JP3148303B2 - Manufacturing method of optical fiber bundle for heat and vacuum resistance - Google Patents

Manufacturing method of optical fiber bundle for heat and vacuum resistance

Info

Publication number
JP3148303B2
JP3148303B2 JP27113291A JP27113291A JP3148303B2 JP 3148303 B2 JP3148303 B2 JP 3148303B2 JP 27113291 A JP27113291 A JP 27113291A JP 27113291 A JP27113291 A JP 27113291A JP 3148303 B2 JP3148303 B2 JP 3148303B2
Authority
JP
Japan
Prior art keywords
glass
optical fiber
fiber bundle
temperature
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27113291A
Other languages
Japanese (ja)
Other versions
JPH05105484A (en
Inventor
信義 馬場
忍 永濱
孝治 森谷
淳也 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumita Optical Glass Manufacturing Co Ltd
Original Assignee
Sumita Optical Glass Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumita Optical Glass Manufacturing Co Ltd filed Critical Sumita Optical Glass Manufacturing Co Ltd
Priority to JP27113291A priority Critical patent/JP3148303B2/en
Priority to EP19920307343 priority patent/EP0537886B1/en
Priority to DE1992614400 priority patent/DE69214400T2/en
Publication of JPH05105484A publication Critical patent/JPH05105484A/en
Priority to US08/332,044 priority patent/US5472471A/en
Application granted granted Critical
Publication of JP3148303B2 publication Critical patent/JP3148303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、極めて高温または真空
の条件下においても使用可能な耐熱耐真空用光学繊維束
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical fiber bundle for heat and vacuum resistance, which can be used under extremely high temperature or vacuum conditions.

【0002】[0002]

【従来の技術】コア及びクラッド部を有してなる光学繊
維素線を用い、これを光軸方向を揃えて多数束ねて、光
の伝送を目的としたものは、イメージガイド、ライトガ
イドなどと呼ばれる。これらは医療用の内視鏡や、狭い
ところの照明、光モニター、光センサーなどに用いら
れ、光学機械、装置やその他の精密機械、装置等の重要
な個別光学部品となっており、その応用分野は非常に幅
広いものとなっている。これらに用いられる光学繊維束
としては、端部に固定部を形成し、中間部に可撓部を形
成したものが用いられている。ところで、こうした端部
の固定部は、主に有機系または無機系の接着剤により固
定することにより形成されており、有機系の接着剤を使
用したものとして例えば、特開昭55−111908号
公報、特開昭60−262105号公報等に記載の方
法、また無機系の接着剤、特にガラスを使用したものと
して例えば、特開昭55−65907号公報、特開平1
−114804号公報に提案される方法等が知られてい
る。
2. Description of the Related Art Optical fiber strands having a core and a clad are used, and many of them are bundled with their optical axis directions aligned. Called. These are used for medical endoscopes, narrow-area lighting, optical monitors, optical sensors, etc., and are important individual optical components such as optical machines, devices and other precision machines and devices. The fields are very broad. As the optical fiber bundle used for these, a fiber bundle having a fixed portion formed at an end portion and a flexible portion formed at an intermediate portion is used. Incidentally, such fixing portions at the ends are formed mainly by fixing with an organic or inorganic adhesive. For example, Japanese Patent Application Laid-Open No. Sho 55-111908 discloses the use of an organic adhesive. JP-A-55-65907, JP-A-60-262105, and the method described in JP-A-55-65907.
A method proposed in JP-A-114804 is known.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来公知の光
学繊維束端部固定用接着剤は、上記した公報等に記載さ
れるように、有機系接着剤ではその耐熱温度はエポキシ
系接着剤で150℃程度、ポリイミド樹脂系接着剤で3
00℃程度であり、より高温における使用には適さない
ものであった。また、耐真空の使用に際しても、有機系
接着剤を用いた場合、樹脂の接着反応プロセスで空隙が
生じ気密性があまり良くないこと、及び真空化の際にガ
スが発生して真空化に時間がかかること、等の問題を生
じていた。無機系接着剤、特にガラスを接着剤として使
用したものは、接着部の気密性が良く、ガスの発生もな
いため、耐真空の使用に際しては良好に適用できる。し
かし、接着剤として使用されるガラスが低融点ガラスで
あるために、その耐熱温度は有機系接着剤と同じく30
0℃程度しかなく、より高温での使用には適さないとい
う問題があった。
However, as described in the above-mentioned publications, conventional adhesives for fixing the end portions of optical fiber bundles use an organic adhesive and the heat-resistant temperature of the epoxy adhesive. About 150 ° C, 3 with polyimide resin adhesive
It was about 00 ° C., which was unsuitable for use at higher temperatures. In addition, when using an organic adhesive, when using an organic adhesive, voids are formed in the resin bonding reaction process and airtightness is not very good, and gas is generated at the time of vacuuming and it takes time to vacuum. However, such a problem has arisen. Inorganic adhesives, particularly those using glass as the adhesive, have good airtightness at the bonding portion and do not generate gas, and thus can be suitably applied when used in vacuum resistance. However, since the glass used as the adhesive is a low-melting glass, its heat resistance temperature is 30 times as high as that of the organic adhesive.
There is a problem that it is only about 0 ° C. and is not suitable for use at higher temperatures.

【0004】この耐熱性の問題に関し、光学繊維素線と
して石英系光学繊維を使用し、接着剤として有機バイン
ダー中に無機成分を溶かし込んだものを用いることによ
り耐熱使用温度を800℃という非常な高温に高める方
法が知られている。しかしながらこの方法は、接着プロ
セスにおいて、接着後熱処理することにより有機成分を
取り除いてしまうので、樹脂の接着剤の場合と同様に空
隙を生じ、気密性が良くないと共に、接着力が弱いの
で、接着部分が脆くなってしまうなどの欠点がある。ま
た、光学繊維素線として石英系光学繊維を使用している
ために、コスト面で非常に高価なものとなっている。さ
らに、上記公開公報等にみられるように、ガラスを接着
剤として使用した場合の作製方法に関しては、光学繊維
束端末部を溶融低融点ガラス中に浸漬して融着する方法
が知られている。しかし、こう方法では光学繊維束端末
部に多量のガラスが付着して膨らんでしまうと共に、す
ぐに固化してしまうので、端末部固定用の金属等のパイ
プ中に光学繊維束を引き込むことはかなり困難である。
本発明はこのような従来技術の諸問題に鑑みてなされた
ものであり、光学繊維束端部の気密性とより高温の耐熱
性を兼ね備えた耐熱耐真空用光学繊維束の製造方法を提
供することを目的とする。
[0004] Regarding the problem of heat resistance, a quartz optical fiber is used as an optical fiber, and an inorganic binder dissolved in an organic binder is used as an adhesive. Methods for raising to high temperatures are known. However, this method removes organic components by performing a heat treatment after bonding in the bonding process, so that voids are generated as in the case of the resin adhesive, airtightness is not good, and the bonding strength is weak, so that bonding is not performed. There are drawbacks such as the parts becoming brittle. In addition, since quartz optical fibers are used as the optical fiber, the cost is very high. Further, as seen in the above-mentioned publications and the like, regarding a manufacturing method when glass is used as an adhesive, a method of immersing an optical fiber bundle end portion in a molten low-melting glass and fusing is known. . However, with this method, a large amount of glass adheres to the end portion of the optical fiber bundle and swells, and at the same time, solidifies immediately. Have difficulty.
The present invention has been made in view of such problems of the related art, and provides a method of manufacturing a heat-resistant and vacuum-resistant optical fiber bundle having both airtightness at an end portion of the optical fiber bundle and higher-temperature heat resistance. The purpose is to:

【0005】[0005]

【課題を解決するための手段】上記目的を達成する本発
明の耐熱耐真空用光学繊維束の製造方法は、その組成が
TeO 2 20.0〜30.0重量%、Bi 2 3
2.0〜30.0重量%、GeO 2 13.0〜23.
0%及びPbO 15.0〜35.0重量%並びにLa
2 3 5.0〜12.0重量%又はNb 2 5 8.
0〜20.0重量%であるガラスを接着ガラスとし、
ア及びクラツド部を有してなる光学繊維素線を束ね、
光学繊維束の端部の上に接着ガラスを載置した状態で加
熱して該接着ガラスを光学繊維束中に浸透融着させるこ
とにより該光学繊維束の端部を密に融着し、続いて融着
した該接着ガラスを結晶化処理することにより耐熱性を
高めることを特徴とする。本発明において、上記コア及
びクラッドを有してなる光学繊維素線としては、そのガ
ラス転移温度(Tg)が500℃を越え、ガラス軟化温
度(Ts)が700℃を越えるガラス組成物からなるも
のを特に好ましいものとして挙げることができる。本発
明における上記接着ガラスとしては、700℃以下の温
度において融着し、500℃〜700℃の温度で良好に
結晶化すると共に、ガラス屈伏温度(At)が400℃
以上であるものが特に好ましい。
Method for producing a heat-resistant vacuum-tight optical fiber bundle of the present invention to achieve the above object, according to an aspect of the its composition
20.0-30.0% by weight of TeO 2 , Bi 2 O 3 1
2.0 to 30.0 weight%, GeO 2 13.0~23.
0% and PbO 15.0-35.0% by weight and La
2 O 3 5.0 to 12.0 wt% or Nb 2 O 5 8.
The glass is 0 to 20.0 wt% and an adhesive glass, bundled optical cellulose line formed with a core and Kuratsudo unit, the
With the adhesive glass placed on the end of the optical fiber bundle,
Heating the adhesive glass into the optical fiber bundle
Thus, the end portions of the optical fiber bundle are densely fused, and subsequently, the fused adhesive glass is subjected to a crystallization treatment to enhance heat resistance. In the present invention, the optical fiber having the above-mentioned core and clad comprises a glass composition having a glass transition temperature (Tg) of more than 500 ° C. and a glass softening temperature (Ts) of more than 700 ° C. Are particularly preferred. In the present invention, the adhesive glass is fused at a temperature of 700 ° C. or less, crystallizes well at a temperature of 500 ° C. to 700 ° C., and has a glass deformation temperature (At) of 400 ° C.
Those described above are particularly preferred.

【0006】本発明者等は、従来法の諸欠点を改良すべ
く種々考察・研究を重ねた結果、融着温度で変形するこ
となく、しかも500℃の高温で使用できる光学繊維束
を用いること、700℃以下で融着し500℃で使用で
き、しかも光学繊維束の間に十分に浸透するような接着
ガラスで融着後これを結晶化すれば、空隙等なく気密に
融着できた耐熱耐真空性光学繊維束が得られると考え、
このような特性を有する接着ガラスの組成を開発し、本
発明に達成できた。
The present inventors have conducted various studies and studies in order to improve the drawbacks of the conventional method, and as a result, have found that an optical fiber bundle which can be used at a high temperature of 500 ° C. without being deformed at the fusion temperature is used. Can be used at 500 ° C by fusing at 700 ° C or less, and furthermore, by fusing with an adhesive glass that sufficiently penetrates between the optical fiber bundles and then crystallizing it, a heat-resistant vacuum that can be air-tightly fused without voids or the like Thought that a functional optical fiber bundle could be obtained,
A composition of an adhesive glass having such characteristics was developed, and the present invention was achieved.

【0007】本発明のコアとクラッド部を有してなる光
学繊維素線としては、そのガラス転移温度(Tg)が5
00℃より高く、そのガラス軟化温度(Ts)は700
℃をこえる温度であるガラスからなるものを使用する。
ガラス転移温度(Tg)が500℃より高いので、50
0℃においても軟化変形は防止でき、500℃の高温に
おける長期間の使用にも耐え得る。また、本発明におけ
る接着ガラスによる融着温度は700℃を越えることは
ないので、軟化温度(Ts)が700℃を越える光学繊
維素線であれば、融着時に軟化変形することがない。本
発明の光学繊維素線としては上記の特性を満足できるも
のであれば、いずれでもよいが、例えばSiO2 系ガラ
ス、SiO2 −B2 3 系ガラス、GeO2 系ガラス、
2 5 系ガラスを主成分とするもの、これらに更に数
種類の修飾酸化物を加えた組成のもの等が挙げられる。
An optical fiber having a core and a clad according to the present invention has a glass transition temperature (Tg) of 5
Higher than 00 ° C. and its glass softening temperature (Ts) is 700
Use a glass that is at a temperature exceeding ℃.
Since the glass transition temperature (Tg) is higher than 500 ° C., 50
Even at 0 ° C, softening deformation can be prevented, and it can withstand long-term use at a high temperature of 500 ° C. Further, since the fusion temperature of the adhesive glass in the present invention does not exceed 700 ° C., an optical fiber having a softening temperature (Ts) of more than 700 ° C. does not undergo softening deformation during fusion. The optical fiber of the present invention may be any as long as it satisfies the above-mentioned properties, and examples thereof include SiO 2 -based glass, SiO 2 -B 2 O 3 -based glass, and GeO 2 -based glass.
Examples thereof include those containing P 2 O 5 -based glass as a main component, and those further containing several types of modified oxides.

【0008】本発明の特徴とする接着ガラスとしては、
融着温度における光学繊維の変形を抑えるために、70
0℃以下の温度において良好に融着し、且つ500℃の
耐熱性を達成するため、そのガラス屈伏温度(At)が
400℃以上のものを使用する。この理由は、通常結晶
化ガラスと呼ばれるものの耐熱温度は、結晶化処理時の
最高処理温度までに限定されるからであり、本発明では
500℃をこえる温度で良好に結晶化する接着ガラスを
使用する。そして、接着ガラスの屈伏温度(At)が4
00℃未満であると、その結晶化処理温度が500℃未
満となってしまうため、そのガラス屈伏温度(At)は
400℃以上のものを使用する。
[0008] The adhesive glass characterized by the present invention includes:
In order to suppress the deformation of the optical fiber at the fusion temperature, 70
In order to achieve good fusion at a temperature of 0 ° C. or less and to achieve a heat resistance of 500 ° C., a material having a glass deformation temperature (At) of 400 ° C. or more is used. The reason for this is that the heat-resistant temperature of what is usually called crystallized glass is limited to the maximum processing temperature during the crystallization process, and the present invention uses an adhesive glass that crystallizes well at a temperature exceeding 500 ° C. I do. And the yielding temperature (At) of the adhesive glass is 4
If the temperature is lower than 00 ° C., the crystallization temperature is lower than 500 ° C., so that the glass yielding temperature (At) of 400 ° C. or higher is used.

【0009】また、一般にコア及びクラッドを有してな
る光学繊維は、主成分がSiO2 系またはSiO2 −B
2 3 系のガラス組成であるため、同じガラス組成物系
の接着ガラスを使用した場合、接着処理時に光学繊維と
接着ガラスが融合して溶け合ってしまうので、接着ガラ
スが浸透しにくくなる。そこで、本発明の接着ガラスの
組成としては、光学繊維束への浸透融着性に富むTeO
2 系ガラスが好ましく、例えば以下に例示するような組
成が特に好ましい。すなわちその組成が、TeO2
0.0〜30.0重量%、Bi2 3 12.0〜3
0.0重量%、GeO2 13.0〜23.0%及び
bO 15.0〜35.0重量%並びにLa2 3
5.0〜12.0重量%又はNb2 5 8.0〜20.
0重量%であるようなガラスが挙げられる。この組成の
範囲限定の根拠は以下のとおりである。
In general, an optical fiber having a core and a clad is mainly composed of SiO 2 or SiO 2 -B
Since the glass composition is based on 2 O 3 , if the same glass composition-based adhesive glass is used, the optical fiber and the adhesive glass are fused and melted at the time of the adhesive treatment, so that the adhesive glass hardly penetrates. Therefore, the composition of the adhesive glass of the present invention is TeO which is rich in osmotic fusion to an optical fiber bundle.
A second glass is preferable, and for example, a composition as exemplified below is particularly preferable. That is, the composition is TeO 2 2
0.0 to 30.0 wt%, Bi 2 O 3 12.0~3
0.0 wt%, GeO 2 13.0~23.0% and P
bO 15.0 to 35.0 wt% and La 2 O 3
5. 0 to 12.0 wt% or Nb 2 O 5 8. 0-20.
Glass which is 0% by weight. The basis for limiting the range of this composition is as follows.

【0010】TeO2 は、本発明に係る接着ガラスとし
ての特徴的な成分であり、SiO2 系またはSiO2
2 3 系の光学繊維との接着処理時の浸透融着性を増
すと共に、ガラスの網目を構成する成分である。しか
し、存在量が20.0重量%未満ではガラスが非常に不
安定となり、30.0重量%を越えると目的とする熱的
特性が得られなくなるので、上記の範囲とすることが好
ましい。Bi2 3 は、TeO2 と同様にガラスの網目
を構成する成分であり、ガラスの低溶融化に有効な成分
である。しかし、その量が12.0重量%によ少ないと
ガラスが不安定となり、30.0重量%より多くなる
と、ガラスの屈伏温度(At)の低下をもたらすので、
上記の範囲とすることが好ましい。GeO2 もTe
2 、Bi2 3 と共にガラスの網目を構成する成分で
あるが、その量が13.0重量%より少ないとガラスが
不安定となり、23.0重量%より多くなると化学的耐
久性を悪くするので上記の範囲内とすることが好まし
い。PbOは、ガラスの低温溶融化に有効な成分であ
る。しかし、15.0重量%より少ないとその効果が少
なく、35.0重量%を越えると接着処理時の浸透融着
性を悪くしてしまうので、その範囲内とする。La2
3 は、ガラスの化学的耐久性の向上、結晶化処理温度の
上昇に有効な成分である。しかし、12.0重量%より
多くなると、ガラスが得られない。Nb2 5 は、La
2 3と同様の特性を持つが、20.0重量%より多く
なると、やはりガラスが得られない。但し700℃以下
の温度において融着し、500℃〜700℃の温度で良
好に結晶化すると共に、ガラス屈伏温度(At)が40
0℃以上である範囲において、上記成分の一部をLi、
Na、K、Cs、Mg、Ca、Zn、Sr、Ba、T
i、Y、Zr、Ga、In、Sn、Sb、Tl、As、
Al、Gd、Yb、Ta、W、P等の酸化物成分で置換
させてもよい。
[0010] TeO 2 is a characteristic component of the adhesive glass according to the present invention, and is made of SiO 2 or SiO 2-.
It is a component that increases the penetration and fusion properties during the bonding treatment with the B 2 O 3 -based optical fiber and constitutes a glass network. However, if the abundance is less than 20.0% by weight, the glass becomes very unstable, and if it exceeds 30.0% by weight, the desired thermal characteristics cannot be obtained. Bi 2 O 3 , like TeO 2 , is a component that constitutes a glass network, and is a component that is effective in reducing the melting of glass. However, when the amount is less than 12.0% by weight, the glass becomes unstable, and when the amount is more than 30.0% by weight, the yield temperature (At) of the glass is lowered.
It is preferable to set the above range. GeO 2 is also Te
O 2 and Bi 2 O 3 are components that constitute the glass network together with the glass. When the amount is less than 13.0% by weight, the glass becomes unstable, and when the amount is more than 23.0% by weight, the chemical durability deteriorates. Therefore, it is preferable to be within the above range. PbO is a component effective for low-temperature melting of glass. However, if the amount is less than 15.0% by weight, the effect is small, and if it exceeds 35.0% by weight, the osmotic fusion property at the time of the bonding treatment is deteriorated. La 2 O
3 is a component effective for improving the chemical durability of glass and increasing the crystallization temperature. However, if it exceeds 12.0% by weight, glass cannot be obtained. Nb 2 O 5 is La
It has the same properties as 2 O 3 , but if it exceeds 20.0% by weight, no glass can be obtained. However, it fuses at a temperature of 700 ° C. or less, crystallizes well at a temperature of 500 ° C. to 700 ° C., and has a glass deformation temperature (At) of 40
Within the range of 0 ° C. or higher, some of the above components are Li,
Na, K, Cs, Mg, Ca, Zn, Sr, Ba, T
i, Y, Zr, Ga, In, Sn, Sb, Tl, As,
It may be replaced with an oxide component such as Al, Gd, Yb, Ta, W, and P.

【0011】本発明においては光学繊維素線を束ねた光
学繊維束を上記したような接着ガラスで融着し、次に該
接着ガラスを結晶化する。単に融着するのみではなく、
結晶化することによりガラスのままでは、ガラス転移温
度(Tg)までの耐熱性しか得られなかった融着部に、
更に高温度の耐熱性を持たせることができるいう効果が
得られる。すなわち、本発明においては、結晶化処理に
より、接着ガラスのガラス転移温度(Tg)より100
℃以上高い温度の耐熱性を持たせることができた。本発
明における融着の条件は、光学繊維束の軟化変形を抑え
るため、700℃以下の温度として、具体的な手段とし
ては、後記する実施例で示すように、光学繊維束の上部
に接着ガラスを載置した状態で外部から加熱し、融解し
た接着ガラスが自重により光学繊維束の間に入り込むの
を利用する方法がある。また、本発明における結晶化の
条件は、500℃の耐熱性を持たせるため、また光学繊
維束の軟化変形を抑えるため、500〜700℃の間の
温度とし、この間で接着ガラスが最適に結晶化する温度
で行なう。
In the present invention, an optical fiber bundle obtained by bundling optical fiber strands is fused with the above-mentioned adhesive glass, and then the adhesive glass is crystallized. Not just fusion,
In the fused part where only heat resistance up to the glass transition temperature (Tg) was obtained as it was in the glass by crystallization,
Further, the effect of providing high temperature heat resistance can be obtained. That is, in the present invention, the crystallization treatment causes the glass transition temperature (Tg) of the adhesive glass to be 100% or less.
It was possible to provide heat resistance at a temperature higher than ℃. The conditions for fusion in the present invention are set at a temperature of 700 ° C. or less in order to suppress the softening deformation of the optical fiber bundle. As a specific means, as shown in Examples described later, an adhesive glass There is a method in which the adhesive glass is heated from the outside in a state where it is placed, and the molten adhesive glass enters between the optical fiber bundles by its own weight. The crystallization condition in the present invention is set to a temperature of 500 to 700 ° C. in order to provide heat resistance of 500 ° C. and to suppress softening deformation of the optical fiber bundle. Temperature.

【0012】図を参照して本発明の方法をより詳細に説
明する。図1の(a)に示すように、金属パイプ1中に
光学繊維素線の束を挿入し、パイプ1より出た光学繊維
束端末部を切断して端面を平面にそろえる。次に同図
(b)に示すように金属パイプより光学繊維束2を接着
ガラス3を載置するに充分な長さに引き出し、同図の
(c)に示すように接着ガラス3を載置し、これを同図
の(d)に示すように加熱炉4内にセットする。ヒータ
ー5により700℃以下の温度で一定時間加熱すること
により、接着ガラス3を光学繊維束2中に浸透融着させ
る。引き続き炉温を500〜700℃の間の温度に下げ
て一定時間保持することにより、光学繊維束2中に浸透
した接着ガラスを結晶化処理する。この結晶化処理後、
さらに低温、例えば200℃程度まで徐冷して加熱部よ
り取り出す。同図の(e)に示すように、以上で得られ
た接着部6により固定された光学繊維束固定部を、矢印
の部分において接着処理部の一部を切断し、切断面を光
学研磨して同図の(f)に示す光導杆とする。
The method of the present invention will be described in more detail with reference to the drawings. As shown in FIG. 1 (a), a bundle of optical fiber strands is inserted into a metal pipe 1, the end of the optical fiber bundle coming out of the pipe 1 is cut, and the end faces are made flat. Next, the optical fiber bundle 2 is pulled out from the metal pipe to a length sufficient to place the bonding glass 3 as shown in FIG. 3B, and the bonding glass 3 is placed as shown in FIG. Then, this is set in the heating furnace 4 as shown in FIG. The adhesive glass 3 is permeated and fused into the optical fiber bundle 2 by heating at a temperature of 700 ° C. or less for a predetermined time by the heater 5. Subsequently, the furnace temperature is lowered to a temperature between 500 ° C. and 700 ° C., and is maintained for a certain period of time, so that the adhesive glass that has penetrated into the optical fiber bundle 2 is crystallized. After this crystallization process,
Further, it is gradually cooled to a low temperature, for example, about 200 ° C., and is taken out from the heating unit. As shown in (e) of the figure, the optical fiber bundle fixing portion fixed by the bonding portion 6 obtained above is partially cut at the portion indicated by the arrow in the bonding processing portion, and the cut surface is optically polished. The light guide rod shown in FIG.

【0013】図2に本発明の別の製法を示す。同図の
(g)は、前記の図1の(a)と同じにした状態を示し
ている。次に同図の(h)に示すように光学繊維素線の
束を積めた金属パイプ1より一回り大きい金属等のパイ
プ7を被せて、接着ガラス3を載置するに充分な長さを
確保できるように固定する。同図の(i)に示すように
上部に接着ガラス3を載置し、以下図1の(d)〜
(f)と同じ工程である(j)〜(l)を経て、光導杵
とする。図2の方法によれば光学繊維束外周部の断線が
抑えられるために、更に透光性の良好な光導杆とするこ
とができる。
FIG. 2 shows another manufacturing method of the present invention. (G) of the figure shows the same state as (a) of FIG. Next, as shown in (h) of the figure, a pipe 7 made of metal or the like, which is one size larger than the metal pipe 1 on which the bundle of optical fiber strands is stacked, is covered, and has a sufficient length for mounting the adhesive glass 3. Secure so that it can be secured. The adhesive glass 3 is placed on the upper part as shown in FIG.
Through the same steps (j) to (l) as in (f), a light guide punch is obtained. According to the method shown in FIG. 2, since the disconnection of the outer peripheral portion of the optical fiber bundle is suppressed, a light guide rod having better translucency can be obtained.

【0014】[0014]

【実施例】【Example】

実施例1 光学繊維素線として、コアが〔SiO2 34重量%、B
2 3 18重量%、BaO 34重量%、残部:その他
微量成分〕の組成で、屈折率(nd)1.603、ガラ
ス軟化温度(Ts)750℃、ガラス転移温度(Tg)
623℃の特性を有するガラスからなり、クラッドが
〔SiO2 57重量%、B2 3 19重量%、Al2
3 5重量%、残部:その他微量成分〕の組成で、屈折率
(nd)1.510、ガラス軟化温度(Ts)739
℃、ガラス転移温度(Tg)559℃の特性を有するガ
ラスからなる光学繊維素線を束ね、図1に(a)として
示すように、YEF29−17(日立金属(株)製、鉄
・ニッケル・コバルト系合金、膨張係数〔α〕≒50×
10-7)からなる金属パイプ1に束2とし挿入し、パイ
プ1より出た光学繊維束端末部を切断し、端面を平坦に
そろえる。次に図1の(b)に示すように、そろえた束
2をパイプより引き出し、その上部に下記表1に示す組
成及び特性値を有する接着ガラス3を挿入したもの〔図
1の(c)〕を、図1の(d)に示すように加熱炉4内
にセットする。ヒーター5により700℃で1時間加熱
することにより、接着ガラス3を光学繊維束2中に浸透
融着させる。引き続き温度を500〜600℃の間の温
度に下げて5時間程度保持することにより、光学繊維束
中に浸透した接着ガラスを結晶化処理する。結晶化処理
後、200℃程度まで徐冷して加熱部より取り出す。以
上で得られた接着部6により固定された光学繊維束固定
部を接着処理部の一部分において切断し、切断面を光学
研磨して光導杆とした〔図1の(e)〜(f)〕。この
ようにして製造した光学繊維束光導杆の端部構造は、気
密性が良く、500℃までの耐熱性を有していた。
Example 1 As an optical fiber strand, the core was [SiO 2 34% by weight, B
2 O 3 18% by weight, BaO 34% by weight, balance: other trace components], refractive index (nd) 1.603, glass softening temperature (Ts) 750 ° C., glass transition temperature (Tg)
It is made of glass having a characteristic of 623 ° C., and the cladding is made of [SiO 2 57% by weight, B 2 O 3 19% by weight, Al 2 O
3 5 wt%, the balance: the composition of the other trace components], refractive index (nd) 1.510, a glass softening temperature (Ts) 739
1A and a glass transition temperature (Tg) of 559 ° C. are bundled with an optical fiber strand made of glass, and as shown in FIG. 1A, YEF29-17 (manufactured by Hitachi Metals, Ltd .; Cobalt alloy, expansion coefficient [α] α50 ×
A bundle 2 is inserted into a metal pipe 1 made of 10 -7 ), and the end portion of the optical fiber bundle coming out of the pipe 1 is cut, so that the end faces are aligned flat. Next, as shown in FIG. 1 (b), the aligned bundle 2 is pulled out from a pipe, and an adhesive glass 3 having a composition and characteristic values shown in the following Table 1 is inserted above the bundle [FIG. 1 (c)]. Is set in the heating furnace 4 as shown in FIG. The adhesive glass 3 is permeated and fused into the optical fiber bundle 2 by heating at 700 ° C. for 1 hour by the heater 5. Subsequently, the temperature of the adhesive glass permeated into the optical fiber bundle is crystallized by lowering the temperature to a temperature between 500 and 600 ° C. and maintaining the temperature for about 5 hours. After the crystallization treatment, the mixture is gradually cooled to about 200 ° C. and taken out from the heating section. The optical fiber bundle fixing section fixed by the bonding section 6 obtained above is cut at a part of the bonding section, and the cut surface is optically polished to form a light guide rod (FIGS. 1E to 1F). . The end structure of the optical fiber bundle light guide rod manufactured in this manner was airtight and had heat resistance up to 500 ° C.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2 実施例1と同じ特性を有する光学繊維束を使用し、図2
に示す本発明の方法に従い光導杆を製造した。実施例1
と同様に作製された光学繊維束〔図2の(g)〕を、よ
り大きな金属等のパイプに挿入して固定し〔図2の
(h)〕、繊維束の上部に接着ガラス3を載置し〔図2
の(i)〕、以下実施例1と同様に操作して光導杆を得
た。このようにして製造した光学繊維束光導杆の端部構
造は、気密性が良く、500℃までの耐熱性を有してい
た。本実施例の方法によれば、光学繊維束外周部の断線
が抑えられるので、実施例1の場合より更に透光性の良
好な光導杆が得られた。
Example 2 Using an optical fiber bundle having the same characteristics as in Example 1, FIG.
The light guide rod was manufactured according to the method of the present invention shown in FIG. Example 1
The optical fiber bundle [FIG. 2 (g)] manufactured in the same manner as described above is inserted into a pipe made of a larger metal or the like and fixed [FIG. 2 (h)], and the adhesive glass 3 is placed on the fiber bundle. [Figure 2
(I)], a light guide rod was obtained in the same manner as in Example 1 below. The end structure of the optical fiber bundle light guide rod manufactured in this manner was airtight and had heat resistance up to 500 ° C. According to the method of the present embodiment, since the disconnection of the outer peripheral portion of the optical fiber bundle is suppressed, a light guide rod having better translucency than that of the first embodiment was obtained.

【0017】[0017]

【発明の効果】本発明によれば、光学繊維束端部の固定
に接着ガラスを用い、これを結晶化することにより耐熱
性を向上できるため、従来得られなかった500℃とい
う高温耐熱性を有すると共に、端部の気密性が良く、ガ
スの発生もないため、耐真空の使用に際しても良好に適
用できる耐熱、耐真空性を兼備した光学繊維束光導杆を
製造することができる。
According to the present invention, an adhesive glass is used for fixing the end portion of the optical fiber bundle, and the heat resistance can be improved by crystallizing the adhesive glass. In addition, the optical fiber bundle light guide rod having both heat resistance and vacuum resistance can be manufactured because it has good airtightness at the ends and no generation of gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様を工程順に示した概略図で
ある。
FIG. 1 is a schematic view showing an embodiment of the present invention in the order of steps.

【図2】本発明の別の実施態様を工程順に示した概略図
である。
FIG. 2 is a schematic view showing another embodiment of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

1 金属パイプ 2 光学繊維束 3 接着ガラス 4 加熱炉 5 ヒーター 6 接着部 7 金属等のパイプ DESCRIPTION OF SYMBOLS 1 Metal pipe 2 Optical fiber bundle 3 Adhesive glass 4 Heating furnace 5 Heater 6 Adhesive part 7 Pipe of metal etc.

フロントページの続き (72)発明者 山内 淳也 福島県南会津郡田島町字根小屋甲4247− 1 (56)参考文献 特開 昭55−65907(JP,A) 特開 平1−114804(JP,A) 特開 平3−109235(JP,A) 作花、境野、高橋編「ガラスハンドブ ック」(昭50−9−30)朝倉書店 p. 147−150 (58)調査した分野(Int.Cl.7,DB名) C03C 13/04 C03B 37/00 C03C 3/253 G02B 6/04 C03B 37/14 Continuation of the front page (72) Inventor Junya Yamauchi Fukushima Pref. Kaihei 3-109235 (JP, A) Sakuhana, Sakaino, Takahashi ed., “Glass Handbook” (Showa 50-9-30), Asakura Shoten, p. 147-150 (58) Fields surveyed (Int. Cl. 7) , DB name) C03C 13/04 C03B 37/00 C03C 3/253 G02B 6/04 C03B 37/14

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 その組成がTeO 2 20.0〜30.
0重量%、Bi 2 3 12.0〜30.0重量%、G
eO 2 13.0〜23.0%及びPbO15.0〜3
5.0重量%並びにLa 2 3 5.0〜12.0重量
%又はNb 2 5 8.0〜20.0重量%であるガラ
スを接着ガラスとし、コア及びクラツド部を有してなる
光学繊維素線を束ね、該光学繊維束の端部の上に前記接
着ガラスを載置した状態で加熱して該接着ガラスを光学
繊維束中に浸透融着させることにより該光学繊維束の端
を密に融着し、続いて融着した該接着ガラスを結晶化
処理することにより耐熱性を高めることを特徴とする耐
熱耐真空用光学繊維束の製造方法。
1. The composition according to claim 1, wherein said composition is TeO 2 20.0-30.
0% by weight, Bi 2 O 3 12.0-30.0% by weight, G
eO 2 13.0~23.0% and PbO15.0~3
5.0 wt% and La 2 O 3 5.0 to 12.0 wt
% Or Nb 2 O 5 8.0 to 20.0% by weight
The optical fiber is made of an adhesive glass, and the optical fiber having a core and a clad portion is bundled.
The bonded glass is optically heated by heating with the
The end portion of the optical fiber bundle is densely fused by infiltration and fusion into the fiber bundle, and then the heat resistance is increased by subjecting the fused adhesive glass to a crystallization treatment to enhance heat resistance. Manufacturing method of optical fiber bundle for vacuum.
【請求項2】 上記コア及びクラッドを有してなる光学
繊維素線は、そのガラス転移温度(Tg)が500℃を
越え、ガラス軟化温度(Ts)が700℃を越えるガラ
ス組成物からなることを特徴とする請求項1記載の耐熱
耐真空用光学繊維束の製造方法。
2. An optical device having the core and the clad.
The fiber strand has a glass transition temperature (Tg) of 500 ° C.
Glass exceeding the glass softening temperature (Ts) of 700 ° C
Method for producing a heat-resistant vacuum-tight optical fiber bundle of claim 1 Symbol mounting, characterized in Rukoto such from the scan composition.
【請求項3】 上記接着ガラスは、700℃以下の温度
において融着し、500℃〜700℃の温度で良好に結
晶化すると共に、ガラス屈伏温度(At)が400℃以
上であることを特徴とする請求項1または請求項2に
載の耐熱耐真空用光学繊維束の製造方法。
3. The adhesive glass according to claim 1, wherein said adhesive glass has a temperature of 700 ° C. or less.
At 500 to 700 ° C.
Crystallization and glass yield temperature (At) of 400 ° C or less
Method for producing a heat-resistant vacuum-tight optical fiber bundle to claim 1 or claim 2 serial <br/> mounting features on der Rukoto.
JP27113291A 1991-10-18 1991-10-18 Manufacturing method of optical fiber bundle for heat and vacuum resistance Expired - Fee Related JP3148303B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27113291A JP3148303B2 (en) 1991-10-18 1991-10-18 Manufacturing method of optical fiber bundle for heat and vacuum resistance
EP19920307343 EP0537886B1 (en) 1991-10-18 1992-08-11 A process for the production of an optical fiber bundle having heat resistance and vacuum resistance
DE1992614400 DE69214400T2 (en) 1991-10-18 1992-08-11 Process for the production of a heat and vacuum-resistant glass fiber bundle
US08/332,044 US5472471A (en) 1991-10-18 1994-11-01 Process for the production of an optical fiber bundle for heat resistance and vacuum resistance by bonding fiber ends with a bonding glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27113291A JP3148303B2 (en) 1991-10-18 1991-10-18 Manufacturing method of optical fiber bundle for heat and vacuum resistance

Publications (2)

Publication Number Publication Date
JPH05105484A JPH05105484A (en) 1993-04-27
JP3148303B2 true JP3148303B2 (en) 2001-03-19

Family

ID=17495770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27113291A Expired - Fee Related JP3148303B2 (en) 1991-10-18 1991-10-18 Manufacturing method of optical fiber bundle for heat and vacuum resistance

Country Status (3)

Country Link
EP (1) EP0537886B1 (en)
JP (1) JP3148303B2 (en)
DE (1) DE69214400T2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587209B (en) * 2008-05-23 2011-08-10 北京中视中科光电技术有限公司 Optical fiber head and manufacturing method thereof
KR101569567B1 (en) 2010-05-04 2015-11-16 이 아이 듀폰 디 네모아 앤드 캄파니 Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices
TWI745562B (en) 2017-04-18 2021-11-11 美商太陽帕斯特有限責任公司 Conductive paste composition and semiconductor devices made therewith

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681164A (en) * 1969-04-07 1972-08-01 Noma World Wide Inc High temperature termination for fiber optic bundle
DE3620368A1 (en) * 1986-06-18 1987-12-23 Schott Glaswerke FIBER OPTICAL LIGHT GUIDE, HIGH-TEMPERATURE-RESISTANT IN ITS FACE AREA, AND METHOD FOR THE PRODUCTION THEREOF

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
作花、境野、高橋編「ガラスハンドブック」(昭50−9−30)朝倉書店 p.147−150

Also Published As

Publication number Publication date
JPH05105484A (en) 1993-04-27
DE69214400T2 (en) 1997-02-20
EP0537886A1 (en) 1993-04-21
EP0537886B1 (en) 1996-10-09
DE69214400D1 (en) 1996-11-14

Similar Documents

Publication Publication Date Title
US4439008A (en) Optical fiber of the graded index type and method of producing same
CN107935381A (en) Composition of glass of high refractive index for middle expansion fibre optic image transmission element and preparation method thereof
US5472471A (en) Process for the production of an optical fiber bundle for heat resistance and vacuum resistance by bonding fiber ends with a bonding glass
JP3215810B2 (en) Single mode active optical fiber and method of manufacturing the same
US9533915B2 (en) Method and apparatus for processing optical fiber under microgravity conditions
CN109455928A (en) Borosilicate glass and its preparation method and application
JPS6124349B2 (en)
JP3148303B2 (en) Manufacturing method of optical fiber bundle for heat and vacuum resistance
CN1379740A (en) Method for making nanocrystalline glass-ceramic fibers
JP2005502576A (en) Bismuth oxide glass containing germanium oxide
EP0430206B1 (en) Sealing glass
US5034354A (en) Alkali-free multichannel plate and glass
US5858052A (en) Manufacture of fluoride glass fibers with phosphate coatings
KR890003438B1 (en) Process for the preparation of image fiber
JPH0834635A (en) Fused glass for microchannel plate
JPH07291651A (en) Soluble core glass for producing microchannel plate
US6277776B1 (en) Fluorophosphate splice glass for joining optical fibers
JPS61136941A (en) Manufacture of metal-coated optical fiber
WO2000027768A1 (en) Fusion sealed article and method
US5158812A (en) Semiconducting glass and article
US3198642A (en) Glass compositions
JP3108210B2 (en) Fluoride glass optical waveguide
JPH08325032A (en) Chalcogenide glass fiber
JP2944112B2 (en) Glass for halide glass fiber coating and halide glass fiber
JPH0810283B2 (en) Fiber for optical transmission

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees