JP3149024U7 - - Google Patents

Download PDF

Info

Publication number
JP3149024U7
JP3149024U7 JP2008007568U JP2008007568U JP3149024U7 JP 3149024 U7 JP3149024 U7 JP 3149024U7 JP 2008007568 U JP2008007568 U JP 2008007568U JP 2008007568 U JP2008007568 U JP 2008007568U JP 3149024 U7 JP3149024 U7 JP 3149024U7
Authority
JP
Japan
Prior art keywords
solar cell
power
load
commercial power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008007568U
Other languages
Japanese (ja)
Other versions
JP3149024U (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2008007568U priority Critical patent/JP3149024U/en
Priority claimed from JP2008007568U external-priority patent/JP3149024U/en
Application granted granted Critical
Publication of JP3149024U publication Critical patent/JP3149024U/en
Publication of JP3149024U7 publication Critical patent/JP3149024U7/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

商用電力注入型太陽電池直流連系利用システムCommercial power injection type solar cell DC interconnection system

本考案は直流負荷に電力を供給する太陽電池と商用電源とその交流直流変換回路とを備えた商用電力注入型太陽電池直流連携システムに関するものである。 The present invention relates to a commercial power injection type solar cell DC link system including a solar cell that supplies power to a DC load, a commercial power source, and an AC / DC conversion circuit thereof .

従来技術としては、
(特許文献1)特開平07−184331、「冷蔵庫」、株式会社日立製作所。
(特許文献2)特開平11−215715、「起電力パワーコンデショナ」、三洋電機株式会社。
(非特許文献1)桑野幸徳、武岡明夫編著、「太陽電池活用ガイドブック」、146〜147頁、パワー社、1992年11月25日発行。
(非特許文献2)桜井薫、小針和久、福本敬夫共著、「太陽光発電の家」、15〜20頁、パワー社、1992年9月30日発行。
などが知られている。
As conventional technology,
(Patent Document 1) JP 07-184331, “Refrigerator”, Hitachi, Ltd.
(Patent Document 2) Japanese Patent Laid-Open No. 11-215715, “electromotive force power conditioner”, Sanyo Electric Co., Ltd.
(Non-Patent Document 1) Kouno Kuwano and Akio Takeoka, “Solar Cell Utilization Guidebook”, pages 146 to 147, published by Power Company, November 25, 1992.
(Non-Patent Document 2) Satoshi Sakurai, Kazuhisa Konee and Takao Fukumoto, “Solar Power Generation House”, 15-20 pages, Power Company, published September 30, 1992.
Etc. are known.

地球温暖化防止に対する有効性を有する電気エネルギー発生技術として太陽電池利用が再び注目されている。回路方式には種々あり[特許文献1]、[特許文献2]、[非特許文献1]及び[非特許文献2]に示されている。大別すると発生した直流電力をそのまま直流で使用する方法とインバータなどで交流に変換した後に使用する方法がある。また太陽電池単独使用で回路を構成している場合と商用電源との接続を行なって使用する場合がある。The use of solar cells is attracting attention again as a technology for generating electrical energy that is effective in preventing global warming. There are various circuit systems, which are shown in [Patent Document 1], [Patent Document 2], [Non-Patent Document 1] and [Non-Patent Document 2]. Broadly divided, there are a method of using generated DC power as it is, and a method of using it after converting it into AC with an inverter or the like. In addition, there are cases where a circuit is configured by using a solar cell alone and cases where a circuit is connected to a commercial power source.

従来の太陽電池利用システムを図1から図3で示す。図1は太陽電池PB電力を利用する回路として一番簡単で代表的なもので直流負荷直結方式と呼ばれるものである。負荷は直流で蓄電池の充電や直流で点灯するランプなどがある。中間部のバッテリーBTは直流電力の充電用で、日照条件の変化に対する平準化の目的と非日照時での充電された電力利用に有効性がある。
図2はAC100V商用電源切り換え方式と呼ばれ、商用電力利用方法の1つで三方切換スイッチSW3を挟み太陽電池側と商用電源側のいずれかに接続される。太陽電池側にインバータINVを装置するため一般交流電気製品が利用可能であるが、SW3切換時に瞬時停電が生ずる欠点がある。また電気出力容量がインバータINVの定格容量で決まり、一般家庭の電気負荷を全て賄うとすれば容量の大きい太陽電池及びインバータが必要となり設置コストが高価となる欠点がある。
A conventional solar cell utilization system is shown in FIGS. FIG. 1 is the simplest and typical circuit that uses solar battery PB power, and is called a direct current load direct connection system. The load is a direct current battery charge or a direct current lamp. The intermediate battery BT is used for charging DC power, and is effective for leveling against changes in sunshine conditions and using the charged power during non-sunshine.
FIG. 2 is called an AC100V commercial power supply switching system, and is connected to either the solar battery side or the commercial power supply side with a three-way selector switch SW3 interposed therebetween as one of commercial power utilization methods. Although a general AC electrical product can be used to install the inverter INV on the solar cell side, there is a drawback that an instantaneous power failure occurs when the SW3 is switched. Moreover, if the electric output capacity is determined by the rated capacity of the inverter INV and covers all the electric loads of ordinary households, there is a disadvantage that a large capacity solar cell and inverter are required and the installation cost becomes expensive.

図3は今日社会的に一番普及している太陽電池利用システムで太陽電池・商用電源完全連系方式と呼ばれ、商用電源との電力連系が可能で逆潮流機能が備わっている。太陽電池容量は自由に選定可能で使用電力が不足の場合は商用電源側からも給電される。但し、高価なパワーコンディショナーと多数の保護継電器や特殊な分電盤を必要とする。従って設置コストは高価となる欠点がある。FIG. 3 is a solar cell utilization system that is most popular in society today, and is called a solar cell / commercial power supply complete interconnection system. The solar cell capacity can be freely selected, and power is supplied from the commercial power supply side when the power consumption is insufficient. However, an expensive power conditioner, a large number of protective relays and special distribution boards are required. Therefore, there is a disadvantage that the installation cost is expensive.

太陽電池単体の特性向上はやや頭打ちの感が否めないが、しかしながら徐々に発電効率向上が伺える。他方利用方法は[特許文献1]および[特許文献2]に示されるように個別の直流負荷に電力供給する回路を構成し利用して事例がある。
炭酸ガスを排出しないエネルギー変換器である太陽電池の利用を増大させるためには、現行の太陽電池利用システムの安定電力供給機能を備え低価格化が可能となるように改善されなければならない。本考案では簡便で信頼性ある新しい太陽電池利用システム回路を提案する。
The improvement in the characteristics of a single solar cell cannot be denied, but there is a gradual improvement in power generation efficiency. On the other hand, as shown in [Patent Document 1] and [Patent Document 2], there is an example in which a circuit for supplying power to an individual DC load is configured and used.
In order to increase the use of solar cells, which are energy converters that do not emit carbon dioxide gas, it is necessary to improve the current solar cell utilization system with a stable power supply function and to reduce the price. The present invention proposes a new solar cell system circuit that is simple and reliable.

現在、政府推奨の太陽電池利用システムでは、商用電源との電力連系が可能なシステムでそれには種々の装置が必要で、中でも中心的役割を持つパワーコンディッショナーは高価な装置であり、加えて電力の売買を行なうためには複数の積算電力量計やブレーカーなどが装置されなければならないなどにより、取り付け設置する側にとって多大な費用負担を強いるシステムである。At present, the solar cell system recommended by the government is a system that can be connected to a commercial power source and requires various devices. Among them, the power conditioner that plays a central role is an expensive device. Thus, in order to buy and sell electric power, a plurality of integrated watt-hour meters, breakers, and the like must be installed.

太陽電池利用システム回路が有する環境優位性を最大限発揮させ、普及させるために解決すべき課題は、購入設備価格の引き下げで、これに付随して一般家庭や事業所の電気製品の直流使用化への改変である。家電製品の中にはそのまま直流電源で動作可能な電気コンロ、電気ストーブ、白熱球やLED照明器具などがあるが、直流使用化については電気製品製造メーカーに委ねられることが多く本考案の範疇外であるため、既に直流使用可能な機器のもとでの回路提案をする。The issue to be solved in order to maximize and disseminate the environmental superiority of solar cell system circuits is to reduce the price of purchased equipment. It is a modification to. Some household appliances include electric stoves, electric heaters, incandescent bulbs and LED lighting fixtures that can be operated directly with a DC power supply. However, the use of DC is often entrusted to electrical product manufacturers, and is outside the scope of the present invention. Therefore, we will propose a circuit under equipment that can use DC.

課題解決の手段として太陽電池利用システムを構成する部品点数の大幅な縮減が必要である。従って発生した直流電力をそのまま活用することは機器の効率向上の視点から適切で有効な方策である。As a means for solving the problem, it is necessary to greatly reduce the number of parts constituting the solar cell utilization system. Therefore, using the generated DC power as it is is an appropriate and effective measure from the viewpoint of improving the efficiency of the equipment.

同時に負荷消費電力に比べ太陽電池発生電力では不足する場合には商用電力からの電力供給が安定に行なわれる回路条件が必要である。
かくして本考案は、太陽電池と商用電源と前記両電源から電力供給を受ける直流負荷とを備え、
前記太陽電池から前記直流負荷への電力供給は、太陽電池に接続された逆流防止ダイオードを通して行われ、
前記商用電源から前記直流負荷への電力供給は、商用電源に接続された、直流に整流する定電圧機能付きコンバータ及び逆流防止ダイオードを通して行われ、
前記接続構成で並列接続された両電源からの電力供給は、日照変化に対応して、供給容量比率を最適比率にして、前記直流負荷に電力を供給できる、
ことを特徴とし、
または、
前記定電圧機能付きコンバータには、市販の直流定電圧電源装置を含む、
ことを特徴とし、
または、
前記太陽電池と直流負荷との間には、日照変化による発生電力を平準化する充放電蓄電池及びリプル吸収コンデンサのいずれかあるいは双方が接続された、
ことを特徴とするものである。
At the same time, when the power generated by the solar cell is insufficient compared to the load power consumption, circuit conditions are required so that power supply from commercial power can be performed stably.
Thus, the present invention comprises a solar cell, a commercial power source, and a DC load that receives power from both power sources,
Power supply from the solar cell to the DC load is performed through a backflow prevention diode connected to the solar cell,
Power supply from the commercial power source to the DC load is performed through a converter with a constant voltage function rectified to DC and a backflow prevention diode connected to the commercial power source,
The power supply from the two power sources connected in parallel in the connection configuration can supply power to the DC load, with the supply capacity ratio set to the optimum ratio in response to changes in sunlight.
It is characterized by
Or
The converter with a constant voltage function includes a commercially available DC constant voltage power supply device,
It is characterized by
Or
Between the solar cell and the DC load, either or both of a charge / discharge storage battery and a ripple absorption capacitor for leveling generated power due to a change in sunshine were connected,
It is characterized by this.

本考案を実現するために、図4に示す商用電力注入型太陽電池直流連携利用システム回路を提案するものである。
太陽電池パネル1からの出力は直流負荷5に逆流防止ダイオード4を通して供給される。日照変化による発生電力を平準化するために充放電蓄電池6や電圧リップルを吸収するリプル吸収コンデンサ7のいずれかまたは両方が接続される。但し、充放電蓄電池6とリプル吸収コンデンサ7は必ずしも取付ける必要はない。
In order to realize the present invention, a commercial power injection type solar cell direct-current cooperative system circuit shown in FIG. 4 is proposed .
The output from the solar cell panel 1 is supplied to the DC load 5 through the backflow prevention diode 4. Either or both of the charge / discharge storage battery 6 and the ripple absorption capacitor 7 that absorbs voltage ripple are connected in order to level the generated electric power due to sunshine change. However, the charge / discharge storage battery 6 and the ripple absorption capacitor 7 are not necessarily attached.

日照の変化による出力電圧変動に対して安定に継続して太陽電池電力を使用可能とするためには、商用電源2からの電力供給が必要で定電圧機能付きコンバータ3並びに逆流防止ダイオード4を通じて直流負荷5に接続される。
日照が低下すると直流負荷端子電圧が低下する。これを定電圧機能付きコンバータ3が検出し端子電圧が一定になるように昇圧し直流負荷5に電流を供給する。直流負荷5が増加した場合は同様に端子電圧が低下し、これを同じように定電圧機能付きコンバータ3が検出し端子電圧が一定になるように昇圧し直流負荷5に電流を供給する。太陽電池パネル1と定電圧機能付きコンバータ3からの電圧は直流負荷5に並列接続されるのでそれぞれの回路に逆向きの電流の流入阻止のため逆流防止ダイオード4,4を装置することすでに述べたとおりである。
In order to make it possible to use solar cell power stably and stably with respect to output voltage fluctuations due to changes in sunshine, it is necessary to supply power from the commercial power source 2, and the direct current through the converter 3 with a constant voltage function and the backflow prevention diode 4 Connected to load 5.
When the sunshine decreases, the DC load terminal voltage decreases. This is detected by the converter 3 with a constant voltage function, boosted so that the terminal voltage becomes constant, and a current is supplied to the DC load 5. When the DC load 5 increases, the terminal voltage similarly decreases, and this is similarly detected by the converter 3 with a constant voltage function, boosted so that the terminal voltage becomes constant, and a current is supplied to the DC load 5. Since the voltage from the solar panel 1 and the converter 3 with the constant voltage function are connected in parallel to the DC load 5, it has already been described that the backflow prevention diodes 4 and 4 are provided in each circuit to prevent the reverse current from flowing . It is as follows.

本考案で提案する該太陽電池利用システム回路は全て低価格で購入できる回路部品で構成され且つ部品点数も縮減されている。これにより設備購入価格は従来型の太陽電池・商用電源完全連系方式に比べ大幅に低減可能となる。また日照変動や直流負荷変動の場合でも安定に電力供給可能な特性を有する。また太陽電池は高価な回路要素であるので取付け枚数の選択は設置コストに直接反映し、どれだけの電力を太陽電池側が分担するかでコストに強く影響が出る。
以上のような視点で作られる該太陽電池利用システム回路は製造・設置コストが低減され低価格化に効果を有する。
The solar cell utilization system circuit proposed in the present invention is composed of circuit parts that can be purchased at a low price, and the number of parts is reduced. As a result, the equipment purchase price can be greatly reduced compared to the conventional solar cell / commercial power full interconnection system. In addition, it has a characteristic that enables stable power supply even in the case of sunshine fluctuations or DC load fluctuations. In addition, since the solar cell is an expensive circuit element, the selection of the number of installations directly reflects the installation cost, and the cost is strongly influenced by how much power is shared by the solar cell side.
The solar cell utilization system circuit made from the above viewpoint is effective in reducing the manufacturing and installation costs and reducing the cost.

考案の実施するための最良の形態Best mode for carrying out the invention

本太陽電池システムをより安価に構成するために直流負荷電力に対する太陽電池の電力容量と商用電力容量との容量比率を最適化することが重要である。太陽電池に比較して商用電力装置は簡単・安価な整流装置で製作されることを考慮すれば、直流負荷の使用電力の最低値に電池容量を合致させることが適切なシステム構成に不可欠である。In order to configure the present solar cell system at a lower cost, it is important to optimize the capacity ratio of the solar cell power capacity to the commercial power capacity with respect to the DC load power. Considering that commercial power devices are manufactured with simpler and cheaper rectifiers compared to solar cells, it is essential for a proper system configuration to match the battery capacity to the minimum value of DC load power consumption. .

本考案の商用電力注入型太陽電池利用システム回路での電力分担の関係を簡単な式で示す。直流負荷電力をWLとし、太陽電池からの供給電力をWp、商用電力からの供給電力をWdとすれば、WL=Wp+Wdとなる。いま直流負荷がΔWだけ変化した場合には、WL+ΔW=Wp+Ws+ΔWsとなる。即ち、WPは常に一定でΔWは商用電力側でΔWsだけ補償する。また日照が変化した場合はWpはΔWpだけ変化することからWL=Wp−ΔWp+Wd+ΔWdとなり、商用電力側でΔWdだけ補償する。
太陽電池に商用電力を直列に接続し電力を注入する回路方式が考えられるが、日照条件が極度に低い場合や夜間に於いては太陽電池の内部抵抗が大きいため太陽電池部での電力損失が大きく適切な回路とならない。
The relationship of power sharing in the system circuit using commercial power injection solar cells of the present invention is shown by a simple formula. If the DC load power is WL, the supply power from the solar battery is Wp, and the supply power from the commercial power is Wd, WL = Wp + Wd. If the DC load changes by ΔW, WL + ΔW = Wp + Ws + ΔWs. That is, WP is always constant and ΔW is compensated by ΔWs on the commercial power side. When sunshine changes, Wp changes by ΔWp, so WL = Wp−ΔWp + Wd + ΔWd, and the commercial power compensates for ΔWd.
A circuit system in which commercial power is connected to the solar cell in series and injected is conceivable, but when the sunshine conditions are extremely low or at night, the internal resistance of the solar cell is large, so the power loss in the solar cell section It is not a large and appropriate circuit.

太陽電池利用システム回路では日照度の強弱に応じ発生電圧が変化する。このような場合について例えとして直流点灯蛍光灯が負荷の場合、照明器具としての特性が充分発揮できるかどうかを確認する。直流蛍光灯の入力電圧変動と照度変化の関係について実験計測し検討を行なった。
計測の結果、定格入力電圧に対して電圧が8.3%減少した場合に照度は6.6%減少する。逆に電圧が8.3%増加すると照度が5.4%増加する。これより通常の照明機能を発揮するためには入力電圧を一定に保つことが重要である。
In the solar cell utilizing system circuit, the generated voltage changes according to the intensity of the daily illuminance. In such a case, for example, when a DC-lit fluorescent lamp is a load, it is confirmed whether or not the characteristics as a lighting fixture can be sufficiently exhibited. The relationship between input voltage fluctuation and illuminance change of DC fluorescent lamp was experimentally measured and examined.
As a result of measurement, when the voltage decreases by 8.3% with respect to the rated input voltage, the illuminance decreases by 6.6%. Conversely, if the voltage increases by 8.3%, the illuminance increases by 5.4%. Therefore, it is important to keep the input voltage constant in order to exhibit a normal lighting function.

本考案の商用電力注入型太陽電池利用システム回路では商用電源から電力が投入されて入力電圧が一定に維持されことにより直流使用器具の正常な動作を発揮させることができる。定電圧機能付きコンバータ3は市販の直流定電圧電源装置で充分その機能を果たす。
これより本考案の該太陽電池利用システム回路は図4が最良の形態である。
In the commercial power injection type solar cell utilization system circuit of the present invention, electric power is supplied from a commercial power source and the input voltage is kept constant, so that the normal operation of the DC using appliance can be exhibited. The converter 3 with a constant voltage function fulfills its function sufficiently with a commercially available DC constant voltage power supply device.
FIG. 4 shows the best mode of the solar cell utilizing system circuit of the present invention.

図4に沿った小規模の商用電力注入型太陽電池利用システム回路を構成し本考案の動作確認を行なった。該太陽電池利用システム回路において一定負荷のもとで晴天時と日照条件が91.7%に低下した場合について計測した。太陽電池単独での出力電流値を100%にとると日照低下時には電圧は67.9%に減少し出力電流値は約69%に減少した。
これ該太陽電池利用システム回路にすれば電圧は100%に戻り商用電力側電流は約33.5%であった。
以上のように該商用電力注入型太陽電池利用システム回路では日照変化に応じて負荷電力に一定の電力を供給する性能を有することが示された。
A small-scale commercial power injection solar cell utilization system circuit according to FIG. 4 was constructed and the operation of the present invention was confirmed. In the solar cell utilization system circuit, measurement was performed under the condition of a constant load and when the sunshine condition was reduced to 91.7%. When the output current value of the solar cell alone was set to 100%, the voltage decreased to 67.9% and the output current value decreased to about 69% when the sunshine decreased.
When this was used as the solar cell utilization system circuit, the voltage returned to 100% and the commercial power side current was about 33.5%.
As described above, it has been shown that the commercial power injection type solar cell utilization system circuit has the capability of supplying constant power to the load power according to changes in sunlight.

次に負荷が増加した場合について計測を行なった。太陽電池単独では負荷の増加前の電圧値及び電流値を100%とすると負荷が増加した場合には電圧は95.5%に低下し電流は8.6%増加した。これ該商用電力注入型太陽電池利用システム回路にすれば電圧は100%に戻りその時商用電力側からは約7.1%の電流を供給した。Next, the case where the load increased was measured. In the case of the solar cell alone, assuming that the voltage value and current value before the increase in load were 100%, when the load increased, the voltage decreased to 95.5% and the current increased by 8.6%. If this was used as the commercial power injection type solar cell utilization system circuit, the voltage returned to 100%, and at that time, a current of about 7.1% was supplied from the commercial power side.

本考案による商用電力注入型太陽電池利用システム回路は市民の地球環境問題意識の高揚と回路構成が簡易で設置コストも低い特長により家庭や小規模事業所でこれまでにない多くの導入や利用が期待できる。The commercial power injection solar cell system circuit according to the present invention has been introduced to and used at homes and small-scale offices, which has never been seen before, due to the rise in public awareness of global environmental issues, simple circuit configuration, and low installation costs. I can expect.

は直流負荷直結方式と呼ばれる太陽電池利用回路図である。 Is a circuit diagram using a solar cell called a direct current load direct connection system .

はAC100V商用電源切り換え方式と呼ばれる太陽電池利用回路図である。 FIG. 2 is a circuit diagram of a solar cell utilization circuit called an AC100V commercial power supply switching system .

は太陽電池・商用電源完全連系方式と呼ばれる太陽電池利用回路図である。 Is a solar cell utilization circuit diagram called a solar cell / commercial power supply complete interconnection system .

は本考案である商用電力注入型太陽電池直流連系利用システム回路である。 FIG. 2 is a circuit diagram of a commercial power injection type solar cell DC interconnection utilization system according to the present invention.

1 太陽電池パネル1 Solar panel
2 商用電源2 Commercial power
3 定電圧機能付きコンバータ3 Converter with constant voltage function
4 逆流防止ダイオード4 Backflow prevention diode
5 直流負荷5 DC load
6 充放電蓄電器6 Charge / discharge capacitors
7 リプル吸収コンデンサ7 Ripple absorption capacitor

Claims (3)

太陽電池と商用電源と前記両電源から電力供給を受ける直流負荷とを備え、A solar cell, a commercial power source, and a direct current load that receives power from both power sources,
前記太陽電池から前記直流負荷への電力供給は、太陽電池に接続された逆流防止ダイオードを通して行われ、Power supply from the solar cell to the DC load is performed through a backflow prevention diode connected to the solar cell,
前記商用電源から前記直流負荷への電力供給は、商用電源に接続された、直流に整流する定電圧機能付きコンバータ及び逆流防止ダイオードを通して行われ、Power supply from the commercial power source to the DC load is performed through a converter with a constant voltage function rectified to DC and a backflow prevention diode connected to the commercial power source,
前記接続構成で並列接続された両電源からの電力供給は、日照変化に対応して、両電源の供給容量比率を最適比率にして、前記直流負荷に電力を供給できる、The power supply from both power sources connected in parallel in the connection configuration can supply power to the DC load with the optimal capacity ratio of both power sources corresponding to changes in sunlight.
ことを特徴とする商用電力注入型太陽電池直流連携システム。This is a commercial power injection type solar cell DC link system.
前記定電圧機能付きコンバータには、市販の直流定電圧電源装置を含む、The converter with a constant voltage function includes a commercially available DC constant voltage power supply device,
ことを特徴とする請求項1記載の商用電力注入型太陽電池直流連携システム。The commercial power injection type solar cell DC link system according to claim 1.
前記太陽電池と直流負荷との間には、日照変化による発生電力を平準化する充放電蓄電池及びリプル吸収コンデンサのいずれかあるいは双方が接続された、Between the solar cell and the DC load, either or both of a charge / discharge storage battery and a ripple absorption capacitor for leveling generated power due to a change in sunshine were connected,
ことを特徴とする請求項1または請求項2記載の商用電力注入型太陽電池直流連携システム。The commercial power injection type solar cell DC link system according to claim 1 or 2, characterized in that
JP2008007568U 2008-10-01 2008-10-01 Commercial power injection type solar cell DC interconnection system Expired - Fee Related JP3149024U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007568U JP3149024U (en) 2008-10-01 2008-10-01 Commercial power injection type solar cell DC interconnection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007568U JP3149024U (en) 2008-10-01 2008-10-01 Commercial power injection type solar cell DC interconnection system

Publications (2)

Publication Number Publication Date
JP3149024U JP3149024U (en) 2009-03-12
JP3149024U7 true JP3149024U7 (en) 2010-05-27

Family

ID=54853630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007568U Expired - Fee Related JP3149024U (en) 2008-10-01 2008-10-01 Commercial power injection type solar cell DC interconnection system

Country Status (1)

Country Link
JP (1) JP3149024U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105917543A (en) * 2014-01-15 2016-08-31 紫稳电机株式会社 Power generation system for power generation device harnessing natural energy, and DC power supply combination device having reverse-current blocking device and no power loss used in said power generation system
JP6334058B2 (en) * 2015-03-27 2018-05-30 京セラ株式会社 Power supply device control method, power supply device, and power supply system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114862U (en) * 1984-06-29 1986-01-28 ホーチキ株式会社 solar power supply
JPH10243575A (en) * 1997-02-21 1998-09-11 Japan Storage Battery Co Ltd Solar battery power unit and its operating method

Similar Documents

Publication Publication Date Title
EP2793345B1 (en) Electric power supply system
US8907522B2 (en) Grid-connected power storage system and method for controlling grid-connected power storage system
US7830038B2 (en) Single chip solution for solar-based systems
US20050105224A1 (en) Inverter apparatus connected to a plurality of direct current power sources and dispersed-power-source system having inverter apparatus linked to commercial power system to operate
US20130088900A1 (en) Energy storage system and controlling method of the same
JP2010535011A (en) Solar power device
JP2007028735A (en) Distributed power system and method
JP2011078215A (en) Power distribution system
JP2011050131A (en) Residential power supply system, and power supply controller therefor
JP2006254694A (en) Distributed power feeding system
Thomas Edison revisited: Impact of DC distribution on the cost of LED lighting and distributed generation
Chauhan et al. DC distribution system for energy efficient buildings
JP2011250605A (en) Power conversion apparatus
JP2007018180A (en) Solar energy power generation system
Rauf et al. Application of DC-AC hybrid grid and solar photovoltaic generation with battery storage using smart grid
JP2013219857A (en) Power circuit and electric apparatus having the same
JP2013165624A (en) Power conditioner for power storage device and power storage device
JP3149024U7 (en)
JP3149024U (en) Commercial power injection type solar cell DC interconnection system
Jhunjhunwala et al. Technological and deployment challenges and user-response to uninterrupted DC (UDC) deployment in Indian homes
JP2013063010A (en) Power supply device
JP2015122841A (en) Power storage system and power generation system
Sabry et al. Battery Backup Power System for Electrical Appliances with Two Options of Primary Power Sources
KR101017465B1 (en) Marine power providing device using solar energy
RU2341859C1 (en) Method and device for uninterrupted power supply to consumer