JP3146873B2 - Control device for electromechanical transducer with non-linear displacement characteristics - Google Patents

Control device for electromechanical transducer with non-linear displacement characteristics

Info

Publication number
JP3146873B2
JP3146873B2 JP21358794A JP21358794A JP3146873B2 JP 3146873 B2 JP3146873 B2 JP 3146873B2 JP 21358794 A JP21358794 A JP 21358794A JP 21358794 A JP21358794 A JP 21358794A JP 3146873 B2 JP3146873 B2 JP 3146873B2
Authority
JP
Japan
Prior art keywords
correction coefficient
displacement
operation amount
electromechanical transducer
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21358794A
Other languages
Japanese (ja)
Other versions
JPH0877537A (en
Inventor
信克 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21358794A priority Critical patent/JP3146873B2/en
Publication of JPH0877537A publication Critical patent/JPH0877537A/en
Application granted granted Critical
Publication of JP3146873B2 publication Critical patent/JP3146873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、記録トラックの幅方向
に駆動可能な再生ヘッドを有する磁気記録再生装置(以
下、VTRと称す)に於ける再生ヘッドを駆動する非線
形変位特性を有する電気機械変換素子の制御装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric machine having a non-linear displacement characteristic for driving a reproducing head in a magnetic recording / reproducing apparatus (hereinafter referred to as VTR) having a reproducing head drivable in the width direction of a recording track. The present invention relates to a control device for a conversion element.

【0002】[0002]

【従来の技術】近年、VTRに於いては、バイモルフ型
圧電素子などの電気機械変換素子を2枚用いた平行リン
ク形式のヘッド駆動素子上に再生ヘッドを取り付け、記
録トラックの幅方向に駆動可能にして、ノイズレスの特
殊再生を可能にするVTRが実用化されている。
2. Description of the Related Art In recent years, in a VTR, a reproducing head is mounted on a parallel link type head driving element using two electromechanical transducers such as a bimorph type piezoelectric element, and can be driven in the width direction of a recording track. A VTR that enables noiseless special reproduction has been put to practical use.

【0003】このようなVTRにおいて、再生ヘッドを
記録トラックの幅方向に駆動する電気機械変換素子の非
線形変位特性は、ノイズレスの特殊再生を行う上で、大
きな問題であった。
In such a VTR, the non-linear displacement characteristic of an electromechanical transducer for driving a reproducing head in the width direction of a recording track has been a serious problem in performing noiseless special reproduction.

【0004】ところで、VTRにおけるノイズレス特殊
再生というのは、テープスピードがノーマル再生の時と
は異なるときの再生で、その再生をノイズレスで行うも
のである。
[0004] By the way, noiseless special reproduction in a VTR is reproduction when the tape speed is different from that in normal reproduction, and the reproduction is performed without noise.

【0005】図9は、2ヘッド型ヘリカルスキャン方式
のVTRにおける再生ヘッド(図示せず)の走査軌跡
と、記録トラックの関係を示す図である。901は磁気
テープ、902は磁気テープの移送方向、903は再生
ヘッドの走査方向を示す。A1,A2,・・・、B1,
B2,・・・は、2つある記録ヘッド(図示せず)をそ
れぞれAヘッド、Bヘッドとしたときの記録トラックを
示す。ノーマル再生時再生ヘッドが記録トラックを走査
する走査軌跡は904となる。しかしながら、テープス
ピードがノーマル再生時とは異なり、例えば、3倍速の
時には再生ヘッドの走査軌跡は905,906のように
なる。再生ヘッドは、記録トラックを横切ってしまうこ
とになり、ノイズのある再生画像を再生してしまうこと
になる。従って、ノイズの無い再生画像を得るには、再
生ヘッドが記録トラックを走査する際、記録トラックの
終端で、再生ヘッドが記録トラックの2トラックピッチ
分だけ記録トラックの幅方向に移動しているように再生
ヘッドを駆動すればよいことがわかる。即ち、再生ヘッ
ドは鋸歯状波状に駆動されることになり、再生ヘッドを
駆動する電気機械変換素子の制御装置の目標値は鋸歯状
波となる。
FIG. 9 is a diagram showing a relationship between a scanning locus of a reproducing head (not shown) and a recording track in a two-head helical scan type VTR. Reference numeral 901 denotes a magnetic tape; 902, a transport direction of the magnetic tape; and 903, a scanning direction of the reproducing head. A1, A2,..., B1,
B2,... Indicate recording tracks when two recording heads (not shown) are an A head and a B head, respectively. The scanning trajectory by which the reproducing head scans the recording track during normal reproduction is 904. However, when the tape speed is different from that at the time of normal reproduction, for example, when the speed is 3 times speed, the scanning locus of the reproducing head is 905 and 906. The reproducing head crosses the recording track, and reproduces a reproduced image with noise. Therefore, in order to obtain a reproduced image without noise, when the reproducing head scans the recording track, the reproducing head is moved in the width direction of the recording track by two track pitches at the end of the recording track. It is clear that the reproducing head should be driven. That is, the reproducing head is driven in a sawtooth waveform, and the target value of the control device of the electromechanical transducer for driving the reproducing head is a sawtooth waveform.

【0006】図10に、電気機械変換素子の変位の目標
値と駆動された電気機械変換素子の変位情報の関係を示
す図を示す。縦軸は電圧、横軸は時間である。電気機械
変換素子の変位情報は、変位検出手段により検出され、
電圧に変換されて検知される。一点鎖線が目標値を示
し、実線が変位情報を示す。電気機械変換素子は非線形
変位特性を有するため、その変位は目標値と異なったも
のとなり、再生ヘッドを記録トラックに対して、オント
ラックさせることは困難であった。
FIG. 10 shows a relationship between a target value of displacement of the electromechanical transducer and displacement information of the driven electromechanical transducer. The vertical axis is voltage and the horizontal axis is time. Displacement information of the electromechanical transducer is detected by a displacement detecting means,
It is converted to voltage and detected. An alternate long and short dash line indicates a target value, and a solid line indicates displacement information. Since the electromechanical transducer has non-linear displacement characteristics, the displacement is different from the target value, and it is difficult to make the reproducing head on-track with respect to the recording track.

【0007】この問題に対して、従来の技術では、特開
平2−134884にあるように、電気機械変換素子の
非線形変位特性を、電気機械変換素子の変位量で適当に
区分けした区分毎に、直線近似することにより非線形補
正をしていた。
In order to solve this problem, in the prior art, as disclosed in Japanese Patent Application Laid-Open No. H2-134884, the nonlinear displacement characteristic of the electromechanical transducer is divided into sections appropriately divided by the displacement of the electromechanical transducer. Nonlinear correction was performed by linear approximation.

【0008】図11及び図12を用いて、従来の非線形
変位特性を有する電気機械変換素子の制御装置について
説明する。
A conventional control device for an electromechanical transducer having nonlinear displacement characteristics will be described with reference to FIGS. 11 and 12. FIG.

【0009】図11は、従来の非線形変位特性を有する
電気機械変換素子の制御装置の構成を示すブロック図を
示すものである。
FIG. 11 is a block diagram showing a configuration of a conventional controller for an electromechanical transducer having nonlinear displacement characteristics.

【0010】1101は入力電圧に対する出力変位特性
が非線形変位特性を有する電気機械変換素子、1102
は電気機械変換素子1101の変位の目標値を発生する
目標値発生手段、1103は電気機械変換素子1101
の目標値に対する出力変位特性を線形に補正する非線形
補正手段、1104は非線形補正手段1103より得ら
れる操作量に応じて電気機械変換素子1101を駆動す
る駆動手段である。
Reference numeral 1101 denotes an electromechanical transducer having an output displacement characteristic with respect to an input voltage having a non-linear displacement characteristic.
Is a target value generating means for generating a target value of the displacement of the electromechanical transducer 1101; 1103 is an electromechanical transducer 1101;
Non-linear correction means 1104 for linearly correcting the output displacement characteristic with respect to the target value is driven by a driving means for driving the electromechanical transducer 1101 according to the operation amount obtained from the non-linear correction means 1103.

【0011】図12に、電気機械変換素子の印加電圧と
変位の関係を示す図を示す。縦軸は変位、横軸は印加電
圧である。実線が電気機械変換素子1101の出力変位
特性、破線が出力変位特性の近似直線、一点鎖線が所望
の出力変位特性を示す。前述した近似直線を電気機械変
換素子1101の出力変位特性として、非線形補正手段
1103で所望の出力変位特性が得られるように出力変
位の各区分毎に出力変位特性の非線形特性を補正してい
た。具体的には、例えば、変位としてD1が必要であれ
ば、所望の線形な出力変位特性を満たしている場合、印
加電圧としてV1を電気機械変換素子1101に印加す
ればよいのであるが、実際は、電気機械変換素子110
1は非線形な出力変位特性を有しており、印加電圧V1
の時は、D2の変位となる。従って、必要な変位である
D1を得るために、電気機械変換素子1101に印加す
る印加電圧をV1ではなく、V2にするような非線形補
正をしていた。
FIG. 12 is a diagram showing the relationship between the applied voltage and the displacement of the electromechanical transducer. The vertical axis is displacement, and the horizontal axis is applied voltage. A solid line indicates the output displacement characteristic of the electromechanical transducer 1101, a broken line indicates an approximate straight line of the output displacement characteristic, and a dashed line indicates a desired output displacement characteristic. The above-described approximate straight line is used as the output displacement characteristic of the electromechanical transducer 1101, and the nonlinear correction means 1103 corrects the nonlinear characteristic of the output displacement characteristic for each section of the output displacement so that a desired output displacement characteristic is obtained. Specifically, for example, if D1 is required as the displacement, if the desired linear output displacement characteristic is satisfied, V1 may be applied to the electromechanical transducer 1101 as the applied voltage. Electromechanical transducer 110
1 has a non-linear output displacement characteristic, and the applied voltage V1
In this case, the displacement becomes D2. Therefore, in order to obtain D1 which is a necessary displacement, nonlinear correction has been performed so that the applied voltage applied to the electromechanical transducer 1101 is not V1 but V2.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上記の
従来の構成では、非線形補正を行うための近似直線を各
区分毎に予め求めておかなくてはならず、また、求めた
近似直線は1つに特定されることから、電気機械変換素
子1101の非線形変位特性のばらつきや異なる非線形
変位特性を有する電気機械変換素子1101には対応で
きないという問題点を有していた。
However, in the above-described conventional configuration, an approximate straight line for performing non-linear correction must be obtained in advance for each section, and one obtained approximate straight line is required. Therefore, there is a problem that it is not possible to cope with the variation of the nonlinear displacement characteristics of the electromechanical transducer 1101 and the electromechanical transducer 1101 having different nonlinear displacement properties.

【0013】本発明は、上記従来の問題点を解決するも
ので、より精度のよい制御が可能な、非線形変位特性を
有する電気機械変換素子の制御装置を提供することを目
的とする。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a control device for an electromechanical transducer having a non-linear displacement characteristic capable of performing more accurate control.

【0014】[0014]

【課題を解決するための手段】この目的を達成するため
に本発明の非線形変位特性を有する電気機械変換素子の
制御装置は、入力電圧に対する出力変位特性が非線形変
位特性を有する電気機械変換素子と、電気機械変換素子
の変位の目標値を発生する目標値発生手段と、電気機械
変換素子の目標値に対する出力変位特性を線形に補正
て電気機械変換素子の操作量の傾きとなる非線形補正係
数を設定し、設定した非線形補正係数を基に電気機械変
換素子の操作量を算出する非線形補正係数生成手段と、
非線形補正係数生成手段により生成された非線形補正係
数を保存する非線形補正係数記憶手段と、非線形補正係
数記憶手段に保存されている非線形補正係数を基に電気
機械変換素子の操作量を算出する非線形補正手段と、非
線形補正係数生成手段より得られる操作量と非線形補正
手段より得られる操作量とを切り換える切り換え手段
と、切り換え手段により切り換えられる操作量に応じて
電気機械変換素子を駆動する駆動手段と、電気機械変換
素子の変位を検出する変位検出手段とを具備し、非線形
補正係数生成手段は、周期的な鋸歯状波状の目標値と変
位検出手段から得られる変位情報を1周期内に複数回
ンプリングして、目標値と変位情報との差が所定の範囲
内になるように非線形補正係数を設定し、切り換え手段
は、非線形補正係数が設定されるまでは非線形補正係数
生成手段より得られる操作量を選択し、設定されてから
は非線形補正手段より得られる操作量を選択することを
特徴とする非線形変位特性を有する電気機械変換素子の
制御装置である。
According to the present invention, there is provided a controller for an electromechanical transducer having a non-linear displacement characteristic, wherein the output displacement characteristic with respect to an input voltage has a non-linear displacement characteristic. , the target value generation means for generating a target value of the displacement of the electromechanical transducer, the output displacement characteristic with respect to the target value of the electromechanical conversion element is corrected to a linear
Nonlinear correction factor which becomes the slope of the operation amount of the electromechanical transducer
Number and set the electromechanical transformation based on the set nonlinear correction coefficient.
Non-linear correction coefficient generating means for calculating the operation amount of the switching element ,
A non-linear correction coefficient storing means for storing a nonlinear compensation coefficient generated by the non-linear correction coefficient generation unit, electrically based on non-linear correction coefficient stored in the non-linear correction coefficient storing means
Non-linear correction means for calculating the operation amount of the mechanical conversion element, switching means for switching between the operation amount obtained from the non-linear correction coefficient generation means and the operation amount obtained from the non-linear correction means, and the operation amount switched by the switching means A driving means for driving the electromechanical transducer, and a displacement detecting means for detecting a displacement of the electromechanical transducer, wherein the nonlinear correction coefficient generating means obtains the target value and the displacement detecting means having a periodic sawtooth waveform. The displacement information is sampled a plurality of times within one cycle, and a nonlinear correction coefficient is set so that the difference between the target value and the displacement information is within a predetermined range. The operation amount obtained by the non-linear correction coefficient generating means is selected until is set, and the operation amount obtained by the non-linear correction means is selected after the setting is performed. A control device for an electromechanical transducer having a displacement characteristics.

【0015】[0015]

【作用】本発明は上記した構成により、非線形補正係数
生成手段が、周期的な鋸歯状波状の目標値と変位検出手
段から得られる変位情報を1周期内に複数回サンプリン
グして、目標値と変位情報との差が所定の範囲内になる
ように電気機械変換素子の操作量の傾きとなる非線形補
正係数を設定し、設定した非線形補正係数を基に電気機
械変換素子の操作量を算出し、切り換え手段において、
非線形補正係数が設定されるまでは非線形補正係数生成
手段より得られる操作量を選択し、設定されてからは非
線形補正手段より得られる操作量を選択することによ
り、電気機械変換素子の非線形変位特性を、目標値と変
位情報の差が所定の範囲内になるように自動的に補正
し、簡便で高精度な制御を行う。
According to the present invention, the nonlinear correction coefficient generating means samples the periodic sawtooth wave target value and the displacement information obtained from the displacement detecting means a plurality of times in one cycle. Setting a nonlinear correction coefficient that is a gradient of the operation amount of the electromechanical transducer so that the difference between the target value and the displacement information is within a predetermined range, and based on the set nonlinear correction coefficient,
The operation amount of the mechanical conversion element is calculated, and in the switching means,
Until the nonlinear correction coefficient is set, the operation amount obtained by the non-linear correction coefficient generation means is selected, and after the setting, the operation amount obtained by the non-linear correction means is selected. Is automatically corrected so that the difference between the target value and the displacement information falls within a predetermined range, and simple and highly accurate control is performed.

【0016】[0016]

【実施例】以下本発明の一実施例を図面に基づいて説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明の一実施例の構成を示すブ
ロック図である。図1において、101は入力電圧に対
する出力変位特性が非線形変位特性を有する電気機械変
換素子、102は電気機械変換素子101の変位の目標
値を発生する目標値発生手段、103は電気機械変換素
子101の目標値に対する出力変位特性を線形に補正す
る非線形補正係数生成手段、104は非線形補正係数生
成手段103により生成された非線形補正係数を保存す
る非線形補正係数記憶手段、105は非線形補正係数記
憶手段104に保存されている非線形補正係数を基に
記電気機械変換素子の操作量を算出する非線形補正手
段、106は非線形補正係数生成手段103より得られ
る操作量と非線形補正手段105より得られる操作量と
を切り換える切り換え手段、107は切り換え手段10
6により切り換えられる操作量に応じて電気機械変換素
子101を駆動する駆動手段、108は電気機械変換素
子101の変位を検出する変位検出手段であり、非線形
補正係数生成手段103は、周期的な鋸歯状波状の目標
値と変位検出手段108から得られる変位情報を1周期
内に複数回サンプリングして、目標値と変位情報との差
が所定の範囲内になるように非線形補正係数を設定し、
切り換え手段106は、非線形補正係数が設定されるま
では非線形補正係数生成手段103より得られる操作量
を選択し、設定されてからは非線形補正手段105より
得られる操作量を選択することを特徴としている。
FIG. 1 is a block diagram showing the configuration of one embodiment of the present invention. In FIG. 1, reference numeral 101 denotes an electromechanical transducer having an output displacement characteristic with respect to an input voltage having a non-linear displacement characteristic; 102, a target value generating means for generating a target value of displacement of the electromechanical transducer 101; Non-linear correction coefficient generating means 104 for linearly correcting the output displacement characteristic with respect to the target value of the non-linear correction coefficient; 104, a non-linear correction coefficient storing means for storing the non-linear correction coefficient generated by the non-linear correction coefficient generating means 103; before based on non-linear correction coefficient stored in the
Non-linear correction means 106 for calculating the operation amount of the electromechanical transducer , switching means 106 for switching between the operation amount obtained from the non-linear correction coefficient generation means 103 and the operation amount obtained from the non-linear correction means 105, and 107 for the switching means 10
6, a driving means for driving the electromechanical transducer 101 in accordance with the operation amount switched by 6, a displacement detecting means 108 for detecting the displacement of the electromechanical transducer 101, and a non-linear correction coefficient generating means 103, The waveform-like target value and the displacement information obtained from the displacement detection means 108 are sampled a plurality of times in one cycle, and a nonlinear correction coefficient is set so that the difference between the target value and the displacement information is within a predetermined range.
The switching unit 106 selects an operation amount obtained from the nonlinear correction coefficient generation unit 103 until the nonlinear correction coefficient is set, and then selects an operation amount obtained from the nonlinear correction unit 105 after the setting. I have.

【0018】切り換え信号Wは、VTRのシステムコン
トロール(以下、シスコンと称す。図示せず。)から得
られる信号である。
The switching signal W is a signal obtained from a VTR system control (hereinafter, referred to as a system controller, not shown).

【0019】以上のように構成された本実施例の非線形
変位特性を有する電気機械変換素子の制御装置につい
て、以下、図2〜図8を用いてその動作について説明す
る。
The operation of the control device for an electromechanical transducer having a nonlinear displacement characteristic according to the present embodiment having the above-described configuration will be described below with reference to FIGS.

【0020】図2は、非線形補正手段105における電
気機械変換素子101の変位の目標値Rと変位情報F及
び操作量Pの関係を示す図であり、縦軸は電圧、横軸は
時間である。一点鎖線が目標値R、実線が変位情報F、
二点鎖線が操作量Pを示す。ここでは、鋸歯状波状の目
標値の1パターンを取り出している。傾きaを持つ鋸歯
状波状の目標値に対して、電気機械変換素子101の変
位は、変位情報Fのようになる。このとき、鋸歯状波状
の目標値と同期し、Tを周期とする所定のサンプリング
タイミングS1〜S3において目標値R1〜R3と変位
情報F1〜F3が比較され、その差が所定の範囲内にあ
るかどうかが判定されて電気機械変換素子101の操作
量P1〜P3が設定される。S1,S3では、目標値に
対して、変位が小さいので大きく変位させるように操作
量を大きくし、S2では、目標値に対して変位が大きい
ので小さく変位させるように操作量を小さくする。操作
量は、各サンプリングタイミングで分割され、それぞれ
傾きa1,a2,a3を持つ折れ線で与えられる。電気
機械変換素子は、操作量Pに応じて駆動され、そのとき
の変位が変位検出手段108により検出される。検出さ
れた変位情報は、また、所定のサンプリングタイミング
で目標値と比較されて所定の範囲内にあるかどうかが判
定され、操作量が設定される。このように操作量を鋸歯
状波の1つのパターン毎に順次可変し、変位を目標値に
近づけることを繰り返すことにより、電気機械変換素子
101の非線形な出力変位特性を線形化する操作量の傾
きを設定する。操作量の傾きが設定されれば、その操作
量の傾きを基に、各サンプリング点での目標値R1,R
2,R3で分割された区間毎にそれぞれa1/a,a2
/a,a3/aの非線形補正係数を乗じて非線形補正を
行う。
FIG. 2 is a diagram showing the relationship between the target value R of displacement of the electromechanical transducer 101 and the displacement information F and the manipulated variable P in the non-linear correction means 105. The vertical axis represents voltage, and the horizontal axis represents time. . The dashed line indicates the target value R, the solid line indicates the displacement information F,
The two-dot chain line indicates the operation amount P. Here, one pattern of the target value having a sawtooth waveform is extracted. The displacement of the electromechanical transducer 101 with respect to the target value of the sawtooth waveform having the slope a becomes like displacement information F. At this time, the target values R1 to R3 and the displacement information F1 to F3 are compared with each other at predetermined sampling timings S1 to S3 having a cycle of T in synchronization with the target value of the sawtooth waveform, and the difference is within a predetermined range. It is determined whether or not the operation amounts P1 to P3 of the electromechanical conversion element 101 are set. In S1 and S3, the operation amount is increased so that the displacement is small relative to the target value, and the operation amount is decreased in S2 because the displacement is small relative to the target value because the displacement is large. The operation amount is divided at each sampling timing, and is given by a polygonal line having inclinations a1, a2, and a3, respectively. The electromechanical transducer is driven according to the operation amount P, and the displacement at that time is detected by the displacement detecting means 108. The detected displacement information is compared with a target value at a predetermined sampling timing to determine whether the displacement information is within a predetermined range, and an operation amount is set. As described above, the operation amount is sequentially changed for each one pattern of the sawtooth wave, and the displacement is repeatedly brought close to the target value, whereby the gradient of the operation amount for linearizing the nonlinear output displacement characteristics of the electromechanical transducer 101 is obtained. Set. When the inclination of the operation amount is set, the target values R1, R at each sampling point are set based on the inclination of the operation amount.
A1 / a, a2 for each section divided by R2 and R3
/ A, a3 / a is multiplied by a non-linear correction coefficient to perform non-linear correction.

【0021】図3は、本発明の上位概念のフローチャー
トである。ステップ301で、非線形補正係数が設定さ
れたかがシスコンにより判定され、設定されていれば、
非線形補正手段105より得られる操作量を選択するよ
うに、切り換え手段106に切り換え信号Wがシスコン
より出力される。ステップ302で非線形補正係数記憶
手段104に保存されている非線形補正係数に基づき、
非線形補正した操作量を出力する。設定されていなけれ
ば、非線形補正係数生成手段103より得られる操作量
を選択するように、切り換え手段106に切り換え信号
Wがシスコンより出力される。ステップ303で鋸歯状
波状の目標値に対する操作量を出力し、所定のサンプリ
ングタイミングにおける目標値と変位情報の差が所定の
範囲内になるように操作量の傾きを設定し、非線形補正
係数a1/a,a2/a,a3/aを生成できるように
操作量の傾きa1,a2,a3を非線形補正係数記憶手
段104に保存する。
FIG. 3 is a flowchart of the general concept of the present invention. In step 301, it is determined by the system controller whether or not the nonlinear correction coefficient has been set.
The switching signal W is output from the system controller to the switching means 106 so as to select the operation amount obtained by the nonlinear correction means 105. Based on the non-linear correction coefficient stored in the non-linear correction coefficient storage means 104 in step 302,
Outputs the manipulated variable with nonlinear correction. If not set, the switching signal W is output from the system controller to the switching means 106 so as to select the operation amount obtained by the nonlinear correction coefficient generation means 103. In step 303, an operation amount for the target value having a sawtooth waveform is output, and the gradient of the operation amount is set so that the difference between the target value and the displacement information at a predetermined sampling timing falls within a predetermined range. The gradients a1, a2, and a3 of the operation amounts are stored in the nonlinear correction coefficient storage unit 104 so that a, a2 / a, and a3 / a can be generated.

【0022】図4は、本発明の非線形補正係数生成手段
103のフローチャートである。電気機械変換素子10
1の変位の目標値を発生する目標値発生手段102から
目標値である鋸歯状波が出力されると、時間tの計測が
始まり、ステップ401で目標値Rが入力される。ステ
ップ402で鋸歯状波の1つのパターンの起点から所定
のサンプリングタイミングS1までの操作量の傾きa1
と目標値の傾きaとの比が目標値Rに乗じられて、操作
量Pが設定される。但し、操作量の傾きa1の初期値は
目標値の傾きaである。ステップ403で所定のサンプ
リングタイミングS1に達したかどうかが時間tにより
判定され、達していなかったらステップ414で操作量
Pが出力される。達していれば、ステップ404で所定
のサンプリングタイミングS1かどうかが時間tにより
判定され、所定のサンプリングタイミングS1であれば
ステップ405で操作量の傾きa1が設定される。所定
のサンプリングタイミングS1で無かったら、ステップ
406で所定のサンプリングタイミングS1からS2ま
での操作量の傾きa2と目標値の傾きaとの比が目標値
Rに乗じられて、操作量Pが設定される。但し、操作量
の傾きa2の初期値は目標値の傾きaである。ステップ
407で所定のサンプリングタイミングS2に達したか
どうかが時間tにより判定され、達していなかったらス
テップ414で操作量Pが出力される。達していれば、
ステップ408で所定のサンプリングタイミングS2か
どうかが時間tにより判定され、所定のサンプリングタ
イミングS2であればステップ409で操作量の傾きa
2が設定される。所定のサンプリングタイミングS2で
無かったら、ステップ410で所定のサンプリングタイ
ミングS2からS3までの操作量の傾きa3と目標値の
傾きaとの比が目標値Rに乗じられて、操作量Pが設定
される。但し、操作量の傾きa3の初期値は目標値の傾
きaである。ステップ411で所定のサンプリングタイ
ミングS3かどうかが時間tにより判定され、所定のサ
ンプリングタイミングS3であればステップ412で操
作量の傾きa3が設定される。ステップ413で時間t
がリセットされ、ステップ414で操作量Pが出力され
る。所定のサンプリングタイミングS3で無かったら、
ステップ414で操作量Pが出力される。操作量Pが出
力されると、処理の最初に戻り、所定のサンプリングタ
イミングにおける目標値と変位情報の差が所定の範囲内
になるまで、この処理を繰り返す。
FIG. 4 is a flowchart of the nonlinear correction coefficient generating means 103 of the present invention. Electromechanical transducer 10
When a sawtooth wave as a target value is output from the target value generating means 102 that generates a target value of 1 displacement, the measurement of time t starts, and a target value R is input in step 401. In step 402, the slope a1 of the operation amount from the starting point of one pattern of the sawtooth wave to the predetermined sampling timing S1
The manipulated variable P is set by multiplying the target value R by the ratio between the target value R and the gradient a of the target value. However, the initial value of the slope a1 of the operation amount is the slope a of the target value. At step 403, it is determined whether or not the predetermined sampling timing S1 has been reached based on the time t. If not, the operation amount P is output at step 414. If it has reached, at step 404, it is determined whether or not it is a predetermined sampling timing S1 based on the time t. If the predetermined sampling timing S1 has not been reached, the ratio of the gradient a2 of the manipulated variable from the predetermined sampling timings S1 to S2 to the gradient a of the target value is multiplied by the target value R in step 406 to set the manipulated variable P. You. However, the initial value of the slope a2 of the operation amount is the slope a of the target value. At step 407, it is determined based on the time t whether or not the predetermined sampling timing S2 has been reached. If not, the operation amount P is output at step 414. If you have reached
At step 408, it is determined whether or not it is a predetermined sampling timing S2 based on the time t.
2 is set. If there is no predetermined sampling timing S2, the ratio of the gradient a3 of the manipulated variable from the predetermined sampling timings S2 to S3 to the gradient a of the target value is multiplied by the target value R in step 410 to set the manipulated variable P. You. However, the initial value of the gradient a3 of the operation amount is the gradient a of the target value. In step 411, it is determined whether or not the timing is the predetermined sampling timing S3 based on the time t. In step 413, time t
Is reset, and in step 414, the manipulated variable P is output. If it is not at the predetermined sampling timing S3,
At step 414, the manipulated variable P is output. When the operation amount P is output, the process returns to the beginning, and this process is repeated until the difference between the target value and the displacement information at a predetermined sampling timing falls within a predetermined range.

【0023】図5は、本発明における操作量Pの傾きa
1設定のフローチャートである。所定のサンプリングタ
イミングS1になると、ステップ501でそのときの目
標値R1が入力され、ステップ502でその時の変位情
報F1が入力される。ステップ503で変位情報F1と
目標値R1との差が所定の範囲−e(eは正の定数)以
下であるかどうかが判定され、所定の範囲−e以下であ
れば、ステップ504で現在の操作量P1に所定の量r
を加え、次回の操作量P11とする。所定の範囲−eよ
り大きければ、ステップ505で変位情報F1と目標値
R1との差が所定の範囲e以上であるかどうかが更に判
定され、所定の範囲e以上であれば、ステップ506で
現在の操作量P1から所定の量rを差し引き、次回の操
作量P11とする。次回の操作量P11が設定される
と、ステップ507で操作量Pの傾きa1が次回の操作
量P11と周期Tにより設定され、処理を抜ける。所定
の範囲eより小さければ、非線形補正が収束したとして
ステップ508で操作量Pの傾きa1を非線形補正係数
記憶手段104に保存し処理を抜ける。
FIG. 5 shows a gradient a of the operation amount P in the present invention.
It is a flowchart of 1 setting. At a predetermined sampling timing S1, the target value R1 at that time is input in step 501, and the displacement information F1 at that time is input in step 502. In step 503, it is determined whether or not the difference between the displacement information F1 and the target value R1 is equal to or smaller than a predetermined range -e (e is a positive constant). A predetermined amount r is added to the operation amount P1.
To obtain the next operation amount P11. If the difference is larger than the predetermined range -e, it is further determined in step 505 whether or not the difference between the displacement information F1 and the target value R1 is equal to or larger than the predetermined range e. A predetermined amount r is subtracted from the operation amount P1 to obtain a next operation amount P11. When the next operation amount P11 is set, the gradient a1 of the operation amount P is set by the next operation amount P11 and the cycle T in step 507, and the process exits. If it is smaller than the predetermined range e, it is determined that the non-linear correction has converged, and in step 508, the gradient a1 of the manipulated variable P is stored in the non-linear correction coefficient storage unit 104, and the process exits.

【0024】図6は、本発明における操作量Pの傾きa
2設定のフローチャートである。所定のサンプリングタ
イミングS2になると、ステップ601でそのときの目
標値R2が入力され、ステップ602でその時の変位情
報F2が入力される。ステップ603で変位情報F2と
目標値R2との差が所定の範囲−e(eは正の定数)以
下であるかどうかが判定され、所定の範囲−e以下であ
れば、ステップ604で現在の操作量P2に所定の量r
を加え、次回の操作量P22とする。所定の範囲−eよ
り大きければ、ステップ605で変位情報F2と目標値
R2との差が所定の範囲e以上であるかどうかが更に判
定され、所定の範囲e以上であれば、ステップ606で
現在の操作量P2から所定の量rを差し引き、次回の操
作量P22とする。次回の操作量P22が設定される
と、ステップ607で操作量Pの傾きa2が次回の操作
量P11,P22と周期Tにより設定され、処理を抜け
る。所定の範囲eより小さければ、非線形補正が収束し
たとしてステップ608で操作量Pの傾きa2を非線形
補正係数記憶手段104に保存し処理を抜ける。
FIG. 6 shows a gradient a of the operation amount P in the present invention.
It is a flowchart of 2 setting. At a predetermined sampling timing S2, the target value R2 at that time is input in step 601 and the displacement information F2 at that time is input in step 602. In step 603, it is determined whether or not the difference between the displacement information F2 and the target value R2 is equal to or smaller than a predetermined range -e (e is a positive constant). A predetermined amount r is set to the operation amount P2.
To obtain the next operation amount P22. If the difference is larger than the predetermined range -e, it is further determined at step 605 whether or not the difference between the displacement information F2 and the target value R2 is not smaller than the predetermined range e. A predetermined amount r is subtracted from the operation amount P2, and the result is set as the next operation amount P22. When the next operation amount P22 is set, the gradient a2 of the operation amount P is set by the next operation amounts P11 and P22 and the cycle T in step 607, and the process exits. If it is smaller than the predetermined range e, it is determined that the nonlinear correction has converged, and in step 608, the gradient a2 of the manipulated variable P is stored in the nonlinear correction coefficient storage unit 104, and the process exits.

【0025】図7は、本発明における操作量Pの傾きa
3設定のフローチャートである。所定のサンプリングタ
イミングS3になると、ステップ701でそのときの目
標値R3が入力され、ステップ702でその時の変位情
報F3が入力される。ステップ703で変位情報F3と
目標値R3との差が所定の範囲−e(eは正の定数)以
下であるかどうかが判定され、所定の範囲−e以下であ
れば、ステップ704で現在の操作量P3に所定の量r
を加え、次回の操作量P33とする。所定の範囲−eよ
り大きければ、ステップ705で変位情報F3と目標値
R3との差が所定の範囲e以上であるかどうかが更に判
定され、所定の範囲e以上であれば、ステップ706で
現在の操作量P3から所定の量rを差し引き、次回の操
作量P33とする。次回の操作量P33が設定される
と、ステップ707で操作量Pの傾きa3が次回の操作
量P22,P33と周期Tにより設定され、処理を抜け
る。所定の範囲eより小さければ、非線形補正が収束し
たとしてステップ708で操作量Pの傾きa3を非線形
補正係数記憶手段104に保存し処理を抜ける。
FIG. 7 shows a gradient a of the operation amount P in the present invention.
It is a flowchart of 3 setting. At a predetermined sampling timing S3, the target value R3 at that time is input in step 701, and the displacement information F3 at that time is input in step 702. In step 703, it is determined whether the difference between the displacement information F3 and the target value R3 is equal to or smaller than a predetermined range -e (e is a positive constant). A predetermined amount r is added to the operation amount P3.
To obtain the next operation amount P33. If it is larger than the predetermined range -e, it is further determined in step 705 whether or not the difference between the displacement information F3 and the target value R3 is larger than a predetermined range e. A predetermined amount r is subtracted from the operation amount P3 to obtain a next operation amount P33. When the next operation amount P33 is set, the gradient a3 of the operation amount P is set by the next operation amounts P22 and P33 and the cycle T in step 707, and the process exits. If it is smaller than the predetermined range e, it is determined that the nonlinear correction has converged, and in step 708, the gradient a3 of the manipulated variable P is stored in the nonlinear correction coefficient storage unit 104, and the process exits.

【0026】図8は、本発明の非線形補正手段105の
フローチャートである。ステップ800で、非線形補正
係数記憶手段104から操作量の傾きa1,a2,a3
が入力され、ステップ801で目標値Rと変位情報Fが
入力される。ステップ802で目標値Rと変位情報Fの
差がR1と比較されR1以下であれば、ステップ803
で目標値Rと変位情報Fの差に非線形補正係数a1/a
が乗じられて操作量Pが設定される。R1以下で無けれ
ば、さらに、ステップ804で目標値Rと変位情報Fの
差がR2と比較されR2以下であれば、ステップ805
で目標値Rと変位情報Fの差に非線形補正係数a2/a
が乗じられて操作量Pが設定される。R2以下で無けれ
ば、ステップ806で目標値Rと変位情報Fの差に非線
形補正係数a3/aが乗じられて操作量Pが設定され
る。操作量Pが設定されると、ステップ807で操作量
Pが出力され、処理を抜ける。
FIG. 8 is a flowchart of the nonlinear correction means 105 of the present invention. In step 800, the slopes a1, a2, and a3 of the operation amounts are stored in the nonlinear correction coefficient storage unit 104.
Is input, and a target value R and displacement information F are input in step 801. In step 802, the difference between the target value R and the displacement information F is compared with R1.
To the difference between the target value R and the displacement information F, the nonlinear correction coefficient a1 / a
Is multiplied to set the operation amount P. If not, the difference between the target value R and the displacement information F is compared with R2 in step 804, and if not, step 805
The nonlinear correction coefficient a2 / a to the difference between the target value R and the displacement information F.
Is multiplied to set the operation amount P. If it is not less than R2, the operation amount P is set in step 806 by multiplying the difference between the target value R and the displacement information F by the nonlinear correction coefficient a3 / a. When the operation amount P is set, the operation amount P is output in step 807, and the process exits.

【0027】以上のように本実施例によれば、非線形変
位特性を有する電気機械変換素子を非線形補正すること
により、より精度のよい制御をより簡便に行うことが出
来る。
As described above, according to the present embodiment, more accurate control can be performed more easily by performing non-linear correction on the electromechanical transducer having the non-linear displacement characteristic.

【0028】尚、サンプリングタイミングS1〜S3
は、一定周期Tのサンプリングタイミングとしたが、鋸
歯状波の1パターンの中であれば個々に設定してもよ
く、更にサンプリング回数を増やせばさらに精度のよい
非線形補正ができることは明らかであろう。
The sampling timings S1 to S3
Is a sampling timing of a constant period T, but may be set individually within one pattern of the sawtooth wave, and it will be apparent that more accurate nonlinear correction can be achieved by further increasing the number of times of sampling. .

【0029】[0029]

【発明の効果】以上のように本発明は、入力電圧に対す
る出力変位特性が非線形変位特性を有する電気機械変換
素子と、電気機械変換素子の変位の目標値を発生する目
標値発生手段と、電気機械変換素子の目標値に対する出
力変位特性を線形に補正して前記電気機械変換素子の操
作量の傾きとなる非線形補正係数を設定し、設定した前
記非線形補正係数を基に前記電気機械変換素子の操作量
を算出する非線形補正係数生成手段と、非線形補正係数
生成手段により生成された非線形補正係数を保存する非
線形補正係数記憶手段と、非線形補正係数記憶手段に保
存されている非線形補正係数を基に目標値を非線形補正
する非線形補正手段と、非線形補正係数生成手段より得
られる操作量と非線形補正手段より得られる操作量とを
切り換える切り換え手段と、切り換え手段により切り換
えられる操作量に応じて電気機械変換素子を駆動する駆
動手段と、電気機械変換素子の変位を検出する変位検出
手段とを具備し、非線形補正係数生成手段は、周期的な
鋸歯状波状の目標値と変位検出手段から得られる変位情
報を1周期内に複数回サンプリングして、目標値と変位
情報との差が所定の範囲内になるように非線形補正係数
を設定し、切り換え手段は、非線形補正係数が設定され
るまでは非線形補正係数生成手段より得られる操作量を
選択し、設定されてからは非線形補正手段より得られる
操作量を選択することとしたことにより、電気機械変換
素子の非線形変位特性を自動的に軽減できるので、目標
値に対してより精度のよい制御をより簡便に行うことが
出来る。
As described above, the present invention provides an electromechanical transducer having an output displacement characteristic with respect to an input voltage having a nonlinear displacement characteristic, a target value generating means for generating a target value of the displacement of the electromechanical transducer, The output displacement characteristic with respect to the target value of the mechanical conversion element is linearly corrected to operate the electromechanical conversion element.
Before setting the nonlinear correction coefficient, which is the slope of the crop
Operating amount of the electromechanical transducer based on the nonlinear correction coefficient
, A nonlinear correction coefficient storage means for storing the nonlinear correction coefficient generated by the nonlinear correction coefficient generation means, and a target value based on the nonlinear correction coefficient stored in the nonlinear correction coefficient storage means. A non-linear correction means for non-linearly correcting the operation amount, a switching means for switching between an operation amount obtained by the non-linear correction coefficient generation means and an operation amount obtained by the non-linear correction means, and an electromechanical conversion element according to the operation amount switched by the switching means. A non-linear correction coefficient generating unit that outputs a periodic sawtooth wave target value and displacement information obtained from the displacement detecting unit; and sampled multiple times in the period, to set the non-linear correction coefficient so that a difference between the target value and the displacement information is within a predetermined range, cut conversion The means selects the operation amount obtained from the nonlinear correction coefficient generation means until the nonlinear correction coefficient is set, and selects the operation amount obtained from the nonlinear correction means after the setting. Since the nonlinear displacement characteristics of the conversion element can be automatically reduced, more accurate control of the target value can be performed more easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成を示すブロック図FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.

【図2】本発明の一実施例の非線形補正手段105にお
ける電気機械変換素子101の変位の目標値Rと変位情
報F及び操作量Pの関係を示す図
FIG. 2 is a diagram showing a relationship among a target value R of displacement of the electromechanical transducer 101, displacement information F, and an operation amount P in the nonlinear correction means 105 according to one embodiment of the present invention.

【図3】本発明の一実施例の上位概念のフローチャートFIG. 3 is a flowchart of a general concept of an embodiment of the present invention.

【図4】本発明の一実施例の非線形補正係数生成手段1
03のフローチャート
FIG. 4 shows a non-linear correction coefficient generating means 1 according to an embodiment of the present invention.
03 flowchart

【図5】本発明の一実施例における操作量Pの傾きa1
設定のフローチャート
FIG. 5 shows a gradient a1 of the operation amount P in one embodiment of the present invention.
Setting flowchart

【図6】本発明の一実施例における操作量Pの傾きa2
設定のフローチャート
FIG. 6 shows a gradient a2 of the operation amount P in one embodiment of the present invention.
Setting flowchart

【図7】本発明の一実施例における操作量Pの傾きa3
設定のフローチャート
FIG. 7 shows a gradient a3 of the operation amount P in one embodiment of the present invention.
Setting flowchart

【図8】本発明の一実施例の非線形補正手段のフローチ
ャート
FIG. 8 is a flowchart of the non-linear correction means according to one embodiment of the present invention;

【図9】2ヘッド型ヘリカルスキャン方式のVTRにお
ける再生ヘッド(図示せず)の走査軌跡と、記録トラッ
クの関係を示す図
FIG. 9 is a diagram showing a relationship between a scanning locus of a reproducing head (not shown) and a recording track in a two-head helical scan type VTR.

【図10】電気機械変換素子の変位の目標値と駆動され
た電気機械変換素子の変位情報の関係を示す図
FIG. 10 is a diagram showing a relationship between a target value of displacement of an electromechanical transducer and displacement information of a driven electromechanical transducer.

【図11】従来の非線形変位特性を有する電気機械変換
素子の制御装置の構成を示すブロック図
FIG. 11 is a block diagram showing a configuration of a conventional controller for an electromechanical transducer having nonlinear displacement characteristics.

【図12】電気機械変換素子の印加電圧と変位の関係を
示す図
FIG. 12 is a diagram showing a relationship between applied voltage and displacement of an electromechanical transducer.

【符号の説明】[Explanation of symbols]

101 電気機械変換素子 102 目標値発生手段 103 非線形補正係数生成手段 104 非線形補正係数記憶手段 105 非線形補正手段 106 切り換え手段 107 駆動手段 108 変位検出手段 DESCRIPTION OF SYMBOLS 101 Electromechanical conversion element 102 Target value generation means 103 Nonlinear correction coefficient generation means 104 Nonlinear correction coefficient storage means 105 Nonlinear correction means 106 Switching means 107 Driving means 108 Displacement detection means

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 入力電圧に対する出力変位特性が非線形
変位特性を有する電気機械変換素子と、前記電気機械変
換素子の変位の目標値を発生する目標値発生手段と、前
記電気機械変換素子の目標値に対する出力変位特性を線
形に補正して前記電気機械変換素子の操作量の傾きとな
る非線形補正係数を設定し、設定した前記非線形補正係
数を基に前記電気機械変換素子の操作量を算出する非線
形補正係数生成手段と、前記非線形補正係数生成手段に
より生成された非線形補正係数を保存する非線形補正係
数記憶手段と、前記非線形補正係数記憶手段に保存され
ている非線形補正係数を基に前記電気機械変換素子の操
作量を算出する非線形補正手段と、前記非線形補正係数
生成手段より得られる操作量と前記非線形補正手段より
得られる操作量とを切り換える切り換え手段と、前記切
り換え手段により切り換えられる操作量に応じて前記電
気機械変換素子を駆動する駆動手段と、前記電気機械変
換素子の変位を検出する変位検出手段とを具備し、前記
非線形補正係数生成手段は、周期的な鋸歯状波状の目標
値と前記変位検出手段から得られる変位情報を1周期内
複数回サンプリングして、前記目標値と前記変位情報
との差が所定の範囲内になるように前記非線形補正係数
を設定し、前記切り換え手段は、前記非線形補正係数が
設定されるまでは前記非線形補正係数生成手段より得ら
れる操作量を選択し、設定されてからは前記非線形補正
手段より得られる操作量を選択することを特徴とする非
線形変位特性を有する電気機械変換素子の制御装置。
1. An electromechanical transducer having an output displacement characteristic with respect to an input voltage having a non-linear displacement characteristic, a target value generating means for generating a target value of displacement of the electromechanical transducer, and a target value of the electromechanical transducer. The output displacement characteristic with respect to is linearly corrected to obtain the inclination of the operation amount of the electromechanical transducer.
A non-linear correction coefficient, and the set non-linear correction coefficient
A non-linear correction coefficient generation unit that calculates an operation amount of the electromechanical conversion element based on a number, a non-linear correction coefficient storage unit that stores a non-linear correction coefficient generated by the non-linear correction coefficient generation unit, Operating the electromechanical transducer based on the non-linear correction coefficient stored in the non-linear correction coefficient storage means.
Non-linear correction means for calculating the amount of operation, switching means for switching between the operation amount obtained by the non-linear correction coefficient generation means and the operation amount obtained by the non-linear correction means, and the operation amount switched by the switching means driving means for driving the electromechanical transducer, comprising a displacement detector for detecting the displacement of the electromechanical transducer, the nonlinear correction coefficient generating means, periodic sawtooth wave target value and the displacement detection the displacement information obtained from the means by sampled multiple times within one period, the difference between the target value and the displacement information is set to the non-linear correction coefficient to be within a predetermined range, said switching means, said Until the non-linear correction coefficient is set, the operation amount obtained by the non-linear correction coefficient generation means is selected, and after the setting, the operation amount is obtained by the non-linear correction means. Control device for an electromechanical transducer having a non-linear displacement characteristic and selects the work amount.
JP21358794A 1994-09-07 1994-09-07 Control device for electromechanical transducer with non-linear displacement characteristics Expired - Fee Related JP3146873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21358794A JP3146873B2 (en) 1994-09-07 1994-09-07 Control device for electromechanical transducer with non-linear displacement characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21358794A JP3146873B2 (en) 1994-09-07 1994-09-07 Control device for electromechanical transducer with non-linear displacement characteristics

Publications (2)

Publication Number Publication Date
JPH0877537A JPH0877537A (en) 1996-03-22
JP3146873B2 true JP3146873B2 (en) 2001-03-19

Family

ID=16641676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21358794A Expired - Fee Related JP3146873B2 (en) 1994-09-07 1994-09-07 Control device for electromechanical transducer with non-linear displacement characteristics

Country Status (1)

Country Link
JP (1) JP3146873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057027B1 (en) * 2018-01-15 2019-12-18 김명근 Ink accommodating container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057027B1 (en) * 2018-01-15 2019-12-18 김명근 Ink accommodating container

Also Published As

Publication number Publication date
JPH0877537A (en) 1996-03-22

Similar Documents

Publication Publication Date Title
KR900006481B1 (en) Magnetic recording and displaying device
JPS6258045B2 (en)
US4445145A (en) Video signal reproducing apparatus
KR900702511A (en) Magnetic recording and playback device
US4489352A (en) Video tape recording/reproducing apparatus having an auto tracking function
JP3146873B2 (en) Control device for electromechanical transducer with non-linear displacement characteristics
EP0508827B1 (en) Tracking control device
EP0392789B1 (en) Tracking control device for a magnetic recording and reproducing apparatus
US6115204A (en) Rotary head type magnetic recording/reproducing apparatus employing dynamic closed loop and semi-closed loop or open loop tracking systems
GB2097216A (en) Tracking control system
KR0176145B1 (en) Automatic tracking control method
JP3225584B2 (en) Tracking control device for magnetic recording / reproducing device
JPH0150967B2 (en)
JP2600007B2 (en) Magnetic recording / reproducing method
JPH0773546A (en) Method and equipment for controlling tracking of video tape recorder
US5402279A (en) Tracking apparatus for helical scan video tape recorders
JPH0944829A (en) Tracking control device for magnetic recording and reproducing device
JP2600006B2 (en) Magnetic recording / reproducing method
JP2538108B2 (en) Magnetic recording / reproducing device
KR900008493B1 (en) Tape loading apparatus magnetic recording and reproducing apparatus for rotrary magnetic head
JPS6335152B2 (en)
JP2689811B2 (en) Magnetic recording / reproducing device
JP3014837B2 (en) Magnetic recording / reproducing device
JP3116270B2 (en) Variable speed playback device
JPH081693B2 (en) Magnetic playback device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees