equipment such as a heater, but also power and steam as a heating source, etc. Needed a utility.
【0011】そこで本発明は、電力やスチームを熱源と
した加熱器を用いずに原料空気の加熱を行え、酸素PS
Aの運転コストの低減を図れる酸素PSA及び原料空気
の昇温方法を提供することを目的としている。Therefore, the present invention can heat the raw material air without using a heater using electric power or steam as a heat source, and can supply oxygen PS
It is an object of the present invention to provide a method for raising the temperature of oxygen PSA and raw material air, which can reduce the operating cost of A.
【0012】[0012]
【課題を解決するための手段】上記した目的を達成する
ため、本発明の酸素製造装置は、窒素を選択的に吸着す
る吸着剤を充填した複数の吸着塔を、原料空気中の窒素
と酸素とを分離する吸着工程と、該吸着工程で吸着剤に
吸着した吸着成分を脱着する再生工程とに切換えながら
原料空気中の酸素を窒素から分離して採取するととも
に、得られた製品酸素を昇圧して需要先に供給する圧縮
機を有する圧力変動吸着式酸素製造装置において、前記
原料空気と、前記圧縮機で昇圧して昇温した製品酸素と
を熱交換させる熱交換器を設けたことを特徴としてい
る。In order to achieve the above-mentioned object, the oxygen producing apparatus of the present invention selectively adsorbs nitrogen.
While the plurality of adsorption towers filled with the adsorbent are switched to an adsorption step for separating nitrogen and oxygen in the raw material air and a regeneration step for desorbing the adsorbed components adsorbed on the adsorbent in the adsorption step. In the pressure fluctuation adsorption type oxygen production apparatus having a compressor that separates and collects oxygen from nitrogen and pressurizes the obtained product oxygen and supplies the product oxygen to a demand destination, the raw material air is pressurized by the compressor. A heat exchanger for exchanging heat with the product oxygen whose temperature has risen.
【0013】また、本発明の原料空気の昇温方法は、上
記酸素製造装置において、前記原料空気を加熱する熱源
として、前記圧縮機で昇圧して昇温した製品酸素を用い
ることを特徴としている。[0013] Further, in the method for raising the temperature of the raw material air of the present invention, in the above-mentioned oxygen production apparatus, as the heat source for heating the raw material air, product oxygen pressurized by the compressor and raised in temperature is used. .
【0014】[0014]
【作 用】上記構成によれば、原料空気圧を比較的低圧
で行う圧力変動式吸着分離法による酸素製造方法におい
て、原料空気を加熱する熱源として酸素圧縮機で昇圧し
て昇温した製品酸素を用いるので、電力やスチーム等の
ユーティリティを必要とせず、省エネルギー化が図れ
る。According to the above configuration, in the oxygen production method based on the pressure fluctuation type adsorption separation method in which the raw material air pressure is relatively low, the product oxygen heated and heated by the oxygen compressor is used as a heat source for heating the raw material air. Since it is used, utilities such as electric power and steam are not required, and energy can be saved.
【0015】[0015]
【実施例】以下、本発明を、図1に示す一実施例に基づ
いて、さらに詳細に説明する。尚、前記従来例と同一要
素のものには同一符号を付して、その詳細な説明は省略
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail based on one embodiment shown in FIG. The same elements as those of the conventional example are denoted by the same reference numerals, and detailed description thereof will be omitted.
【0016】図に示す酸素PSAは、前記従来例装置と
略同様に、3基の吸着塔A,B,Cと空気送風機1,圧
縮機3,アフタークーラー4,真空ポンプ7,消音塔8
及び工程切換えのための入口弁2a,2b,2c、真空
排気弁5a,5b,5c、製品取出し弁6a,6b,6
cなどから構成されており、各弁を切換え開閉して製品
酸素を連続的に製造するものである。The oxygen PSA shown in the figure comprises three adsorption towers A, B, and C, an air blower 1, a compressor 3, an aftercooler 4, a vacuum pump 7, and a silencer 8 in substantially the same manner as in the conventional apparatus.
And inlet valves 2a, 2b, 2c for process switching, evacuation valves 5a, 5b, 5c, product take-out valves 6a, 6b, 6
c, etc., and switches each valve to open and close to continuously produce product oxygen.
【0017】そして、空気送風機1から吐出された原料
空気を加熱するため、空気送風機1の吐出側には、原料
空気と、前記圧縮機3で昇圧した後の製品酸素とを熱交
換させる熱交換器11が配設されている。また、圧縮機
3の吐出側には、前記熱交換器11へ昇圧後の製品酸素
を導入する経路12と、熱交換器11をバイパスするバ
イパス経路13とが設けられている。In order to heat the raw material air discharged from the air blower 1, a heat exchange is performed on the discharge side of the air blower 1, in which the raw material air and the product oxygen pressurized by the compressor 3 are heat-exchanged. A vessel 11 is provided. Further, on the discharge side of the compressor 3, there are provided a path 12 for introducing pressurized product oxygen to the heat exchanger 11 and a bypass path 13 for bypassing the heat exchanger 11.
【0018】さらに、吸着塔の各入口弁の上流には、前
記熱交換器11から導出した原料空気の温度を測定する
温度指示調節計14が設けられ、前記バイパス経路13
には、該温度指示調節計14により作動する流量制御弁
15が設けられている。Further, a temperature indicator controller 14 for measuring the temperature of the raw air derived from the heat exchanger 11 is provided upstream of each inlet valve of the adsorption tower.
Is provided with a flow control valve 15 operated by the temperature indicating controller 14.
【0019】例えば、上記構成の酸素PSAで、圧力
9.5kg/cm2 Gの製品酸素ガスを毎時1075Nm3
製造する装置の場合、圧縮機3から吐出される製品酸素
ガスは、約170℃になる。この製品酸素ガスを熱交換
器11に導入して原料空気と熱交換させた後の温度を4
0℃とすると、酸素ガスの比熱が0.3134[kcal/
Nm3 ・℃]であるから、 1075×0.3134×(170−40)=43800[kcal/h] の熱量が得られる。For example, a product oxygen gas having a pressure of 9.5 kg / cm 2 G is supplied to the oxygen PSA having the above-mentioned structure at 1075 Nm 3 / hour.
In the case of the manufacturing apparatus, the product oxygen gas discharged from the compressor 3 has a temperature of about 170 ° C. This product oxygen gas is introduced into the heat exchanger 11 and heat-exchanged with the raw material air.
At 0 ° C., the specific heat of the oxygen gas is 0.3134 [kcal /
Nm 3 · ° C.], a calorific value of 1075 × 0.3134 × (170−40) = 43800 [kcal / h] is obtained.
【0020】一方、原料空気量を9200Nm3 /Hと
し、空気送風機1から吐出された原料空気の熱交換器1
1での加熱温度をx[℃]とすると、空気の比熱が0.
31[kcal/Nm3 ・℃]であるから、 9200×0.31×x=43800より、x=15
[℃]が得られる。On the other hand, the raw material air amount is 9200 Nm 3 / H, and the raw material air discharged from the air blower 1 has a heat exchanger 1.
Assuming that the heating temperature at 1 is x [° C.], the specific heat of air is 0.1.
Since it is 31 [kcal / Nm 3 · ° C.], x = 15 from 9200 × 0.31 × x = 43800.
[° C.] is obtained.
【0021】即ち、上記条件で原料空気を15℃加熱で
きることになり、吸着塔に導入する原料空気の下限温度
を25℃とすれば、外気温が0℃の場合でも室内吸気を
行うことにより、最小限の圧縮動力で製品を供給し、か
つ加熱器を必要とせず最小限のユーティリティで製品酸
素を供給することができる。That is, the raw material air can be heated at 15 ° C. under the above conditions. If the lower limit temperature of the raw material air to be introduced into the adsorption tower is set at 25 ° C., even if the outside air temperature is 0 ° C., indoor air can be taken in. The product can be supplied with a minimum of compression power, and the product oxygen can be supplied with a minimum of utility without requiring a heater.
【0022】尚、寒冷地等において、外気温が0℃以下
となるような場合は、加熱器を設ける必要があるが、使
用するユーティリティ量を大幅に低減できる。また、こ
の様な状態では、冷却器4の運転を止めておけるので、
冷却水等の節約も図れる。When the outside air temperature is 0 ° C. or less in a cold region or the like, it is necessary to provide a heater, but the amount of utility used can be greatly reduced. In such a state, the operation of the cooler 4 can be stopped.
Cooling water can be saved.
【0023】また、上記実施例に示すように、バイパス
経路13,温度指示調節計14,流量制御弁15を設け
ることにより、原料空気温度が十分に高いときには製品
酸素ガスを熱交換器11に導入せず、原料空気温度が高
すぎて収量が低くなることを防止できるとともに、原料
空気温度の低下に従い自動的に酸素ガスを熱交換器11
に導入して、原料空気を装置の運転に適した温度に加熱
できるので、外気温の変動にかかわらず、最も高い収率
の状態での運転を行え、総合的な製品コストの低減を図
ることができる。As shown in the above embodiment, by providing the bypass passage 13, the temperature indicating controller 14, and the flow control valve 15, the product oxygen gas is introduced into the heat exchanger 11 when the raw material air temperature is sufficiently high. Without reducing the temperature of the raw material air, the yield can be prevented from being too low, and the oxygen gas is automatically transferred to the heat exchanger 11 as the temperature of the raw material air decreases.
And the raw material air can be heated to a temperature suitable for the operation of the equipment, so that it can be operated at the highest yield regardless of fluctuations in the outside air temperature, thereby reducing overall product costs Can be.
【0024】図2は、本発明の他の実施例を示すもの
で、原料空気の供給回路に前記熱交換器11をバイパス
するバイパス経路22を設けるとともに、該経路22
に、前記同様に、温度指示調節計14により作動する流
量制御弁15を設け、熱交換器11を通る原料空気量を
調節して原料空気を所定の温度に加熱するように構成し
たものである。このように構成することによっても、上
記同様な作用効果を得ることができる。さらに、前記製
品酸素のバイパス経路13と上記原料空気のバイパス経
路22の双方を設けることもできる。FIG. 2 shows another embodiment of the present invention. In the feed air supply circuit, a bypass path 22 for bypassing the heat exchanger 11 is provided.
In the same manner as described above, a flow control valve 15 operated by a temperature indicating controller 14 is provided, and the amount of the raw air passing through the heat exchanger 11 is adjusted to heat the raw air to a predetermined temperature. . With such a configuration, the same operation and effect as described above can be obtained. Further, both the product oxygen bypass path 13 and the raw air bypass path 22 may be provided.
【0025】また、酸素PSAの構成は、上記実施例の
ものに限らず、吸着塔の数も任意であり、再生に真空ポ
ンプを用いないパージ再生方式のものにも本発明を適用
することが可能である。Further, the configuration of the oxygen PSA is not limited to that of the above-described embodiment, and the number of adsorption towers is arbitrary, and the present invention can be applied to a purge regeneration system that does not use a vacuum pump for regeneration. It is possible.
【0026】[0026]
【発明の効果】以上説明したように、本発明は、原料空
気圧を比較的低圧で行う圧力変動式吸着分離法による酸
素製造方法において、製品酸素を昇圧して供給する場合
に、原料空気の加熱用熱源として、圧縮機で圧縮されて
高温となった製品酸素ガスを有効利用するので、電力や
スチーム等のユーティリティを必要とせず、省エネルギ
ー化が図れ、製品の製造コストを低減することができ
る。As described above, according to the present invention, in the oxygen production method by the pressure fluctuation adsorption separation method in which the raw material air pressure is relatively low, when the product oxygen is supplied at a high pressure, the raw material air is heated. Since the product oxygen gas, which has been compressed by the compressor and has become high temperature, is effectively used as a heat source for use, utilities such as electric power and steam are not required, energy can be saved, and the production cost of the product can be reduced.
【図1】 本発明の一実施例を示す酸素PSAの系統図
である。FIG. 1 is a system diagram of an oxygen PSA showing one embodiment of the present invention.
【図2】 本発明の他の実施例を示す酸素PSAの要部
の系統図である。FIG. 2 is a system diagram of a main part of an oxygen PSA showing another embodiment of the present invention.
【図3】 従来の酸素PSAの一例を示す系統図であ
る。FIG. 3 is a system diagram showing an example of a conventional oxygen PSA.
【図4】 温度に対する吸着剤の特性を示す図である。FIG. 4 is a diagram showing characteristics of an adsorbent with respect to temperature.
1…空気送風機 3…圧縮機 11…熱交換器
13…バイパス経路 14…温度指示調節計 15…流量制御弁 A,
B,C…吸着塔DESCRIPTION OF SYMBOLS 1 ... Air blower 3 ... Compressor 11 ... Heat exchanger
13: bypass path 14: temperature indicating controller 15: flow control valve A,
B, C: adsorption tower
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−90074(JP,A) 特開 平1−176414(JP,A) 特開 昭62−148304(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 13/02 B01D 53/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-54-90074 (JP, A) JP-A-1-176414 (JP, A) JP-A-62-148304 (JP, A) (58) Investigation Field (Int.Cl. 7 , DB name) C01B 13/02 B01D 53/04
Claims (5)
複数の吸着塔を、原料空気中の窒素と酸素とを分離する
吸着工程と、該吸着工程で吸着剤に吸着した吸着成分を
脱着する再生工程とに切換えながら原料空気中の酸素を
窒素から分離して採取するとともに、得られた製品酸素
を昇圧して需要先に供給する圧縮機を有する圧力変動吸
着式酸素製造装置において、前記原料空気と、前記圧縮
機で昇圧して昇温した製品酸素とを熱交換させる熱交換
器を設けたことを特徴とする酸素製造装置。1. A plurality of adsorption towers filled with an adsorbent for selectively adsorbing nitrogen are subjected to an adsorption step for separating nitrogen and oxygen in the raw material air, and an adsorbent component adsorbed on the adsorbent in the adsorption step. oxygen in the feed air with collected separately from nitrogen while switched between regeneration step to desorb, pressure fluctuation absorption with compressor supplied to the demand end to boost the oxygen product obtained
The oxygen production apparatus according to claim 1, further comprising a heat exchanger for exchanging heat between the raw air and the product oxygen that has been pressurized and heated by the compressor.
あることを特徴とする請求項1記載の酸素製造装置。2. The oxygen producing apparatus according to claim 1, wherein the pressure of the raw material air is 1 kg / cm 2 G or less.
路を設けるとともに、熱交換器導出後の原料空気の温度
を測定する温度検出器を設け、該温度検出器の検出値に
より前記熱交換器に導入する製品酸素及び/又は原料空
気の流量を制御する流量制御弁を前記バイパス経路に設
けたことを特徴とする請求項1記載の酸素製造装置。3. A bypass path for bypassing the heat exchanger is provided, and a temperature detector for measuring a temperature of the raw material air after deriving the heat exchanger is provided, and the temperature of the heat exchanger is determined based on a detected value of the temperature detector. The oxygen production apparatus according to claim 1, wherein a flow control valve for controlling a flow rate of the product oxygen and / or the raw material air to be introduced is provided in the bypass path.
複数の吸着塔を、原料空気中の窒素と酸素とを分離する
吸着工程と、該吸着工程で吸着剤に吸着した吸着成分を
脱着する再生工程とに切換えながら原料空気中の酸素を
窒素から分離して採取するとともに、得られた製品酸素
を圧縮機で昇圧して需要先に供給する圧力変動吸着式酸
素製造装置において、前記原料空気を加熱する熱源とし
て、前記圧縮機で昇圧して昇温した製品酸素を用いるこ
とを特徴とする酸素製造装置における原料空気の昇温方
法。4. A plurality of adsorption towers filled with an adsorbent for selectively adsorbing nitrogen are subjected to an adsorption step for separating nitrogen and oxygen in the raw material air, and an adsorbent component adsorbed on the adsorbent in the adsorption step. While switching to the desorption regeneration step, oxygen in the raw material air is separated from nitrogen and collected, and the obtained product oxygen is pressurized by a compressor and supplied to the demand- variable adsorption-type oxygen. In the production apparatus, a method of raising the temperature of the raw material air in the oxygen production apparatus, wherein product oxygen whose pressure is raised by the compressor and whose temperature is raised is used as a heat source for heating the raw material air.
あることを特徴とする請求項4記載の酸素製造装置にお
ける原料空気の昇温方法。5. The method according to claim 4, wherein the pressure of the raw material air is 1 kg / cm 2 G or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03625691A JP3151627B2 (en) | 1991-03-01 | 1991-03-01 | Oxygen production apparatus and method for heating raw material air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03625691A JP3151627B2 (en) | 1991-03-01 | 1991-03-01 | Oxygen production apparatus and method for heating raw material air |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04275904A JPH04275904A (en) | 1992-10-01 |
JP3151627B2 true JP3151627B2 (en) | 2001-04-03 |
Family
ID=12464695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03625691A Expired - Fee Related JP3151627B2 (en) | 1991-03-01 | 1991-03-01 | Oxygen production apparatus and method for heating raw material air |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3151627B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008089527A1 (en) * | 2007-01-22 | 2008-07-31 | Siemens Ltda. | Pressure swing adsorption process and apparatus, including thermal energy recovery |
-
1991
- 1991-03-01 JP JP03625691A patent/JP3151627B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04275904A (en) | 1992-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2460573C2 (en) | Improvements in methods of short-cycle adsorption | |
EP3352884B1 (en) | Adsorbent regeneration method in a combined pressure and temperature swing adsorption process | |
US6221130B1 (en) | Method of compressing and drying a gas and apparatus for use therein | |
JPH0244570B2 (en) | ||
US5647891A (en) | Method and apparatus for heated, pressure-swing high pressure air dehydration | |
CN112495137B (en) | Pressure swing adsorption oxygen generating equipment | |
KR100367165B1 (en) | Method for producing highly clean dry air | |
JPH0565206B2 (en) | ||
JPS6241055B2 (en) | ||
CN214528139U (en) | Energy-saving oxygen generator | |
KR101720799B1 (en) | Purifying method and purifying apparatus for argon gas | |
JP3151627B2 (en) | Oxygen production apparatus and method for heating raw material air | |
JP2782356B2 (en) | Argon recovery method | |
GB2090160A (en) | Process and Apparatus for Separating a Mixed Gas Such as Air | |
JP3378949B2 (en) | Pressure fluctuation type air separation device and operation method thereof | |
JP2694377B2 (en) | Helium gas purifier | |
JPS6410252B2 (en) | ||
JPH0584418A (en) | Pretreatment of air separator and equipment therefor | |
EP0122874A1 (en) | Process for separating a mixed gas into oxygen and nitrogen under low temperature and low pressure conditions | |
JP3195986B2 (en) | Helium gas supply method and device | |
JP3143757B2 (en) | Helium gas purification apparatus and operating method thereof | |
CN219037383U (en) | Heating system of air separation device | |
CN218846658U (en) | Air pre-purification system | |
JP2000060973A (en) | Operation control equipment for oxygen concentrator | |
JPH0852317A (en) | Stable pressure fluctuation adsorption method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |