JP3147732U - Multiple helical scissor-bonded rebar network structure - Google Patents
Multiple helical scissor-bonded rebar network structure Download PDFInfo
- Publication number
- JP3147732U JP3147732U JP2008007608U JP2008007608U JP3147732U JP 3147732 U JP3147732 U JP 3147732U JP 2008007608 U JP2008007608 U JP 2008007608U JP 2008007608 U JP2008007608 U JP 2008007608U JP 3147732 U JP3147732 U JP 3147732U
- Authority
- JP
- Japan
- Prior art keywords
- spiral
- scissors
- triangular
- rod
- reinforcing bars
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003014 reinforcing Effects 0.000 claims description 26
- 238000005304 joining Methods 0.000 claims description 3
- 239000002131 composite material Substances 0.000 abstract description 8
- 230000011514 reflex Effects 0.000 abstract description 4
- 210000003165 Abomasum Anatomy 0.000 abstract 1
- 235000014676 Phragmites communis Nutrition 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 9
- 210000003205 Muscles Anatomy 0.000 description 8
- 239000004567 concrete Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000011150 reinforced concrete Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 210000000614 Ribs Anatomy 0.000 description 1
- 210000002356 Skeleton Anatomy 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Abstract
【課題】構造建築の強度を高めることで外からの応力に対抗する能力を備える複合式螺旋状箍構造を提供する。
【解決手段】複合式螺旋状箍構造は、第1螺旋状箍200、第2螺旋状箍300、第1三角箍筋400及び第2三角箍筋500を含む。上述の螺旋状箍と三角箍筋はいずれも複数の隙間を備え、第1螺旋状箍200と第2螺旋状箍300における複数の隙間は相互に交錯して重なり箇所を形成し、前記重なり箇所は第1三角箍筋400及び第2三角箍筋500とそれぞれ交錯して楕円形に似た複合式螺旋状箍構造を形成する。
【選択図】図5aThe present invention provides a composite spiral ridge structure having an ability to resist external stress by increasing the strength of a structural building.
The composite spiral scissors structure includes a first spiral scissors 200, a second spiral scissors 300, a first triangular scissors 400, and a second triangular scissors 500. Each of the above-described spiral scissors and triangular scissors has a plurality of gaps, and the plurality of gaps in the first spiral scissors 200 and the second spiral scissors 300 cross each other to form an overlapping portion, and the overlapping portions Intersects with the first triangular reflexes 400 and the second triangular reflexes 500 to form a composite spiral reed structure resembling an ellipse.
[Selection] Figure 5a
Description
本考案は第1螺旋状箍と、第2螺旋状箍と、第1側鉄筋網を備える複数の螺旋状箍結合鉄筋網構造に関する。第1螺旋状箍と第2螺旋状箍が相互に交差して差し込むことで、重なり箇所を形成し、第1側鉄筋網に覆われることにより、複数の螺旋状箍結合鉄筋網構造の対外応力を更に高め、建築物の構造強度を更に保持する。 The present invention relates to a plurality of spiral scissors-coupled rebar net structures including a first spiral scissors, a second spiral scissors, and a first side rebar net. The first spiral ridge and the second spiral ridge cross each other to form an overlapping portion and are covered with the first side rebar network, thereby external stresses of a plurality of spiral ridge-coupled rebar network structures. To further increase the structural strength of the building.
一般的な鉄筋コンクリートの構造において、耐震構造を強化するためには、一般的にはあばら筋を用いて鉄筋とコンクリートを括り付けることによって、震動を受ける過程でも鉄筋とコンクリートが効果的に結合し続けることが可能になり、耐震構造を強化することができる。 In general reinforced concrete structures, in order to strengthen the seismic structure, the reinforcing bars and the concrete continue to be effectively combined even in the process of being subjected to vibrations, generally by connecting the reinforcing bars and the concrete using ribs. It is possible to strengthen the seismic structure.
台湾は、地理的に地震が頻繁に起こる場所に位置しているため、建築強度の引っ張り強度、及び剪断強度に対する能力は重要である。鉄骨鉄筋コンクリートの設計において、大半は鉄骨を、荷重容量や引っ張り強度、剪断強度の主要部材とする。その後、鉄骨の周囲に、鉄筋とあばら筋を加設することで、鉄骨が受ける力を分担し、コンクリートの吸着力を強化すると共に、側面から力を受けた際の共振を抑える。然しながら、現時点での鉄骨鉄筋コンクリート設計では、鉄骨部分の設計及び応用方法が単純なため、実際の設計や施工面でのニーズに容易には応えられない。この他に、螺旋状箍筋の生産製造技術及び組み立て技術の制限を受け、合理的な設計の下では、単一螺旋状箍が提供できる強度も依然として制限がある。 Since Taiwan is geographically located where earthquakes occur frequently, the ability of building strength to tensile strength and shear strength is important. In the design of steel-framed reinforced concrete, most steel frames are the main components of load capacity, tensile strength, and shear strength. After that, by adding a reinforcing bar and a stirrup around the steel frame, the force received by the steel frame is shared, and the adsorption force of the concrete is strengthened, and the resonance when receiving the force from the side surface is suppressed. However, in the present steel reinforced concrete design, since the design and application method of the steel part is simple, it cannot easily meet the actual design and construction needs. In addition to this, there is still a limit to the strength that a single spiral scissors can provide under reasonable design due to the limitations of production and assembly techniques of the spiral scissors.
上記問題点に鑑み、本考案は上述の欠点を改善・解決するために、度重なる研究と学術理論の組合せを行い、設計が合理的で効果的に上述の欠点を改善する本考案を提出する。 In view of the above problems, in order to improve and solve the above-mentioned drawbacks, the present invention performs a combination of repeated research and academic theory, and submits the present invention in which the design is rational and effective to improve the above-mentioned drawbacks. .
本考案は、異なるサイズ及び形状の螺旋状箍構造を組み合わせて形成することにより、締め付け力を高め構造全体の硬性を強化することができる、複数の螺旋状箍結合鉄筋網構造を提供することを主な目的とする。 It is an object of the present invention to provide a plurality of helical rod-coupled rebar network structures that can be formed by combining spiral rod structures of different sizes and shapes to increase the clamping force and enhance the rigidity of the entire structure. Main purpose.
本考案は、グラウティングにより成形した構造体のスケルトン(骨組み)に用いる複数の螺旋状箍結合鉄筋網構造を提供することをもう一つの目的とする。 It is another object of the present invention to provide a plurality of spiral hook-bonded reinforcing bar net structures used for a skeleton of a structure formed by grouting.
本考案は、異なる螺旋状箍構造を組み合わせて複数の螺旋状箍結合鉄筋網構造を形成することで、施工効率を高めることができる、複数の螺旋状箍結合鉄筋網構造を提供することをもう一つの目的とする。 It is an object of the present invention to provide a plurality of spiral scissor-bonded rebar net structures that can increase construction efficiency by combining different spiral scissor structures to form a plurality of spiral scissor-bonded rebar net structures. One purpose.
異なるサイズ及び形状の螺旋状箍構造を組み合わせて形成することにより、締め付け力を高め構造全体の硬性を強化することができ、又、施工効率を高めることができる。 By forming a combination of different sizes and shapes of spiral ridge structures, the tightening force can be increased and the hardness of the entire structure can be enhanced, and the construction efficiency can be increased.
以下、添付図面を参照して本考案の実施の形態を詳細に説明する。 Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
図1に示すように、第1螺旋状箍200と第2螺旋状箍300はそれぞれ閉合箍筋であり、この閉合箍筋の特長は、端部が螺旋状箍筋上で閉合するところにある。しかしながら、第1螺旋状箍200と第2螺旋状箍300は一般の螺旋状箍筋でもよい。その内、第1螺旋状箍200は接合側210を含み、この時第1螺旋状箍200と第2螺旋状箍300の軸心は並列であり、接合側210と第2螺旋状箍300が交錯することにより重なり箇所290を形成することができる(図2を参照)。 As shown in FIG. 1, the first spiral scissors 200 and the second spiral scissors 300 are each a closed scissors, and the feature of this closed scissors is that the ends are closed on the spiral scissors. . However, the first spiral scissors 200 and the second spiral scissors 300 may be general spiral scissors. Among them, the first spiral rod 200 includes a joint side 210, and at this time, the axial centers of the first spiral rod 200 and the second spiral rod 300 are parallel, and the joint side 210 and the second spiral rod 300 are arranged in parallel. Intersections 290 can be formed by crossing (see FIG. 2).
図2bに示すように、第1螺旋状箍200と第2螺旋状箍300が交錯して形成された重なり箇所290の中には、2つの端点を備えており、それぞれ第1端点370及び第2端点390である。第1螺旋状箍200と第2螺旋状箍300は、鉄筋号数或いは材質が異なっていてもいなくても、一旦交錯すると必ず2つの端点が生じる。図3に示すように、第1三角箍筋400及び第2三角箍筋500は閉合箍筋であるが、非閉合箍筋でも一般の箍筋でもよい。 As shown in FIG. 2b, the overlapping portion 290 formed by crossing the first spiral ridge 200 and the second spiral ridge 300 includes two end points, and the first end point 370 and the first end point 370, respectively. Two end points 390. Even if the first spiral rod 200 and the second spiral rod 300 are not different in the number of reinforcing bars or the material, two end points are always generated once they intersect. As shown in FIG. 3, the first and second triangular gluteal muscles 400 and 500 are closed gluteal muscles, but they may be non-closed gluteal muscles or general gluteal muscles.
図3a及び図3bに示すように、第1三角箍筋400と第2三角箍筋500の三角構造状の中には、それぞれ第1頂部410と第2頂部510を備えており、その特徴は、第1頂部410と第2頂部510が相互に対応し、第1三角箍筋400と第2三角箍筋500の軸心を相互に並列にさせるところにある。本考案の好ましい実施例である図4aにおいて、第1三角箍筋400の第1頂部410は、重なり箇所290の第1端点370と第2端点390が繋がる直線方向に沿って重なり箇所290に差し込む。図4bに示すように、上述の第2三角箍筋500の位置と第1三角箍筋400の位置は相対しているため、第2三角箍筋500の第2頂部510は、重なり箇所290の第2端点390と第1端点370が繋がる直線方向且つ第1三角箍筋400に相対する方向に沿って重なり箇所290に差し込むことで、楕円形に類似した複合式螺旋状箍構造100を形成し、鉄筋とコンクリートを効果的に結合させることができる。そのため、締め付け力を高め構造全体を強化することができる。しかしながら、その他の実施例においては、第1三角箍筋400の断面の重心は第1端点370上にあり、第2三角箍筋500の断面の重心は第2端点390上にある。又、第1三角箍筋400の第1頂部410以外の両端は、それぞれ第1螺旋状箍200及び第2螺旋状箍300との円周の正接である。同時に、第2三角箍筋500はそれぞれ第1螺旋状箍200及び第2螺旋状箍300の円周をきれいに切るという方式により、上述の楕円形に似た複合式螺旋状箍構造100を形成する。 As shown in FIGS. 3a and 3b, the triangular structures of the first and second triangular barbs 400 and 500 include a first apex 410 and a second apex 510, respectively. The first apex 410 and the second apex 510 correspond to each other, and the axes of the first triangular reflexes 400 and the second triangular reflexes 500 are parallel to each other. In FIG. 4a, which is a preferred embodiment of the present invention, the first apex 410 of the first triangular gluteal muscle 400 is inserted into the overlapping portion 290 along the linear direction connecting the first end point 370 and the second end point 390 of the overlapping portion 290. . As shown in FIG. 4b, since the position of the second triangular gluteal muscle 500 and the position of the first triangular gluteal muscle 400 are opposite to each other, the second apex 510 of the second triangular gluteal muscle 500 has an overlapping portion 290. By inserting the second end point 390 and the first end point 370 into the overlapping portion 290 along the direction of the straight line and the direction opposite to the first triangular scissors 400, the composite spiral scissors structure 100 similar to an ellipse is formed. Reinforcement and concrete can be effectively combined. Therefore, the tightening force can be increased and the entire structure can be strengthened. However, in other embodiments, the center of gravity of the cross section of the first triangular barbs 400 is on the first end point 370 and the center of gravity of the cross section of the second triangular barbs 500 is on the second end point 390. Further, both ends of the first triangular scissors 400 other than the first apex 410 are tangents of the circumference with the first spiral scissors 200 and the second spiral scissors 300, respectively. At the same time, the second triangular scissors 500 form a composite spiral scissors structure 100 that resembles the above-mentioned ellipse by cutting the circumferences of the first spiral scissors 200 and the second spiral scissors 300 cleanly, respectively. .
図5aに示すように、更に少なくとも一つの軸性鉄筋600を含み、それは第1螺旋状箍200と第2螺旋状箍300の軸性が交わる箇所に設置され、重なり箇所290を定めるのに用いられ、その内、軸性鉄筋600の設置方向は、施工規範及び異なる設計需要に対応して柔軟に調整を行うことができ、又、第1螺旋状箍200と第2螺旋状箍300の端部における曲がりは、非実質的な固定方式でこの複合式螺旋状箍構造100を固定する。また、実質固定方式(溶接、螺接、束ねる、その他類似効果を提供できる方式及び混合方式)を用いて複合式螺旋状箍構造100を定めることもできる。 As shown in FIG. 5a, it further includes at least one axial reinforcing bar 600, which is installed at the intersection of the first spiral rod 200 and the second spiral rod 300 and used to define the overlapping portion 290. Among them, the installation direction of the axial rebar 600 can be adjusted flexibly in accordance with the construction code and different design demands, and the ends of the first spiral rod 200 and the second spiral rod 300 can be adjusted. The bending at the portion fixes the composite spiral saddle structure 100 in an insubstantial fixing manner. In addition, the composite spiral saddle structure 100 can be defined using a substantially fixing method (a method that can provide a similar effect such as welding, screwing, bundling, or a mixing method).
本考案の複合式螺旋状箍構造100の第1螺旋状箍200及び第2螺旋状箍300は、いずれも円形の螺旋状箍筋であり且つ断面積は等しい。その内、第1螺旋状箍200及び第2螺旋状箍300は、それぞれ、四角形の螺旋状箍、楕円形の螺旋状箍、多角形の螺旋状箍及びその他類似の効能を提供できる形状でもよく、断面積は設計の需要に応じて変えることができる。その他に、好ましい第1螺旋状箍200及び第2螺旋状箍300は均一且つ連続した螺旋状箍である。その内第1螺旋状箍200及び第2螺旋状箍300は、それぞれ、設計の需要に対応させて上が狭く下が広い等の各段が均一でない螺旋状箍でもよい。又、第1三角箍筋400及び第2三角箍筋500は、どちらも三角形の螺旋状箍筋である。そして、第1螺旋状箍200及び第2螺旋状箍300の隙間の広さに合わせるために、第1三角箍筋400及び第2三角箍筋500は、それぞれ、設計の需要に対応させて上が狭く下が広い等の各段が均一でない螺旋箍でもよい。更に、軸性鉄筋600は、第1三角箍筋400が第1螺旋状箍200及び第2螺旋状箍300のそれぞれと重なり合う箇所の両端に設置することで、第1三角箍筋400と第1螺旋状箍200及び第2螺旋状箍300とのそれぞれの相互距離を定めることができる。 The first helical rod 200 and the second helical rod 300 of the composite helical rod structure 100 of the present invention are both circular helical rods and have the same cross-sectional area. Among them, the first spiral kite 200 and the second spiral kite 300 may each have a rectangular spiral kite, an elliptical spiral kite, a polygonal spiral kite, and other shapes that can provide similar effects. The cross-sectional area can be changed according to the design demand. In addition, the preferred first spiral ridge 200 and the second spiral ridge 300 are uniform and continuous spiral ridges. Among them, the first spiral kite 200 and the second spiral kite 300 may each be a spiral kite in which each stage is not uniform, such as a narrow top and a narrow bottom, corresponding to the design demand. Further, both the first and second triangular barbs 400 and 500 are triangular spiral barbs. Then, in order to match the width of the gap between the first spiral scissors 200 and the second spiral scissors 300, the first triangular scissors 400 and the second triangular scissors 500 are respectively adjusted to meet the design demand. Spiral rods that are not uniform such as narrow and wide below may be used. Further, the axial reinforcing bar 600 is installed at both ends of the portion where the first triangular scissors 400 overlap with the first spiral scissors 200 and the second spiral scissors 300, respectively. The mutual distance between the spiral ridge 200 and the second spiral ridge 300 can be determined.
図5bに示すように、本考案の第2三角箍筋500と第1螺旋状箍200及び第2螺旋状箍300とのそれぞれの相互距離は、軸性鉄筋600によっても定めることができる。この時軸性鉄筋600は、第2三角箍筋500が第1螺旋状箍200及び第2螺旋状箍300とそれぞれ重なり合う箇所に設置する。又、図1及び図3aに示すように、第1螺旋状箍200は第1隙間第1隙間250を備えていて、第2螺旋状箍300は第2隙間350を備えていて、第1三角箍筋400は第3隙間450を備えていて、第2三角箍筋500は第4隙間550を備えている。この4者の好ましい比率は1:1:1:1から1:10:20:100の間である。この比率は、鉄筋とコンクリートの効果的な結合を適切に強め、更には、コンクリートの締めつけ力を高め、構造全体を強化する。 As shown in FIG. 5 b, the mutual distance between the second triangular scissors 500 of the present invention, the first spiral scissors 200 and the second spiral scissors 300 can also be determined by the axial rebar 600. At this time, the axial reinforcing bar 600 is installed at a location where the second triangular reinforcing bar 500 overlaps with the first helical rod 200 and the second helical rod 300, respectively. As shown in FIGS. 1 and 3a, the first spiral rod 200 includes a first gap first gap 250, and the second spiral rod 300 includes a second gap 350, and the first triangle. The gluteal bar 400 includes a third gap 450, and the second triangular barb 500 includes a fourth gap 550. The preferred ratio of the four is between 1: 1: 1: 1 to 1: 10: 20: 100. This ratio properly strengthens the effective bond between the reinforcing bar and the concrete, further increases the concrete clamping force and strengthens the entire structure.
100 複数の螺旋状箍結合鉄筋網構造
200 第1螺旋状箍
210 接合側
220 重なり箇所
230 第1隙間
300 第2螺旋状箍
330 第2隙間
370 第1端点
390 第2端点
400 第1側鉄筋網
410 第1切向鉄筋
421 中段部
422 両折れ曲り部
430 第3隙間
440 軸鉄筋
500 第2側鉄筋網
510 第2切向鉄筋
512 底支
522 両側支
530 第4隙間
θ=45°
100 A plurality of spiral rod-coupled reinforcing bar network structures 200 First spiral rods 210 Joining side 220 Overlapping portion 230 First gap 300 Second spiral rod 330 Second gap 370 First end point 390 Second end point 400 First side reinforcing bar network 410 First cut reinforcing bar 421 Middle section 422 Both bent portions 430 Third gap 440 Axial reinforcing bar 500 Second side reinforcing bar network 510 Second cut reinforcing bar 512 Bottom support 522 Both sides support 530 Fourth gap θ = 45 °
Claims (3)
複数の第2隙間を備え、前記第1螺旋状箍の軸心と並列であり、前記接合側の一部分を前記第2螺旋状箍の前記複数の第2隙間に差込むことで重なり箇所を形成する、第2螺旋状箍と、
複数の互いに間隔のある第1切向鉄筋を備え、それぞれの前記第1切向鉄筋は、中段部分と、前記中段部分と繋がる両折れ曲がり部分と、を備え、複数の前記第1切向鉄筋は、少なくとも一つの軸向筋と、交差して繋がり、前記第1側鉄筋網の前記中段部分は、それぞれ前記第1螺旋状箍と、前記第2螺旋状箍の円周に相切し、且つ前記両折れ曲り部分は、それぞれ前記第1螺旋状箍と前記第2螺旋状箍の円周内に差し込む、第1側鉄筋網と、
複数の互いに間隔のある第2切向鉄筋を備え、それぞれの前記第2切向鉄筋は、底支と、それぞれ前記底支に繋がる両側支と、を備え、複数の前記第2切向鉄筋は、少なくとも一つの軸向筋と、交差して繋がり、前記第2側鉄筋網の前記底支は、それぞれ前記第2螺旋状箍と、前記第2螺旋状箍の円周に相切し、且つ前記両側支は、それぞれ前記第2螺旋状箍と前記第2螺旋状箍の円周内に差し込む、第2側鉄筋網と、を含むことを特徴とする複数の螺旋状箍結合鉄筋網構造。 A first spiral rod including a joining side having a plurality of first gaps;
Provided with a plurality of second gaps, parallel to the axis of the first spiral ridge, and forming overlapping portions by inserting a part of the joining side into the plurality of second gaps of the second spiral ridge A second spiral ridge,
A plurality of first cut reinforcing bars spaced apart from each other, each of the first cut reinforcing bars including a middle portion and a bent portion connected to the middle step portion, wherein the plurality of first cut reinforcing bars are , Crossing and connecting with at least one axial rebar, and the middle portion of the first side reinforcing bar network intersects with the circumference of the first spiral ridge and the second spiral ridge, respectively, and The two bent portions are respectively inserted into the circumferences of the first spiral rod and the second spiral rod, and a first side rebar net,
A plurality of second cut reinforcing bars spaced from each other, each of the second cut reinforcing bars includes a bottom support and both side supports connected to the bottom support, and the plurality of second cut reinforcing bars are , Crossing and connecting with at least one axial rebar, and the bottom support of the second side reinforcing bar network intersects with the circumference of the second spiral ridge and the second spiral ridge, respectively, and The two-sided support includes a plurality of helical rod-coupled reinforcing bar net structures each including a second spiral rod and a second side reinforcing rod inserted into the circumference of the second spiral rod.
Publications (1)
Publication Number | Publication Date |
---|---|
JP3147732U true JP3147732U (en) | 2009-01-15 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022052387A1 (en) * | 2020-09-09 | 2022-03-17 | 华南理工大学 | Reinforced recycled block/aggregate concrete precast column and construction method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022052387A1 (en) * | 2020-09-09 | 2022-03-17 | 华南理工大学 | Reinforced recycled block/aggregate concrete precast column and construction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109072602B (en) | Structural element | |
CN107849845B (en) | Grid structure and production device and method thereof | |
JP6718658B2 (en) | Prestressed concrete floor slab | |
JP2010084490A (en) | Reinforcement cage, manufacturing method of the same, half body for the reinforcement cage and manufacturing method of the same | |
JP7157401B2 (en) | Joint structure of column-center-column assembly type restraint | |
KR20150002715A (en) | Reinforcement assembly and shear reinforcing bars used for reinforced concrete structure | |
JP5575561B2 (en) | Seismic structure of buildings | |
JP4712021B2 (en) | Reinforcing bars and bar arrangements used for reinforcement in reinforced concrete structures | |
JP3147732U (en) | Multiple helical scissor-bonded rebar network structure | |
JP3145700U (en) | Composite spiral ridge structure | |
JP5693484B2 (en) | Beam-column joint structure | |
JP2006183311A (en) | Reinforcing structure of circumference of opening section in reinforced concrete beam | |
TWM621077U (en) | Seismic structural column and its double-core steel bar structure | |
WO2000061886A1 (en) | Bar arrangement structure of reinforced concrete member and reinforced concrete beam member, and preassembled reinforcement member | |
KR101846245B1 (en) | Helical lattice | |
CN102155051A (en) | Method and structure for connecting concrete rib girder and nodes of framework column | |
RU77298U1 (en) | PILED REINFORCED CONCRETE WITH NON-STRENGTHENING | |
JP6162479B2 (en) | Concrete beam | |
JP4474669B2 (en) | Unit rebar connection method | |
KR20000025054A (en) | Synthetic deck plate using wire mesh and production method thereof | |
JP3939686B2 (en) | Formwork panel and building formwork using the same and concrete foundation | |
JP7441770B2 (en) | Opening reinforcement structure | |
TWI769048B (en) | Seismic Structural Column and Its Double-Core Reinforced Structure | |
CN202117230U (en) | Welded mesh stirrup of rebar torsional cross section | |
JP2000248510A (en) | Bar arrangement structure of box-shaped main girder |