JP3144798U - Absolute reflection measuring device - Google Patents

Absolute reflection measuring device Download PDF

Info

Publication number
JP3144798U
JP3144798U JP2008004495U JP2008004495U JP3144798U JP 3144798 U JP3144798 U JP 3144798U JP 2008004495 U JP2008004495 U JP 2008004495U JP 2008004495 U JP2008004495 U JP 2008004495U JP 3144798 U JP3144798 U JP 3144798U
Authority
JP
Japan
Prior art keywords
mirror
light beam
sample
measurement
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2008004495U
Other languages
Japanese (ja)
Inventor
俊郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008004495U priority Critical patent/JP3144798U/en
Application granted granted Critical
Publication of JP3144798U publication Critical patent/JP3144798U/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】測定誤差が少なく入射角が小さくても測定できる絶対反射測定装置を提供する。
【解決手段】光源11と、この光源11から出射する光束を測定光束12Aとして出射する光学系12と、該測定光束12Aを回転可能に載置された試料Sに照射しその反射光10Aがミラー14を介して導入される移動可能に支持された積分球13aと、該積分球13a内に配設された光電変換器13bなどからなる構造を有する。前記ミラー14は、積分球13aと光電変換器13bで構成される検出器13を保持する支持台16に支持される凹面鏡で構成されており前記試料Sの反射面と測定光束12Aの中心との交点を中心とする円周上の所定範囲を移動可能である。反射光10Aに対してミラー14の角度θ1が変動してもミラー14は凹面鏡であり入射角度の変動は軽減され鏡面反射率の変動は少ない。
【選択図】図1
An absolute reflection measuring apparatus capable of measuring even with a small incident angle and a small incident angle is provided.
A light source 11, an optical system 12 that emits a light beam emitted from the light source 11 as a measurement light beam 12A, and a sample S that is rotatably mounted to the measurement light beam 12A and the reflected light 10A is mirrored. 14 has a structure composed of an integrating sphere 13a introduced through 14 and movably supported, a photoelectric converter 13b disposed in the integrating sphere 13a, and the like. The mirror 14 is composed of a concave mirror supported by a support base 16 that holds a detector 13 composed of an integrating sphere 13a and a photoelectric converter 13b, and is formed between the reflecting surface of the sample S and the center of the measurement light beam 12A. A predetermined range on the circumference around the intersection can be moved. Even if the angle θ1 of the mirror 14 varies with respect to the reflected light 10A, the mirror 14 is a concave mirror, the variation in incident angle is reduced, and the variation in specular reflectance is small.
[Selection] Figure 1

Description

本考案は、入射角の小さい場合にも誤差少なく測定できる角度可変絶対反射測定装置に係り、特に反射光束を検出器に入射させる構造に関する。   The present invention relates to a variable angle absolute reflection measuring apparatus that can measure an error even when an incident angle is small, and more particularly to a structure in which a reflected light beam is incident on a detector.

絶対反射測定装置では、試料が無い状態で例えば分光器などで構成される光学系から出射した測定光束を直接例えば積分球と光電変換器で構成される検出器に入射して測定した信号を所定の波長域にわたって一定の大きさ(100%)になるように測定系の感度を設定した後、分光器で分光された測定光束を試料に入射し、入射した角度と同じ角度で反射する光束を検出器に入射させ、所定波長域にわたって前回と同一感度条件の測定系で測定される信号の大きさ(%)を絶対反射率としている。このように、絶対反射測定は基準試料を用いない測定法である。   In the absolute reflection measuring apparatus, a measurement light beam emitted from an optical system composed of, for example, a spectroscope in the absence of a sample is directly incident on a detector composed of, for example, an integrating sphere and a photoelectric converter, and a measured signal is predetermined. After setting the sensitivity of the measurement system so that it has a constant magnitude (100%) over the wavelength range of, the measurement light beam dispersed by the spectroscope is incident on the sample, and the light beam reflected at the same angle as the incident angle The absolute reflectance is defined as the magnitude (%) of a signal that is incident on the detector and is measured in a measurement system under the same sensitivity condition as the previous time over a predetermined wavelength range. Thus, absolute reflection measurement is a measurement method that does not use a reference sample.

反射測定では入射角度が大きい場合、入射面に垂直な振動成分(s偏光)と入射面に平行な振動成分(p偏光)の反射率が異なる。このため、大きな入射角で絶対反射測定を行う場合は、偏光子を用いて入射光をs偏光またはp偏光のどちらか一方に設定し、それぞれを別々に測定する。   In the reflection measurement, when the incident angle is large, the reflectances of the vibration component perpendicular to the incident surface (s-polarized light) and the vibration component parallel to the incident surface (p-polarized light) are different. For this reason, when performing absolute reflection measurement at a large incident angle, the incident light is set to either s-polarized light or p-polarized light using a polarizer, and each is measured separately.

従来の絶対反射測定装置は、図5に示すとおり、光源51と、この光源51から出射する光束を測定光束52Aとして出射する光学系52と、該測定光束52Aを回転可能に載置された試料Sに入射角θで照射し反射角θの反射光50Aが導入される移動可能に支持された積分球53aと、該積分球53a内に配設された光電変換器53bなどで構成される。検出器53は積分球53aと光電変換器53bで構成される。   As shown in FIG. 5, a conventional absolute reflection measuring apparatus includes a light source 51, an optical system 52 that emits a light beam emitted from the light source 51 as a measurement light beam 52A, and a sample on which the measurement light beam 52A is rotatably mounted. S is configured to include an integrating sphere 53a that is movably supported by which reflected light 50A having a reflection angle θ is introduced by irradiation with an incident angle θ, and a photoelectric converter 53b disposed in the integrating sphere 53a. The detector 53 includes an integrating sphere 53a and a photoelectric converter 53b.

絶対反射率の測定では、試料Sが無い状態で光学系52から出射した測定光束52Aを直接、検出器53(破線で示す位置に移動)に入射して測定した信号を100%になるように測定系の感度を設定した後、測定光束52Aを試料Sに入射角θで入射し、反射角θの反射光50Aが検出器53に入射するように反射光検出系角度を設定し、前回と同一感度条件の測定系で測定される信号の大きさ(%)を求める。積分球53aはその開口を試料Sの反射面と測定光束52Aの中心の交点に向け該交点を中心とする円周上を入射角θの大きさに応じて移動する。したがって、入射角θが小さい場合は積分球53aにより測定光束52Aが遮られ測定困難となる。   In the measurement of the absolute reflectance, the measurement light beam 52A emitted from the optical system 52 without the sample S is directly incident on the detector 53 (moved to the position indicated by the broken line) so that the measured signal becomes 100%. After setting the sensitivity of the measurement system, the measurement light beam 52A is incident on the sample S at the incident angle θ, and the reflected light detection system angle is set so that the reflected light 50A having the reflection angle θ is incident on the detector 53. Obtain the magnitude (%) of the signal measured by the measurement system under the same sensitivity condition. The integrating sphere 53a moves toward the intersection of the reflection surface of the sample S and the center of the measurement light beam 52A with the opening thereof on the circumference centering on the intersection according to the incident angle θ. Therefore, when the incident angle θ is small, the measurement light beam 52A is blocked by the integrating sphere 53a, making measurement difficult.

入射角θが小さいとき測定困難となる問題を解決するために、図5に示す絶対反射測定装置に次に述べる2個のミラーが配設される(例えば特許文献1参照)。すなわち図6において、光学系52からの測定光束52Aを反射する第1の固定ミラー64と、該第1の固定ミラー64で反射された測定光束52Aを試料Sの回転中心に向けて反射する第2の固定ミラー65を備える。前記第1および第2の固定ミラー64、65は検出器53の移動軌跡の内側に配置されており、前記第1の固定ミラー64は測定光束52Aを鋭角方向に反射する。なお図6において図5と同じ符号で示す部品は図5と同じものなので説明は省略する。   In order to solve the problem of difficulty in measurement when the incident angle θ is small, the following two mirrors are arranged in the absolute reflection measuring apparatus shown in FIG. 5 (see, for example, Patent Document 1). That is, in FIG. 6, the first fixed mirror 64 that reflects the measurement light beam 52A from the optical system 52, and the measurement light beam 52A reflected by the first fixed mirror 64 is reflected toward the rotation center of the sample S. Two fixed mirrors 65 are provided. The first and second fixed mirrors 64 and 65 are disposed inside the movement locus of the detector 53, and the first fixed mirror 64 reflects the measurement light beam 52A in an acute angle direction. In FIG. 6, parts denoted by the same reference numerals as those in FIG. 5 are the same as those in FIG.

入射角θが小さいとき測定困難となる問題を解決する他の方法として、図5に示す絶対反射測定装置に次に述べる1個のミラーを配設してもよい。すなわち、反射光50Aを検出器53に直接入射させる代わりに、図7に示すとおり、検出器53が支持される移動可能架台にに保持されたミラー74に入射させ90°方向転換させ、開口を該ミラー74の方向に向けた検出器53に導入する。なお図7において図5と同じ符号で示す部品は図5と同じものなので説明は省略する。   As another method for solving the problem of difficulty in measurement when the incident angle θ is small, one mirror described below may be provided in the absolute reflection measuring apparatus shown in FIG. That is, instead of causing the reflected light 50A to directly enter the detector 53, as shown in FIG. 7, the reflected light 50A is incident on the mirror 74 held on the movable frame on which the detector 53 is supported, and the opening is changed by 90 °. It is introduced into the detector 53 directed in the direction of the mirror 74. In FIG. 7, the parts denoted by the same reference numerals as those in FIG. 5 are the same as those in FIG.

ミラーは通常研磨したガラス面にAl蒸着されたものが使用される。Al蒸着ミラーの鏡面反射率特性は光束の入射角により変化する。図4は、例えば波長500nmの光束の入射角と鏡面反射率の関係を示した図であり、(RE)sはs偏光、(RE)pはp偏光の鏡面反射率特性を示す。
特開2004−198244号公報
The mirror used is usually a mirror-deposited glass surface deposited with Al. The specular reflectance characteristics of the Al vapor deposition mirror vary depending on the incident angle of the light beam. FIG. 4 is a diagram showing the relationship between the incident angle of a light beam having a wavelength of, for example, 500 nm and the specular reflectivity. (RE) s shows the specular reflectivity characteristic of s-polarized light and (RE) p shows the specular reflectivity characteristic of p-polarized light.
JP 2004-198244 A

上述のとおり入射角/反射角が小さいとき測定困難となる問題は改善されているが、1個のミラーを配設して反射光50Aを90°方向転換させ検出器53に導入する場合ミラーへの入射角度はおよそ45°である。図4が示すとおり入射角度が10°近傍以下では入射角度の変動が生じてもミラーの鏡面反射率は変化しないが、入射角度45°の近傍では入射角度の誤差が鏡面反射率の変動を生起させ絶対反射率の測定誤差を生じる。したがって検出器設定角度に誤差があるとミラーへの入射角度に誤差が生じて絶対反射率の測定誤差となる。   As described above, the problem that measurement is difficult when the incident angle / reflection angle is small has been improved. However, when a single mirror is provided and the reflected light 50 </ b> A is turned 90 ° and introduced into the detector 53, the mirror is used. The incident angle is about 45 °. As shown in FIG. 4, when the incident angle is less than 10 °, the mirror reflectivity of the mirror does not change even if the incident angle fluctuates. However, near the incident angle of 45 °, an error in the incident angle causes a change in the specular reflectivity. Measurement error of absolute reflectance. Therefore, if there is an error in the detector setting angle, an error occurs in the incident angle to the mirror, resulting in an absolute reflectance measurement error.

本考案は光源と、この光源から出射する光束を測定光束として出射する光学系と、該測定光束を回転可能に載置された試料に照射しその反射光がミラーを介して導入される検出器を有する絶対反射測定装置において、前記ミラーは、前記検出器を保持する支持台に支持される凹面鏡で構成されており、前記支持台は前記試料の反射面と測定光束中心の交点を中心とする円周上の所定範囲を移動可能である。したがって、試料からの反射光に対してミラーの角度が変動しても入射角度の変動は軽減される。   The present invention provides a light source, an optical system that emits a light beam emitted from the light source as a measurement light beam, and a detector in which the measurement light beam is irradiated onto a rotatably mounted sample and the reflected light is introduced through a mirror. In the absolute reflection measuring apparatus, the mirror is configured by a concave mirror supported by a support base that holds the detector, and the support base is centered on the intersection of the reflection surface of the sample and the center of the measurement light beam. A predetermined range on the circumference can be moved. Therefore, even if the angle of the mirror varies with respect to the reflected light from the sample, the variation in the incident angle is reduced.

あるいは光源と、この光源から出射する光束を測定光束として出射する光学系と、該測定光束を回転可能に載置された試料に照射しその反射光がミラーを介して導入される検出器を有する絶対反射測定装置において、前記ミラーは、前記検出器を保持する支持台に支持される平面鏡で構成されており、前記支持台は前記試料の反射面と測定光束中心の交点を中心とする円周上の所定範囲を移動可能であり、前記検出器の反射光導入孔と前記ミラーとの距離が前記試料と前記ミラーとの距離より長く、試料からの反射光の前記ミラーへの入射角が10°以下である。   Alternatively, it has a light source, an optical system that emits a light beam emitted from the light source as a measurement light beam, and a detector that irradiates the measurement light beam to a rotatably mounted sample and introduces the reflected light through a mirror. In the absolute reflection measuring apparatus, the mirror is composed of a plane mirror supported by a support table that holds the detector, and the support table has a circumference centered at the intersection of the reflection surface of the sample and the center of the measurement light beam. The distance between the reflected light introducing hole of the detector and the mirror is longer than the distance between the sample and the mirror, and the incident angle of the reflected light from the sample to the mirror is 10 ° or less.

光源と、この光源から出射する光束を測定光束として出射する光学系と、該測定光束を回転可能に載置された試料に照射しその反射光がミラーを介して導入される検出器を有する絶対反射測定装置において、前記ミラーが2個以上の複数の平面鏡で構成されるとともに前記検出器を保持する支持台に支持され、前記支持台は前記試料の反射面と測定光束中心の交点を中心とする円周上の所定範囲を移動可能であり試料からの反射光の前記ミラーへの入射角がいずれも10°以下である。したがって、試料からの反射光に対してミラーの角度が変動して入射角度が変化してもミラーの鏡面反射率の変動は少ない。   An absolute light source, an optical system that emits a light beam emitted from the light source as a measurement light beam, and a detector that irradiates the measurement light beam to a rotatably mounted sample and introduces the reflected light through a mirror. In the reflection measurement apparatus, the mirror is composed of two or more plane mirrors and is supported by a support base that holds the detector, and the support base is centered on the intersection of the reflection surface of the sample and the center of the measurement light beam. The angle of incidence of the reflected light from the sample on the mirror is 10 ° or less. Therefore, even if the angle of the mirror fluctuates with respect to the reflected light from the sample and the incident angle changes, the fluctuation in the mirror reflectivity of the mirror is small.

凹面鏡を介して試料からの反射光を検出器に導入する場合、反射光検出系角度の設定誤差などにより前記反射光に対して凹面鏡の角度が変動しても入射角度の変動は軽減され凹面鏡の鏡面反射率の変動は少なく絶対反射率の測定誤差は小さい。試料からの反射光に対して入射角が10°以下になるように配設したミラーを介して前記反射光を検出器に導入する場合、反射光検出系角度の設定誤差などにより前記反射光に対するミラーの角度が変動して入射角度が変化してもミラーの鏡面反射率の変動は少なく絶対反射率の測定誤差は小さい。また入射角が10°以下の場合は偏光成分についても入射角変動に対する鏡面反射率の変化が少なく、偏光子を試料の後側に載置するような絶対反射率の測定においても測定誤差は小さい。   When the reflected light from the sample is introduced into the detector through the concave mirror, even if the angle of the concave mirror varies with respect to the reflected light due to a setting error of the reflected light detection system angle, the variation in the incident angle is reduced and the concave mirror There is little fluctuation in specular reflectance, and the measurement error of absolute reflectance is small. When the reflected light is introduced into the detector through a mirror disposed so that the incident angle with respect to the reflected light from the sample is 10 ° or less, the reflected light is detected due to a setting error of the reflected light detection system angle. Even if the angle of the mirror fluctuates and the incident angle changes, the specular reflectance variation of the mirror is small and the absolute reflectance measurement error is small. In addition, when the incident angle is 10 ° or less, the change in the specular reflectance with respect to the variation in the incident angle is small for the polarization component, and the measurement error is small even in the measurement of the absolute reflectance such that the polarizer is placed on the back side of the sample. .

各ミラーはガラスの研磨面にAl蒸着した構造のものであり、測定する入射角の変更に際し検出器とともに試料の反射面と測定光束中心の交点を中心とする円周上を移動させ入射角と等しい反射角の反射光が検出器に入射する角度に設定し固定する(反射光検出系角度を設定する)。   Each mirror has a structure in which Al is vapor-deposited on the polished surface of the glass, and when changing the incident angle to be measured, the detector moves along the circumference around the intersection of the reflecting surface of the sample and the center of the measuring beam with the detector. The angle is set at an angle at which the reflected light with the same reflection angle is incident on the detector, and the reflected light detection system angle is set.

本考案の請求項1の実施例について図1を参照して説明する。図1は、本考案の実施例1による絶対反射測定装置の概略構造を示す図である。本考案の実施例1による絶対反射測定装置は、図1に示すとおり、例えばハロゲンランプで構成される光源11と、この光源11から出射する白色光束を分光し単色光の測定光束12Aとして出射する分光器で構成される光学系12と、該測定光束12Aを回転可能に載置された試料Sに照射しその反射光10Aがミラー14を介して導入される移動可能に支持された積分球13aと、該積分球13a内に配設された例えば光電子増倍管で構成される光電変換器13bなどからなる構造を有する。前記ミラー14は、積分球13aと光電変換器13bで構成される検出器13を保持する支持台16に支持される凹面鏡で構成されており前記試料Sの反射面と測定光束12Aの中心との交点を中心とする円周上の所定範囲を移動可能である。   An embodiment of claim 1 of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a schematic structure of an absolute reflection measuring apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the absolute reflection measuring apparatus according to Embodiment 1 of the present invention splits a light source 11 composed of, for example, a halogen lamp and a white light beam emitted from the light source 11 and emits it as a measurement light beam 12A of monochromatic light. An optical system 12 composed of a spectroscope and an integrating sphere 13a supported so as to be movable, in which the measurement light beam 12A is irradiated onto the sample S mounted rotatably and the reflected light 10A is introduced through a mirror 14. And a photoelectric converter 13b composed of, for example, a photomultiplier arranged in the integrating sphere 13a. The mirror 14 is composed of a concave mirror supported by a support base 16 that holds a detector 13 composed of an integrating sphere 13a and a photoelectric converter 13b, and is formed between the reflecting surface of the sample S and the center of the measurement light beam 12A. A predetermined range on the circumference around the intersection can be moved.

本考案の実施例1は以上の構造であるから、反射光検出系角度の設定誤差などにより前記反射光10Aに対して凹面鏡で構成されるミラー14の角度θ1が変動しても入射角度の変動は軽減されミラー14の鏡面反射率の変動は少なく絶対反射率の測定誤差は小さい。例えばミラー14の曲率半径がミラー14と試料Sの距離の√2倍の場合、反射光10Aに対してミラー14の角度が1°変動しても入射角度の変動は約0.01°程度である。   Since the first embodiment of the present invention has the above structure, even if the angle θ1 of the mirror 14 formed of a concave mirror with respect to the reflected light 10A varies due to a setting error of the reflected light detection system angle, the incident angle varies. Is reduced, and the variation in the specular reflectance of the mirror 14 is small and the absolute reflectance measurement error is small. For example, when the radius of curvature of the mirror 14 is √2 times the distance between the mirror 14 and the sample S, even if the angle of the mirror 14 varies by 1 ° with respect to the reflected light 10A, the variation of the incident angle is about 0.01 °. is there.

絶対反射率の測定は次のとおり行われる。試料Sが無い状態で光学系12から出射した測定光束12Aをミラー14を介して直接、検出器13(破線で示す位置に移動)に入射して測定した信号を100%になるように各波長毎に測定系の感度を設定した後、測定光束12Aを試料Sに入射角θで入射し、反射角θの反射光10Aがミラー14を介して検出器13に入射するように反射光検出系角度を設定し、前回と同一感度条件の測定系で測定される各波長の信号の大きさ(%)を求める。本考案の実施例1による絶対反射測定装置では、図1に示すとおり入射角θの小さい測定の場合、ミラー14により測定光束12Aが遮られるまで測定可能であり、入射角θが小さい場合でも積分球13aにより測定光束12Aが遮られることはない配置で構成されている。   The absolute reflectance is measured as follows. The measurement light beam 12A emitted from the optical system 12 without the sample S is directly incident on the detector 13 (moved to the position indicated by the broken line) via the mirror 14 so that the measured signal becomes 100%. After setting the sensitivity of the measurement system every time, the measurement light beam 12A is incident on the sample S at the incident angle θ, and the reflected light 10A having the reflection angle θ is incident on the detector 13 via the mirror 14. The angle is set, and the magnitude (%) of the signal of each wavelength measured by the measurement system under the same sensitivity condition as the previous time is obtained. In the absolute reflection measuring apparatus according to the first embodiment of the present invention, when the incident angle θ is small as shown in FIG. 1, the measurement can be performed until the measurement light beam 12A is blocked by the mirror 14, and even if the incident angle θ is small, integration is possible. The measurement light beam 12A is not blocked by the sphere 13a.

図1で示す実施例1では、検出器13は積分球13aと光電変換器13bとからなる構造であるが積分球13aの代わりに光電変換器13bの冷却材兼支持体で置き換えても本考案は適用可能である。また、図示例ではシングルビームの構成であるが測定光束12Aをハーフミラーで分岐し分岐された光束をモニター用の検出器に導入するダブルビームの構成としても本考案は適用可能であり、本考案はこれら変形例を包含する。   In the first embodiment shown in FIG. 1, the detector 13 has a structure composed of an integrating sphere 13a and a photoelectric converter 13b. However, the present invention can be applied even if the detector 13 is replaced with a coolant / support for the photoelectric converter 13b instead of the integrating sphere 13a. Is applicable. In addition, although the illustrated example has a single beam configuration, the present invention can also be applied to a double beam configuration in which the measurement light beam 12A is branched by a half mirror and the branched light beam is introduced into a detector for monitoring. Includes these variations.

本考案の請求項2の実施例について図2を参照して説明する。図2は、本考案の実施例2による絶対反射測定装置の概略構造を示す図である。本考案の実施例2による絶対反射測定装置は、図2に示すとおり、例えばハロゲンランプで構成される光源21と、この光源21から出射する白色光束を分光し単色光の測定光束22Aとして出射する分光器で構成される光学系22と、該測定光束22Aを回転可能に載置された試料Sに照射しその反射光20Aがミラー24を介して導入される移動可能に支持された積分球23aと、該積分球23a内に配設された例えば光電子増倍管で構成される光電変換器23bなどからなる構造を有する。前記ミラー24は、積分球23aと光電変換器23bで構成される検出器23を保持する支持台(図示しない)に支持される平面鏡で構成されており前記試料Sの反射面と測定光束22Aの中心との交点を中心とする円周上の所定範囲を移動可能であり、検出器23とミラー24との間隔は試料Sとミラー24との間隔より長い配置である。前記反射光20Aはミラー24に入射角θ2で入射し、該入射角θ2は10°以下に設定される。積分球23aの開口近傍には試料Sの散乱光の該開口への入射を遮るための遮蔽板27が配設される。   An embodiment of claim 2 of the present invention will be described with reference to FIG. FIG. 2 is a diagram showing a schematic structure of an absolute reflection measuring apparatus according to Embodiment 2 of the present invention. As shown in FIG. 2, the absolute reflection measuring apparatus according to Embodiment 2 of the present invention splits a light source 21 composed of, for example, a halogen lamp and a white light beam emitted from the light source 21, and emits it as a measurement light beam 22A of monochromatic light. An optical system 22 composed of a spectroscope and an integrating sphere 23a supported so as to be movable, in which the measurement light beam 22A is irradiated onto a rotatably mounted sample S and the reflected light 20A is introduced through a mirror 24. And a photoelectric converter 23b composed of, for example, a photomultiplier arranged in the integrating sphere 23a. The mirror 24 is composed of a plane mirror supported by a support base (not shown) that holds a detector 23 composed of an integrating sphere 23a and a photoelectric converter 23b, and reflects the reflection surface of the sample S and the measurement light beam 22A. A predetermined range on the circumference centering on the intersection with the center can be moved, and the distance between the detector 23 and the mirror 24 is longer than the distance between the sample S and the mirror 24. The reflected light 20A enters the mirror 24 at an incident angle θ2, and the incident angle θ2 is set to 10 ° or less. A shielding plate 27 is disposed in the vicinity of the opening of the integrating sphere 23a to block the incident light of the scattered light of the sample S from entering the opening.

本考案の実施例2は以上の構造であるから、反射光検出系角度の設定誤差などにより前記反射光20Aの平面鏡で構成されるミラー24への入射角θ2が変動しても10°以下に設定されているためミラー24の鏡面反射率の変動は少なく絶対反射率の測定誤差は小さい。また各構成部品を試料Sの近傍に配置できるため小型の絶対反射測定装置を提供可能である。   Since the second embodiment of the present invention has the above-described structure, even if the incident angle θ2 of the reflected light 20A to the mirror 24 constituted by the plane mirror varies due to a setting error of the reflected light detection system angle or the like, it is 10 ° or less. Since it is set, the variation in the specular reflectance of the mirror 24 is small, and the measurement error of the absolute reflectance is small. Further, since each component can be arranged in the vicinity of the sample S, a small absolute reflection measuring device can be provided.

絶対反射率の測定は次のとおり行われる。試料Sが無い状態で光学系22から出射した測定光束22Aをミラー24を介して直接、検出器23(破線で示す位置に移動)に入射して測定した信号を100%になるように各波長毎に測定系の感度を設定した後、測定光束22Aを試料Sに入射角θで入射し、反射角θの反射光20Aがミラー24を介して検出器23に入射するように反射光検出系角度を設定し、前回と同一感度条件の測定系で測定される各波長の信号の大きさ(%)を求める。本考案の実施例2による絶対反射測定装置では、図2に示すとおり入射角θの小さい測定の場合、ミラー24により測定光束22Aが遮られるまで測定可能であり、入射角θが小さい場合でも積分球23aにより測定光束22Aが遮られることはない配置で構成されている。   The absolute reflectance is measured as follows. The measurement light beam 22A emitted from the optical system 22 in the absence of the sample S is directly incident on the detector 23 (moved to the position indicated by the broken line) via the mirror 24 so that the measured signal becomes 100%. After setting the sensitivity of the measurement system every time, the measurement light beam 22A is incident on the sample S at the incident angle θ, and the reflected light 20A having the reflection angle θ is incident on the detector 23 via the mirror 24. The angle is set, and the magnitude (%) of the signal of each wavelength measured by the measurement system under the same sensitivity condition as the previous time is obtained. In the absolute reflection measuring apparatus according to the second embodiment of the present invention, when the incident angle θ is small as shown in FIG. 2, the measurement can be performed until the measurement light beam 22A is blocked by the mirror 24, and integration is performed even when the incident angle θ is small. The measurement light beam 22A is not blocked by the sphere 23a.

本考案の請求項3の実施例について図3を参照して説明する。図3は、本考案の実施例3による絶対反射測定装置の概略構造を示す図である。本考案の実施例3による絶対反射測定装置は、図3に示すとおり、例えばハロゲンランプで構成される光源31と、この光源31から出射する白色光束を分光し単色光の測定光束32Aとして出射する分光器で構成される光学系32と、該測定光束32Aを回転可能に載置された試料Sに照射しその反射光30Aがミラー34、35を介して導入される移動可能に支持された積分球33aと、該積分球33a内に配設された例えば光電子増倍管で構成される光電変換器33bなどからなる構造を有する。前記ミラー34、35は、積分球33aと光電変換器33bで構成される検出器33を保持する支持台(図示しない)に支持される平面鏡で構成されており前記試料Sの反射面と測定光束32Aの中心との交点を中心とする円周上の所定範囲を移動可能である。前記反射光30Aはミラー34に入射角θ3で入射し、ミラー34で反射後ミラー35に入射角θ4で入射する。該入射角θ3、4は10°以下に設定される。   An embodiment of claim 3 of the present invention will be described with reference to FIG. FIG. 3 is a diagram showing a schematic structure of an absolute reflection measuring apparatus according to Embodiment 3 of the present invention. As shown in FIG. 3, the absolute reflection measuring apparatus according to the third embodiment of the present invention splits a light source 31 composed of, for example, a halogen lamp and a white light beam emitted from the light source 31 and emits it as a measurement light beam 32A of monochromatic light. An optical system 32 composed of a spectroscope, and a measurement light beam 32A that is irradiated on a sample S that is rotatably mounted and its reflected light 30A is introduced through mirrors 34 and 35 so as to be supported in a movable manner. It has a structure composed of a sphere 33a and a photoelectric converter 33b, for example, composed of a photomultiplier tube disposed in the integrating sphere 33a. The mirrors 34 and 35 are constituted by plane mirrors supported by a support base (not shown) that holds a detector 33 constituted by an integrating sphere 33a and a photoelectric converter 33b. A predetermined range on the circumference around the intersection with the center of 32A can be moved. The reflected light 30A is incident on the mirror 34 at an incident angle θ3, and is reflected by the mirror 34 and incident on the mirror 35 at an incident angle θ4. The incident angles θ3 and 4 are set to 10 ° or less.

本考案の実施例3は以上の構造であるから、反射光検出系角度の設定誤差などにより前記反射光30Aの平面鏡で構成されるミラー34、35への入射角θ3、4が変動しても10°以下に設定されているためミラー34、35の鏡面反射率の変動は少なく絶対反射率の測定誤差は小さい。   Since the third embodiment of the present invention has the above-described structure, even if the incident angles θ3 and 4 of the reflected light 30A to the mirrors 34 and 35 formed by the plane mirrors fluctuate due to a setting error of the reflected light detection system angle or the like. Since the angle is set to 10 ° or less, there is little variation in the specular reflectance of the mirrors 34 and 35, and the measurement error of the absolute reflectance is small.

絶対反射率の測定は次のとおり行われる。試料Sが無い状態で光学系32から出射した測定光束32Aをミラー34、35を介して直接、検出器33(破線で示す位置に移動)に入射して測定した信号を100%になるように各波長毎に測定系の感度を設定した後、測定光束32Aを試料Sに入射角θで入射し、反射角θの反射光30Aがミラー34、35を介して検出器33に入射するように反射光検出系角度を設定し、前回と同一感度条件の測定系で測定される各波長の信号の大きさ(%)を求める。本考案の実施例3による絶対反射測定装置では、図3に示すとおり入射角θの小さい測定の場合、ミラー34により測定光束32Aが遮られるまで測定可能であり、入射角θが小さい場合でも積分球33aにより測定光束32Aが遮られることはない配置で構成されている。   The absolute reflectance is measured as follows. The measurement light beam 32A emitted from the optical system 32 without the sample S is directly incident on the detector 33 (moved to the position indicated by the broken line) via the mirrors 34 and 35 so that the measured signal becomes 100%. After setting the sensitivity of the measurement system for each wavelength, the measurement light beam 32A is incident on the sample S at the incident angle θ, and the reflected light 30A having the reflection angle θ is incident on the detector 33 via the mirrors 34 and 35. The reflected light detection system angle is set, and the magnitude (%) of the signal of each wavelength measured by the measurement system under the same sensitivity condition as the previous time is obtained. In the absolute reflection measuring apparatus according to the third embodiment of the present invention, when the incident angle θ is small as shown in FIG. 3, measurement is possible until the measurement light beam 32A is blocked by the mirror 34, and integration is performed even when the incident angle θ is small. The configuration is such that the measurement light beam 32A is not blocked by the sphere 33a.

本考案は、入射角の小さい場合にも誤差少なく測定できる角度可変絶対反射測定装置に利用可能である。   The present invention can be used for an angle variable absolute reflection measuring apparatus that can measure with little error even when the incident angle is small.

本考案の実施例1による絶対反射測定装置の概略構造を示す図である。It is a figure which shows schematic structure of the absolute reflection measuring apparatus by Example 1 of this invention. 本考案の実施例2による絶対反射測定装置の概略構造を示す図である。It is a figure which shows schematic structure of the absolute reflection measuring apparatus by Example 2 of this invention. 本考案の実施例3による絶対反射測定装置の概略構造を示す図である。It is a figure which shows schematic structure of the absolute reflection measuring apparatus by Example 3 of this invention. Al蒸着ミラーの入射角と鏡面反射率の関係を示す図である。It is a figure which shows the relationship between the incident angle of Al vapor deposition mirror, and a specular reflectance. 従来の絶対反射測定装置の概略構造を示す図である。It is a figure which shows schematic structure of the conventional absolute reflection measuring apparatus. 従来の絶対反射測定装置の概略構造を示す図である。It is a figure which shows schematic structure of the conventional absolute reflection measuring apparatus. 従来の絶対反射測定装置の概略構造を示す図である。It is a figure which shows schematic structure of the conventional absolute reflection measuring apparatus.

符号の説明Explanation of symbols

10A 反射光
11 光源
12 光学系
12A 測定光束
13 検出器
13a 積分球
13b 光電変換器
14 ミラー
16 支持台
20A 反射光
21 光源
22 光学系
22A 測定光束
23 検出器
23a 積分球
23b 光電変換器
24 ミラー
27 遮蔽板
30A 反射光
31 光源
32 光学系
32A 測定光束
33 検出器
33a 積分球
33b 光電変換器
34 ミラー
35 ミラー
50A 反射光
51 光源
52 光学系
52A 測定光束
53 検出器
53a 積分球
53b 光電変換器
64 固定ミラー
65 固定ミラー
74 ミラー
S 試料
10A reflected light 11 light source 12 optical system 12A measurement light beam 13 detector 13a integrating sphere 13b photoelectric converter 14 mirror 16 support base 20A reflected light 21 light source 22 optical system 22A measurement light beam 23 detector 23a integrating sphere 23b photoelectric converter 24 mirror 27 Shielding plate 30A Reflected light 31 Light source 32 Optical system 32A Measuring light beam 33 Detector 33a Integrating sphere 33b Photoelectric converter 34 Mirror 35 Mirror 50A Reflected light 51 Light source 52 Optical system 52A Measuring light beam 53 Detector 53a Integrating sphere 53b Photoelectric converter 64 Fixed Mirror 65 Fixed mirror 74 Mirror S Sample

Claims (3)

光源と、この光源から出射する光束を測定光束として出射する光学系と、該測定光束を回転可能に載置された試料に照射しその反射光がミラーを介して導入される検出器を有する絶対反射測定装置において、前記ミラーは、前記検出器を保持する支持台に支持される凹面鏡で構成されており、前記支持台は前記試料の反射面と測定光束中心の交点を中心とする円周上の所定範囲を移動可能であることを特徴とする絶対反射測定装置。   An absolute light source, an optical system that emits a light beam emitted from the light source as a measurement light beam, and a detector that irradiates the measurement light beam to a rotatably mounted sample and introduces the reflected light through a mirror. In the reflection measuring apparatus, the mirror is composed of a concave mirror supported by a support table that holds the detector, and the support table is on a circumference centered at an intersection of the reflection surface of the sample and the center of the measurement light beam. An absolute reflection measuring apparatus capable of moving within a predetermined range. 光源と、この光源から出射する光束を測定光束として出射する光学系と、該測定光束を回転可能に載置された試料に照射しその反射光がミラーを介して導入される検出器を有する絶対反射測定装置において、前記ミラーは、前記検出器を保持する支持台に支持される平面鏡で構成されており、前記支持台は前記試料の反射面と測定光束中心の交点を中心とする円周上の所定範囲を移動可能であり、前記検出器の反射光導入孔と前記ミラーとの距離が前記試料と前記ミラーとの距離より長く、試料からの反射光の前記ミラーへの入射角が10°以下であることを特徴とする絶対反射測定装置。   An absolute light source, an optical system that emits a light beam emitted from the light source as a measurement light beam, and a detector that irradiates the measurement light beam to a rotatably mounted sample and introduces the reflected light through a mirror. In the reflection measuring apparatus, the mirror is composed of a plane mirror supported by a support base that holds the detector, and the support base is on a circumference centered at an intersection of the reflection surface of the sample and the center of the measurement light beam. The distance between the reflected light introduction hole of the detector and the mirror is longer than the distance between the sample and the mirror, and the incident angle of the reflected light from the sample to the mirror is 10 °. An absolute reflection measuring apparatus characterized by the following. 光源と、この光源から出射する光束を測定光束として出射する光学系と、該測定光束を回転可能に載置された試料に照射しその反射光がミラーを介して導入される検出器を有する絶対反射測定装置において、前記ミラーが2個以上の複数の平面鏡で構成されるとともに前記検出器を保持する支持台に支持され、前記支持台は前記試料の反射面と測定光束中心の交点を中心とする円周上の所定範囲を移動可能であり試料からの反射光の前記ミラーへの入射角がいずれも10°以下であることを特徴とする絶対反射測定装置。   An absolute light source, an optical system that emits a light beam emitted from the light source as a measurement light beam, and a detector that irradiates the measurement light beam to a rotatably mounted sample and introduces the reflected light through a mirror. In the reflection measurement apparatus, the mirror is composed of two or more plane mirrors and is supported by a support base that holds the detector, and the support base is centered on the intersection of the reflection surface of the sample and the center of the measurement light beam. An absolute reflection measuring apparatus, which is movable within a predetermined range on the circumference of the circle, and the incident angle of the reflected light from the sample to the mirror is 10 ° or less.
JP2008004495U 2008-07-02 2008-07-02 Absolute reflection measuring device Ceased JP3144798U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008004495U JP3144798U (en) 2008-07-02 2008-07-02 Absolute reflection measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008004495U JP3144798U (en) 2008-07-02 2008-07-02 Absolute reflection measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011111174A Continuation JP5370409B2 (en) 2011-05-18 2011-05-18 Absolute reflection measuring device

Publications (1)

Publication Number Publication Date
JP3144798U true JP3144798U (en) 2008-09-11

Family

ID=43294634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008004495U Ceased JP3144798U (en) 2008-07-02 2008-07-02 Absolute reflection measuring device

Country Status (1)

Country Link
JP (1) JP3144798U (en)

Similar Documents

Publication Publication Date Title
JP5370409B2 (en) Absolute reflection measuring device
US20180286643A1 (en) Advanced optical sensor, system, and methodologies for etch processing monitoring
CN110376213B (en) Optical detection system and method
JP3144798U (en) Absolute reflection measuring device
US20050225767A1 (en) Aperture to reduce sensitivity to sample tilt in small spotsize reflectometers
CN208000191U (en) A kind of depolarizer detection device
US7294826B2 (en) Bio-sensing apparatus
CN115176147B (en) Optical metrology system and method
WO2015001649A1 (en) V-block refractometer
US10648928B1 (en) Scattered radiation optical scanner
JP3871415B2 (en) Spectral transmittance measuring device
KR20180129078A (en) Ellipsometer
US10563975B1 (en) Dual-sensor arrangment for inspecting slab of material
JP2006284233A (en) Apparatus for measuring system error and interferometer system for wavefront measurement equipped with the same
JP4260683B2 (en) Ellipsometer, polarization state acquisition method and light intensity acquisition method
KR102045442B1 (en) Ellipsometer
KR101321061B1 (en) Thickness Measuring Method Using Phase Difference of Interference Signal
JP3119622U (en) Spectrophotometer
KR102125068B1 (en) Ellipsometer
JP2004198244A (en) Transmissivity measuring instrument and absolute reflectivity measuring instrument
JP3470267B2 (en) Symmetric X-type optical system
JPH10221010A (en) Interferometer
JPH06213766A (en) Method for measuring scattering light and distribution of scattering angle
US7301631B1 (en) Control of uncertain angle of incidence of beam from Arc lamp
JP2007078603A (en) Spectrophotometer

Legal Events

Date Code Title Description
R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 3

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R321801

ABAN Cancellation of abandonment
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350