JP3149506U - PA (passive / active) hybrid air conditioning system - Google Patents

PA (passive / active) hybrid air conditioning system Download PDF

Info

Publication number
JP3149506U
JP3149506U JP2008008202U JP2008008202U JP3149506U JP 3149506 U JP3149506 U JP 3149506U JP 2008008202 U JP2008008202 U JP 2008008202U JP 2008008202 U JP2008008202 U JP 2008008202U JP 3149506 U JP3149506 U JP 3149506U
Authority
JP
Japan
Prior art keywords
heat
air
floor
room
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008008202U
Other languages
Japanese (ja)
Inventor
雅光 工藤
雅光 工藤
Original Assignee
有限会社デプラック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社デプラック filed Critical 有限会社デプラック
Priority to JP2008008202U priority Critical patent/JP3149506U/en
Application granted granted Critical
Publication of JP3149506U publication Critical patent/JP3149506U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

【課題】建築的工夫により自然エネルギーである太陽熱、夜間冷気、通風・自然換気を効果的に取り入れ、最小限の設備機器により全館冷暖房を行い、年間を通して開放的で健康的な室内環境をローコスト・ローエネルギーで実現する建築物を提供する。【解決手段】たとえば冬季においては、南壁面集熱窓1から取り入れ集熱室2に集められた暖気や、冷暖房機器7から放出された暖気は、ダクトトップの吸込口3aからダクト3を通して、送風機4により1階床下空間5に送られる。その暖気は外断熱されたベタ基礎10に蓄熱され、床下ガラリ6から室内に導かれた後、ルーバー床9・階段室を通り集熱室に帰る。これらの循環を繰返すことにより、均質な室温の全館暖房が実現される。【選択図】 図3[PROBLEMS] To effectively incorporate solar energy, nighttime cold air, ventilation, and natural ventilation, which are natural energy through architectural ingenuity, and to cool and heat the entire building with minimal equipment and equipment, so that an open and healthy indoor environment can be achieved at low cost throughout the year. Provide buildings realized with low energy. For example, in winter, warm air taken in from a south wall heat collecting window 1 and collected in a heat collecting chamber 2 or discharged from a cooling / heating device 7 is sent through a duct 3 from a duct top suction port 3a. 4 is sent to the space 5 under the first floor. The warm air is stored in the solid base 10 that is thermally insulated from the outside, and is led into the room from the bottom floor 6 and then returns to the heat collecting room through the louver floor 9 and the staircase. By repeating these circulations, uniform heating of the entire building at room temperature is realized. [Selection] Figure 3

Description

本考案は、高断熱・高気密な建物において、パッシブ(太陽熱,夜間冷気,通風・自然換気の利用)とアクティブ(高効率冷暖房機器,送風機の利用)を効果的に組合せ、暖冷房エネルギーの極小化を図った建築物に関するものである。   The present invention effectively combines passive (use of solar heat, night cooling, ventilation and natural ventilation) and active (use of high-efficiency air-conditioning equipment and blowers) in a highly insulated and air-tight building, and minimizes heating and cooling energy. It is about building which aimed at conversion.

近年、省エネルギーの一貫として高断熱・高気密の建物が寒冷地を中心として広く普及しているが、熱損失を抑えるため開口部を小さくし閉鎖的な空間造りが多々見られ、暖房期間が半年以上にも及ぶ地域では、生活の質にも悪影響が及ぶ事が懸念される。 In recent years, highly heat-insulated and air-tight buildings have become widespread mainly in cold regions as part of energy conservation, but in order to reduce heat loss, many closed spaces have been created with smaller openings, and the heating period has been more than six months. It is feared that the quality of life will be adversely affected in such areas.

また、自然エネルギーである太陽熱を利用した暖房方式もあるが、多くは屋根面からの集熱であり、積雪時に集熱可能か、無落雪を要求される場合に対応可能か、屋根面利用の太陽光発電との相性など、課題点も多い。なお寒冷地においても、太陽熱と内部発熱のみで暖房エネルギーを賄う無暖房住宅は可能と思われるが、冷房エネルギーの増加・建設コストの増大など費用対効果の検討が必要であろう。 There is also a heating method that uses solar heat, which is a natural energy source, but most of the heat is collected from the roof surface, which can collect heat during snowfall, can be used when no snowfall is required, There are many issues such as compatibility with solar power generation. Even in cold districts, unheated houses that use only solar heat and internal heat to cover heating energy are possible, but it is necessary to consider cost-effectiveness such as increased cooling energy and increased construction costs.

一方、最近の冷暖房機器(CO2冷媒ヒートポンプエアコン等)の性能・機能向上は目覚しく、冷暖房の効率向上のみならず、調湿・除菌・脱臭など、空気質の改善機能も優れている。
特開昭63−165633号公報 特開昭64−75858号公報 実新開平5−1918公報
On the other hand, recent improvements in performance and functions of air conditioning equipment (CO2 refrigerant heat pump air conditioners, etc.) have not only improved efficiency of air conditioning, but also excellent air quality improvement functions such as humidity control, sterilization, and deodorization.
JP 63-165633 A JP-A 64-75858 Shinshin Kaihei 5-1918

木造住宅の場合高断熱高気密は一般化されており、基礎断熱,外壁・屋根外張+充填断熱,熱交換換気扇,断熱サッシュ+ペアガラス・トリプルガラス,など各部位毎の断熱手法,部品も数多い。しかし、建物全体でみれば開口部の熱損失が大きいことから、その改善が望まれる。 In the case of wooden houses, high heat insulation and high airtightness have been generalized. Basic heat insulation, outer wall / roof exterior + filling heat insulation, heat exchange ventilation fan, heat insulation sash + pair glass / triple glass, etc. There are many. However, since the heat loss at the opening is large in the entire building, improvement is desired.

また、太陽熱を利用した暖房方式で屋根集熱の場合前述のような問題点があり、構造的にも複雑にならざるをえず、初期・メンテナンス費用の増大を招く。   In addition, in the case of roof heat collection using a heating system that uses solar heat, there are problems as described above, which must be complicated in structure and increase initial and maintenance costs.

本考案は上述の点を鑑みてなされたものであり、その目的は、太陽熱を南壁面の集熱窓より取り入れ、それを送風機により全館を循環させることにより全館暖房し、夏期夜間には送風機を逆運転する事により屋外冷気を取り入れ全館冷房する事、さらに寒冷地においては、高効率の冷暖房機器を併用することにより全館冷暖房すること、そしてこれら省エネルギーな建物をローコストで提供すること、またこのような建物をより効果的に機能させるため、高断熱の集熱カーテンウォール、断熱戸をローコストで提供することである。   The present invention has been made in view of the above points. The purpose of the present invention is to take solar heat from the heat collecting window on the south wall and heat the whole building by circulating it through the blower. Inverting outdoor air by reverse operation and cooling the entire building, and in cold districts, cooling and heating the entire building by using high-efficiency cooling and heating equipment together, and providing these energy-saving buildings at low cost It is to provide highly insulated heat collecting curtain walls and insulated doors at a low cost in order to function more effective buildings.

上記の目的の達成は、請求項1の記載の如く、太陽熱は南側外壁面の集熱窓により取り入れられる。これは太陽熱を暖房エネルギーとして利用する場合、冬期の太陽高度は低く、水平面より垂直面の方が多くの日射量が得られるためである。逆に夏は太陽高度が高いため、日射量は少なくてすむ。また、一般の住宅地であれば2階以上の日照はほとんど確保されており、条件がよければ1階開口部も集熱窓として利用できる。取り入れられた太陽熱は集熱室の空気を暖め、暖気は天井近くに集まる。この集熱室は、大開口カーテンウォールを持つことから寒冷地の生活には貴重なものであり、その用途はサンルーム・物干場・温室・プレイルーム等多目的である。   The achievement of the above object is as described in claim 1, in which solar heat is taken in by a heat collecting window on the south outer wall surface. This is because when solar heat is used as heating energy, the solar altitude in winter is low, and more solar radiation is obtained in the vertical plane than in the horizontal plane. Conversely, in summer, the solar altitude is high, so the amount of solar radiation is small. Moreover, in the case of a general residential area, the sunshine on the second floor or higher is almost ensured, and the opening on the first floor can be used as a heat collecting window if the conditions are good. The solar heat taken in warms the air in the heat collection chamber, and the warm air gathers near the ceiling. This heat collection room has a large opening curtain wall, so it is valuable for living in cold regions, and its use is multipurpose such as sunroom, clothes drying place, greenhouse, and play room.

さて暖気は、ダクトトップの吸込口からダクトを通して送風機により1階床下に送られる。この空間は外断熱されたベタ基礎で出来ており、暖気が通る事で暖められ、蓄熱される。また送風機は、集熱室上部に設置された室温センサーにより自動運転される。暖気は建物外周部にバランスよく設置された床ガラリより室内に導かれる。このガラリは風量調整可能であり、これにより室温調整される。さらに暖気は、1階天井近くを経由してルーバー床・階段室を通り集熱室に帰る。2階個室の床は暖気が1階を循環する過程で暖められ、その輻射熱で個室の室温は確保される。また、個室のダクト吸込口を開放することでも集熱室の暖気を導くこともできる。以上のサーキュレーションを繰返すことで、均質な室温の全館暖房が実現される。またこの過程で床下空間に蓄熱された熱源により夜間の暖房を賄うことになる。 Now, the warm air is sent from the inlet of the duct top to the lower floor of the first floor by the blower through the duct. This space is made of a solid foundation that is insulated from the outside, warmed by warm air and stored. The blower is automatically operated by a room temperature sensor installed in the upper part of the heat collecting chamber. Warm air is led into the room from the floor galleries installed in a well-balanced manner on the outer periphery of the building. This louver is capable of adjusting the air volume, thereby adjusting the room temperature. Furthermore, the warm air returns to the heat collection room through the louver floor and staircase via the first floor ceiling. The floor of the second floor private room is heated in the process of warm air circulating through the first floor, and the room temperature of the private room is secured by the radiant heat. Moreover, the warm air of a heat collection chamber can also be guide | induced by opening the duct inlet of a private room. By repeating the above circulation, the entire building is heated at a uniform room temperature. During this process, the heat source stored in the underfloor space will cover nighttime heating.

一方、夏期夜間には1階及び集熱室上部の自然換気口は開放され、送風機は逆運転することになる。これにより屋外冷気が取り入れられ、暖房時とは逆の循環が起きる。まず冷気は、1階自然換気口により床ガラリを通り床下空間に導かれ蓄冷される。そして冷気は送風機・ダクトを通して2階各個室・集熱室・階段室に送られる。このとき集熱室のダクトトップの吸込口は閉じられ、下の吹出口から放出される。これは、集熱室上部の自然換気口は開放されており、そこから冷気を放出させないためである。また、上部自然換気口が開放されているのは、室内が正圧状態になるのを防ぎ、内部発熱により発生した暖気をそこから放出するためである。以上の夜間冷気の取り入れにより全館冷房された室内は、夜が明け、外気温が上昇するころ1階換気口を閉じることにより遮断される。これ以降は床下に蓄冷された冷熱源により昼の冷房を賄うことになり、循環は冷房時と同じである。   On the other hand, the natural ventilation opening on the first floor and the upper part of the heat collecting chamber is opened at night in summer, and the blower is operated in reverse. As a result, outdoor cold air is taken in and the reverse circulation occurs during heating. First, the cold air is stored in the first floor natural ventilation port through the floor gallery and into the space under the floor. The cold air is then sent to the individual rooms, heat collection rooms, and staircases on the second floor through a blower and duct. At this time, the inlet of the duct top of the heat collecting chamber is closed and discharged from the lower outlet. This is because the natural ventilation opening in the upper part of the heat collecting chamber is open, and cold air is not released from there. The reason why the upper natural ventilation opening is opened is to prevent the room from being in a positive pressure state and to release warm air generated by internal heat generation therefrom. The interior of the entire building, which has been cooled by taking in the cold air at night, is shut off by closing the 1st floor ventilation opening when the outside temperature rises at dawn. From then on, the cooling source in the cold under the floor will cover the daytime cooling, and the circulation is the same as during cooling.

自然エネルギーは安定的に供給されないため、寒冷地においては自然エネルギーの太陽光と夜間冷気のみで暖冷房を賄うことは、断熱・蓄熱性能を相当向上させても困難がある。請求項2の如く、請求項1の建築物に高効率の暖冷房機器(CO2冷媒ヒートポンプエアコン等)を組合せることで、寒冷地においても、快適で健康的な室内環境がローコスト・省エネルギーで実現できる。それは請求項1で説明した如く、冬期日中晴天時には太陽熱の集熱で暖房を賄い、さらに蓄熱された熱源で夜間の暖房もある程度補うが、曇天・降雪時、寒さの厳しい夜間はエアコンで暖房を賄う。また夏期には、前述のナイトパージで冷房を賄うが、日中の高温時・多湿時にはエアコンで冷房・除湿を行う。このときエアコンの役割は、太陽熱・内部発熱・夜間冷気の温冷熱源の不足分を補うことであるが、調湿・除菌・脱臭など空気質の改善に寄与することも重要なことである。   Since natural energy is not stably supplied, it is difficult to provide heating and cooling only with natural energy sunlight and night-time cold in cold regions even if the heat insulation and heat storage performance are considerably improved. As in claim 2, combining the building of claim 1 with highly efficient heating and cooling equipment (CO2 refrigerant heat pump air conditioner, etc.) realizes a comfortable and healthy indoor environment at low cost and energy saving even in cold regions. it can. As explained in claim 1, during winter daytime, it is heated by solar heat collection, and the stored heat source compensates for heating at night to some extent. To cover. In summer, the above-mentioned night purge provides cooling, but air conditioning and dehumidification are performed during high temperatures and humidity during the day. At this time, the role of the air conditioner is to compensate for the shortage of heat sources such as solar heat, internal heat generation, and nighttime cold air, but it is also important to contribute to air quality improvement such as humidity conditioning, sterilization, and deodorization. .

以上請求項1,請求項2の建築物においては、その機能を果たす構成要素は、集熱窓・集熱室・ダクト・送風機・床下蓄熱層・エアコン等であり、非常にシンプルでローコストである。また、操作も簡単でメンテナンスもほとんど必要としない。建物のライフサイクルでみると、送風機・エアコン以外は更新の必要も無く、それらの更新にしても容易で費用も安価である。ランニングコストの面でも送風機の消費電力は僅かであり、エアコンにしても暖房は日中の太陽熱利用であることから、深夜の稼働率が高く時間帯割引を適用できる。   In the buildings according to claims 1 and 2, the components that fulfill the functions are the heat collecting window, the heat collecting chamber, the duct, the blower, the underfloor heat storage layer, the air conditioner, etc., which are very simple and low cost. . It is also easy to operate and requires little maintenance. Looking at the life cycle of the building, there is no need to renew other than the blower and air conditioner, and renewing them is easy and inexpensive. In terms of running cost, the power consumption of the blower is very small, and even in an air conditioner, heating is by solar heat during the day, so the operating rate at midnight is high and time zone discounts can be applied.

請求項1・2の建築物においては、太陽熱を取り込むための大開口の集熱窓が必要となる。市販されているサッシュを連窓させることもできるが、ガラス部分より枠部分の熱損失が大きいので、全体の断熱性能は劣る。請求項3の如く、木造軸組構造の場合、その構造体である柱等を利用し高断熱ペアガラス(Low−E,ガス入等で日射取得率の高いもの)などを直接はめ込み、外部をアルミ型材などで押えることで、耐侯性・耐久性・耐風圧性の高い木製カーテンウォールができる。これは、高断熱ガラスと木製枠(柱)で構成されるため全体の断熱性能が高く、しかもローコストである。なお、開閉部がほしい場合は一部市販サッシュを組み込むことで対応できる。また、室内側に断熱・遮光ブラインド(ハニカムサーモスクリーンなど)を組み込むことにより、断熱強化と日射の取得・遮蔽が自在にできる。   In the building of Claims 1 and 2, a heat collecting window having a large opening for taking solar heat is required. Although a commercially available sash can be made into a continuous window, since the heat loss of a frame part is larger than a glass part, the whole heat insulation performance is inferior. As in claim 3, in the case of a wooden frame structure, a highly insulated pair glass (low-E, one with high solar radiation acquisition rate, etc., etc.) is directly fitted using a pillar or the like, and the outside is A wooden curtain wall with high weather resistance, durability, and wind pressure resistance can be obtained by pressing with an aluminum mold. This is composed of highly heat-insulating glass and a wooden frame (pillar), so the overall heat insulating performance is high and the cost is low. In addition, if you want an opening / closing part, you can cope by incorporating a commercial sash. Moreover, by incorporating a heat insulation / light-shielding blind (such as a honeycomb thermoscreen) on the indoor side, heat insulation can be strengthened and solar radiation can be acquired and shielded.

請求項1・2の建築物において、一般開口部・自然換気口部には、請求項4の如く断熱戸を内側に設けることにより、断熱性能・遮光性能が著しく向上する。この断熱戸は、ボード状断熱材(ネオマフォーム等)でできておりそれ自体自立性があるので、四周にアルミ型材などを接着して補強するだけである。仕上はボード面に直接クロス等を貼るだけで完成、素人でも作れ非常にローコストである。厚さ30mmのものを使用すれば熱貫流率は0.66W/m2・Kとなり非常に断熱性能に優れている。   In the building according to claims 1 and 2, the heat insulation performance and the light shielding performance are remarkably improved by providing the general opening and the natural ventilation opening with a heat insulating door inside as in the fourth aspect. This heat insulating door is made of a board-like heat insulating material (neoma foam, etc.) and has its own self-supporting property. Therefore, the aluminum door is simply bonded and reinforced around the four sides. Finishing can be completed simply by sticking a cloth etc. directly on the board surface, and even an amateur can make it at a very low cost. If the one with a thickness of 30 mm is used, the heat permeability is 0.66 W / m 2 · K, which is very excellent in heat insulation performance.

以上説明したように、本考案は今後一層の強化が求められるCO2削減,エネルギー不足の時代において、建築的工夫により自然エネルギーである太陽熱、夜間冷気、通風・自然換気を効果的に取り入れ、最小限の設備機器−送風機・ダクト、寒冷地においては高効率エアコンなど−を利用することで年間を通して、開放的で健康的な室内環境をローコスト・ローエネルギーで実現できる。さらに、使用されていない屋根面に太陽光発電を設置することで、エネルギー自給も不可能でない。   As explained above, the present invention effectively incorporates natural energy such as solar heat, nighttime cold air, ventilation and natural ventilation in an era of CO2 reduction and energy shortage that require further enhancement in the future. By using equipment such as blowers, ducts, and high-efficiency air conditioners in cold regions, an open and healthy indoor environment can be realized at low cost and low energy throughout the year. Furthermore, energy self-sufficiency is not impossible by installing photovoltaic power generation on the unused roof surface.

以下、図面を参照して本考案の好ましい実施形態を説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1・2は、本考案の実施形態である一戸建住宅の図1は南北、図2は東西断面図である。図3・4は冬期暖房時の暖気循環模式図である。 FIGS. 1 and 2 are a north-south sectional view of a detached house according to an embodiment of the present invention, and FIG. 3 and 4 are schematic diagrams of warm-up circulation during winter heating.

これらの図において、日中の太陽光は集熱窓1を通して取り入れられ(この時断熱・遮熱ブラインド1aは開けられている)、太陽熱は暖気として集熱室2に集められる。その暖気はダクトの吸込口3a(風量調整機能)よりダクト3を通り送風機4によりダクトの吹出口3cより1階床下空間5に放出される(このとき吸込口3bは閉められている)。この空間は外断熱されたベタ基礎10により出来ており、暖気が通ることで暖められ蓄熱される。なお送風機は、集熱室上部の室温センサー4aにより自動運転される(ex.室温>22℃ ON)。床下暖気は、建物外周部にバランスよく配置された床下ガラリ6(風量調整機能付)より1階室内に放出される。   In these figures, sunlight during the day is taken in through the heat collection window 1 (the heat insulation / heat insulation blind 1a is opened at this time), and the solar heat is collected in the heat collection chamber 2 as warm air. The warm air passes through the duct 3 from the duct inlet 3a (air flow adjustment function) and is discharged from the duct outlet 3c into the first floor space 5 by the blower 4 (at this time, the inlet 3b is closed). This space is made of a solid foundation 10 that is thermally insulated from the outside, and is warmed and stored by passing warm air. The blower is automatically operated by the room temperature sensor 4a at the upper part of the heat collecting chamber (ex. Room temperature> 22 ° C. ON). The underfloor warm air is discharged into the first floor room from the underfloor gallery 6 (with air volume adjustment function) arranged in a well-balanced manner on the outer periphery of the building.

その暖気は、1階天井近くを経由してルーバー床9(吹抜でもよい)、階段室を通り集熱室に帰る。この循環の過程で暖められた1・2階の床から輻射熱として室内へ柔らかな熱が供給される。なお、2階個室にはダクト吸込口3bを開け、集熱室から暖気を取り込む事もできる(個室の扉にはアンダーカットが設けられている)。以上のサーキュレーションにより、全館が均質に暖房され床下空間のベタ基礎に蓄熱されていく。夜間には、この蓄熱層からの放熱により暖房される。   The warm air passes through the louver floor 9 (which may be blown out), the staircase, and returns to the heat collecting chamber via the first floor ceiling. Soft heat is supplied to the room as radiant heat from the floors of the first and second floors warmed in the process of circulation. In addition, the duct suction port 3b can be opened in the second floor private room, and warm air can be taken in from the heat collecting room (the door of the private room is provided with an undercut). Through the above circulation, the entire building is heated uniformly and stored on the solid foundation of the underfloor space. At night, it is heated by heat dissipation from this heat storage layer.

寒冷地での日照の得られない日や気温の低い日には、冷暖房機器7が稼動する。このエアコンは1階に設置され、その暖気は1階を経由して集熱室に集まる。以降は上述と同じ循環を繰返す。   The air-conditioning equipment 7 operates on a day when sunshine is not obtained in a cold region or on a day when the temperature is low. This air conditioner is installed on the first floor, and the warm air gathers in the heat collecting room via the first floor. Thereafter, the same cycle as described above is repeated.

図5・6は夏期冷房時の冷気循環模式図である。これらの図においては、基本的に暖房時と逆の循環が行われる。冷暖房機器7から放出された冷気は、1階を冷房した後、送風機4を逆運転することにより、床ガラリ6から床下空間5に入り、ベタ基礎10に蓄冷される。この冷気はダクト吸込口3cより送風機により、ダクト3を通りダクト吹出口3bから2階個室・集熱室へ放出される。その冷気は集熱室のルーバー床9及び階段室を経由して1階へ戻る。このサーキュレーションを繰返すことにより全館冷房される。エアコンを停止しても、ベタ基礎の蓄冷熱により冷房状態はしばらく持続する。なお冷房時には集熱室上部の自然換気口8は開放され、ダクト吹出口3aは閉じられている。これは冷気を外部へ逃がさないためであり、一方日射及び内部発熱の暖気を屋外へ放出させるためである。また、日中の日射が強い日には集熱窓の断熱・遮熱ブラインド1aは下ろされていることが重要である。   5 and 6 are schematic views of the cold air circulation during the summer cooling. In these figures, the reverse circulation is basically performed as in heating. The cool air discharged from the air conditioner 7 cools the first floor and then reversely operates the blower 4 to enter the underfloor space 5 from the floor gallery 6 and is stored in the solid foundation 10. This cold air is discharged from the duct suction port 3c by the blower through the duct 3 and from the duct outlet 3b to the second floor private room / heat collecting chamber. The cold air returns to the first floor via the louver floor 9 and the staircase of the heat collecting chamber. The entire building is cooled by repeating this circulation. Even if the air conditioner is stopped, the cooling state continues for a while due to the solid heat storage. During cooling, the natural ventilation port 8 at the upper part of the heat collecting chamber is opened, and the duct outlet 3a is closed. This is to prevent the cool air from escaping to the outside and to release the warm air of solar radiation and internal heat generation to the outside. Further, it is important that the heat-insulating / heat-insulating blind 1a of the heat collecting window is lowered on the day when the solar radiation is strong during the daytime.

図7は、夏期夜間冷気取り入れ時の冷気循環模式図である。この図においては、1階及び集熱室上部の自然換気口8は開放されている。送風機4を逆運転することにより屋外冷気を1階自然換気口8より取り入れ、床ガラリより床下空間に導かれ、ベタ基礎に蓄冷される。この冷気は冷房時と同じように、2階個室・集熱室に送られ冷気は1階へ、内部発熱により発生した暖気は集熱室上部の自然換気口から外部へ放出される。この屋外冷気の連続した取り入れにより全館冷房が可能となる。夜が明け、外気温が上昇するころ、1階自然換気口は閉じられる。これ以降は冷房時と同じサーキュレーションが行われ、その冷熱源はベタ基礎に蓄冷されたものである。   FIG. 7 is a schematic diagram of the cold air circulation at the time of taking in cold air in the summer. In this figure, the natural ventilation openings 8 on the first floor and the upper part of the heat collecting chamber are open. By operating the blower 4 in reverse, outdoor cold air is taken in from the first floor natural ventilation port 8, led to the space under the floor from the floor gallery, and stored in the solid foundation. This cool air is sent to the second-floor private room / heat collection chamber as in the case of cooling, and the cool air is discharged to the first floor, and the warm air generated by the internal heat generation is released to the outside from the natural ventilation port above the heat collection chamber. The entire building can be cooled by continuously taking in outdoor air. The natural ventilation opening on the 1st floor is closed at dawn and when the outside temperature rises. After this, the same circulation as during cooling is performed, and the cooling heat source is stored on a solid foundation.

図8は、夏・中間期自然換気時の空気循環模式図である。この図においては、1階及び集熱室上部の自然換気口8は開放され、送風機4は停止されている。日中在宅時は、一般窓は開けられ換気されるが、不在時・雨天時は、窓が閉じられる。このようなとき、自然換気口8は防雨・防風・防虫のガラリであり防犯性もあることから常時開放されている。これにより、日射侵入及び内部発熱による室温上昇を、温度差換気により防止することができる。   FIG. 8 is a schematic diagram of air circulation during summer / intermediate natural ventilation. In this figure, the natural ventilation port 8 on the first floor and the upper part of the heat collecting chamber is opened, and the blower 4 is stopped. When you are at home during the day, the windows are opened and ventilated, but when you are away or in the rain, the windows are closed. In such a case, the natural ventilation opening 8 is always open because it is a rainproof / windproof / insect-proof gallery and also has crime prevention. Thereby, the rise in room temperature due to solar radiation and internal heat generation can be prevented by temperature difference ventilation.

図9は、図1における太陽集熱窓1の立面・平面・断面図である。構造材である柱1b及び梁・桁材1cを利用して、ガラスハメ込部分を設けアルミ型材1eを先に四周・タテ部分に取付ける。そこに高断熱ペアガラス1dをハメ込み中段のアルミ型材で押える。最後にガラス周囲をシーリング1f打とする。万が一ガラスが破損しても、中段のアルミ型材を外せば簡単に交換できる。また開閉部がほしい場合は、市販のサッシュ1gを組み込むことも簡単にできる。さらに内側に断熱・遮光ブラインド1aを取付けることにより、より高い断熱性能が得られ、日射の取得・遮蔽も自在に可能となる。   FIG. 9 is an elevation, a plane, and a sectional view of the solar heat collecting window 1 in FIG. Using the pillar 1b and the beam / spar 1c, which are structural materials, a glass encased portion is provided and the aluminum mold 1e is first attached to the four-round / vertical portion. A highly heat-insulating pair glass 1d is pressed there with a middle aluminum mold. Finally, the periphery of the glass is a 1f sealing. If the glass breaks, it can be easily replaced by removing the middle aluminum mold. If you want an opening / closing part, you can easily incorporate 1g of a commercially available sash. Furthermore, by installing the heat insulating / light-shielding blind 1a on the inner side, higher heat insulating performance can be obtained, and solar radiation can be acquired and shielded freely.

図10は、図1における自然換気口8及び一般窓の、室内側断熱戸の立面・平面図である。ボード状断熱材11aの四周にアルミ型材11bを接着し、取手11dを取付け、仕上にクロス11cを貼っただけである。本例は引戸であるが、開き戸なども可能である。   FIG. 10 is an elevation / plan view of the indoor heat insulating door of the natural ventilation port 8 and the general window in FIG. 1. The aluminum mold 11b is bonded to the four circumferences of the board-shaped heat insulating material 11a, the handle 11d is attached, and the cloth 11c is pasted on the finish. Although this example is a sliding door, a hinged door or the like is also possible.

本考案の一実施形態に係わる一戸建住宅の、南北断面図である。1 is a north-south sectional view of a detached house according to an embodiment of the present invention. 本考案の一実施形態に係わる一戸建住宅の、東西断面図である。It is an east-west sectional view of a detached house concerning one embodiment of the present invention. 図1に示す建物の、冬期暖房時の暖気循環模式図である。It is a warm air circulation schematic diagram at the time of winter heating of the building shown in FIG. 図2に示す建物の、冬期暖房時の暖気循環模式図である。It is a warm air circulation schematic diagram at the time of winter heating of the building shown in FIG. 図1に示す建物の、夏期冷房時の冷気循環模式図である。It is a cold-air circulation schematic diagram at the time of summer cooling of the building shown in FIG. 図2に示す建物の、夏期冷房時の冷気循環模式図である。It is a cold-air circulation schematic diagram at the time of summer cooling of the building shown in FIG. 図2に示す建物の、夏期夜間冷気取り入れ時の冷気循環模式図である。FIG. 3 is a schematic diagram of the cold air circulation of the building shown in FIG. 図2に示す建物の、夏・中間期自然換気時の空気循環模式図である。FIG. 3 is a schematic air circulation diagram of the building shown in FIG. 2 during summer / intermediate natural ventilation. 図1・2に示す建物の、太陽集熱窓1の立面・平面・断面図である。It is an elevation, a plane, and a sectional view of the solar heat collecting window 1 of the building shown in FIGS. 図1・2に示す建物の、自然換気口及び一般窓の室内側断熱戸の立面・平面図である。FIG. 3 is an elevational and plan view of a natural ventilation opening and indoor indoor insulation doors of the building shown in FIGS.

符号の説明Explanation of symbols

1 太陽熱集熱窓
1a 断熱・遮光ブラインド(ハニカムサーモスクリーン等)
2 集熱室
3 ダクト
3a 上段ダクト吸込口・吹出口(風量調整機能付)
3b 下段ダクト吸込口・吹出口(風量調整機能付)
3c 床下ダクト吸込口・吹出口
4 送風機(給排気兼用・強弱切替機能付,カウンターアローファン等)
4a 温度センサー(送風機連動)
5 床下空間
6 床ガラリ(風量調整機能付)
7 冷暖房機器(高効率CO2冷媒ヒートポンプエアコン等)
8 自然換気口(防雨・防風・防虫ガラリ+断熱戸)
9 ルーバー床(又は吹抜)
10 外断熱されたベタ基礎
1b 木造構造柱(105×105等)
1c 木造構造梁・桁(105×105等)
1d 高断熱ペアガラス等(Low−E アルゴンガス入,日射取得率の高いもの)
1e アルミ型材等(アルミ FB−100×6等,ステンビス止メシリコーン併用)
1f シーリング
1g 市販開閉断熱サッシュ
11a ボード状断熱材等(ネオマフォームT=30等)
11b アルミ型材等(アルミ[−35×20×2.0等 ]
11c クロス等
11d アルミ取手等(アルミL−15×15×1.5等)
11e 木製枠
1 Solar heat collection window 1a Heat insulation / light-shielding blind (honeycomb thermoscreen, etc.)
2 Heat collection chamber 3 Duct 3a Upper duct inlet / outlet (with air volume adjustment function)
3b Lower duct inlet / outlet (with air volume adjustment function)
3c Underfloor duct inlet / outlet 4 Blower (for both air supply / exhaust, with strength switching function, counter arrow fan, etc.)
4a Temperature sensor (linked to blower)
5 Underfloor space 6 Floor gallery (with air volume adjustment function)
7 Air conditioning equipment (high efficiency CO2 refrigerant heat pump air conditioner, etc.)
8 Natural ventilation openings (rain, wind, insect proof + insulated door)
9 Louver floor (or vault)
10 Solid foundation with external insulation 1b Wooden structure pillar (105 × 105 etc.)
1c Wooden structural beams and girders (105 × 105 etc.)
1d Highly insulated pair glass, etc. (with Low-E argon gas, high solar radiation acquisition rate)
1e Aluminum mold materials, etc. (Aluminum FB-100 × 6 etc., combined with stainless steel screw silicone)
1f Sealing 1g Commercially available opening and closing heat insulation sash 11a Board-like heat insulating material (neomafoam T = 30 etc.)
11b Aluminum mold material, etc. (Aluminum [−35 × 20 × 2.0, etc.]
11c Cross etc. 11d Aluminum handle etc. (Aluminum L-15 × 15 × 1.5 etc.)
11e wooden frame

Claims (4)

南側外壁面に設けられた太陽熱集熱窓とそこから取り入れた太陽熱を集める集熱室を持ち、その暖気を、蓄熱層を兼ねる1階床下空間へ搬送するダクト及び送風機(サーキュレーションファン)を有し、その暖気が室内全体を循環する過程で暖房されることを特徴とし、また夏季夜間には送風機を逆運転することにより、屋外冷気を取り入れ循環し蓄冷することにより冷房される事を特徴とする建築物。   It has a solar heat collection window on the south outer wall and a heat collection room that collects the solar heat taken from it, and has a duct and a blower (circulation fan) that conveys the warm air to the space below the first floor that also serves as a heat storage layer. The warm air is heated as it circulates throughout the room, and the air blower is operated in reverse during the summer night to cool the air by taking in the outdoor cold air and storing it. Building. 請求項1記載の建築物に高効率の冷暖房機器(CO2冷媒ヒートポンプエアコン等)を組み合わせ、ローコスト、省エネルギーで冷暖房可能となることを特徴とする建築物   The building according to claim 1 is combined with high efficiency air conditioning equipment (CO2 refrigerant heat pump air conditioner, etc.) and can be air-conditioned at low cost and energy saving. 請求項1・2記載の建築物において、太陽熱を取り入れるための木造構造体を利用した高断熱で経済的なカーテンウォール   3. A highly insulating and economical curtain wall using a wooden structure for taking solar heat in the building according to claim 1 or 2. 請求項1・2の建築物において、一般開口部及び自然換気口の断熱性能・遮光性能の向上を図るためにその内側に設置される高断熱で経済的な断熱戸   In the building of Claims 1 and 2, a highly insulated and economical heat insulating door installed inside in order to improve the heat insulating performance and light shielding performance of the general opening and the natural ventilation opening
JP2008008202U 2008-11-22 2008-11-22 PA (passive / active) hybrid air conditioning system Expired - Fee Related JP3149506U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008202U JP3149506U (en) 2008-11-22 2008-11-22 PA (passive / active) hybrid air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008202U JP3149506U (en) 2008-11-22 2008-11-22 PA (passive / active) hybrid air conditioning system

Publications (1)

Publication Number Publication Date
JP3149506U true JP3149506U (en) 2009-04-02

Family

ID=54854078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008202U Expired - Fee Related JP3149506U (en) 2008-11-22 2008-11-22 PA (passive / active) hybrid air conditioning system

Country Status (1)

Country Link
JP (1) JP3149506U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105134A1 (en) * 2011-01-31 2012-08-09 Hayashi Toru Air-conditioning system utilizing underground heat and solar heat
JP5035577B1 (en) * 2011-10-26 2012-09-26 徹 林 An air conditioning system that uses geothermal and solar heat.
JP5613931B1 (en) * 2013-09-04 2014-10-29 洋樹 及川 Air conditioning system
JP2015190305A (en) * 2014-03-31 2015-11-02 株式会社アイビック house structure
JP2021143511A (en) * 2020-03-12 2021-09-24 ミサワホーム株式会社 Ceiling structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105134A1 (en) * 2011-01-31 2012-08-09 Hayashi Toru Air-conditioning system utilizing underground heat and solar heat
JP5035577B1 (en) * 2011-10-26 2012-09-26 徹 林 An air conditioning system that uses geothermal and solar heat.
JP2013092307A (en) * 2011-10-26 2013-05-16 Toru Hayashi Air conditioning system utilizing underground heat and solar heat
JP5613931B1 (en) * 2013-09-04 2014-10-29 洋樹 及川 Air conditioning system
JP2015190305A (en) * 2014-03-31 2015-11-02 株式会社アイビック house structure
JP2021143511A (en) * 2020-03-12 2021-09-24 ミサワホーム株式会社 Ceiling structure
JP7267224B2 (en) 2020-03-12 2023-05-01 ミサワホーム株式会社 ceiling structure

Similar Documents

Publication Publication Date Title
US20120318475A1 (en) Building Energy System
JP2014051874A (en) Energy-saving ventilation system for air-tightness house
JP3149506U (en) PA (passive / active) hybrid air conditioning system
CN101392563B (en) Energy-conserving wall structure with controllable semiconductor heat transfer capability
JP2002267227A (en) Air-feed apparatus
CN210288762U (en) Modularized dynamic building surface using natural energy
JP4171014B2 (en) Pneumatic collector and pneumatic solar collector ventilation system
CN103835416A (en) Internal-circular-breathing-type double-layer curtain wall
JP5370880B2 (en) Energy saving building
CN113914513A (en) Multifunctional solar curtain wall system and working method thereof
JP5578594B2 (en) Building with energy-saving ventilation system
He et al. A solar cooling project for hot and humid climates
JP2013537270A (en) Building materials for housing PCM and weather resistant exterior materials
CN1974974A (en) Internal and external double-circulating double-layer curtain wall
JP4561450B2 (en) Residential
JP3944181B2 (en) Building air conditioning system
CN200971574Y (en) Internal-external double-circulation double-layer curtain wall
JP7333026B2 (en) Ductless dynamic insulation and heat storage system
KR20190075491A (en) Modular building envelope unit
JP5410112B2 (en) Building ventilation structure
KR20120137984A (en) Green ventilation system
JP2018080904A (en) Urban type passive design
JP5653413B2 (en) Energy saving building
JPH05296514A (en) Ventilation mechanism of dwelling equipped with cellar
JP2998743B2 (en) Structure and natural ventilation system of natural ventilation building for detached house

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees