JP3147315B2 - Thermal liquid crystalline polyester and molded articles made thereof - Google Patents
Thermal liquid crystalline polyester and molded articles made thereofInfo
- Publication number
- JP3147315B2 JP3147315B2 JP19695991A JP19695991A JP3147315B2 JP 3147315 B2 JP3147315 B2 JP 3147315B2 JP 19695991 A JP19695991 A JP 19695991A JP 19695991 A JP19695991 A JP 19695991A JP 3147315 B2 JP3147315 B2 JP 3147315B2
- Authority
- JP
- Japan
- Prior art keywords
- structural unit
- acid
- polymer
- polyester
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000728 polyester Polymers 0.000 title claims description 89
- 239000007788 liquid Substances 0.000 title claims description 38
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 34
- 239000001301 oxygen Substances 0.000 claims description 34
- 229910052760 oxygen Inorganic materials 0.000 claims description 34
- 239000000126 substance Substances 0.000 claims 1
- 229920000642 polymer Polymers 0.000 description 58
- -1 polyethylene terephthalate Polymers 0.000 description 43
- 230000004888 barrier function Effects 0.000 description 28
- 230000001965 increasing effect Effects 0.000 description 26
- 229920000106 Liquid crystal polymer Polymers 0.000 description 21
- 229920000139 polyethylene terephthalate Polymers 0.000 description 20
- 239000005020 polyethylene terephthalate Substances 0.000 description 20
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 19
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 19
- 239000011112 polyethylene naphthalate Substances 0.000 description 19
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 18
- 239000012071 phase Substances 0.000 description 18
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000007789 gas Substances 0.000 description 16
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 15
- 238000000113 differential scanning calorimetry Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 230000035699 permeability Effects 0.000 description 14
- GDBUZIKSJGRBJP-UHFFFAOYSA-N 4-acetoxy benzoic acid Chemical compound CC(=O)OC1=CC=C(C(O)=O)C=C1 GDBUZIKSJGRBJP-UHFFFAOYSA-N 0.000 description 13
- 238000005452 bending Methods 0.000 description 13
- 230000009477 glass transition Effects 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 11
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 10
- NFTLBCXRDNIJMI-UHFFFAOYSA-N 6-acetyloxynaphthalene-2-carboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(OC(=O)C)=CC=C21 NFTLBCXRDNIJMI-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- KAUQJMHLAFIZDU-UHFFFAOYSA-N 6-Hydroxy-2-naphthoic acid Chemical compound C1=C(O)C=CC2=CC(C(=O)O)=CC=C21 KAUQJMHLAFIZDU-UHFFFAOYSA-N 0.000 description 8
- 239000004973 liquid crystal related substance Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000005022 packaging material Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 238000005917 acylation reaction Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 238000000071 blow moulding Methods 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 239000006059 cover glass Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000006068 polycondensation reaction Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 2
- XBNGYFFABRKICK-UHFFFAOYSA-N 2,3,4,5,6-pentafluorophenol Chemical compound OC1=C(F)C(F)=C(F)C(F)=C1F XBNGYFFABRKICK-UHFFFAOYSA-N 0.000 description 2
- LTFHNKUKQYVHDX-UHFFFAOYSA-N 4-hydroxy-3-methylbenzoic acid Chemical compound CC1=CC(C(O)=O)=CC=C1O LTFHNKUKQYVHDX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- IZUPBVBPLAPZRR-UHFFFAOYSA-N pentachloro-phenol Natural products OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl IZUPBVBPLAPZRR-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- DNUYOWCKBJFOGS-UHFFFAOYSA-N 2-[[10-(2,2-dicarboxyethyl)anthracen-9-yl]methyl]propanedioic acid Chemical compound C1=CC=C2C(CC(C(=O)O)C(O)=O)=C(C=CC=C3)C3=C(CC(C(O)=O)C(O)=O)C2=C1 DNUYOWCKBJFOGS-UHFFFAOYSA-N 0.000 description 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 1
- QGNLHMKIGMZKJX-UHFFFAOYSA-N 3-chloro-4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C(Cl)=C1 QGNLHMKIGMZKJX-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- PSAGPCOTGOTBQB-UHFFFAOYSA-N 4-hydroxynaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(O)C2=C1 PSAGPCOTGOTBQB-UHFFFAOYSA-N 0.000 description 1
- NYYMNZLORMNCKK-UHFFFAOYSA-N 5-hydroxynaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1O NYYMNZLORMNCKK-UHFFFAOYSA-N 0.000 description 1
- FSXKKRVQMPPAMQ-UHFFFAOYSA-N 7-hydroxynaphthalene-2-carboxylic acid Chemical compound C1=CC(O)=CC2=CC(C(=O)O)=CC=C21 FSXKKRVQMPPAMQ-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004278 EU approved seasoning Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- XMUZQOKACOLCSS-UHFFFAOYSA-N [2-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=CC=C1CO XMUZQOKACOLCSS-UHFFFAOYSA-N 0.000 description 1
- YWMLORGQOFONNT-UHFFFAOYSA-N [3-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=CC(CO)=C1 YWMLORGQOFONNT-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- BWVAOONFBYYRHY-UHFFFAOYSA-N [4-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=C(CO)C=C1 BWVAOONFBYYRHY-UHFFFAOYSA-N 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 235000014171 carbonated beverage Nutrition 0.000 description 1
- HQCVEGNPQFRFPC-UHFFFAOYSA-N carboxy acetate Chemical compound CC(=O)OC(O)=O HQCVEGNPQFRFPC-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 238000009820 dry lamination Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000010101 extrusion blow moulding Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000005165 hydroxybenzoic acids Chemical class 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010102 injection blow moulding Methods 0.000 description 1
- 238000009884 interesterification Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 235000015095 lager Nutrition 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- IJFXRHURBJZNAO-UHFFFAOYSA-N meta--hydroxybenzoic acid Natural products OC(=O)C1=CC=CC(O)=C1 IJFXRHURBJZNAO-UHFFFAOYSA-N 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- ABMFBCRYHDZLRD-UHFFFAOYSA-N naphthalene-1,4-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1 ABMFBCRYHDZLRD-UHFFFAOYSA-N 0.000 description 1
- 125000001038 naphthoyl group Chemical group C1(=CC=CC2=CC=CC=C12)C(=O)* 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 235000013555 soy sauce Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Polyesters Or Polycarbonates (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Liquid Crystal Substances (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は成形性の改良された光学
的に異方性の溶融相を形成する共重合ポリエステル、お
よびそれからなる酸素バリヤー性に優れた成形品に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copolymerized polyester which forms an optically anisotropic molten phase having improved moldability, and a molded article comprising the same which has excellent oxygen barrier properties.
【0002】[0002]
【従来の技術】ポリエステル、とりわけポリエチレンテ
レフタレート(以下PETと略称することがある)は、
衛生性、保香性、加工性等の優れた性質を有しているた
めに、醤油、ソース等の調味料、ジュース、コーラ、ラ
ムネ等のソフトドリンク、生ビール、化粧品、医薬品な
どの容器として広く利用されている。さらに上記のよう
な性能に加えて、ガラスよりも軽量であること、適度の
耐圧力性、ガスバリヤー性を有することから、今後ガラ
ス瓶の代替としての一層の伸長が期待されている。しか
しながら、ガラス瓶代替として最も市場が大きいと予想
されるラガービール、ワイン等ではシェルフライフが長
くなること、また炭酸飲料等では容器の小型化により内
容量当たりの容器の表面積が増大することから、外部か
らの酸素の侵入や炭酸ガスの散逸をさらに減少させるた
めに容器のガスバリヤー性の向上が強く要望されてい
る。PET自体のガスバリヤー性の改良については、す
でにかなりのハイレベルにあること、また容器成形性能
や耐圧力性等の機械的性質を損なうことなく改良する必
要があることから、その実現はきわめて困難である。従
来PET容器のガスバリヤー性を改良する方法は種々提
案されている。例えば、容器の内外層にポリ塩化ビニリ
デン等をコーティングする方法や、エチレン−酢酸ビニ
ル共重合体ケン化物等を用いて2層〜5層の多層構造と
する方法(特開昭56−77143号公報)等が提案さ
れているが、これらの方法は従来のポリエステルの成形
設備にさらにコーティングや多層容器とするための設備
が必要となり工業上不利であるばかりでなく、異種のポ
リマーを用いるために多層容器の場合には層間剥離を起
こしやすい点、さらには使用済みの容器の回収再利用や
焼却等についても不都合な点を有している。またあらか
じめポリエステルとナイロン等の異種ポリマーをブレン
ドしたものから容器を製造する方法も提案されている
(特公昭53−33618号公報、特開昭56−648
39号公報)。この場合、既存の設備で容器の製造は可
能であるが、容器の物性低下を伴うことと、回収再利用
の点から不利である。2. Description of the Related Art Polyester, especially polyethylene terephthalate (hereinafter sometimes abbreviated as PET), is
Due to its excellent properties such as hygiene, fragrance retention, and processability, it is widely used as containers for seasonings such as soy sauce and sauces, soft drinks such as juice, cola, and ramune, draft beer, cosmetics, and pharmaceuticals. It's being used. Furthermore, in addition to the above-mentioned performance, it is lighter than glass, has moderate pressure resistance, and has gas barrier properties. Therefore, further growth as a substitute for glass bottles is expected in the future. However, lager beer and wine, which are expected to be the largest markets for glass bottles, have a longer shelf life, and carbonated beverages and other beverages have a smaller container, which increases the surface area of the container per unit volume. In order to further reduce the intrusion of oxygen from the atmosphere and the dissipation of carbon dioxide gas, there is a strong demand for improving the gas barrier properties of the container. It is extremely difficult to improve the gas barrier properties of PET itself because it is already at a very high level and it is necessary to improve the mechanical properties such as container molding performance and pressure resistance. It is. Conventionally, various methods for improving the gas barrier properties of PET containers have been proposed. For example, a method of coating the inner and outer layers of a container with polyvinylidene chloride or the like, or a method of forming a multilayer structure of two to five layers using a saponified ethylene-vinyl acetate copolymer (Japanese Patent Application Laid-Open No. 56-77143) However, these methods are not only industrially disadvantageous because equipment for coating and forming a multilayer container are required in addition to the conventional polyester molding equipment, but are also industrially disadvantageous. In the case of containers, delamination is apt to occur, and further, there is an inconvenience in the recovery and reuse of used containers and incineration. Also, a method of manufacturing a container from a blend of different polymers such as polyester and nylon in advance has been proposed (JP-B-53-33618, JP-A-56-648).
No. 39). In this case, the container can be manufactured with the existing equipment, but it is disadvantageous in that the physical properties of the container are deteriorated and that the container is recovered and reused.
【0003】一方、光学的に異方性の溶融相を形成する
いわゆるサーモトロピック液晶ポリマーをガスバリヤー
材として用いる方法も近年提案されている(特開昭61
−192762号公報、特開昭62−119265号公
報、特開昭62−187033号公報、特開昭64−4
5242号公報、特開平1−288421号公報)。ま
た、Polym.Prepr.(Am.Chem.So
c.,Div.Polym.Chem.),30
(1),3−4(1989)には、40モル%のポリエ
チレンテレフタレートと60モル%の4−アセトキシ安
息香酸とから製造されるサーモトロピック液晶ポリマー
より得られる溶融押出しフイルムの35℃での酸素ガス
透過量は36ml・20μ m/m↑2・day・atm
であることが報告されている。On the other hand, a method using a so-called thermotropic liquid crystal polymer, which forms an optically anisotropic molten phase, as a gas barrier material has recently been proposed (Japanese Patent Application Laid-Open No. 61-1986).
JP-A-192762, JP-A-62-119265, JP-A-62-187033, JP-A-64-4
No. 5242, JP-A-1-288421). Also, Polym. Prepr. (Am. Chem. So
c. , Div. Polym. Chem. ), 30
(1), 3-4 (1989) disclose that a melt-extruded film obtained from a thermotropic liquid crystal polymer produced from 40 mol% of polyethylene terephthalate and 60 mol% of 4-acetoxybenzoic acid at 35 ° C. Gas permeation amount is 36ml ・ 20μm / m ↑ 2 ・ day ・ atm
Is reported.
【0004】なお、特公昭56−18016号公報に
は、式−OC−R↓1−CO−O−R↓2−O−(ここで
R↓1は炭素数4〜20の脂環族2価ラジカル、炭素数
1〜40の脂肪族2価ラジカル、または少なくとも3個
の炭素原子で隔てられたカルボニル結合をもつ炭素数6
〜16の芳香族2価ラジカルを、R↓2は炭素数2〜4
0の脂肪族2価ラジカル、炭素数4〜20の脂環族2価
ラジカル、炭素数6〜20の芳香族2価ラジカルまたは
分子量200〜8000のポリ(アルキレンオキシド)
2価ラジカルを示す)で表される繰り返し単位を有する
ポリエステルとアシルオキシ芳香族カルボン酸とを反応
させることによる共重合ポリエステルの製造方法が開示
されているが、アシルオキシ芳香族カルボン酸として
は、具体的にはアシルオキシ安息香酸類が例示されてい
るのみである。Japanese Patent Publication No. 56-18016 discloses a compound represented by the formula -OC-R ↓ 1-CO-OR- ↓ 2-O- (where R ↓ 1 is an alicyclic group having 4 to 20 carbon atoms). Radical, an aliphatic divalent radical having 1 to 40 carbon atoms, or 6 carbon atoms having a carbonyl bond separated by at least 3 carbon atoms
1616 aromatic divalent radicals, and R ↓ 2 has 2 to 4 carbon atoms.
An aliphatic divalent radical having 0, an alicyclic divalent radical having 4 to 20 carbon atoms, an aromatic divalent radical having 6 to 20 carbon atoms, or poly (alkylene oxide) having a molecular weight of 200 to 8000
A method for producing a copolymerized polyester by reacting a polyester having a repeating unit represented by a divalent radical) with an acyloxy aromatic carboxylic acid is disclosed, but specific examples of the acyloxy aromatic carboxylic acid include: Only acyloxybenzoic acids are exemplified.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来提
案されているサーモトロピック液晶ポリマーを酸素バリ
ヤー用の成形体として用いる場合には多くの問題点があ
る。すなわち、第一の問題点としては、従来提案されて
いるサーモトロピック液晶ポリマーから得られる成形品
は概して結晶化度が高く、力学的物性の異方性が大であ
り、伸度が小であり実質的には延伸が不可能である点で
ある。従って、このようなポリマーから酸素バリヤー用
の各種の成形体、例えば、フイルム、シート、ボトル、
カップ、トレイ、袋等に成形加工することは非常に困難
である。However, there are many problems when using the conventionally proposed thermotropic liquid crystal polymer as a molded product for an oxygen barrier. That is, the first problem is that molded products obtained from the conventionally proposed thermotropic liquid crystal polymer generally have high crystallinity, large mechanical property anisotropy, and small elongation. The point is that stretching is substantially impossible. Therefore, from such polymers, various molded articles for oxygen barrier, for example, films, sheets, bottles,
It is very difficult to form into cups, trays, bags and the like.
【0006】そのため、特開昭62−187033号公
報では熱(サーモトロピック)液晶ポリエステルからな
る層と少なくともその片面にポリエチレンテレフタレー
ト成分を含有するポリエステルからなる層を有する積層
延伸成形品が提案されている。該公報中には(光学的に
異方性を形成しない)ポリエステルからなる層と熱液晶
ポリエステルからなる層の厚み比は、積層延伸成形品の
全厚みに対してポリエステル層が50〜98%、熱液晶
ポリエステル層が2〜50%、好ましくは5〜20%で
あることが開示されており、熱液晶ポリエステル層が5
0%以上である場合には、ポリエステル単独で延伸した
場合に比べて延伸させにくいと記載されている。一方、
力学物性の異方性の小なる成形品を与えるサーモトロピ
ック液晶ポリマーに関する提案もなされている。例え
ば、特開昭60−28428号公報には、テレフタロイ
ル基、1,3−ジオキシフェニレン基および2−置換−
1,4−ジオキシフェニレン基からなるサーモトロピッ
ク液晶ポリエステルが提案されている。このように、イ
ソ骨格、および置換基の導入により、サーモトロピック
液晶ポリマーの成形性が向上し、必ずしも充分ではない
が、各種の成形体を製造することは容易となる方向では
ある。For this reason, Japanese Patent Application Laid-Open No. 62-187033 proposes a laminated stretch-formed product having a layer made of a thermo (thermotropic) liquid crystal polyester and a layer made of a polyester containing a polyethylene terephthalate component on at least one surface thereof. . In the publication, the thickness ratio of the layer made of polyester (which does not form optically anisotropic) to the layer made of thermo-liquid crystalline polyester is such that the polyester layer is 50 to 98% of the total thickness of the laminated stretch-formed product, It is disclosed that the thermal liquid crystal polyester layer is 2 to 50%, preferably 5 to 20%.
It is described that when it is 0% or more, it is difficult to stretch as compared with the case where polyester is stretched alone. on the other hand,
Proposals have also been made regarding thermotropic liquid crystal polymers that provide molded articles with small anisotropy in mechanical properties. For example, JP-A-60-28428 discloses a terephthaloyl group, a 1,3-dioxyphenylene group and a 2-substituted-
A thermotropic liquid crystal polyester comprising a 1,4-dioxyphenylene group has been proposed. As described above, the moldability of the thermotropic liquid crystal polymer is improved by the introduction of the isoskeleton and the substituent, and although it is not always sufficient, it is easy to manufacture various molded articles.
【0007】また、従来提案されているサーモトロピッ
ク液晶ポリマーを酸素バリヤー用の成形体として用いる
場合に生じうる第二の問題点としては、サーモトロピッ
ク液晶ポリマーから得られる成形品の中には、酸素バリ
ヤー性が必ずしも充分に高いとは言い難いものも含まれ
ていることである。例えば前述したPolym.Pre
pr.(Am.Chem.Soc.,Div.Poly
m.Chem.),30(1),3−4(1989)に
記載された40モル%のポリエチレンテレフタレートと
60モル%の4−アセトキシ安息香酸とから製造される
サーモトロピック液晶ポリマーから得られるフイルムの
酸素ガス透過量は、36ml・20μm/m↑2・da
y・atmであることが報告されているように、該ポリ
マーは必ずしも高性能の酸素バリヤー材とは言えないレ
ベルである。また本発明者等の検討によると、前述の特
開昭60−28428号公報に記載されたサーモトロピ
ック液晶ポリエステルから得られるフイルムの酸素バリ
ヤー性も、必ずしも高いレベルではないことが判明し
た。A second problem that may arise when the conventionally proposed thermotropic liquid crystal polymer is used as a molded body for an oxygen barrier is that a molded article obtained from the thermotropic liquid crystal polymer contains oxygen. The barrier properties are not necessarily high enough. For example, Polym. Pre
pr. (Am. Chem. Soc., Div. Poly.
m. Chem. ), 30 (1), 3-4 (1989). Oxygen gas permeation of a film obtained from a thermotropic liquid crystal polymer produced from 40 mol% of polyethylene terephthalate and 60 mol% of 4-acetoxybenzoic acid. The volume is 36ml ・ 20μm / m ↑ 2 ・ da
As reported to be y · atm, the polymer is at a level that is not necessarily a high performance oxygen barrier material. According to the study by the present inventors, it has been found that the oxygen barrier property of the film obtained from the thermotropic liquid crystal polyester described in the above-mentioned JP-A-60-28428 is not always at a high level.
【0008】また、特開昭62−68813号公報に
は、p−アセトキシ安息香酸と6−アセトキシ−2−ナ
フトエ酸とのアセトキシ芳香族カルボン酸混合物をポリ
エチレンテレフタレートまたはポリブチレンテレフタレ
ートと反応させることにより得られる共重合ポリエステ
ルが開示されており、アセトキシ芳香族カルボン酸とし
てp−アセトキシ安息香酸のみを用いた場合に較べて曲
げ強度、曲げ弾性率、および熱変形温度が改善されると
記載されている。しかしながら、かかる公報には、該共
重合ポリエステルからなる包装材料も容器も記載されて
おらず、しかも、該共重合ポリエステルが優れたガスバ
リヤー性、成形性(延伸性)、低温流動性などの優れた
特性を有するか否かについてさえも何ら開示されていな
い。Japanese Patent Application Laid-Open No. Sho 62-68813 discloses that an acetoxy aromatic carboxylic acid mixture of p-acetoxybenzoic acid and 6-acetoxy-2-naphthoic acid is reacted with polyethylene terephthalate or polybutylene terephthalate. The obtained copolymerized polyester is disclosed, and it is described that the bending strength, the bending elastic modulus, and the heat distortion temperature are improved as compared with a case where only p-acetoxybenzoic acid is used as the acetoxy aromatic carboxylic acid. . However, this publication does not describe a packaging material or a container comprising the copolymerized polyester, and furthermore, the copolymerized polyester has excellent gas barrier properties, moldability (stretchability), low-temperature fluidity, and the like. No disclosure is made as to whether or not it has the characteristics described above.
【0009】[0009]
【課題を解決するための手段】このような状況に鑑み、
本発明者等は、従来の熱液晶ポリマーが達成し得ない優
れた成形性を有し、かつ成形品において高度なガスバリ
ヤー性を備えた熱液晶ポリマーおよびそれからなる成形
品を提供すべく鋭意検討を重ねた結果、本発明を完成す
るに至った。In view of such a situation,
The present inventors have studied diligently to provide a thermo-liquid crystal polymer having excellent moldability that cannot be achieved by the conventional thermo-liquid crystal polymer and having a high gas barrier property in the molded product and a molded product comprising the same. As a result, the present invention has been completed.
【0010】すなわち本発明は、第一に新規な熱液晶ポ
リエステルを提供するものであり、それは、実質的に下
記化5That is, the present invention firstly provides a novel thermal liquid crystalline polyester, which is substantially the following:
【0011】[0011]
【化5】 Embedded image
【0012】で示される構成単位(1)、下記化6Structural unit (1) represented by the following formula:
【0013】[0013]
【化6】 Embedded image
【0014】で示される構成単位(2)、下記化7The structural unit (2) represented by the following formula:
【0015】[0015]
【化7】 Embedded image
【0016】で示される構成単位(3)および下記化8Structural unit (3) represented by the following formula and
【0017】[0017]
【化8】 Embedded image
【0018】で示される構成単位(4)からなり、構成
単位(1)と構成単位(2)を実質的に等しいモル数で
含み、構成単位(1)および構成単位(2)の合計量が
15〜90モル%、構成単位(3)および構成単位
(4)の合計量が10〜85モル%であり、構成単位
(3)および構成単位(4)の合計量に対する構成単位
(3)の割合が10モル%以上である熱液晶ポリエステ
ルである。The structural unit (4) comprises the structural unit (1) and the structural unit (2) in substantially equal moles, and the total amount of the structural unit (1) and the structural unit (2) is 15 to 90 mol%, the total amount of the structural unit (3) and the structural unit (4) is 10 to 85 mol%, and the ratio of the structural unit (3) to the total amount of the structural unit (3) and the structural unit (4) is This is a thermal liquid crystalline polyester having a ratio of 10 mol% or more.
【0019】本発明は、第二に、改善されたガスバリヤ
ー性、とりわけ高度の酸素バリヤー性を有する成形品を
提供するものであり、その成形品は本発明の新規な熱液
晶ポリエステルからなる成形品である。尚、本明細書に
おいて用いられる用語「成形品」とは主として飲食品、
医薬品等の包装用途に適する成形物品を意味する。この
ような成形物品は本発明の熱液晶ポリエステルを成形し
て得られるシート;フイルム;ボトル、トレイ、カッ
プ、袋等の有底容器などを含む。The present invention secondly provides a molded article having an improved gas barrier property, especially a high oxygen barrier property, wherein the molded article comprises the novel thermo-liquid crystalline polyester of the present invention. Goods. In addition, the term "molded article" used in the present specification mainly refers to food and drink,
It means a molded article suitable for packaging use such as pharmaceuticals. Such molded articles include sheets obtained by molding the thermal liquid crystalline polyester of the present invention; films; bottomed containers such as bottles, trays, cups, and bags.
【0020】以下本発明を詳細に説明する。本発明の熱
液晶ポリエステルの構成単位(1)は、2,6−ナフタ
レンジカルボン酸、あるいはそのエステル形成性誘導体
によって導入されるような2,6−ナフタレンジカルボ
ニル基である。構成単位(1)の一部、好ましくは構成
単位(1)の20モル%以下は、他のジカルボン酸また
はそのエステル形成性誘導体によって導入されうる構成
単位に置き換えられていてもよい。他のジカルボン酸と
しては例えば、テレフタル酸、イソフタル酸、2,7−
ナフタレンジカルボン酸、1,4−ナフタレンジカルボ
ン酸、1,4−シクロヘキサンジカルボン酸、コハク
酸、アジピン酸、セバシン酸などが挙げられる。また得
られるポリエステルが溶融成形可能である範囲内の量で
あれば、構成単位(1)の一部をトリメリット酸、トリ
メシン酸、ピロメリット酸などの多価カルボン酸または
そのエステル形成性誘導体によって導入されうる構成単
位に置き換えることも可能である。Hereinafter, the present invention will be described in detail. The structural unit (1) of the thermal liquid crystalline polyester of the present invention is a 2,6-naphthalenedicarbonyl group as introduced by 2,6-naphthalenedicarboxylic acid or an ester-forming derivative thereof. A part of the structural unit (1), preferably 20 mol% or less of the structural unit (1), may be replaced by a structural unit that can be introduced by another dicarboxylic acid or an ester-forming derivative thereof. Other dicarboxylic acids include, for example, terephthalic acid, isophthalic acid, 2,7-
Examples include naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, succinic acid, adipic acid, sebacic acid and the like. Further, if the obtained polyester is in an amount within a range capable of being melt-molded, a part of the structural unit (1) may be converted to a polycarboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid or an ester-forming derivative thereof. It is also possible to replace with a structural unit that can be introduced.
【0021】また、本発明の熱液晶ポリエステルにおけ
る構成単位(2)とは、エチレングリコールにより導入
されるようなエチレンジオキシ基であるが、その一部、
好ましくは構成単位(2)の20モル%以下は、他のグ
リコールにより導入されうる構成単位に置き換えられて
いてもよい。エチレングリコール以外のグリコールとし
ては、例えば、1,2−プロパンジオール、1,3−プ
ロパンジオール、1,4−ブタンジオール、1,3−ブ
タンジオール、2−メチル−1,3−プロパンジオー
ル、1,5−ペンタンジオール、ネオペンチルグリコー
ル、1,6−ヘキサンジオール、3−メチル−1,5−
ペンタンジオール、1,4−シクロヘキサンジメタノー
ル、ジエチレングリコール、トリエチレングリコール、
o−、m−またはp−キシリレングリコールなどが挙げ
られる。また得られるポリエステルが溶融成形可能であ
る範囲内の量であれば、構成単位(2)の一部を、グリ
セリン、トリメチロールプロパン、トリエチロールプロ
パン、ペンタエリスリトールなどの多価アルコールによ
り導入されうる構成単位に置き換えることも可能であ
る。The structural unit (2) in the thermal liquid crystalline polyester of the present invention is an ethylenedioxy group introduced by ethylene glycol.
Preferably, 20 mol% or less of the structural unit (2) may be replaced by a structural unit that can be introduced by another glycol. Examples of glycols other than ethylene glycol include 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, , 5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-
Pentanediol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol,
o-, m- or p-xylylene glycol and the like. If the amount of the obtained polyester is within the range that can be melt-molded, a part of the structural unit (2) can be introduced by a polyhydric alcohol such as glycerin, trimethylolpropane, triethylolpropane, and pentaerythritol. It is also possible to replace with a unit.
【0022】本発明の熱液晶ポリエステルにおける構成
単位(1)および(2)は、通常は、主たる出発物質と
して2,6−ナフタレンジカルボン酸、またはそのエス
テル形成性誘導体とエチレングリコールを用いる反応に
よって得られるポリエチレンナフタレート系のポリエス
テルを原料のひとつとして用いることによって本発明の
熱液晶ポリエステルの分子中に導入される。The structural units (1) and (2) in the thermal liquid crystalline polyester of the present invention are usually obtained by a reaction using ethylene glycol with 2,6-naphthalenedicarboxylic acid or its ester-forming derivative as a main starting material. By using the obtained polyethylene naphthalate-based polyester as one of the raw materials, it is introduced into the molecules of the thermo-liquid crystalline polyester of the present invention.
【0023】本発明の熱液晶ポリエステルの製造におい
て用いるポリエチレンナフタレート系のポリエステル
は、従来ポリエチレンナフタレートの製造に際して提案
されている方法で製造することができる。例えば、ジカ
ルボン酸とグリコールとをエステル化反応したあと重縮
合する方法、ジカルボン酸エステルとグリコールとをエ
ステル交換したあと重縮合する方法等によって得られ
る。その際、エステル化触媒、エステル交換触媒、重縮
合触媒、安定剤等を使用することが好ましい結果を与え
る場合があるが、これらの触媒、安定剤等としては、ポ
リエステル、特にポリエチレンナフタレートの製造にお
いて使用しうる触媒、安定剤等として知られているもの
を用いることができる。例えば、これらの反応を促進す
る触媒としては、ナトリウム、マグネシウム、カルシウ
ム、亜鉛、マンガン、錫、タングステン、ゲルマニウ
ム、チタン、アンチモン等の金属化合物が、また安定剤
としてはリン酸、リン酸エステル類、亜リン酸、亜リン
酸エステル類などのリン化合物を例示することができ
る。さらに、必要に応じて他の添加剤(着色剤、紫外線
吸収剤、光安定化剤、帯電防止剤、難燃剤、結晶化促進
剤等)を添加することもできる。The polyethylene naphthalate-based polyester used in the production of the thermal liquid crystalline polyester of the present invention can be produced by a method conventionally proposed for producing polyethylene naphthalate. For example, it can be obtained by a method of subjecting a dicarboxylic acid and a glycol to an esterification reaction followed by polycondensation, a method of subjecting a dicarboxylic acid ester and a glycol to interesterification and then a polycondensation. In this case, it is sometimes preferable to use an esterification catalyst, a transesterification catalyst, a polycondensation catalyst, a stabilizer, etc., but these catalysts, stabilizers, etc. may be used for production of polyester, especially polyethylene naphthalate. What is known as a catalyst, a stabilizer, etc. which can be used in the above can be used. For example, catalysts that promote these reactions include sodium, magnesium, calcium, zinc, manganese, tin, tungsten, germanium, titanium, antimony and other metal compounds, and as stabilizers phosphoric acid, phosphate esters, Phosphorus compounds such as phosphorous acid and phosphites can be exemplified. Further, other additives (a coloring agent, an ultraviolet absorber, a light stabilizer, an antistatic agent, a flame retardant, a crystallization accelerator, etc.) can be added as needed.
【0024】本発明の熱液晶ポリエステルを製造する際
に原料ポリエステルとして用いるポリエチレンナフタレ
ート系ポリエステルの重合度に関しては、特に規定はな
いが、フェノール/テトラクロロエタン等重量混合溶媒
中、30℃で測定した極限粘度が0.01〜1.5dl
/gのものを用いることが望ましい。The degree of polymerization of the polyethylene naphthalate-based polyester used as a raw material polyester in producing the thermal liquid crystalline polyester of the present invention is not particularly limited, but was measured at 30 ° C. in a mixed solvent such as phenol / tetrachloroethane by weight. Intrinsic viscosity is 0.01-1.5dl
/ G is desirably used.
【0025】構成単位(1)および構成単位(2)は、
それらの合計量において熱液晶ポリエステル中、15〜
90モル%の範囲内、好ましくは25〜85モル%の範
囲内、より好ましくは30〜80モル%の範囲内で存在
する。The structural unit (1) and the structural unit (2) are
In their total amount in the thermal liquid crystalline polyester, 15-
It is present in the range of 90 mol%, preferably in the range of 25-85 mol%, more preferably in the range of 30-80 mol%.
【0026】本発明の熱液晶ポリエステルにおける構成
単位(3)および構成単位(4)は、それぞれ、6−ヒ
ドロキシ−2−ナフトエ酸もしくはそのエステル形成性
誘導体により導入されるような6−オキシ−2−ナフト
イル基およびp−ヒドロキシ安息香酸もしくはそのエス
テル形成性誘導体により導入されるような4−オキシベ
ンゾイル基である。構成単位(3)および構成単位
(4)の一部、好ましくはそれらを合わせたものの10
モル%以下は、他のヒドロキシ芳香族カルボン酸または
そのエステル形成性誘導体によって導入されうる構成単
位に置き換えられていてもよい。6−ヒドロキシ−2−
ナフトエ酸およびp−ヒドロキシ安息香酸以外のヒドロ
キシ芳香族カルボン酸としては、例えば、m−ヒドロキ
シ安息香酸、4−ヒドロキシ−3−クロロ安息香酸、4
−ヒドロキシ−3,5−ジメチル安息香酸、4−ヒドロ
キシ−3−メチル安息香酸、7−ヒドロキシ−2−ナフ
トエ酸、4−ヒドロキシ−1−ナフトエ酸、5−ヒドロ
キシ−1−ナフトエ酸等が挙げられる。The structural unit (3) and the structural unit (4) in the thermal liquid crystalline polyester of the present invention are each 6-oxy-2 as introduced by 6-hydroxy-2-naphthoic acid or an ester-forming derivative thereof. -A naphthoyl group and a 4-oxybenzoyl group as introduced by p-hydroxybenzoic acid or its ester-forming derivative. Structural unit (3) and part of structural unit (4), preferably 10
Up to mol% may be replaced by structural units which can be introduced by other hydroxyaromatic carboxylic acids or their ester-forming derivatives. 6-hydroxy-2-
Examples of hydroxy aromatic carboxylic acids other than naphthoic acid and p-hydroxybenzoic acid include m-hydroxybenzoic acid, 4-hydroxy-3-chlorobenzoic acid,
-Hydroxy-3,5-dimethylbenzoic acid, 4-hydroxy-3-methylbenzoic acid, 7-hydroxy-2-naphthoic acid, 4-hydroxy-1-naphthoic acid, 5-hydroxy-1-naphthoic acid and the like. Can be
【0027】また、本発明の熱液晶ポリエステルにおい
て、構成単位(3)および構成単位(4)の含有量の合
計は、10〜85モル%の範囲が適当であり、好ましく
は15〜75モル%であり、より好ましくは20〜70
モル%である。構成単位(3)および構成単位(4)の
含有量の合計が85モル%を越えると、溶融重合が困難
となること、成形性が著しく損なわれることなどの不都
合が生じ、10モル%未満であると、得られるポリエス
テルは熱液晶を形成せず、ガスバリヤー性が大きく低下
するので好ましくない。In the thermal liquid crystalline polyester of the present invention, the total content of the structural units (3) and (4) is suitably in the range of 10 to 85 mol%, preferably 15 to 75 mol%. And more preferably 20 to 70
Mol%. When the total content of the structural units (3) and (4) exceeds 85 mol%, disadvantages such as difficulty in melt polymerization and remarkable impairment of moldability occur, and when the total content is less than 10 mol%. If so, the resulting polyester does not form a thermal liquid crystal, and the gas barrier property is greatly reduced.
【0028】また、構成単位(3)および構成単位
(4)の合計量に対する構成単位(3)の量の割合が1
0モル%以上であることが必要であり、このことによ
り、酸素ガスバリヤー性に極めて優れた成形品を与える
ポリエステルが得られる。The ratio of the amount of the structural unit (3) to the total amount of the structural unit (3) and the structural unit (4) is 1
It is necessary that the content be 0 mol% or more, whereby a polyester which gives a molded article having extremely excellent oxygen gas barrier properties can be obtained.
【0029】本発明の熱液晶ポリエステルにおける構成
単位(3)および構成単位(4)は、通常対応するアシ
ルオキシカルボン酸を原料として用いることによりポリ
マー分子中に導入される。アシルオキシカルボン酸とし
ては、対応するヒドロキシカルボン酸と無水酢酸との反
応によって得られるようなアセトキシカルボン酸が好ま
しい。The structural units (3) and (4) in the thermal liquid crystalline polyester of the present invention are usually introduced into the polymer molecule by using the corresponding acyloxycarboxylic acid as a raw material. As the acyloxycarboxylic acid, an acetoxycarboxylic acid obtained by a reaction between the corresponding hydroxycarboxylic acid and acetic anhydride is preferable.
【0030】本発明の熱液晶ポリエステルは溶融相にお
いて液晶を形成する(光学的異方性を示す)性質を有す
る。溶融相におけるこのような光学的異方性の確認は、
当業者によく知られているように、加熱装置を備えた偏
光顕微鏡を用いて、直光ニコル下で試料の薄片、好まし
くは5〜20μm程度の薄片をカバーグラス間にはさみ
一定の昇温速度下で観察し、一定温度以上で光を透過す
ることを見ることにより行ない得る。尚、本観察におい
ては高温度下でカバーグラス間にはさんだ試料に軽く圧
力を加えるか、あるいはカバーグラスをずり動かすこと
によってより確実に偏光の透過を観察し得る。本観察に
おいて偏光の透過し始める温度が、光学的に異方性の溶
融相への転移温度である。溶融成形の容易さの点から、
この転移温度は350℃以下、より好ましくは300℃
以下であることが望ましい。The thermo-liquid crystalline polyester of the present invention has a property of forming a liquid crystal (having optical anisotropy) in a molten phase. Confirmation of such optical anisotropy in the molten phase,
As is well known to those skilled in the art, using a polarizing microscope equipped with a heating device, a thin section of a sample, preferably about 5 to 20 μm, is sandwiched between cover glasses under direct light Nicols, and a constant heating rate is used. This can be done by observing below and seeing that light transmits above a certain temperature. In this observation, the transmission of polarized light can be observed more reliably by applying light pressure to the sample sandwiched between the cover glasses at a high temperature or by sliding the cover glass. In this observation, the temperature at which polarized light starts to pass is the transition temperature to an optically anisotropic molten phase. From the point of ease of melt molding,
This transition temperature is 350 ° C. or less, more preferably 300 ° C.
It is desirable that:
【0031】本発明の熱液晶ポリエステルの光学的に異
方性の溶融相への転移温度は、従来提案されている熱液
晶ポリエステルとは異なり、示差走査熱量計により決定
することは難しい。すなわち、あとの実施例から明らか
なように、本発明のポリエステルを示差走査熱量計によ
り測定した場合には、組成によっては明確な吸熱ピーク
が観測されない場合があり、例え吸熱ピークが観測され
る場合にも、該ピークは必ずしも、結晶から液晶への転
移に基づくものではない。ポリエステル中、構成単位
(3)および構成単位(4)の割合が増加するにしたが
って吸熱ピークが小となり、構成単位(3)および構成
単位(4)の割合の合計が35モル%以上では吸熱ピー
クが観測されなくなることが多い。The transition temperature of the thermal liquid crystalline polyester of the present invention to the optically anisotropic molten phase is difficult to determine with a differential scanning calorimeter, unlike the conventionally proposed thermal liquid crystalline polyester. That is, as is clear from the examples below, when the polyester of the present invention is measured by a differential scanning calorimeter, a clear endothermic peak may not be observed depending on the composition, for example, when an endothermic peak is observed. However, the peak is not necessarily based on the transition from the crystal to the liquid crystal. In the polyester, the endothermic peak becomes smaller as the ratio of the structural unit (3) and the structural unit (4) increases, and the endothermic peak is obtained when the total ratio of the structural unit (3) and the structural unit (4) is 35 mol% or more. Are often not observed.
【0032】本発明の熱液晶ポリエステルの製造は、例
えば先ずポリエチレンナフタレート系ポリエステルを6
−アシルオキシ−2−ナフトエ酸およびp−アシルオキ
シ安息香酸でアシドリシスすることによってポリエステ
ルフラグメントを調製し、引き続いてこのポリエステル
フラグメントの重合度を上昇させることによって目的と
する熱液晶ポリエステルを調製する方法で行なわれる。
第一段階のアシドリシスは、通常、窒素、アルゴン、二
酸化炭素のような不活性ガス雰囲気下250〜300℃
で行なわれる。6−アシルオキシ−2−ナフトエ酸およ
びp−アシルオキシ安息香酸としては、通常は6−アセ
トキシ−2−ナフトエ酸およびp−アセトキシ安息香酸
をそれぞれ用いることが望ましい。In the production of the thermal liquid crystalline polyester of the present invention, for example, polyethylene naphthalate polyester
A polyester fragment is prepared by acidolysis with acyloxy-2-naphthoic acid and p-acyloxybenzoic acid, and subsequently the desired thermal liquid crystalline polyester is prepared by increasing the degree of polymerization of the polyester fragment. .
The acidification in the first stage is usually performed at 250 to 300 ° C. in an atmosphere of an inert gas such as nitrogen, argon, or carbon dioxide.
It is done in. As 6-acyloxy-2-naphthoic acid and p-acyloxybenzoic acid, it is usually desirable to use 6-acetoxy-2-naphthoic acid and p-acetoxybenzoic acid, respectively.
【0033】原料化合物として6−アシルオキシ−2−
ナフトエ酸およびp−アシルオキシ安息香酸の代わり
に、対応するヒドロキシカルボン酸(6−ヒドロキシ−
2−ナフトエ酸およびp−ヒドロキシ安息香酸)をそれ
ぞれ用いることもできる。その場合には、該ヒドロキシ
カルボン酸と低級脂肪族酸無水物、好ましくは無水酢酸
を反応させ、実質的にすべてのヒドロキシル基をアシル
オキシ基、好ましくはアセトキシ基に変換(アシル化)
したのちに生成した対応するアシルエステルを単離する
ことなく所定の原料ポリエステルと反応させることによ
り本発明の熱液晶ポリエステルが製造される。この場
合、原料ポリエステルは、6−ヒドロキシ−2−ナフト
エ酸およびp−ヒドロキシ安息香酸のアシル化反応の前
後の任意の時期に系に加えることができる。この6−ヒ
ドロキシ−2−ナフトエ酸およびp−ヒドロキシ安息香
酸のアシル化反応段階では、6−ヒドロキシ−2−ナフ
トエ酸の含有量が多い組成の場合、反応の進行に伴って
生成する6−アシルオキシ−2−ナフトエ酸が系内に析
出して攪拌が困難になり、その結果、重合を円滑に進行
させることが難しくなることがあるので、それを未然に
防止するために、目的とするアシル化反応に悪影響を及
ぼさず、かつ100〜200℃程度の沸点を有する溶
媒、特に好ましくは酢酸を系内に存在させておくことが
望ましい。As the starting compound, 6-acyloxy-2-
Instead of naphthoic acid and p-acyloxybenzoic acid, the corresponding hydroxycarboxylic acid (6-hydroxy-
2-naphthoic acid and p-hydroxybenzoic acid) can also be used. In that case, the hydroxycarboxylic acid is reacted with a lower aliphatic acid anhydride, preferably acetic anhydride, to convert substantially all of the hydroxyl groups into acyloxy groups, preferably acetoxy groups (acylation).
Thereafter, the corresponding acyl ester produced is reacted with a predetermined raw material polyester without isolation to produce the thermo-liquid crystalline polyester of the present invention. In this case, the raw material polyester can be added to the system at any time before and after the acylation reaction of 6-hydroxy-2-naphthoic acid and p-hydroxybenzoic acid. In the acylation reaction step of 6-hydroxy-2-naphthoic acid and p-hydroxybenzoic acid, in the case of a composition having a large content of 6-hydroxy-2-naphthoic acid, 6-acyloxy -2-Naphthoic acid precipitates in the system, making it difficult to stir, and as a result, it may be difficult to make the polymerization proceed smoothly. In order to prevent this, the target acylation is carried out. It is desirable that a solvent which does not adversely affect the reaction and has a boiling point of about 100 to 200 ° C., particularly preferably acetic acid, be present in the system.
【0034】6−アシルオキシ−2−ナフトエ酸および
p−アシルオキシ安息香酸と原料ポリエステルとのアシ
ドリシス反応の段階で生成する低級脂肪族酸は理論留出
量の大半が系外に出る。次いで系中に残存するアシドリ
シス反応の生成物を減圧下250〜350℃でさらに脱
低級脂肪族酸させて、所望の物品を成形するのに好適
な、好ましくは0.1dl/g以上の対数粘度にまで重
合度を増大させる。この場合、重合温度は、反応速度の
点から270℃以上、また生成ポリエステルの分解を抑
制する点から350℃以下の温度であることが好ましい
が、特に好ましくは270〜320℃である。この重合
段階においては減圧度を徐々に高め、最終的に1mmHg以
下、好ましくは0.5mmHg以下にすることが望ましい。
またさらに分子量を高める方法として、 業界周知の固相
重合法等を用いることも可能である。Most of the theoretically distilled amount of the lower aliphatic acid generated in the acidolysis reaction between 6-acyloxy-2-naphthoic acid and p-acyloxybenzoic acid and the starting polyester leaves the system. The product of the acidolysis reaction remaining in the system is then further de-lowered at 250 to 350 ° C. under reduced pressure to obtain a desired article, preferably having a logarithmic viscosity of at least 0.1 dl / g or more, suitable for forming a desired article. To increase the degree of polymerization. In this case, the polymerization temperature is preferably 270 ° C. or higher from the viewpoint of reaction rate and 350 ° C. or lower from the viewpoint of suppressing decomposition of the formed polyester, and particularly preferably 270 to 320 ° C. In this polymerization step, it is desirable that the degree of reduced pressure is gradually increased, and finally the pressure is reduced to 1 mmHg or less, preferably 0.5 mmHg or less.
Further, as a method for further increasing the molecular weight, a solid phase polymerization method well-known in the art can be used.
【0035】本発明の熱液晶ポリエステルの、ペンタフ
ルオロフェノール中、60℃で測定した対数粘度は、得
られる成形品の力学強度の点から、0.1dl/g以
上、好ましくは0.3dl/g以上、より好ましくは
0.5dl/g以上であることが望ましい。また、対数
粘度に臨界的な上限値はないが、溶融重合の容易さ、成
形性等の点から3.0dl/g以下、好ましくは2.0
dl/g以下であることが望ましい。The logarithmic viscosity of the thermal liquid crystalline polyester of the present invention measured in pentafluorophenol at 60 ° C. is at least 0.1 dl / g, preferably 0.3 dl / g, in view of the mechanical strength of the obtained molded article. More preferably, it is more preferably at least 0.5 dl / g. Although there is no critical upper limit for the logarithmic viscosity, it is 3.0 dl / g or less, preferably 2.0 dl / g or less, from the viewpoint of ease of melt polymerization and moldability.
dl / g or less is desirable.
【0036】尚、本発明の熱液晶ポリエステルの構成単
位(1)、(2)、(3)および(4)の組成比に関し
ては、ポリマーを適当な溶媒に溶解させ、該溶液のNM
Rスペクトルを測定することにより決定され、通常、仕
込み原料組成比と実質的に同一の組成を有するポリマー
が得られる。With respect to the composition ratio of the structural units (1), (2), (3) and (4) of the thermal liquid crystalline polyester of the present invention, the polymer is dissolved in an appropriate solvent,
Determined by measuring the R spectrum, a polymer having substantially the same composition as the charged raw material composition ratio is usually obtained.
【0037】本発明の熱液晶ポリエステルは、従来公知
の熱液晶ポリマーと異なり、溶融状態から急冷して得ら
れる成形品の結晶化度が極めて低く、通常の場合にはX
線回折により求められる結晶化度は20%以下である。
ポリエステル中の構成単位(3)および構成単位(4)
の割合が増加するにしたがって結晶化度が低下する。そ
のため本発明の熱液晶ポリエステルから得られるフイル
ム形態などの成形品は、従来提案されている熱液晶ポリ
エステルとは異なり、一軸方向および二軸方向の熱延伸
が可能であり、多くの場合2×2倍以上または3×3倍
以上の同時、あるいは逐次の二軸延伸が可能である。し
かも、本発明の熱液晶ポリエステルからなる成形品は優
れたガスバリヤー性を有している。これらの際立った特
性は、ヒドロキシ芳香族カルボン酸成分としてp−ヒド
ロキシ安息香酸、あるいはそのエステル形成性誘導体の
みを用いた熱液晶ポリエステルではまったく発現せず、
また、ヒドロキシ芳香族カルボン酸成分として2種のヒ
ドロキシ安息香酸、あるいはそのエステル形成性誘導体
のみを用いた熱液晶ポリエステルでもまったく発現しな
い。The thermal liquid crystalline polyester of the present invention is different from the conventionally known thermal liquid crystalline polymer in that the molded product obtained by quenching from the molten state has a very low crystallinity.
The crystallinity determined by line diffraction is 20% or less.
Structural unit (3) and structural unit (4) in polyester
The crystallinity decreases as the ratio increases. Therefore, a molded article such as a film obtained from the thermo-liquid polyester of the present invention can be subjected to uniaxial and bi-axial heat stretching, unlike the conventionally proposed thermo-liquid polyester, and in many cases, 2 × 2 Simultaneous or sequential biaxial stretching of 3 times or more or 3 × 3 times or more is possible. Moreover, the molded article made of the thermal liquid crystalline polyester of the present invention has excellent gas barrier properties. These remarkable properties are not exhibited at all in the thermal liquid crystal polyester using only p-hydroxybenzoic acid or its ester-forming derivative as the hydroxy aromatic carboxylic acid component,
Further, even a thermo-liquid crystalline polyester using only two kinds of hydroxybenzoic acids or their ester-forming derivatives as the hydroxyaromatic carboxylic acid component does not show any expression.
【0038】本発明の熱液晶ポリエステルは、熱延伸が
可能であることから特にシートやフイルムなどの成形品
の製造に適している。また、ダイレクトブローと呼ばれ
る押出し吹き込み成形やインジェクションブロー成形、
二軸延伸ブロー成形などにより中空成形体を得ることも
できる。The thermal liquid crystalline polyester of the present invention is suitable for the production of molded articles such as sheets and films since it can be thermally stretched. In addition, extrusion blow molding and injection blow molding called direct blow,
A hollow molded article can also be obtained by biaxial stretch blow molding or the like.
【0039】さらに、本発明で用いる熱液晶ポリエステ
ルは、他のポリマー、例えばポリエチレン、ポリプロピ
レン等のポリオレフィン樹脂、ポリエチレンテレフタレ
ート、ポリブチレンテレフタレート、ポリエチレンナフ
タレート等のポリエステル樹脂、ナイロン等のポリアミ
ド樹脂等と積層することも可能であり、共押出し、ドラ
イラミネーション、サンドイッチラミネーションなどに
よりフイルム状、シート状、チューブ状などの積層体と
し、さらに射出成形、ブロー成形、二軸延伸ブロー成
形、真空成形、圧縮成形などによりカップ状、ボトル状
などの積層体の容器とすることができる。Further, the thermal liquid crystalline polyester used in the present invention is laminated with another polymer, for example, a polyolefin resin such as polyethylene and polypropylene, a polyester resin such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and a polyamide resin such as nylon. It is also possible to form a laminate such as a film, sheet, tube, etc. by co-extrusion, dry lamination, sandwich lamination, etc., and furthermore, injection molding, blow molding, biaxial stretching blow molding, vacuum molding, compression molding, etc. Thus, a container of a laminated body such as a cup shape and a bottle shape can be obtained.
【0040】本発明の熱液晶ポリエステルから得られる
成形体は、酸素バリヤー性に優れており、ポリエチレン
テレフタレートの20〜400倍以上の性能を有してお
り、しかもその優れた酸素バリヤー性の湿度依存性は極
めて小さい。例えば、本発明の熱液晶ポリエステルを急
冷して得られるフイルムは、通常、20℃で測定した酸
素透過量が20ml・20μm/m↑2・day・at
m以下である。酸素バリヤー性は成形品に対して熱処理
を施すことにより更に向上する場合がある。The molded article obtained from the thermal liquid crystalline polyester of the present invention has excellent oxygen barrier properties, has a performance of 20 to 400 times or more that of polyethylene terephthalate, and has excellent oxygen barrier properties depending on humidity. Sex is extremely small. For example, a film obtained by quenching the thermal liquid crystalline polyester of the present invention usually has an oxygen permeation amount measured at 20 ° C. of 20 ml · 20 μm / m ・ 2 · day · at.
m or less. The oxygen barrier property may be further improved by subjecting the molded article to heat treatment.
【0041】このように、本発明の熱液晶ポリエステル
は従来の熱液晶ポリマーと比較して飛躍的に改善された
成形性を有しており、延伸も可能であるとともに成形品
の酸素バリヤー性にも極めて優れていることから、酸素
バリヤー性の要求される各種包装材料、容器として好適
に用いられる。従ってその用途は多岐にわたり、例え
ば、食品、医薬品、化粧品、繊維製品、工業薬品等の分
野における気体遮断性包装材料に用いることが出来る。
本発明の熱液晶ポリエステルからなる容器(包装材料を
含む)においては、その壁面の20℃で測定された酸素
透過量は通常20ml・20μm/m↑2・day・a
tm以下である。As described above, the thermal liquid crystal polyester of the present invention has a significantly improved moldability as compared with the conventional thermal liquid crystal polymer, and can be stretched and has a reduced oxygen barrier property of the molded article. Is very excellent, so that it is suitably used as various packaging materials and containers requiring oxygen barrier properties. Therefore, it has a wide variety of uses, and for example, can be used as a gas barrier packaging material in the fields of foods, pharmaceuticals, cosmetics, textiles, industrial chemicals, and the like.
In the container (including the packaging material) made of the thermo-liquid crystalline polyester of the present invention, the oxygen permeation amount of the wall surface measured at 20 ° C. is usually 20 ml · 20 μm / m ↑ 2 · day · a.
tm or less.
【0042】さらに、本発明の熱液晶ポリエステルは、
繊維、コーティング剤等として利用することができ、ま
た従来の熱液晶ポリマーとは特異的に異なる低温流動性
を利用して、接着剤、塗料等として用いることも可能で
ある。Further, the thermal liquid crystalline polyester of the present invention comprises
It can be used as a fiber, a coating agent, or the like, and can be used as an adhesive, a paint, or the like by utilizing a low-temperature fluidity that is different from a conventional thermal liquid crystal polymer.
【0043】[0043]
【実施例】以下実施例により本発明を具体的に説明す
る。本実施例中の物性値の測定は次の方法に従った。The present invention will be described in detail with reference to the following examples. The measurement of the physical properties in this example was performed according to the following methods.
【0044】1)対数粘度(η↓inh ) ペンタフルオロフェノール溶媒を用いて0.1g/dl
の濃度で60℃で測定した。1) Logarithmic viscosity (η ↓ inh) 0.1 g / dl using a pentafluorophenol solvent
At 60 ° C.
【0045】η↓inh=[ln(t↓1/t↓0)]/cΗ ↓ inh = [ln (t ↓ 1 / t ↓ 0)] / c
【0046】[式中、η↓inhは対数粘度(dl/g)
を表し、t↓0は溶媒の流下時間(秒)を表し、t↓1は
試料溶液での流下時間(秒)を表し、cは溶液中の試料
の濃度(0.1g/dl)を表す。][Where η ↓ inh is the logarithmic viscosity (dl / g)
, T ↓ 0 represents the flow time (second) of the solvent, t ↓ 1 represents the flow time (second) in the sample solution, and c represents the concentration of the sample in the solution (0.1 g / dl). . ]
【0047】2)熱分析 示差走査熱量計(DSC;メトラー社製、TA−300
0型)を用いて、溶融状態から急冷した試料に対し、1
0℃/分の昇温速度にて融点(Tm)およびガラス転移
点(Tg)を測定した。2) Thermal analysis Differential scanning calorimeter (DSC; manufactured by Mettler, TA-300)
0), the sample was quenched from the molten state.
The melting point (Tm) and the glass transition point (Tg) were measured at a heating rate of 0 ° C./min.
【0048】3)酸素透過量(PO↓2) ガス透過率測定装置(MODERN CONTOROL
S社製 OX−TRAN10/50A)を使用して20
℃、相対湿度65%の条件下で、熱プレスフイルム、延
伸フイルムまたはPETとの積層延伸フイルムについて
測定した。単位はml・20μm/・m↑2・day・
atmである。3) Oxygen Permeation (PO ↓ 2) Gas Permeability Measurement System (MODERN CONTROL)
S company OX-TRAN10 / 50A)
The measurement was performed on a hot press film, a stretched film, or a laminate stretched film with PET under the conditions of ° C and a relative humidity of 65%. The unit is ml ・ 20μm / ・ m ↑ 2 ・ day ・
atm.
【0049】4)延伸性 温度260〜290℃で厚さ約100μmの熱プレスフ
イルムを作製し、このフイルムを柴山科学器械製作所二
軸延伸装置を用いて100〜240℃の温度で3×3倍
の二軸延伸に付した。尚、延伸性の評価に関しては、厚
みむらの少ない均一な二軸延伸フイルムが得られたもの
を「良好」、延伸性が全く認められず、フイルムが破断
したものを「延伸不可」と評価した。4) Stretchability A hot press film having a thickness of about 100 μm was prepared at a temperature of 260 to 290 ° C., and this film was 3 × 3 times at a temperature of 100 to 240 ° C. using a biaxial stretching device of Shibayama Scientific Instruments. For biaxial stretching. In addition, regarding the evaluation of the stretchability, those in which a uniform biaxially stretched film having small thickness unevenness was obtained were evaluated as “good”, and those in which no stretchability was observed and the film was broken were evaluated as “unstretchable”. .
【0050】5)ポリマー組成 得られたポリマーをトリフルオロ酢酸溶液とし、500
MHz ↑1H−NMR(日本電子製、JNM GX−
500型)にて測定した。尚、本測定の結果、実施例お
よび比較例でそれぞれ得られた熱液晶ポリエステルの各
構成単位の組成は、いずれの場合も仕込み原料組成と分
析精度内で一致していることが確認された。5) Polymer composition The obtained polymer was converted to a trifluoroacetic acid solution,
MHz @ 1H-NMR (manufactured by JEOL, JNM GX-
500 type). As a result of this measurement, it was confirmed that the composition of each structural unit of the thermal liquid crystal polyester obtained in each of the examples and comparative examples was consistent with the composition of the charged raw material within the analytical accuracy in any case.
【0051】実施例1 フェノール/テトラクロロエタン等重量混合溶媒を用い
て30℃で測定した極限粘度が0.65dl/gのポリ
エチレンナフタレート975g(4.0モル)、6−ア
セトキシ−2−ナフトエ酸1150g(5.0モル)、
およびp−アセトキシ安息香酸180g(1.0モル)
を、攪拌機、蒸留塔および窒素ガス吹き込み口を備えた
内容積8lの反応器に仕込み、反応系内を3回窒素置換
したのち窒素気流下290℃にて1時間攪拌加熱し、そ
の後徐々に系内を減圧にして約30mmHgで約2時間反応
させた。本操作の結果、理論留出酢酸量の約90%が留
出した。次いで反応系内の真空度をさらに上昇させ、1
mmHg以下で5時間反応させたのち生成ポリエステルを取
り出した。Example 1 975 g (4.0 mol) of polyethylene naphthalate having an intrinsic viscosity of 0.65 dl / g measured at 30 ° C. using a phenol / tetrachloroethane equal weight mixed solvent, 6-acetoxy-2-naphthoic acid 1150 g (5.0 mol),
And 180 g (1.0 mol) of p-acetoxybenzoic acid
Was charged into a reactor having an internal volume of 8 liters equipped with a stirrer, a distillation column and a nitrogen gas injection port. After the inside of the reaction system was replaced with nitrogen three times, the mixture was stirred and heated at 290 ° C. for 1 hour under a nitrogen stream, and then gradually cooled. The reaction was carried out at a reduced pressure of about 30 mmHg for about 2 hours. As a result of this operation, about 90% of the theoretical amount of acetic acid distilled out. Next, the degree of vacuum in the reaction system was further increased, and 1
After the reaction at 5 mmHg or less for 5 hours, the formed polyester was taken out.
【0052】得られたポリマーをトリフルオロ酢酸に溶
解させ↑1H−NMRスペクトルを測定した結果、本ポ
リマーの構成単位比は、[構成単位(1)+構成単位
(2)]/[構成単位(3)+構成単位(4)]のモル
比で57/43であることが判明した。これは仕込みの
原料組成比と実質的に同一である。得られたポリマーの
微小片をリンカム(Linkam)社製、顕微鏡用加熱
装置TH−600内で窒素雰囲気下、10℃/分の速度
で昇温し、偏光顕微鏡直交ニコル下で観察したところ、
160℃付近から光を透過し始め、その後昇温に伴って
透過光量はさらに増大し、最終的に350℃まで昇温し
ても光学的に異方性の溶融相を形成したままであった。
また、本ポリマーを溶融状態から急冷した試料を10℃
/分の昇温速度でDSCで分析した結果、86℃にガラ
ス転移点が観測された以外、吸熱ピークはまったく観測
されなかった。さらに本ポリマーを溶融状態から急冷し
た試料の結晶化度をX線広角散乱で測定した結果、該試
料の結晶化度は10%であった。次に本ポリマーから、
田端機械製小型射出成形機(TK14−1AP型)を用
いて、シリンダー温度280℃、射出圧力800kg/cm
↑2、金型温度30℃で75×15×2mmの大きさの試
験片を作製した。得られた試験片をJIS K7203
に準じた方法により、曲げ強度および曲げ弾性率を測定
したところ、次に示す結果が得られた(いずれも樹脂の
流動方向)。The obtained polymer was dissolved in trifluoroacetic acid, and the @ 1 H-NMR spectrum was measured. As a result, the structural unit ratio of the present polymer was [(structural unit (1) + structural unit (2)] / [structural unit ( 3) + Structural unit (4)] in a molar ratio of 57/43. This is substantially the same as the charged raw material composition ratio. When the temperature of the obtained polymer fine pieces was increased at a rate of 10 ° C./min under a nitrogen atmosphere in a heating device for microscope TH-600 manufactured by Linkam Inc., and observed under a polarizing microscope orthogonal Nicols,
The light began to transmit at around 160 ° C., and thereafter, the amount of transmitted light further increased as the temperature was raised. Even when the temperature was finally raised to 350 ° C., an optically anisotropic molten phase was still formed. .
A sample obtained by rapidly cooling the present polymer from a molten state was placed at 10 ° C.
As a result of DSC analysis at a heating rate of / min, no endothermic peak was observed except for the glass transition point at 86 ° C. Furthermore, the crystallinity of the sample obtained by quenching the polymer from the molten state was measured by wide-angle X-ray scattering. As a result, the crystallinity of the sample was 10%. Next, from this polymer,
Using a small injection molding machine (Model TK14-1AP) manufactured by Tabata Machine, cylinder temperature 280 ° C, injection pressure 800kg / cm
# 2, a test piece having a size of 75 × 15 × 2 mm was prepared at a mold temperature of 30 ° C. The obtained test piece was subjected to JIS K7203.
When the bending strength and the bending elastic modulus were measured by the method according to the above, the following results were obtained (in each case, the flow direction of the resin).
【0053】曲げ強度:2254kg/cm↑2Bending strength: 2254 kg / cm ↑ 2
【0054】曲げ弾性率:13.3×10↑4kg/cm↑2Flexural modulus: 13.3 × 10 ↑ 4 kg / cm ↑ 2
【0055】次に、本ポリマーを280℃で溶融熱プレ
スしたのち水冷式冷却プレスで急冷することにより得ら
れた厚み約100μmのフイルムの酸素透過量を、MO
DERN CONTOROLS社製ガス透過率測定装置
OX−TRAN10/50Aを使用して20℃、相対
湿度65%の条件下で測定した結果、酸素透過量は1.
2ml・20μm/m↑2・day・atmであった。
さらに同様にして得られた厚み約100μmの熱プレス
フイルムを、柴山科学器械製作所製二軸延伸装置を用い
て150℃で3×3倍の同時二軸延伸に付した結果、厚
み約10μmの均一なフイルムが得られた。Next, this polymer was hot-pressed at 280 ° C. and then rapidly cooled by a water-cooled cooling press to obtain an oxygen permeation amount of a film having a thickness of about 100 μm.
As a result of measurement using a gas permeability measuring device OX-TRAN10 / 50A manufactured by DERN Controls under the conditions of 20 ° C. and a relative humidity of 65%, the oxygen permeation amount was 1.
It was 2 ml · 20 μm / m ・ 2 · day · atm.
Further, the hot press film having a thickness of about 100 μm obtained in the same manner was subjected to simultaneous biaxial stretching of 3 × 3 times at 150 ° C. using a biaxial stretching apparatus manufactured by Shibayama Kagaku Kikai Seisakusho, Ltd. Film was obtained.
【0056】尚、本ポリマーの対数粘度、DSC分析結
果、プレスフイルムの酸素透過量、および延伸性(3×
3倍同時二軸延伸)の評価結果を表1に示す。The logarithmic viscosity of the polymer, the result of DSC analysis, the oxygen permeability of the press film, and the stretchability (3 ×
Table 1 shows the evaluation results of the three-fold simultaneous biaxial stretching.
【0057】実施例2 実施例1において、ポリエチレンナフタレート/6−ア
セトキシ−2−ナフトエ酸/p−アセトキシ安息香酸の
モル比を40/30/30にした以外は実施例1と同様
にしてポリエステルを得た。本ポリマーを、実施例1で
用いた装置により偏光顕微鏡直交ニコル下で観察したと
ころ、150℃付近から光を透過し始め、その後昇温に
伴って透過光量はさらに増大し、最終的に350℃まで
昇温しても光学的に異方性の溶融相を形成したままであ
つた。また、本ポリマーを実施例1と同様にしてDSC
で分析した結果、81℃にガラス転移点が観測された以
外、吸熱ピークはまったく観測されなかった。さらに本
ポリマーの結晶化度を実施例1と同様にして測定した結
果、結晶化度は11%であった。次に実施例1と同様の
条件で射出成形を行ない、曲げ強度および曲げ弾性率を
測定したところ、次に示す結果が得られた(いずれも樹
脂の流動方向)。Example 2 A polyester was prepared in the same manner as in Example 1 except that the molar ratio of polyethylene naphthalate / 6-acetoxy-2-naphthoic acid / p-acetoxybenzoic acid was 40/30/30. I got When this polymer was observed under a polarizing microscope crossed Nicols using the apparatus used in Example 1, light began to be transmitted from around 150 ° C., and thereafter, the amount of transmitted light increased further with an increase in temperature, and finally increased to 350 ° C. Even when the temperature was raised, an optically anisotropic molten phase was still formed. The polymer was subjected to DSC in the same manner as in Example 1.
As a result, no endothermic peak was observed at all except for the glass transition point at 81 ° C. Further, the crystallinity of this polymer was measured in the same manner as in Example 1, and as a result, the crystallinity was 11%. Next, injection molding was performed under the same conditions as in Example 1, and the bending strength and the bending elastic modulus were measured. The results shown below were obtained (in each case, the flow direction of the resin).
【0058】曲げ強度:2134kg/cm↑2Flexural strength: 2134 kg / cm ↑ 2
【0059】曲げ弾性率:12.7×10↑4kg/cm↑2Flexural modulus: 12.7 × 10 4 kg / cm 2
【0060】本ポリマーの対数粘度、DSC分析結果、
プレスフイルムの酸素透過量、および延伸性(3×3倍
同時二軸延伸)の評価結果を表1に示す。The logarithmic viscosity of the polymer, the result of DSC analysis,
Table 1 shows the evaluation results of the oxygen permeability of the press film and the stretchability (3 × 3 simultaneous biaxial stretching).
【0061】実施例3 実施例1において、ポリエチレンナフタレート/6−ア
セトキシ−2−ナフトエ酸/p−アセトキシ安息香酸の
モル比を40/10/50にした以外は実施例1と同様
にしてポリエステルを得た。本ポリマーを、実施例1で
用いた装置により偏光顕微鏡直交ニコル下で観察したと
ころ、140℃付近から光を透過し始め、その後昇温に
伴って透過光量はさらに増大し、最終的に350℃まで
昇温しても光学的に異方性の溶融相を形成したままであ
った。また、本ポリマーを実施例1と同様にしてDSC
で分析した結果、75℃にガラス転移点が観測された以
外、吸熱ピークはまったく観測されなかった。さらに本
ポリマーの結晶化度を実施例1と同様にして測定した結
果、結晶化度は12%であった。次に実施例1と同様の
条件で射出成形を行ない、曲げ強度および曲げ弾性率を
測定したところ、次に示す結果が得られた(いずれも樹
脂の流動方向)。Example 3 Polyester was prepared in the same manner as in Example 1 except that the molar ratio of polyethylene naphthalate / 6-acetoxy-2-naphthoic acid / p-acetoxybenzoic acid was changed to 40/10/50. I got When this polymer was observed under a polarizing microscope crossed Nicols using the apparatus used in Example 1, light began to transmit at around 140 ° C., and thereafter, the amount of transmitted light further increased with increasing temperature, and finally increased to 350 ° C. Even when the temperature was raised to the maximum, an optically anisotropic molten phase was still formed. The polymer was subjected to DSC in the same manner as in Example 1.
As a result, no endothermic peak was observed except for the glass transition point at 75 ° C. Further, the crystallinity of this polymer was measured in the same manner as in Example 1, and as a result, the crystallinity was 12%. Next, injection molding was performed under the same conditions as in Example 1, and the bending strength and the bending elastic modulus were measured. The results shown below were obtained (in each case, the flow direction of the resin).
【0062】曲げ強度:2055kg/cm↑2Bending strength: 2055 kg / cm ↑ 2
【0063】曲げ弾性率:12.3×10↑4kg/cm↑2Flexural modulus: 12.3 × 10 ↑ 4 kg / cm ↑ 2
【0064】本ポリマーの対数粘度、DSC分析結果、
プレスフイルムの酸素透過量、および延伸性(3×3倍
同時二軸延伸)の評価結果を表1に示す。The logarithmic viscosity of the polymer, the result of DSC analysis,
Table 1 shows the evaluation results of the oxygen permeability of the press film and the stretchability (3 × 3 simultaneous biaxial stretching).
【0065】実施例4 実施例1において、ポリエチレンナフタレート/6−ア
セトキシ−2−ナフトエ酸/p−アセトキシ安息香酸の
モル比を30/60/10にした以外は実施例1と同様
にしてポリエステルを得た。本ポリマーを、実施例1で
用いた装置により偏光顕微鏡直交ニコル下で観察したと
ころ、160℃付近から光を透過し始め、その後昇温に
伴って透過光量はさらに増大し、最終的に350℃まで
昇温しても光学的に異方性の溶融相を形成したままであ
った。また、本ポリマーを実施例1と同様にしてDSC
で分析した結果、89℃にガラス転移点が観測された以
外、吸熱ピークはまったく観測されなかった。さらに本
ポリマーの結晶化度を実施例1と同様にして測定した結
果、結晶化度は8%であった。Example 4 A polyester was prepared in the same manner as in Example 1 except that the molar ratio of polyethylene naphthalate / 6-acetoxy-2-naphthoic acid / p-acetoxybenzoic acid was 30/60/10. I got When this polymer was observed under a polarizing microscope crossed Nicols using the apparatus used in Example 1, light began to be transmitted from around 160 ° C., and thereafter, the amount of transmitted light increased further with an increase in temperature. Even when the temperature was raised to the maximum, an optically anisotropic molten phase was still formed. The polymer was subjected to DSC in the same manner as in Example 1.
As a result of the analysis, no endothermic peak was observed except for the glass transition point at 89 ° C. Further, the crystallinity of this polymer was measured in the same manner as in Example 1, and as a result, the crystallinity was 8%.
【0066】本ポリマーの対数粘度、DSC分析結果、
プレスフイルムの酸素透過量、および延伸性(3×3倍
同時二軸延伸)の評価結果を表1に示す。The logarithmic viscosity of the polymer, the result of DSC analysis,
Table 1 shows the evaluation results of the oxygen permeability of the press film and the stretchability (3 × 3 simultaneous biaxial stretching).
【0067】実施例5 実施例1において、ポリエチレンナフタレート/6−ア
セトキシ−2−ナフトエ酸/p−アセトキシ安息香酸の
モル比を30/35/35にした以外は実施例1と同様
にしてポリエステルを得た。本ポリマーを、実施例1で
用いた装置により偏光顕微鏡直交ニコル下で観察したと
ころ、150℃付近から光を透過し始め、その後昇温に
伴って透過光量はさらに増大し、最終的に350℃まで
昇温しても光学的に異方性の溶融相を形成したままであ
った。また、本ポリマーを実施例1と同様にしてDSC
で分析した結果、80℃にガラス転移点が観測された以
外、吸熱ピークはまったく観測されなかった。さらに本
ポリマーの結晶化度を実施例1と同様にして測定した結
果、結晶化度は10%であった。Example 5 Polyester was prepared in the same manner as in Example 1 except that the molar ratio of polyethylene naphthalate / 6-acetoxy-2-naphthoic acid / p-acetoxybenzoic acid was 30/35/35. I got When this polymer was observed under a polarizing microscope crossed Nicols using the apparatus used in Example 1, light began to be transmitted from around 150 ° C., and thereafter, the amount of transmitted light increased further with an increase in temperature, and finally increased to 350 ° C. Even when the temperature was raised to the maximum, an optically anisotropic molten phase was still formed. The polymer was subjected to DSC in the same manner as in Example 1.
As a result, no endothermic peak was observed except for the glass transition point at 80 ° C. Further, the crystallinity of this polymer was measured in the same manner as in Example 1, and as a result, the crystallinity was 10%.
【0068】本ポリマーの対数粘度、DSC分析結果、
プレスフイルムの酸素透過量、および延伸性(3×3倍
同時二軸延伸)の評価結果を表1に示す。The logarithmic viscosity of the polymer, the result of DSC analysis,
Table 1 shows the evaluation results of the oxygen permeability of the press film and the stretchability (3 × 3 simultaneous biaxial stretching).
【0069】実施例6 実施例1において、ポリエチレンナフタレート/6−ア
セトキシ−2−ナフトエ酸/p−アセトキシ安息香酸の
モル比を30/10/60にした以外は実施例1と同様
にしてポリエステルを得た。本ポリマーを、実施例1で
用いた装置により偏光顕微鏡直交ニコル下で観察したと
ころ、150℃付近から光を透過し始め、その後昇温に
伴って透過光量はさらに増大し、最終的に350℃まで
昇温しても光学的に異方性の溶融相を形成したままであ
った。また、本ポリマーを実施例1と同様にしてDSC
で分析した結果、72℃にガラス転移点が観測された以
外、吸熱ピークはまったく観測されなかった。さらに本
ポリマーの結晶化度を実施例1と同様にして測定した結
果、結晶化度は14%であった。Example 6 Polyester was prepared in the same manner as in Example 1 except that the molar ratio of polyethylene naphthalate / 6-acetoxy-2-naphthoic acid / p-acetoxybenzoic acid was 30/10/60. I got When this polymer was observed under a polarizing microscope crossed Nicols using the apparatus used in Example 1, light began to be transmitted from around 150 ° C., and thereafter, the amount of transmitted light increased further with an increase in temperature, and finally increased to 350 ° C. Even when the temperature was raised to the maximum, an optically anisotropic molten phase was still formed. The polymer was subjected to DSC in the same manner as in Example 1.
As a result, no endothermic peak was observed except for the glass transition point at 72 ° C. Further, the crystallinity of this polymer was measured in the same manner as in Example 1, and as a result, the crystallinity was 14%.
【0070】本ポリマーの対数粘度、DSC分析結果、
プレスフイルムの酸素透過量、および延伸性(3×3倍
同時二軸延伸)の評価結果を表1に示す。The logarithmic viscosity of the polymer, the result of DSC analysis,
Table 1 shows the evaluation results of the oxygen permeability of the press film and the stretchability (3 × 3 simultaneous biaxial stretching).
【0071】実施例7 6−ヒドロキシ−2−ナフトエ酸1316g(7.0モ
ル)、p−ヒドロキシ安息香酸138g(1.0モ
ル)、無水酢酸918g(9.0モル)、フェノール/
テトラクロロエタン等重量混合溶媒を用いて30℃で測
定した極限粘度が0.65dl/gのポリエチレンナフ
タレート484g(2.0モル)、および反応溶媒とし
ての酢酸960g(16.0モル)を、攪拌機、蒸留塔
および窒素ガス吹き込み口を備えた内容積8lの反応器
に仕込み、反応系内を3回窒素置換したのち窒素気流
下、還流条件下で約2時間攪拌加熱した。その後、約3
時間かけて290℃まで昇温した後、徐々に系内を減圧
にして約30mmHgで約2時間反応させた結果、理論留出
量の約95%の酢酸および無水酢酸が留出した。次に反
応系内の真空度をさらに上昇させ、1mmHg以下で1時間
反応させたのち生成ポリエステルを取り出した。Example 7 1316 g (7.0 mol) of 6-hydroxy-2-naphthoic acid, 138 g (1.0 mol) of p-hydroxybenzoic acid, 918 g (9.0 mol) of acetic anhydride, phenol /
Using a stirrer, 484 g (2.0 mol) of polyethylene naphthalate having an intrinsic viscosity of 0.65 dl / g measured at 30 ° C. using a mixed solvent of tetrachloroethane and the like, and 960 g (16.0 mol) of acetic acid as a reaction solvent. The reaction system was charged to a reactor having an internal volume of 8 liters equipped with a distillation column and a nitrogen gas injection port. After the inside of the reaction system was replaced with nitrogen three times, the mixture was stirred and heated under a nitrogen stream under reflux conditions for about 2 hours. Then, about 3
After elevating the temperature to 290 ° C. over a period of time, the pressure inside the system was gradually reduced, and the reaction was carried out at about 30 mmHg for about 2 hours. As a result, about 95% of the theoretical amount of acetic acid and acetic anhydride were distilled off. Next, the degree of vacuum in the reaction system was further increased, and the reaction was carried out at 1 mmHg or less for 1 hour, and then the produced polyester was taken out.
【0072】本ポリマーを、実施例1で用いた装置によ
り偏光顕微鏡直交ニコル下で観察したところ、160℃
付近から光を透過し始め、その後昇温に伴って透過光量
はさらに増大し、最終的に350℃まで昇温しても光学
的に異方性の溶融相を形成したままであった。また、本
ポリマーを実施例1と同様にしてDSCで分析した結
果、96℃にガラス転移点が観測された以外、吸熱ピー
クはまったく観測されなかった。さらに本ポリマーの結
晶化度を実施例1と同様にして測定した結果、結晶化度
は7%であった。The polymer was observed under a polarizing microscope crossed Nicols using the apparatus used in Example 1.
Light began to be transmitted from the vicinity, and thereafter, the amount of transmitted light increased further as the temperature was increased. Even when the temperature was finally increased to 350 ° C., an optically anisotropic molten phase was still formed. In addition, the polymer was analyzed by DSC in the same manner as in Example 1. As a result, no endothermic peak was observed except for the glass transition point at 96 ° C. Further, the crystallinity of this polymer was measured in the same manner as in Example 1, and as a result, the crystallinity was 7%.
【0073】本ポリマーの対数粘度、DSC分析結果、
プレスフイルムの酸素透過量、および延伸性(3×3倍
同時二軸延伸)の評価結果を表1に示す。The logarithmic viscosity of the polymer, the result of DSC analysis,
Table 1 shows the evaluation results of the oxygen permeability of the press film and the stretchability (3 × 3 simultaneous biaxial stretching).
【0074】実施例8 実施例7において、6−ヒドロキシ−2−ナフトエ酸5
64g(3.0モル)、p−ヒドロキシ安息香酸138
g(1.0モル)、無水酢酸490g(4.8モル)、
酢酸480g(8.0モル)およびポリエチレンナフタ
レート1452g(6.0モル)を反応器に仕込んだこ
と以外は実施例7と同様にしてポリエステルを得た。本
ポリマーを、実施例1で用いた装置により偏光顕微鏡直
交ニコル下で観察したところ、250℃付近から光を透
過し始め、その後昇温に伴って透過光量はさらに増大
し、最終的に350℃まで昇温しても光学的に異方性の
溶融相を形成したままであった。また、本ポリマーを実
施例1と同様にしてDSCで分析した結果、78℃にガ
ラス転移点、252℃に吸熱ピークが観測された。Example 8 In Example 7, 6-hydroxy-2-naphthoic acid 5
64 g (3.0 mol), p-hydroxybenzoic acid 138
g (1.0 mol), 490 g (4.8 mol) of acetic anhydride,
A polyester was obtained in the same manner as in Example 7, except that 480 g (8.0 mol) of acetic acid and 1452 g (6.0 mol) of polyethylene naphthalate were charged into the reactor. When this polymer was observed under a polarizing microscope crossed Nicols with the apparatus used in Example 1, light began to be transmitted from around 250 ° C., and thereafter, the amount of transmitted light further increased with increasing temperature, and finally increased to 350 ° C. Even when the temperature was raised to the maximum, an optically anisotropic molten phase was still formed. The polymer was analyzed by DSC in the same manner as in Example 1. As a result, a glass transition point was observed at 78 ° C and an endothermic peak was observed at 252 ° C.
【0075】本ポリマーの対数粘度、DSC分析結果、
プレスフイルムの酸素透過量、および延伸性(3×3倍
同時二軸延伸)の評価結果を表1に示す。The logarithmic viscosity of the polymer, the result of DSC analysis,
Table 1 shows the evaluation results of the oxygen permeability of the press film and the stretchability (3 × 3 simultaneous biaxial stretching).
【0076】実施例9 実施例7において、6−ヒドロキシ−2−ナフトエ酸3
76g(2.0モル)、p−ヒドロキシ安息香酸138
g(1.0モル)、無水酢酸367g(3.6モル)、
酢酸360g(6.0モル)およびポリエチレンナフタ
レート1694g(7.0モル)を反応器に仕込んだこ
と以外は実施例7と同様にしてポリエステルを得た。本
ポリマーを、実施例1で用いた装置により偏光顕微鏡直
交ニコル下で観察したところ、255℃付近から光を透
過し始め、その後昇温に伴って透過光量はさらに増大
し、最終的に350℃まで昇温しても光学的に異方性の
溶融相を形成したままであった。また、本ポリマーを実
施例1と同様にしてDSCで分析した結果122℃にガ
ラス転移点、256℃に吸熱ピークが観測された。Example 9 In Example 7, 6-hydroxy-2-naphthoic acid 3
76 g (2.0 mol), p-hydroxybenzoic acid 138
g (1.0 mol), 367 g (3.6 mol) of acetic anhydride,
A polyester was obtained in the same manner as in Example 7, except that 360 g (6.0 mol) of acetic acid and 1694 g (7.0 mol) of polyethylene naphthalate were charged into the reactor. When this polymer was observed under a polarizing microscope crossed Nicols using the apparatus used in Example 1, light began to be transmitted from around 255 ° C., and thereafter, the amount of transmitted light further increased with an increase in temperature. Even when the temperature was raised to the maximum, an optically anisotropic molten phase was still formed. The polymer was analyzed by DSC in the same manner as in Example 1. As a result, a glass transition point at 122 ° C. and an endothermic peak at 256 ° C. were observed.
【0077】本ポリマーの対数粘度、DSC分析結果、
プレスフイルムの酸素透過量、および延伸性(3×3倍
同時二軸延伸)の評価結果を表1に示す。The logarithmic viscosity of the polymer, the result of DSC analysis,
Table 1 shows the evaluation results of the oxygen permeability of the press film and the stretchability (3 × 3 simultaneous biaxial stretching).
【0078】[0078]
【表1】 [Table 1]
【0079】比較例1 実施例1において6−アセトキシ−2−ナフトエ酸の代
わりにp−アセトキシ安息香酸を用いた、すなわちアセ
トキシ芳香族カルボン酸成分(6.0モル)をすべてp
−アセトキシ安息香酸にした以外は実施例1と同様にし
てポリエステルを得た。本ポリマーを、実施例1で用い
た装置により偏光顕微鏡直交ニコル下で観察したとこ
ろ、255℃付近から光を透過し始め、その後昇温に伴
って透過光量はさらに増大し、最終的に350℃まで昇
温しても光学的に異方性の溶融相を形成したままであっ
た。また、本ポリマーを実施例1と同様にしてDSCで
分析した結果、ガラス転移点は観測されず、258℃に
吸熱ピークが観測されたのみであった。さらに本ポリマ
ーの結晶化度を実施例1と同様にして測定した結果、結
晶化度は27%であった。Comparative Example 1 In Example 1, p-acetoxybenzoic acid was used in place of 6-acetoxy-2-naphthoic acid, that is, all of the acetoxyaromatic carboxylic acid component (6.0 mol) was p-type.
-A polyester was obtained in the same manner as in Example 1 except that acetoxybenzoic acid was used. When this polymer was observed under a polarizing microscope crossed Nicols using the apparatus used in Example 1, light began to be transmitted from around 255 ° C., and thereafter, the amount of transmitted light further increased with an increase in temperature. Even when the temperature was raised to the maximum, an optically anisotropic molten phase was still formed. Further, the polymer was analyzed by DSC in the same manner as in Example 1. As a result, no glass transition point was observed, and only an endothermic peak was observed at 258 ° C. Furthermore, as a result of measuring the crystallinity of the present polymer in the same manner as in Example 1, the crystallinity was 27%.
【0080】本ポリマーの対数粘度、DSC分析結果、
プレスフイルムの酸素透過量、および延伸性(3×3倍
同時二軸延伸)の評価結果を表2に示す。The logarithmic viscosity of the polymer, the result of DSC analysis,
Table 2 shows the evaluation results of the oxygen permeability of the press film and the stretchability (3 × 3 simultaneous biaxial stretching).
【0081】比較例2 比較例1においてポリエチレンナフタレートの代わり
に、フェノール/テトラクロロエタン等重量混合溶媒を
用いて30℃で測定した極限粘度が0.7dl/gのポ
リエチレンテレフタレート(4.0モル)を用い、重合
温度を280℃に変更した以外は比較例1と同様にして
ポリエステルを得た。本ポリマーを、実施例1で用いた
装置により偏光顕微鏡直交ニコル下で観察したところ、
200℃付近から光を透過し始め、その後昇温に伴って
透過光量はさらに増大し、最終的に350℃まで昇温し
ても光学的に異方性の溶融相を形成したままであった。
また、本ポリマーを実施例1と同様にしてDSCで分析
した結果、ガラス転移点は明確には観測されず、205
℃に吸熱ピークが観測されたのみであった。さらに本ポ
リマーの結晶化度を実施例1と同様にして測定した結
果、結晶化度は25%であった。次に実施例1と同様の
条件で射出成形を行ない、曲げ強度および曲げ弾性率を
測定したところ、次に示す結果が得られた(いずれも樹
脂の流動方向)。Comparative Example 2 Polyethylene terephthalate (4.0 mol) having an intrinsic viscosity of 0.7 dl / g measured at 30 ° C. using a mixed solvent of phenol / tetrachloroethane and the like in place of polyethylene naphthalate in Comparative Example 1 And a polyester was obtained in the same manner as in Comparative Example 1 except that the polymerization temperature was changed to 280 ° C. When this polymer was observed under a polarizing microscope orthogonal Nicols using the apparatus used in Example 1,
Light began to be transmitted at around 200 ° C., and thereafter, the amount of transmitted light further increased as the temperature was raised. Even when the temperature was finally raised to 350 ° C., an optically anisotropic molten phase was still formed. .
The polymer was analyzed by DSC in the same manner as in Example 1. As a result, the glass transition point was not clearly observed.
Only an endothermic peak was observed at ° C. Further, the crystallinity of this polymer was measured in the same manner as in Example 1, and as a result, the crystallinity was 25%. Next, injection molding was performed under the same conditions as in Example 1, and the bending strength and the bending elastic modulus were measured. The results shown below were obtained (in each case, the flow direction of the resin).
【0082】曲げ強度:970kg/cm↑2Bending strength: 970 kg / cm @ 2
【0083】曲げ弾性率:8.1×10↑4kg/cm↑2Flexural modulus: 8.1 × 10 ↑ 4 kg / cm ↑ 2
【0084】本ポリマーの対数粘度、DSC分析結果、
プレスフイルムの酸素透過量、および延伸性(3×3倍
同時二軸延伸)の評価結果を表2に示す。The logarithmic viscosity of the polymer, the result of DSC analysis,
Table 2 shows the evaluation results of the oxygen permeability of the press film and the stretchability (3 × 3 simultaneous biaxial stretching).
【0085】比較例3 実施例1において、ポリエチレンナフタレート/6−ア
セトキシ−2−ナフトエ酸/p−アセトキシ安息香酸の
モル比を90/5/5にしたこと以外は実施例1と同様
にしてポリエステルを得た。本ポリマーを、実施例1で
用いた装置により偏光顕微鏡直交ニコル下で観察した
が、350℃以下のいかなる温度においても光学的に異
方性の溶融相を形成しなかった。また、本ポリマーを実
施例1と同様にしてDSCで分析した結果、123℃に
ガラス転移点、260℃に吸熱ピークが観測された。Comparative Example 3 The procedure of Example 1 was repeated, except that the molar ratio of polyethylene naphthalate / 6-acetoxy-2-naphthoic acid / p-acetoxybenzoic acid was 90/5/5. Polyester was obtained. This polymer was observed under a polarizing microscope crossed Nicols using the apparatus used in Example 1, and did not form an optically anisotropic molten phase at any temperature of 350 ° C. or lower. The polymer was analyzed by DSC in the same manner as in Example 1. As a result, a glass transition point was observed at 123 ° C., and an endothermic peak was observed at 260 ° C.
【0086】本ポリマーの対数粘度、DSC分析結果、
プレスフイルムの酸素透過量、および延伸性(3×3倍
同時二軸延伸)の評価結果を表2に示す。The logarithmic viscosity of the polymer, the result of DSC analysis,
Table 2 shows the evaluation results of the oxygen permeability of the press film and the stretchability (3 × 3 simultaneous biaxial stretching).
【0087】比較例4 実施例1で用いたポリエチレンナフタレートのDSC分
析結果、プレスフイルムの酸素透過量、および延伸性の
評価結果を表2に示す。Comparative Example 4 Table 2 shows the DSC analysis results of the polyethylene naphthalate used in Example 1, the oxygen permeation amount of the press film, and the evaluation results of the stretchability.
【0088】[0088]
【表2】 [Table 2]
【0089】実施例10〜11、比較例5〜7 実施例1あるいは実施例2で得られた熱液晶ポリマー
と、フェノール/テトラクロロエタン等重量混合溶媒中
30℃で測定した極限粘度が0.75dl/gのPET
樹脂とを用いて多層シートを成形した。すなわち、熱液
晶ポリマーとPET樹脂とをそれぞれ80℃、および1
50℃で一昼夜真空乾燥した後2台の押出し機により共
押出ししてPET/熱液晶ポリマー/PETの3層のシ
ートを得た。得られたシートのPET/熱液晶ポリマー
/PETの各層の厚みは280μm/20μm/200
μmであった。この積層シートを実施例1で用いた二軸
延伸装置を使用して100〜120℃で3×3倍に同時
二軸延伸して延伸フイルムを得た(実施例10、1
1)。Examples 10 to 11 and Comparative Examples 5 to 7 The liquid crystalline polymer obtained in Example 1 or Example 2 had an intrinsic viscosity of 0.75 dl measured at 30 ° C. in a mixed solvent of phenol / tetrachloroethane and the like. / G PET
A multilayer sheet was formed using a resin. That is, the thermal liquid crystal polymer and the PET resin were heated at 80 ° C and 1 ° C, respectively.
After vacuum drying at 50 ° C. for 24 hours, co-extrusion was performed with two extruders to obtain a three-layer sheet of PET / thermo-liquid crystal polymer / PET. The thickness of each layer of PET / thermal liquid crystal polymer / PET of the obtained sheet is 280 μm / 20 μm / 200.
μm. The laminated sheet was simultaneously biaxially stretched 3 × 3 times at 100 to 120 ° C. using the biaxial stretching apparatus used in Example 1 to obtain a stretched film (Examples 10 and 1).
1).
【0090】また比較例1あるいは比較例2の熱液晶ポ
リマーを用いて同様のPET/熱液晶ポリマー/PET
の二種三層フイルムの成形を試みたが、中間層(熱液晶
ポリマー層)の延伸ができず、いずれの場合にも良好な
フイルムを得ることができなかった(比較例5、6)。The same PET / thermo-liquid crystal polymer / PET was obtained using the thermo-liquid crystal polymer of Comparative Example 1 or Comparative Example 2.
Was attempted, but the intermediate layer (thermal liquid crystal polymer layer) could not be stretched, and in each case, a good film could not be obtained (Comparative Examples 5 and 6).
【0091】次に、PET樹脂だけを使用して上記押出
し機の1台のみを用いて厚み約500μmの単層シート
を得た。このシートを上記の二軸延伸装置を用いて12
0℃で3×3倍に同時二軸延伸し、延伸フイルムを作製
した(比較例7)。Next, a single-layer sheet having a thickness of about 500 μm was obtained using only one of the extruders using only the PET resin. This sheet is subjected to 12-
The film was simultaneously biaxially stretched 3 × 3 times at 0 ° C. to produce a stretched film (Comparative Example 7).
【0092】これらのフイルムの酸素バリヤー性能は、
前述の方法で評価した。その結果を表3に示す。The oxygen barrier performance of these films is as follows:
Evaluation was performed by the method described above. Table 3 shows the results.
【0093】[0093]
【表3】 [Table 3]
【0094】[0094]
【発明の効果】本発明の熱液晶ポリエステルは優れた成
形性を有しており、またそれから得られる成形品は優れ
たガスバリヤー性を有しているため、高度なガスバリヤ
ー性を必要とする各種の包装材料として有用である。The thermal liquid crystalline polyester of the present invention has excellent moldability, and the molded article obtained therefrom has excellent gas barrier properties, and therefore requires a high degree of gas barrier properties. Useful as various packaging materials.
Claims (2)
構成単位(2)を実質的に等しいモル数で含み、構成単
位(1)および構成単位(2)の合計量が15〜90モ
ル%、構成単位(3)および構成単位(4)の合計量が
10〜85モル%であり、構成単位(3)および構成単
位(4)の合計量に対する構成単位(3)の量の割合が
10モル%以上であり、かつ20℃、相対湿度65%で
測定した酸素透過量が20ml・20μm/m 2 ・da
y・atm以下の熱プレスフィルム を与える熱液晶ポリ
エステル。(1) Substantially the following chemical formula (1) Structural unit (1) represented by the following formula 2 The structural unit (2) represented by the following formula 3 And a structural unit (3) represented by the following formula: Wherein the structural unit (1) and the structural unit (2) are contained in substantially equal moles, and the total amount of the structural unit (1) and the structural unit (2) is 15 to 90. Mol%, the total amount of the structural unit (3) and the structural unit (4) is 10 to 85 mol%, and the ratio of the amount of the structural unit (3) to the total amount of the structural unit (3) and the structural unit (4) Ri der There least 10 mol%, and 20 ° C., 65% relative humidity
Measured oxygen permeation amount is 20ml ・ 20μm / m 2 ・ da
Thermal liquid crystalline polyester which gives a hot pressed film of y · atm or less .
なる成形品。2. A molded article comprising the thermal liquid crystalline polyester according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19695991A JP3147315B2 (en) | 1990-07-10 | 1991-07-10 | Thermal liquid crystalline polyester and molded articles made thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18327890 | 1990-07-10 | ||
JP2-183278 | 1990-07-10 | ||
JP19695991A JP3147315B2 (en) | 1990-07-10 | 1991-07-10 | Thermal liquid crystalline polyester and molded articles made thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH051140A JPH051140A (en) | 1993-01-08 |
JP3147315B2 true JP3147315B2 (en) | 2001-03-19 |
Family
ID=26501787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19695991A Expired - Fee Related JP3147315B2 (en) | 1990-07-10 | 1991-07-10 | Thermal liquid crystalline polyester and molded articles made thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3147315B2 (en) |
-
1991
- 1991-07-10 JP JP19695991A patent/JP3147315B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH051140A (en) | 1993-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5326848A (en) | Thermotropic liquid crystal polyester | |
EP1436340B1 (en) | Anisotropic melt-forming polymers having a high degree of stretchability | |
EP1116739B1 (en) | Composition and process for producing stretchable polymers and shaped articles produced by same | |
US6666990B2 (en) | Stretchable liquid crystal polymer composition | |
EP1116736B1 (en) | Process for producing amorphous anisotropic melt-forming polymers having a high degree of stretchability and polymers produced by same | |
JP3067049B2 (en) | Containers and packages | |
JP3178737B2 (en) | Polyester film | |
EP0466085B1 (en) | Thermotropic liquid crystal polyester | |
US6222000B1 (en) | Process for producing amorphous anisotropic melt-forming polymers having a high degree of stretchability | |
JP3147315B2 (en) | Thermal liquid crystalline polyester and molded articles made thereof | |
US6207790B1 (en) | Process for producing amorphous anisotropic melt-forming polymers having a high degree of stretchability and polymers produced by same | |
JP3185988B2 (en) | Thermal liquid crystalline polyester and molded articles made thereof | |
JP3119453B2 (en) | Thermal liquid crystalline polyester and molded articles made thereof | |
JPH05186578A (en) | Production of thermotropic liquid-crystalline polyester | |
JP3096514B2 (en) | Multilayer containers and packages | |
JP3067048B2 (en) | Multilayer containers and packages | |
JPH05186575A (en) | Thermotropic liquid-crystalline polyester and molded article prepared therefrom | |
JPH055028A (en) | Gas-barrier vessel | |
JPH05186577A (en) | Thermotropic liquid-crystalline polyester and its production | |
JPH05186576A (en) | Molded article for water vapor barrier | |
JPH0532771A (en) | Thermal liquid crystal polyester and film comprising the same | |
JPH02172738A (en) | Polyester laminated body and use thereof | |
JP2023150538A (en) | Polyalkylene ether glycol copolyester and molding | |
JP2605766B2 (en) | Copolyester | |
JPH05186671A (en) | Thermotropic liquid crystal polyester composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080112 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090112 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090112 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100112 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |