JP3147596B2 - Strained multiple quantum well structure and semiconductor laser using the same - Google Patents

Strained multiple quantum well structure and semiconductor laser using the same

Info

Publication number
JP3147596B2
JP3147596B2 JP18257593A JP18257593A JP3147596B2 JP 3147596 B2 JP3147596 B2 JP 3147596B2 JP 18257593 A JP18257593 A JP 18257593A JP 18257593 A JP18257593 A JP 18257593A JP 3147596 B2 JP3147596 B2 JP 3147596B2
Authority
JP
Japan
Prior art keywords
layer
well
strain
quantum well
multiple quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18257593A
Other languages
Japanese (ja)
Other versions
JPH0738206A (en
Inventor
雅弘 鬼頭
康 松井
信之 大塚
正人 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18257593A priority Critical patent/JP3147596B2/en
Publication of JPH0738206A publication Critical patent/JPH0738206A/en
Application granted granted Critical
Publication of JP3147596B2 publication Critical patent/JP3147596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光通信あるいは光ディス
クなどの光源として用いられる半導体レ−ザ装置の活性
層構造、あるいは外部変調器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active layer structure of a semiconductor laser device used as a light source for optical communication or an optical disk, or an external modulator.

【0002】[0002]

【従来の技術】近年、量子井戸構造において井戸層の格
子定数を基板の格子定数に比べて大きく、もしくは小さ
くすることによって臨界膜厚(格子不整合を緩和するた
めに結晶内に転移が発生する膜厚)以下に設定された井
戸層内部に圧縮もしくは引っ張り歪を加える技術が盛ん
に研究されている。この理由は井戸層内部に歪を加える
ことにより量子井戸のエネルギーバンド構造を自由に設
計可能となるためである。特に半導体レーザの活性層に
前述の歪を導入した量子井戸構造を用いると、格子整合
系では実現不可能な波長帯のレーザが実現可能となる。
また、格子整合系においても実現されている波長帯のレ
ーザにおいても特性の向上が期待できる。
2. Description of the Related Art In recent years, in a quantum well structure, a critical film thickness (transition occurs in a crystal in order to reduce lattice mismatch) by making the lattice constant of a well layer larger or smaller than the lattice constant of a substrate. A technique for applying a compressive or tensile strain to the inside of a well layer set to a thickness of less than or equal to (thickness) has been actively studied. This is because the energy band structure of the quantum well can be freely designed by applying a strain inside the well layer. In particular, when a quantum well structure in which the above-described strain is introduced is used for an active layer of a semiconductor laser, a laser in a wavelength band that cannot be realized by a lattice matching system can be realized.
In addition, improvement of characteristics can be expected in a laser in a wavelength band realized also in a lattice matching system.

【0003】光通信の光源として利用されている1.3
μm帯の光を発光する歪量子井戸構造の従来例を図7に
示す。InP基板701上に約1%の圧縮歪が導入され
たInGaAsP歪井戸層702と無歪のInGaAs
P障壁層(波長組成1.05μm)703からなり、井
戸層数は10である。井戸層厚は3〜6nm、障壁層厚
は10nmである。この様に構成された歪多重量子井戸
構造を活性層として有する半導体レーザでは格子整合し
た多重量子井戸構造を活性層として有する半導体レーザ
に比べ、低閾値電流特性、高光出力特性、高温度特性、
高微分利得特性が実現されている。
[0003] 1.3 used as a light source for optical communication
FIG. 7 shows a conventional example of a strained quantum well structure that emits light in the μm band. An InGaAsP strain well layer 702 in which a compressive strain of about 1% is introduced on an InP substrate 701 and an unstrained InGaAs
It is composed of a P barrier layer (wavelength composition: 1.05 μm) 703, and the number of well layers is 10. The thickness of the well layer is 3 to 6 nm, and the thickness of the barrier layer is 10 nm. A semiconductor laser having a strained multiple quantum well structure as an active layer configured as described above has a lower threshold current characteristic, a higher optical output characteristic, a higher temperature characteristic, and a lower threshold voltage than a semiconductor laser having a lattice-matched multiple quantum well structure as an active layer.
High differential gain characteristics are realized.

【0004】[0004]

【発明が解決しようとする課題】光通信において大容量
の情報を伝送するためには非常に高速で動作可能な半導
体レーザが必要となる。しかしながら半導体レーザの応
答速度の上限はレーザ固有の緩和振動周波数(fr)で
制限される。緩和振動周波数の式を示す。
In order to transmit a large amount of information in optical communication, a semiconductor laser which can operate at a very high speed is required. However, the upper limit of the response speed of a semiconductor laser is limited by the relaxation oscillation frequency ( fr ) inherent to the laser. The equation of the relaxation oscillation frequency is shown.

【0005】 fr=1/2π×SQR{AΓ/Va/q(I−Ith)} (1) ここでAは微分利得、Γは全井戸層への光の閉じ込め係
数、Vaは井戸層の全体積、qは電荷量、Iは注入電流
量、Ithは閾値電流量を示している。従来例では井戸層
へ歪を導入することにより微分利得を無歪に比べて約
1.5倍に増大させることが可能であるが、これ以上に
緩和振動周波数を増大させるためには歪導入に加えて井
戸層の薄膜化を行い量子サイズ効果を高めることによっ
て微分利得を更に増大させる必要がある。しかしながら
井戸層の薄膜化は光閉じ込め係数の低下を招き、結果と
してあまり緩和振動周波数が増大しないことになるため
井戸層数を増加させ、光閉じ込め係数を充分に大きくす
る必要がある。
[0005] fr = 1 / 2π × SQR { AΓ / V a / q (I-I th)} (1) where A is the differential gain, gamma light confinement coefficient to all the well layer, V a is the well total volume of the layer, q is a charge amount, I is the amount of injection current, I th represents the threshold current. In the conventional example, it is possible to increase the differential gain by about 1.5 times as compared with no distortion by introducing strain into the well layer. However, in order to further increase the relaxation oscillation frequency, it is necessary to introduce strain. In addition, it is necessary to further increase the differential gain by reducing the thickness of the well layer to enhance the quantum size effect. However, the thinning of the well layer causes a decrease in the light confinement coefficient. As a result, the relaxation oscillation frequency does not increase so much. Therefore, it is necessary to increase the number of well layers and sufficiently increase the light confinement coefficient.

【0006】格子整合系においては井戸層を20層程度
まで増加させても結晶性は殆ど損なわれない。図8の白
丸は格子整合系の多重量子井戸構造からの77Kでのフ
ォトルミネッセンススペクトルの半値全幅(FWHM)
の井戸層数依存性を示す。井戸層数を5から20まで変
化させてもフォトルミネッセンススペクトルの半値全幅
の変化は少ないことが分かる。一方、1%の圧縮歪を加
えた層厚3nmの井戸層を有する歪多重量子井戸構造か
らの77Kでのフォトルミネッセンススペクトルの半値
全幅(FWHM)の井戸層数依存性を図8の黒丸で示
す。1層から10までは半値全幅はあまり変化は少ない
が14層で急激に増大していることが分かる。フォトル
ミネッセンススペクトルの半値全幅の急激な増大は各量
子井戸内部に閉じ込められる歪量が均一でないことを示
しており、この様な量子井戸構造を半導体レーザの活性
層に用いた場合、しきい値電流の増大、発光効率の低下
が生じる。尚、従来例の構造においては井戸層数が14
においてフォトルミネッセンススペクトルの半値全幅の
急激な増大が見られたが、井戸層厚、障壁層厚、歪量が
異なると、フォトルミネッセンススペクトルの半値全幅
の急激に増大する井戸層数は異なるものになると考えら
れる。
In a lattice matching system, even if the number of well layers is increased to about 20, the crystallinity is hardly impaired. The white circle in FIG. 8 indicates the full width at half maximum (FWHM) of the photoluminescence spectrum at 77 K from the multiple quantum well structure of the lattice matching system.
Shows the dependence on the number of well layers. It can be seen that even when the number of well layers is changed from 5 to 20, the change in the full width at half maximum of the photoluminescence spectrum is small. On the other hand, the black circle in FIG. 8 shows the dependency of the full width at half maximum (FWHM) of the photoluminescence spectrum at 77 K from the strained multiple quantum well structure having a well layer with a thickness of 3 nm to which 1% compressive strain is applied, on the number of well layers. . It can be seen that the full width at half maximum changes little from the first layer to the tenth layer, but increases sharply in the 14th layer. The sharp increase in the full width at half maximum of the photoluminescence spectrum indicates that the amount of strain confined inside each quantum well is not uniform.When such a quantum well structure is used for the active layer of a semiconductor laser, the threshold current Increases, and the luminous efficiency decreases. In the structure of the conventional example, the number of well layers is 14
A sharp increase in the full width at half maximum of the photoluminescence spectrum was observed, but when the well layer thickness, the barrier layer thickness, and the strain amount were different, the number of well layers in which the full width at half maximum of the photoluminescence spectrum rapidly increased was different. Conceivable.

【0007】本発明ではかかる点に鑑み、井戸層数を増
加させても各量子井戸に均一に歪を加えることが可能な
歪多重量子井戸構造を提供することを目的とする。
In view of the above, an object of the present invention is to provide a strained multiple quantum well structure capable of uniformly applying a strain to each quantum well even when the number of well layers is increased.

【0008】[0008]

【課題を解決するための手段】歪多重量子井戸構造にお
いて井戸層数を増加していった場合に生じるフォトルミ
ネッセンススペクトルの半値全幅の急激な増大は井戸層
に閉じ込められる歪量が各井戸層で不均一になることに
より生じると考えられる。各井戸層の歪量を均一にする
ためには各障壁層の格子定数を基板の格子定数と常に同
一にする必要がある。
The abrupt increase in the full width at half maximum of the photoluminescence spectrum which occurs when the number of well layers is increased in the strained multiple quantum well structure causes the amount of strain confined in the well layers to increase in each well layer. It is thought to be caused by non-uniformity. In order to make the strain amount of each well layer uniform, the lattice constant of each barrier layer must always be the same as the lattice constant of the substrate.

【0009】しかしながら例えば図4(a)の様に基板
401の格子定数a0と格子定数が異なる井戸層(ここ
では基板よりもバルク状態での格子定数が大きい層でバ
ルク状態での格子定数をaepiとする。;aepi>a0)
402と基板と格子定数が同一の障壁層403を交互に
多層積層した場合、応力分布は図4(b)のようにな
り、井戸層数が増加するにつれて障壁層に働く部分応力
(引っ張り応力)は増加してゆく(1992年応用物理学会
予稿集30a-ZB-4)。
However, for example, as shown in FIG. 4A, a well layer having a lattice constant different from the lattice constant a0 of the substrate 401 (here, a layer having a larger lattice constant in the bulk state than the substrate and having a lattice constant in the bulk state as a epi ; a epi > a0)
When the barrier layer 403 having the same lattice constant as the substrate 402 is alternately laminated, the stress distribution becomes as shown in FIG. 4B, and the partial stress (tensile stress) acting on the barrier layer as the number of well layers increases. Will increase (Preprints of the Japan Society of Applied Physics 1930-ZB-4, 1992).

【0010】図4(a)に障壁層への応力が層を増すご
とに大きくなっていく様子を矢印の大きさで模式的に記
した。障壁層がInGaAsPの様な4元混晶である場
合、結晶成長中に非常に大きな応力が働くのと応力が働
いていない場合の原子配列とでは異なる配列になること
が考えられる。応力が働いていない場合では基板と同じ
格子定数となるInGaAsP障壁層に非常に大きな引
っ張り応力が働いた場合、この様な原子配列の変化によ
り格子定数が基板の格子定数よりも大きくなることが考
えられる。障壁層の格子定数が基板の格子定数よりも大
きくなると次に積層する井戸層に閉じ込められる歪量が
小さくなってしまう。
FIG. 4A schematically shows how the stress on the barrier layer increases as the number of layers increases, with the size of the arrow. When the barrier layer is a quaternary mixed crystal such as InGaAsP, it is conceivable that an extremely large stress acts during crystal growth and an atomic arrangement different from the atomic arrangement when no stress acts. When a very large tensile stress acts on the InGaAsP barrier layer, which has the same lattice constant as the substrate when no stress is applied, it is considered that such a change in the arrangement of atoms causes the lattice constant to be larger than the lattice constant of the substrate. Can be If the lattice constant of the barrier layer is larger than the lattice constant of the substrate, the amount of strain confined in the well layer to be stacked next decreases.

【0011】図5に示す様に、井戸層数が少ない場合で
は第n番目の井戸層502の基板501面内方向の格子
定数はa0となっており、歪量は(a0−1)/aepi
あるが、井戸層数が非常に多くなると応力の影響により
第m番目の井戸層503の次の障壁層504の格子定数
がa1に変化する(a1>a0)。これにより第m番目の
井戸層503の歪量は{(a0+a1)/2−1}/a
epiに変化する。更にm+1番目の井戸層505の次の
障壁層506の格子定数はa2に変化する(a2
1)。これにより第m+1番目の井戸層505の歪量
は{(a1+a2)/2−1}/aepiに変化する。
As shown in FIG. 5, when the number of well layers is small, the lattice constant of the n-th well layer 502 in the in-plane direction of the substrate 501 is a 0 , and the strain amount is (a 0 -1). / is a a epi, following the lattice constant of the barrier layer 504 of the m-th well layer 503 due to the stress effects of the number of well layers becomes very large changes to a 1 (a 1> a 0 ). Accordingly, the strain amount of the m-th well layer 503 becomes {(a 0 + a 1 ) / 2-1} / a
Change to epi . Furthermore lattice constant of the next barrier layer 506 (m + 1) th well layer 505 is changed to a 2 (a 2>
a 1 ). As a result, the strain amount of the (m + 1) th well layer 505 changes to {(a 1 + a 2 ) / 2-1} / a epi .

【0012】以上の原理により井戸層数を増加させてゆ
くと井戸層に閉じ込められる歪量が不均一になると考え
られる。各井戸層の歪量を均一にするためには障壁層を
原子配列の変化が生じないInPの様な2元系の結晶に
する手段が考えられる。しかしながら障壁層をInPと
した場合、井戸層とのエネルギーバンドギャップ差が非
常に大きくなり、各井戸に電子や正孔が均一に注入され
なくなり、レーザ特性が劣化する。
It is considered that as the number of well layers is increased according to the above principle, the amount of strain confined in the well layers becomes non-uniform. In order to make the strain amount of each well layer uniform, it is conceivable to make the barrier layer a binary crystal such as InP in which the atomic arrangement does not change. However, when the barrier layer is made of InP, the energy band gap difference between the well layer and the well layer becomes very large, so that electrons and holes are not uniformly injected into each well, thereby deteriorating laser characteristics.

【0013】そこで、図1の様に障壁層を基板よりもエ
ネルギーバンドギャップの小さい結晶とし(基板がIn
Pである場合はInGaAsP)、障壁層とその基板側
に位置する歪井戸層の間に電子や正孔の障壁として働か
ない程度の非常に薄い2元系結晶層(基板がInPであ
る場合はInP)を挿入することにより、各井戸層の歪
量を均一にしてなおかつ各井戸層への電子や正孔の注入
を均一とすることが可能となる。
Therefore, as shown in FIG. 1, the barrier layer is made of a crystal having a smaller energy band gap than the substrate (the substrate is made of In
P is InGaAsP, and a very thin binary crystal layer that does not act as a barrier for electrons and holes between the barrier layer and the strained well layer located on the substrate side (if the substrate is InP, By inserting (InP), it is possible to make the amount of strain in each well layer uniform and to make the injection of electrons and holes into each well layer uniform.

【0014】更に井戸層数を増大させた場合は歪多重量
子井戸層全体の層厚が平均の歪量から決まる臨界膜厚を
越えることになり、歪多重量子井戸層全体に格子緩和が
生じ、結晶性が著しく損なわれる。これを防ぐために、
図6の様に障壁層602の全体(a)あるいは一部分
(b)に井戸層601と逆方向の歪が導入された歪補償
領域603を設け、歪多重量子井戸層全体の歪量を低減
する方法が行われているが、この場合においても障壁層
がInGaAsPのような4元混晶ならば障壁層に働く
応力が前述した問題を生じる。この様に障壁層に井戸層
層とは逆方向の歪を導入した場合には、図2の様にこの
逆方向歪層を電子や正孔の障壁として働かない程度の非
常に薄い2元系結晶層(基板がInPである場合はIn
P)で挟むことにより各井戸層の歪量を均一にしてなお
かつ各井戸層への電子や正孔の注入を均一とすることが
可能となる。
If the number of well layers is further increased, the thickness of the entire strained multiple quantum well layer exceeds the critical thickness determined by the average amount of strain, and lattice relaxation occurs in the entire strained multiple quantum well layer, Crystallinity is significantly impaired. To prevent this,
As shown in FIG. 6, a strain compensation region 603 in which strain in the direction opposite to that of the well layer 601 is provided in the whole (a) or a part (b) of the barrier layer 602 to reduce the amount of strain in the entire strained multiple quantum well layer. Although the method is performed, even in this case, if the barrier layer is a quaternary mixed crystal such as InGaAsP, the stress acting on the barrier layer causes the above-described problem. When strain in the direction opposite to that of the well layer is introduced into the barrier layer in this way, as shown in FIG. 2, the binary system is extremely thin enough that this reverse strain layer does not act as a barrier for electrons and holes. Crystal layer (In the case where the substrate is InP, In
P) makes it possible to make the amount of strain in each well layer uniform and to make the injection of electrons and holes into each well layer uniform.

【0015】[0015]

【作用】以上の様な構成により、2元系化合物半導体基
板に形成された、複数の圧縮歪もしくは引っ張り歪が導
入された量子井戸層と前記化合物半導体基板よりもエネ
ルギーバンドギャップの小さい無歪の障壁層からなる歪
多重量子井戸構造において、前記障壁層と前記障壁層の
前記基板側に位置する前記井戸層の間に前記化合物半導
体基板と同一材料の層を挿入することにより、各井戸層
の歪量を均一にしてなおかつ各井戸層への電子や正孔の
注入を均一としたまま井戸層数を非常に多くすることが
可能となる。
According to the above-described structure, a plurality of quantum well layers formed on a binary compound semiconductor substrate, into which a plurality of compressive strains or tensile strains are introduced, and a non-strainless, energy band gap smaller than that of the compound semiconductor substrate. In a strained multiple quantum well structure including a barrier layer, a layer of the same material as that of the compound semiconductor substrate is inserted between the barrier layer and the well layer located on the substrate side of the barrier layer, whereby each well layer It is possible to increase the number of well layers while keeping the amount of strain uniform and the injection of electrons and holes into each well layer uniform.

【0016】また、前記障壁層が前記井戸層とは逆方向
の歪が導入されている歪多重量子井戸構造においても前
記障壁層と前記井戸層の間に前記化合物半導体基板と同
一材料の層を挿入することにより、各井戸層の歪量を均
一にしてなおかつ各井戸層への電子や正孔の注入を均一
としたまま井戸層数を非常に多くすることが可能とな
る。
In the strained multiple quantum well structure in which the barrier layer has a strain introduced in a direction opposite to that of the well layer, a layer of the same material as the compound semiconductor substrate is formed between the barrier layer and the well layer. The insertion makes it possible to increase the number of well layers while keeping the amount of strain in each well layer uniform and injecting electrons and holes into each well layer uniformly.

【0017】[0017]

【実施例】(実施例1)図1は本発明の実施例1におけ
る歪多重量子井戸構造の伝導帯側のエネルギーバンド図
を説明する図である。n型のInP基板101上に無歪
で波長組成1.05μmのn型のInGaAsP導波路
層102(層厚150nm)、14層の1%の圧縮歪が
導入された波長組成1.5μmのInGaAsP井戸層
(層厚3nm)103と無歪で波長組成1.05μmの
InGaAsP障壁層(層厚10nm)104からなる
歪多重量子井戸活性層105、無歪で波長組成1.05
μmのp型のInGaAsP導波路層102(層厚30
nm)106、p型のInPクラッド層107が積層さ
れている。
(Embodiment 1) FIG. 1 is a diagram for explaining an energy band diagram on a conduction band side of a strained multiple quantum well structure in Embodiment 1 of the present invention. An n-type InGaAsP waveguide layer 102 having a wavelength composition of 1.05 μm and a layer composition of 150 nm (layer thickness: 150 nm) on an n-type InP substrate 101, and 14 layers of 1% InGaAsP having a wavelength composition of 1.5 μm in which 1% compressive strain is introduced. A strained multiple quantum well active layer 105 comprising a well layer (thickness: 3 nm) 103 and an InGaAsP barrier layer (thickness: 10 nm) 104 having no distortion and a wavelength composition of 1.05 μm;
μm p-type InGaAsP waveguide layer 102 (layer thickness 30
nm) 106 and a p-type InP cladding layer 107 are laminated.

【0018】本実施例の特徴は障壁層と障壁層の基板側
に位置する歪井戸層の間に層厚1nmのInP層108
が挿入されている点である。
The feature of this embodiment is that a 1 nm-thick InP layer 108 is provided between a barrier layer and a strain well layer located on the substrate side of the barrier layer.
Is inserted.

【0019】この実施例の歪多重量子井戸構造におい
て、InP層108が歪井戸層103からの応力に対し
てもその格子定数を変えないため、各歪井戸層には均一
な歪量が蓄積できる。この結果、図3に示すようにIn
P層108を挿入しない従来構造(黒丸)では井戸層数
が14ではフォトルミネッセンススペクトルの半値全幅
が急激に増大していたが本実施例1(白丸)では井戸層
数が14においてもフォトルミネッセンススペクトルの
半値全幅の急激な増大は見られなかった。
In the strained multiple quantum well structure of this embodiment, since the InP layer 108 does not change its lattice constant against stress from the strained well layer 103, a uniform strain can be accumulated in each strained well layer. . As a result, as shown in FIG.
In the conventional structure in which the P layer 108 is not inserted (black circles), the full width at half maximum of the photoluminescence spectrum sharply increases when the number of well layers is 14, but in the first embodiment (open circles), the photoluminescence spectrum is increased even when the number of well layers is 14. Did not show a sharp increase in the full width at half maximum.

【0020】(実施例2)図2は本発明の実施例2にお
ける歪多重量子井戸構造の伝導帯側のエネルギーバンド
図を説明する図である。n型のInP基板201上に無
歪で波長組成1.05μmのn型のInGaAsP導波
路層202(層厚150nm)、20層の1%の圧縮歪
が導入された波長組成1.5μmのInGaAsP井戸
層(層厚3nm)203と0.5%の引っ張り歪が導入
された波長組成1.05μmのInGaAsP障壁層
(層厚6nm)204からなる歪多重量子井戸活性層2
05、無歪で波長組成1.05μmのp型のInGaA
sP導波路層206(層厚30nm)、p型のInPク
ラッド層207が積層されている。
(Embodiment 2) FIG. 2 is a diagram for explaining an energy band diagram on the conduction band side of a strained multiple quantum well structure in Embodiment 2 of the present invention. An n-type InGaAsP waveguide layer 202 having a wavelength composition of 1.05 μm and a layer thickness of 150 nm (layer thickness: 150 nm) on an n-type InP substrate 201, and 20 layers of 1 μm InGaAsP having a wavelength composition of 1.5 μm in which 1% compressive strain is introduced. A strained multiple quantum well active layer 2 composed of a well layer (thickness: 3 nm) 203 and an InGaAsP barrier layer (thickness: 6 nm) 204 having a wavelength composition of 1.05 μm into which a tensile strain of 0.5% is introduced.
05, p-type InGaAs with no distortion and a wavelength composition of 1.05 μm
An sP waveguide layer 206 (thickness: 30 nm) and a p-type InP cladding layer 207 are stacked.

【0021】本実施例の特徴は障壁層204と井戸層2
03の間に層厚1nmのInP層208が挿入されてい
る点である。
This embodiment is characterized by the barrier layer 204 and the well layer 2
3 is that an InP layer 208 having a layer thickness of 1 nm is inserted between the layers.

【0022】この実施例の歪多重量子井戸構造におい
て、InP層208が井戸層103あるいは障壁層10
4からの応力に対してもその格子定数を変えないため、
各歪井戸層103には均一な歪量が蓄積できる。また、
歪多重量子井戸層の平均の歪量はほぼ0に等しいため、
井戸層が20と非常に多くても、図3に示す様に本実施
例2の構造ではではフォトルミネッセンススペクトルの
半値全幅の急激な増大は見られなかった(白角)。
In the strained multiple quantum well structure of this embodiment, the InP layer 208 is
Because the lattice constant does not change even with the stress from 4,
A uniform amount of strain can be accumulated in each strain well layer 103. Also,
Since the average strain of the strained multiple quantum well layer is almost equal to 0,
Even if the number of well layers is as large as 20, no sudden increase in the full width at half maximum of the photoluminescence spectrum was observed in the structure of Example 2 (white angle) as shown in FIG.

【0023】尚、本実施例では歪多重量子井戸構造を構
成する材料にInGaAsP/InP系を用いたが、こ
れ以外の材料系、例えばInGaAs/GaAs系のレ
ーザにおいてもその効果は変わらない。
In this embodiment, an InGaAsP / InP-based material is used as a material constituting the strained multiple quantum well structure. However, the effect remains unchanged in other material systems, for example, an InGaAs / GaAs-based laser.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
歪多重量子井戸の井戸層数を非常に多くしても各井戸層
に均一に歪を閉じ込めることが可能となり、この様な歪
多重量子井戸構造を活性層として用いた半導体レーザは
非常に高い緩和振動周波数が得られ、高速動作が可能と
なりその実用的効果は大きい。
As described above, according to the present invention,
Even if the number of well layers in the strained multiple quantum well is very large, it is possible to confine strain uniformly in each well layer, and a semiconductor laser using such a strained multiple quantum well structure as an active layer has a very high relaxation. Vibration frequency can be obtained, and high-speed operation is possible, and its practical effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における歪多重量子井戸構造
の伝導帯側のエネルギーバンド図を説明する図
FIG. 1 is a diagram for explaining an energy band diagram on a conduction band side of a strained multiple quantum well structure according to a first embodiment of the present invention.

【図2】本発明の実施例2における歪多重量子井戸構造
の伝導帯側のエネルギーバンド図を説明する図
FIG. 2 is a diagram illustrating an energy band diagram on a conduction band side of a strained multiple quantum well structure according to a second embodiment of the present invention.

【図3】本発明の効果を示す特性図FIG. 3 is a characteristic diagram showing the effect of the present invention.

【図4】(a)は基板の格子定数と格子定数が異なる井
戸層と基板と格子定数が同一の障壁層を交互に多層積層
した層構造図 (b)は基板の格子定数と格子定数が異なる井戸層と基
板と格子定数が同一の障壁層を交互に多層積層した場合
の応力分布図
4A is a layer structure diagram in which well layers having different lattice constants and lattice constants of a substrate and barrier layers having the same lattice constant as the substrate are alternately layered, and FIG. Stress distribution diagram when barrier layers with the same lattice constant are alternately stacked in multiple layers with different well layers and substrates

【図5】井戸層数を増加させた場合の格子定数の変化を
表す図
FIG. 5 is a diagram showing a change in lattice constant when the number of well layers is increased.

【図6】(a)は障壁層の全体に井戸層と逆方向の歪を
導入している従来例の歪の分布を表す図 (b)は障壁層の一部分に井戸層と逆方向の歪を導入し
ている従来例の歪の分布を表す図
FIG. 6A is a diagram showing a strain distribution of a conventional example in which a strain in a direction opposite to that of a well layer is introduced into the entire barrier layer. FIG. 6B is a diagram showing a strain in a direction opposite to the well layer in a part of the barrier layer. Diagram showing the distribution of strain in the conventional example introducing

【図7】従来例の歪量子井戸構造の伝導帯側のエネルギ
ーバンド図を説明する図
FIG. 7 is a diagram illustrating an energy band diagram on a conduction band side of a conventional strained quantum well structure.

【図8】従来例の構造の77Kでのフォトルミネッセン
ススペクトルの半値全幅の井戸層数依存性を説明する図
FIG. 8 is a view for explaining the dependence of the full width at half maximum of the photoluminescence spectrum at 77K of the structure of the conventional example on the number of well layers.

【符号の説明】[Explanation of symbols]

101 n型のInP基板 102 無歪で波長組成1.05μmのn型のInGa
AsP導波路層 103 1%の圧縮歪が導入された波長組成1.5μm
のInGaAsP井戸層 104 無歪で波長組成1.05μmのInGaAsP
障壁層 105 歪多重量子井戸活性層 106 無歪で波長組成1.05μmのp型のInGa
AsP導波路層 107 p型のInPクラッド層 108 層厚1nmのInP層 201 n型のInP基板 202 無歪で波長組成1.05μmのn型のInGa
AsP導波路層 203 1%の圧縮歪が導入された波長組成1.5μm
のInGaAsP井戸層 204 0.5%の引っ張り歪が導入された波長組成
1.05μmのInGaAsP障壁層 205 歪多重量子井戸活性層 206 無歪で波長組成1.05μmのp型のInGa
AsP導波路層 207 p型のInPクラッド層 208 層厚1nmのInP層 401 格子定数a0を有する基板 402 基板と格子定数が異なる井戸層 403 基板と格子定数が同一の障壁層 501 基板 502 第n番目の井戸層 503 第m番目の井戸層 504 第m番目の井戸層の次の障壁層 505 第m+1番目の井戸層 506 第m+1番目の井戸層の次の障壁層 601 井戸層 602 障壁層 603 井戸層とは方向の歪が導入された歪補償領域 701 InP基板 702 約1%の圧縮歪が導入されたInGaAsP歪
井戸層 703 無歪のInGaAsP障壁層(波長組成1.0
5μm) 704 InPクラッド層
101 n-type InP substrate 102 n-type InGa with no distortion and wavelength composition of 1.05 μm
AsP waveguide layer 103 Wavelength composition 1.5 μm with 1% compressive strain introduced
InGaAsP well layer 104 of InGaAsP with no distortion and wavelength composition of 1.05 μm
Barrier layer 105 Strained multiple quantum well active layer 106 P-type InGa with no distortion and wavelength composition of 1.05 μm
AsP waveguide layer 107 p-type InP cladding layer 108 1-nm thick InP layer 201 n-type InP substrate 202 n-type InGa with no distortion and wavelength composition of 1.05 μm
AsP waveguide layer 203 Wavelength composition 1.5 μm with 1% compressive strain introduced
InGaAsP well layer 204 InGaAsP barrier layer having a wavelength composition of 1.05 μm into which 0.5% tensile strain has been introduced 205 Strained multiple quantum well active layer 206 p-type InGa having no distortion and a wavelength composition of 1.05 μm
AsP waveguide layer 207 p-type InP cladding layer 208 1-nm thick InP layer 401 substrate having lattice constant a0 402 well layer having a different lattice constant from substrate 403 barrier layer having the same lattice constant as the substrate 501 substrate 502 n-th Well layer 503 m-th well layer 504 barrier layer next to m-th well layer 505 m + 1-th well layer 506 barrier layer next to m + 1-th well layer 601 well layer 602 barrier layer 603 well layer Is a strain compensation region in which directional strain is introduced 701 InP substrate 702 InGaAsP strain well layer in which about 1% compressive strain is introduced 703 Unstrained InGaAsP barrier layer (wavelength composition 1.0
5 μm) 704 InP cladding layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石野 正人 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平5−55697(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 H01L 21/20 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masato Ishino 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-5-55697 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01S 5/00-5/50 H01L 21/20

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に形成され、障壁層と歪が導入さ
れた井戸層とが交互に繰り返し積層された多重量子井戸
構造であって、前記井戸層と前記障壁層との間に、前記
基板と同じ組成を有する層を備えた歪多重量子井戸構造
体。
1. A multi-quantum well structure formed on a substrate, wherein barrier layers and well layers to which strain is introduced are alternately and repeatedly stacked, wherein the well layer and the barrier layer are provided between the well layer and the barrier layer. A strained multiple quantum well structure including a layer having the same composition as a substrate.
【請求項2】 前記基板と同じ組成を有する層は、前記
障壁層と前記障壁層の前記基板側に位置する前記井戸層
との間に設けられている請求項1に記載の歪多重量子井
戸構造体。
2. The strained multiple quantum well according to claim 1, wherein the layer having the same composition as the substrate is provided between the barrier layer and the well layer located on the substrate side of the barrier layer. Structure.
【請求項3】 前記障壁層には前記井戸層とは逆方向の
歪が導入されている請求項1に記載の歪多重量子井戸構
造体。
3. The strained multiple quantum well structure according to claim 1, wherein a strain in a direction opposite to that of the well layer is introduced into the barrier layer.
【請求項4】 前記基板と同じ組成を有する層は、前記
障壁層の両側に設けられている、請求項1に記載の歪多
重量子井戸構造体。
4. The strained multiple quantum well structure according to claim 1, wherein layers having the same composition as the substrate are provided on both sides of the barrier layer.
【請求項5】 請求項1ないし請求項4のいずれかに記
載の歪多重量子井戸構造体を活性層として有する半導体
レーザ。
5. A semiconductor laser having the strained multiple quantum well structure according to claim 1 as an active layer.
JP18257593A 1993-07-23 1993-07-23 Strained multiple quantum well structure and semiconductor laser using the same Expired - Fee Related JP3147596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18257593A JP3147596B2 (en) 1993-07-23 1993-07-23 Strained multiple quantum well structure and semiconductor laser using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18257593A JP3147596B2 (en) 1993-07-23 1993-07-23 Strained multiple quantum well structure and semiconductor laser using the same

Publications (2)

Publication Number Publication Date
JPH0738206A JPH0738206A (en) 1995-02-07
JP3147596B2 true JP3147596B2 (en) 2001-03-19

Family

ID=16120681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18257593A Expired - Fee Related JP3147596B2 (en) 1993-07-23 1993-07-23 Strained multiple quantum well structure and semiconductor laser using the same

Country Status (1)

Country Link
JP (1) JP3147596B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271027B2 (en) * 2008-10-10 2013-08-21 アンリツ株式会社 Semiconductor light emitting device
JP2018078290A (en) * 2016-10-31 2018-05-17 住友電工デバイス・イノベーション株式会社 Semiconductor laser element

Also Published As

Publication number Publication date
JPH0738206A (en) 1995-02-07

Similar Documents

Publication Publication Date Title
US5079774A (en) Polarization-tunable optoelectronic devices
US5671242A (en) Strained quantum well structure
US5187715A (en) Quantum well optical device
Chang et al. Theory of Optical Gain of ${\hbox {Ge--}}{\hbox {Si}} _ {x}{\hbox {Ge}} _ {y}{\hbox {Sn}} _ {1-xy} $ Quantum-Well Lasers
EP0645858B1 (en) Strained quantum well structure having variable polarization dependence and optical device inducing the strained quantum well structure
JP3362356B2 (en) Optical semiconductor device
JPH0422185A (en) Semiconductor optical element
EP0647001B1 (en) Polarization insensitive semiconductor optical amplifier
JPH05243676A (en) Semiconductor laser device
JP3147596B2 (en) Strained multiple quantum well structure and semiconductor laser using the same
JP3145718B2 (en) Semiconductor laser
US5412225A (en) Tunable heavy and light hole coupled bands in variable-strain quantum well semi-conductor heterostructure for novel opto-electronic devices
JP3303631B2 (en) Semiconductor quantum well structure
JPH07147454A (en) Semiconductor element
JP2806089B2 (en) Semiconductor multiple strain quantum well structure
JP2706411B2 (en) Strained quantum well semiconductor laser
JPH0377677B2 (en)
JP3041381B2 (en) Quantum well semiconductor laser device
JP2789644B2 (en) Light modulator
JP3149879B2 (en) Semiconductor laser
JPH07118571B2 (en) Semiconductor strained quantum well structure
JPH07183614A (en) Distorted multiple quantum well optical device
JP2556288B2 (en) Semiconductor laser
JPH0862554A (en) Semiconductor optical modulator
JPH07193323A (en) Quantum well semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees