JP3144234B2 - Superconducting magnet device - Google Patents

Superconducting magnet device

Info

Publication number
JP3144234B2
JP3144234B2 JP22333894A JP22333894A JP3144234B2 JP 3144234 B2 JP3144234 B2 JP 3144234B2 JP 22333894 A JP22333894 A JP 22333894A JP 22333894 A JP22333894 A JP 22333894A JP 3144234 B2 JP3144234 B2 JP 3144234B2
Authority
JP
Japan
Prior art keywords
electric resistance
superconducting
low electric
magnet device
inner tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22333894A
Other languages
Japanese (ja)
Other versions
JPH07153618A (en
Inventor
和威 妹尾
武志 五味
吉洋 地蔵
正夫 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22333894A priority Critical patent/JP3144234B2/en
Publication of JPH07153618A publication Critical patent/JPH07153618A/en
Application granted granted Critical
Publication of JP3144234B2 publication Critical patent/JP3144234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は超電導磁気浮上車など
に利用される超電導磁石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet used for a superconducting magnetic levitation vehicle or the like.

【0002】[0002]

【従来の技術】図40は例えば特開平3−52203号
公報に記載された従来の超電導磁石装置で内槽容器に収
納された超電導コイルの一部断面を示す斜視図、図41
は図40における内槽容器の外観を示す斜視図、図42
は超電導磁石装置全体の概略構成を示す一部断面した斜
視図である。また、図43は超電導磁石装置が装着され
た超電導磁気浮上列車とその軌道の概略構成を示す断面
図である。図において、1は超電導素線をレーストラッ
クに巻回してなる超電導コイル、2は超電導コイル1を
囲いかつ、レーストラックの対向する直線部に支持柱2
aを2カ所有して形成され浸漬する冷媒の例えば液体ヘ
リウムの流通路1aを要して超電導コイル1を収納する
内槽容器で強度部材であるステンレス鋼板等の板材で製
作されている。3は内槽容器2の全表面に施された例え
ば銅メッキでなる低電気抵抗材、4は内槽容器2を取り
囲む輻射シールド板で通常は液体窒素または蒸発したヘ
リウムガスによって冷却される。5は上記各設備を外部
と断熱状態に収納する真空を維持するための外槽容器で
ある。なお、図43で6は浮上案内用地上コイル、7は
推進用地上コイル、8は列車の台車台枠、9は列車の車
体、10は地上コイル6,7が装着されている軌道側壁
である。
2. Description of the Related Art FIG. 40 is a perspective view showing a partial cross section of a superconducting coil housed in an inner vessel container in a conventional superconducting magnet device described in, for example, Japanese Patent Application Laid-Open No. 3-52203.
FIG. 42 is a perspective view showing the appearance of the inner tank container in FIG. 40;
FIG. 2 is a partially sectional perspective view showing a schematic configuration of the entire superconducting magnet device. FIG. 43 is a cross-sectional view showing a schematic configuration of a superconducting magnetic levitation train on which a superconducting magnet device is mounted and a track thereof. In the drawing, reference numeral 1 denotes a superconducting coil formed by winding a superconducting element wire around a race track, and 2 denotes a support pillar 2 which surrounds the superconducting coil 1 and is provided on a straight portion facing the race track.
The inner tank container, which has the two a and has the flow path 1a of the liquid to be immersed, for example, liquid helium, and accommodates the superconducting coil 1, is made of a plate material such as a stainless steel plate as a strength member. Reference numeral 3 denotes a low electric resistance material made of, for example, copper plating applied to the entire surface of the inner vessel 2 and 4 denotes a radiation shield plate surrounding the inner vessel 2 and is usually cooled by liquid nitrogen or evaporated helium gas. Numeral 5 denotes an outer tank container for maintaining the vacuum for accommodating the above-mentioned facilities in a state of being insulated from the outside. In FIG. 43, 6 is a levitation guide ground coil, 7 is a propulsion ground coil, 8 is a train bogie frame, 9 is a train body, and 10 is a track side wall on which ground coils 6 and 7 are mounted. .

【0003】次に動作について説明する。超電導コイル
1は内槽2に浸漬する冷媒(例えば液体ヘリウム)によ
って極低温に冷却され超電導状態となる。この状態で超
電導コイル1に電流を流すことにより、強力な磁界を発
生する超電導磁石となる。輻射シールド板4は外部から
の輻射熱が内槽に侵入するのを防止するよう構成され、
さらに外槽5は内部を真空断熱とすることにより対流を
防ぐ構造となっている。また、内槽容器2表面に設けら
れている低電気抵抗材3によって、外槽容器5の外部の
磁界変動または振動等により発生する内槽容器2周辺の
磁界変動は磁気的にシールドされる。図43で示すよう
に、超電導磁気浮上列車の台車台枠8に搭載されている
超電導磁石の磁束が軌道側壁10に装着されている地上
コイル6,7に鎖交してコイルに誘導電流を流し、この
誘導電流による磁界と超電導電磁石に流れる電流との間
の磁気的反作用を利用して車体を浮上させ走行させるも
のである。
Next, the operation will be described. The superconducting coil 1 is cooled to a very low temperature by a refrigerant (for example, liquid helium) immersed in the inner tank 2 and enters a superconducting state. By passing a current through the superconducting coil 1 in this state, the superconducting magnet generates a strong magnetic field. The radiation shield plate 4 is configured to prevent external radiation heat from entering the inner tank,
Further, the outer tub 5 has a structure in which convection is prevented by making the inside of the outer tub 5 a vacuum insulation. In addition, the low electric resistance material 3 provided on the surface of the inner vessel 2 magnetically shields magnetic field fluctuations around the inner vessel 2 caused by magnetic field fluctuations or vibrations outside the outer vessel 5. As shown in FIG. 43, the magnetic flux of the superconducting magnet mounted on the bogie frame 8 of the superconducting magnetic levitation train links the ground coils 6 and 7 mounted on the track side wall 10 and causes an induced current to flow through the coils. The vehicle body is made to levitate and travel by utilizing a magnetic reaction between the magnetic field caused by the induced current and the current flowing through the superconductive magnet.

【0004】ここで、超電導磁石の冷媒の蒸発の要因と
なる渦電流損失について、超電導磁気浮上列車が浮上走
行中の高調波磁場に起因する場合と、超電導コイルの励
消磁中(励磁途中および消磁途中)の磁場変動に起因す
る場合を以下に説明する。前者の走行中の地上コイルか
らの高調波磁場に起因する渦電流の流路は図44−
(A)で示す矢線ように内槽容器の分割流路を形成す
る。地上コイルからの高調波磁場の時間変化率(周波数
ω)は大きく、渦電流の流路の抵抗値をR、インダクタ
ンスをL、渦電流回路の電気的時定数をτとすると、ω
L》R(=ω》1/τ)となり 渦電流i=e/〔(ωL)2+R21/2≒(ωφ)/ωL=φ/L(一定) e;高調波磁場変動による誘起電圧(=ωφ) 渦電流iが一定値となるため渦電流損失We=i2Rと
なり、渦電流回路の抵抗が小さいほど内槽表面の渦電流
損失が小さくなる。低電気抵抗材3は渦電流による発熱
を低減するために内槽容器表面に設けられている。
Here, the eddy current loss which causes evaporation of the refrigerant in the superconducting magnet is caused by a harmonic magnetic field while the superconducting magnetic levitation train is levitating, and when the superconducting coil is demagnetized (during excitation and demagnetization). A case caused by a magnetic field fluctuation (on the way) will be described below. The flow path of the eddy current caused by the harmonic magnetic field from the terrestrial coil during the traveling is shown in FIG.
The divided flow path of the inner tank is formed as indicated by the arrow indicated by (A). The time rate of change (frequency ω) of the harmonic magnetic field from the ground coil is large. If the resistance value of the eddy current flow path is R, the inductance is L, and the electrical time constant of the eddy current circuit is τ, ω
L >> R (= ω >> 1 / τ) Eddy current i = e / [(ωL) 2 + R 2 ] 1/2 ≒ (ωφ) / ωL = φ / L (constant) e; Induction by harmonic magnetic field fluctuation Voltage (= ωφ) Since the eddy current i becomes a constant value, the eddy current loss We = i 2 R, and the smaller the resistance of the eddy current circuit, the smaller the eddy current loss on the inner tank surface. The low electric resistance material 3 is provided on the surface of the inner vessel container in order to reduce heat generation due to eddy current.

【0005】さらに超電導磁石装置が振動した場合、超
電導コイルと外槽容器、及び内槽容器の相対振動により
内槽容器表面で渦電流損失が発生する。そのメカニズム
は以下のようである、例えば500km/hrで走行中
の磁気浮上列車に搭載された超電導磁石装置は地上コイ
ルからの変動磁界により309Hzで加振される。ここ
で強磁界を発生している超電導コイルが振動すると、本
来、静磁場であるはずの磁場分布が変動する。この磁場
変動は外槽容器に渦電流を誘起する。外槽の渦電流は変
動磁界をつくり、この変動磁界により内槽表面に渦電流
が発生する。この渦電流により内槽容器において発熱が
生じる。
Further, when the superconducting magnet device vibrates, eddy current loss occurs on the surface of the inner vessel container due to the relative vibration of the superconducting coil, the outer vessel vessel, and the inner vessel vessel. The mechanism is as follows. For example, a superconducting magnet device mounted on a magnetic levitation train running at 500 km / hr is excited at 309 Hz by a fluctuating magnetic field from a ground coil. Here, when the superconducting coil generating the strong magnetic field vibrates, the magnetic field distribution, which should be a static magnetic field, fluctuates. This magnetic field fluctuation induces an eddy current in the outer vessel. The eddy current in the outer tank creates a fluctuating magnetic field, and the fluctuating magnetic field generates an eddy current on the inner tank surface. The eddy current generates heat in the inner vessel container.

【0006】次に後者の超電導コイルの励消磁中の磁場
変動に起因する渦電流の流路は図44−(B)で示すよ
うに内槽容器に沿った矢線のようになる。超電導コイル
の励消磁中は、磁場の時間変化率(周波数ω)は小さ
く、ωL《R(=ω《1/τ)の条件が成立し、 渦電流i=e/〔(ωL)2+R21/2≒e/R e;磁場変動による誘起電圧(一定) となり、抵抗が小さい場合に大きな渦電流が発生するた
めに、内槽容器表面に低電気抵抗材3を設けたことによ
り渦電流損失は大きくなる。
[0006] Next, the flow path of the eddy current due to the magnetic field fluctuation during the excitation and demagnetization of the latter superconducting coil is as shown by the arrow along the inner vessel container as shown in FIG. During the demagnetization of the superconducting coil, the time change rate (frequency ω) of the magnetic field is small, and the condition of ωL << R (= ω << 1 / τ) is satisfied, and the eddy current i = e / [(ωL) 2 + R 2 1/2 ≒ e / R e; Induced voltage (constant) due to magnetic field fluctuation, and large eddy current is generated when resistance is small. The current loss increases.

【0007】[0007]

【発明が解決しようとする課題】従来の超電導磁石は以
上のように構成されているため、地上コイルからの高調
波変動磁界に対しては、内槽表面の低電気抵抗材3によ
り渦電流損失が小さくなり内槽2の渦電流による発熱を
低減できるが、超電導磁石の励消磁中に対しては内槽2
の抵抗が小さい程、大きな渦電流を生じ、渦電流による
発熱が増大し、超電導コイル1を冷却する冷媒を蒸発さ
せるなど問題点があった。即ち、これまでに高調波磁界
と励磁時の緩やかな変動磁界の両者に対して損失を抑制
できる、内槽容器を有する超電導磁石装置はなかった。
Since the conventional superconducting magnet is configured as described above, eddy current loss is prevented by the low electric resistance material 3 on the inner tank surface against the harmonic fluctuating magnetic field from the ground coil. And the heat generated by the eddy current in the inner tank 2 can be reduced.
The smaller the resistance is, the larger the eddy current is, the more heat is generated by the eddy current, and there is a problem that the refrigerant for cooling the superconducting coil 1 is evaporated. That is, there has not been a superconducting magnet device having an inner tank container that can suppress the loss for both the harmonic magnetic field and the slowly fluctuating magnetic field at the time of excitation.

【0008】この発明は、上記のような問題点を解消す
るためになされたもので、超電導コイルの励消磁中に内
槽に発生する渦電流損失を抑え、高調波変動磁界の印加
時と励消磁時の変動磁界の両者に対して、内槽容器の渦
電流による発熱を低減でき、冷媒の蒸発量を節約できる
超電導磁石装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and suppresses an eddy current loss generated in an inner tank during excitation and demagnetization of a superconducting coil. An object of the present invention is to provide a superconducting magnet device capable of reducing heat generation due to eddy currents in an inner vessel container and reducing the amount of refrigerant evaporated, both for a fluctuating magnetic field during demagnetization.

【0009】[0009]

【課題を解決するための手段】この発明に係る請求項1
の超電導磁石装置は、超電導線材を巻回してなる超電導
コイルと、超電導コイルを冷媒に浸漬して収納し表面に
低電気抵抗材を設けてなる内槽容器と、内槽容器を真空
断熱して収納する外槽容器とを備え、地上コイルと対向
して車体側に設けられた超電導磁石装置において、内槽
容器は表面の渦電流の流路で一部低電気抵抗材の断絶部
を有しこの断絶部で渦電流の流路の高電気抵抗部分を形
成するようにしたものである。
Means for Solving the Problems Claim 1 according to the present invention.
The superconducting magnet device has a superconducting coil formed by winding a superconducting wire, an inner tank container having a superconducting coil immersed in a refrigerant and housed and provided with a low electric resistance material on the surface, and vacuum insulating the inner tank container. In the superconducting magnet device provided on the vehicle body side facing the ground coil with an outer tank container to be stored, the inner tank container partially has a cut off portion of a low electric resistance material in an eddy current flow path on the surface. The cut portion forms a high electric resistance portion of the eddy current flow path.

【0010】また、請求項2の超電導磁石装置は、請求
項1において高電気抵抗部分を超電導コイルの励消磁中
に内槽表面に発生する渦電流の流路に設けたものであ
る。
The superconducting magnet device according to a second aspect of the present invention is the superconducting magnet device according to the first aspect, wherein a high electric resistance portion is provided in a flow path of an eddy current generated on the inner tank surface during demagnetization of the superconducting coil.

【0011】また、請求項3の超電導磁石装置は、請求
項1において高電気抵抗部分を地上コイルからの高調波
変動磁界に起因して内槽表面に発生する渦電流の流路に
は設けないようにしたものである。
In the superconducting magnet device according to the present invention, the high electric resistance portion is not provided in the flow path of the eddy current generated on the inner tank surface due to the harmonic fluctuating magnetic field from the ground coil. It is like that.

【0012】また、請求項4の超電導磁石装置は、請求
項1において高電気抵抗部分を地上コイルからの高調波
変動磁界に起因して内槽表面に発生する渦電流の流路お
よび高調波変動磁界が印加される側の内槽表面以外で、
超電導コイルの励消磁中に内槽表面に発生する渦電流の
流路に設けたものである。
According to a fourth aspect of the present invention, there is provided a superconducting magnet apparatus according to the first aspect, wherein a high electric resistance portion is formed on a surface of an inner tank surface due to a harmonic fluctuation magnetic field from a ground coil and a harmonic fluctuation. Other than the inner tank surface on the side where the magnetic field is applied,
It is provided in the flow path of eddy current generated on the inner tank surface during excitation and demagnetization of the superconducting coil.

【0013】また、請求項5の超電導磁石装置は、内槽
表面の高電気抵抗部分を跨ぎ低電気抵抗材間を超電導線
材により電気的に短絡したものである。
The superconducting magnet device according to a fifth aspect of the present invention is a superconducting magnet device in which a low electric resistance material is electrically short-circuited with a superconducting wire rod over a high electric resistance portion on the inner tank surface.

【0014】また、請求項6の超電導磁石装置は、請求
項5において低電気抵抗材間の超電導線材に隣接して外
部電源より通電可能なヒータ線を設けたものである。
According to a sixth aspect of the present invention, there is provided a superconducting magnet apparatus according to the fifth aspect, wherein a heater wire which can be energized from an external power supply is provided adjacent to the superconducting wire between the low electric resistance materials.

【0015】また、請求項7の超電導磁石装置は、請求
項5において低電気抵抗材間の超電導線材にヒータ線を
隣接させかつ,ヒータ線と直列に閉回路を構成する渦電
流回路を設けたものである。
According to a seventh aspect of the present invention, there is provided a superconducting magnet apparatus according to the fifth aspect, wherein a heater wire is provided adjacent to the superconducting wire between the low electric resistance materials, and an eddy current circuit forming a closed circuit in series with the heater wire is provided. Things.

【0016】また、請求項8の超電導磁石装置は、請求
項5において低電気抵抗材間の超電導線材の臨界電流値
が超電導コイルの励消磁中に内槽容器表面に発生する電
流値より低く、地上コイルからの高調波変動磁界に起因
して内槽容器表面に発生する電流値より高くしたもので
ある。
Further, in the superconducting magnet device according to claim 8, the critical current value of the superconducting wire between the low electric resistance materials is lower than the current value generated on the surface of the inner vessel container during the demagnetization of the superconducting coil. This is higher than the current value generated on the inner tank vessel surface due to the harmonic fluctuating magnetic field from the ground coil.

【0017】また、請求項9の超電導磁石装置は、超電
導線材を巻回してなる超電導コイルと、該超電導コイル
を冷媒に浸漬して収納し表面に低電気抵抗材を設けてな
る内槽容器と、該内槽容器を真空断熱して収納する外槽
容器とを備え、地上コイルと対向して車体側に設けられ
た超電導磁石装置において、内槽容器は表面の渦電流の
流路で一部低電気抵抗材の断絶部を有しこの断絶部で渦
電流の流路の高電気抵抗部分を形成するとともに、内槽
容器及び低電気抵抗材と電気的に絶縁され高電気抵抗部
分を覆う低電気抵抗カバーを設けたものである。
A superconducting magnet device according to a ninth aspect of the present invention provides a superconducting coil formed by winding a superconducting wire, and an inner vessel container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the inner tank container is partially formed by a flow path of eddy current on the surface. It has a cut-off portion of a low electric resistance material, and forms a high electric resistance portion of the eddy current flow path at the cut portion, and a low electric resistance portion that is electrically insulated from the inner vessel container and the low electric resistance material and covers the high electric resistance portion. An electrical resistance cover is provided.

【0018】また、請求項10の超電導磁石装置は、超
電導線材を巻回してなる超電導コイルと、該超電導コイ
ルを冷媒に浸漬して収納し表面に低電気抵抗材を設けて
なる内槽容器と、該内槽容器を真空断熱して収納する外
槽容器とを備え、地上コイルと対向して車体側に設けら
れた超電導磁石装置において、内槽容器は表面の渦電流
の流路で一部低電気抵抗材の断絶部を有しこの断絶部で
渦電流の流路の高電気抵抗部分を形成するとともに、断
絶部の一方側の低電気抵抗材と電気的に連結し断絶部の
他方側の低電気抵抗材および高電気抵抗部分と電気的に
絶縁され高電気抵抗部分を覆う低電気抵抗カバーを設け
たものである。
A superconducting magnet device according to a tenth aspect of the present invention provides a superconducting coil formed by winding a superconducting wire, and an inner tank container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the inner tank container is partially formed by a flow path of eddy current on the surface. It has a cut-off portion of a low electric resistance material and forms a high electric resistance portion of an eddy current flow path at the cut portion, and is electrically connected to the low electric resistance material on one side of the cut portion and the other side of the cut portion And a low electric resistance cover which is electrically insulated from the low electric resistance material and the high electric resistance part and covers the high electric resistance part.

【0019】また、請求項11の超電導磁石装置は、請
求項9または10において、低電気抵抗カバーが重複部
を有する複数の組み合わせでなり、互いの重複部を電気
的に絶縁して形成したものである。
According to an eleventh aspect of the present invention, there is provided a superconducting magnet device according to the ninth or tenth aspect, wherein the low electric resistance cover is formed by a plurality of combinations having overlapping portions, and the overlapping portions are electrically insulated from each other. It is.

【0020】また、請求項12の超電導磁石装置は、超
電導線材を巻回してなる超電導コイルと、該超電導コイ
ルを冷媒に浸漬して収納し表面に低電気抵抗材を設けて
なる内槽容器と、該内槽容器を真空断熱して収納する外
槽容器とを備え、地上コイルと対向して車体側に設けら
れた超電導磁石装置において、地上コイルからの高調波
変動磁界に起因する振動で外槽容器との相対変位が大き
い内槽容器表面部分の対応位置を覆って低電気抵抗カバ
ーを設けたものである。
A superconducting magnet device according to a twelfth aspect of the present invention provides a superconducting coil formed by winding a superconducting wire, and an inner vessel container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the outer tank container is provided with a vacuum insulation for storing the inner tank container. A low electric resistance cover is provided so as to cover a position corresponding to a surface portion of the inner tank container having a large relative displacement with respect to the tank container.

【0021】また、請求項13の超電導磁石装置は、超
電導線材を巻回してなる超電導コイルと、該超電導コイ
ルを冷媒に浸漬して収納し高電気抵抗材で形成された内
槽容器と、該内槽容器を真空断熱して収納する外槽容器
とを備え、地上コイルと対向して車体側に設けられた超
電導磁石装置において、内槽容器を覆いその内側空間と
通じて内槽容器内に冷媒が流通するように形成された低
電気抵抗容器と、該低電気抵抗容器内と通じる上方の冷
媒路に設けられ、冷媒路を超電導コイルの励消磁中は閉
路に高調波磁界の印加中は開路に操作する開閉手段を設
けたものである。
A superconducting magnet device according to a thirteenth aspect of the present invention provides a superconducting coil formed by winding a superconducting wire, an inner tank container formed by immersing the superconducting coil in a refrigerant and housed therein and formed of a high electric resistance material. A superconducting magnet device provided on the vehicle body side facing the ground coil, in the superconducting magnet device, which covers the inner tank container and communicates with the inner space of the inner tank container so as to be inside the inner tank container. A low electric resistance container formed so that the refrigerant flows therethrough, and is provided in an upper refrigerant path communicating with the inside of the low electric resistance container, and the refrigerant path is closed while the superconducting coil is demagnetized while a harmonic magnetic field is being applied. An opening / closing means for opening the circuit is provided.

【0022】また、請求項14の超電導磁石装置は、超
電導線材を巻回してなる超電導コイルと、該超電導コイ
ルを冷媒に浸漬して収納し表面に低電気抵抗材を設けて
なる内槽容器と、該内槽容器を真空断熱して収納する外
槽容器とを備え、地上コイルと対向して車体側に設けら
れた超電導磁石装置において、内槽容器は表面の渦電流
の流路で一部低電気抵抗材の断絶部を有しこの断絶部で
渦電流の流路の高電気抵抗部分を形成するとともに、高
電気抵抗部分をそれぞれ覆いその内側空間を通じて内槽
容器内に冷媒が流通するように形成された低電気抵抗容
器を設けかつ、低電気抵抗容器内と通じる上方の冷媒路
に冷媒路を超電導コイルの励消磁中は閉路に高調波磁界
の印加中は開路に操作する開閉手段を設けたものであ
る。
A superconducting magnet device according to a fourteenth aspect of the present invention provides a superconducting coil formed by winding a superconducting wire, and an inner vessel container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the inner tank container is partially formed by a flow path of eddy current on the surface. It has a cut-off portion of a low electric resistance material and forms a high electric resistance portion of the flow path of the eddy current at the cut portion, and covers the high electric resistance portion so that the refrigerant flows through the inner space into the inner tank container. And an opening / closing means for operating the refrigerant path in the upper refrigerant path communicating with the inside of the low electric resistance vessel and closing it during excitation and demagnetization of the superconducting coil and opening it while applying the harmonic magnetic field. It is provided.

【0023】また、請求項15の超電導磁石装置は、超
電導線材を巻回してなる超電導コイルと、該超電導コイ
ルを冷媒に浸漬して収納し表面に低電気抵抗材を設けて
なる内槽容器と、該内槽容器を真空断熱して収納する外
槽容器とを備え、地上コイルと対向して車体側に設けら
れた超電導磁石装置において、内槽容器は表面の渦電流
の流路で一部低電気抵抗材の断絶部を有しこの断絶部で
渦電流の流路の高電気抵抗部分を形成するとともに、高
電気抵抗部分に外部から連動操作可能な高電気抵抗部分
を低電気抵抗で短絡させる電気スイッチを設けたもので
ある。
According to a fifteenth aspect of the present invention, there is provided a superconducting magnet apparatus comprising: a superconducting coil formed by winding a superconducting wire; and an inner vessel container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the inner tank container is partially formed by a flow path of eddy current on the surface. Having a cut-off portion of low electric resistance material, this cut portion forms a high electric resistance portion of the eddy current flow path, and a high electric resistance portion that can be linked to the high electric resistance portion from the outside can be short-circuited with low electric resistance It is provided with an electric switch to be turned on.

【0024】また、請求項16の超電導磁石装置は、請
求項9〜12のいずれかにおいて、低電気抵抗カバーと
して超電導フィルムあるいは超電導板が貼り付けてある
ものである。
A superconducting magnet device according to claim 16 is the superconducting magnet device according to any one of claims 9 to 12, wherein a superconducting film or a superconducting plate is attached as a low electric resistance cover.

【0025】また、請求項17の超電導磁石装置は、請
求項9〜12のいずれかにおいて、低電気抵抗カバーに
絶縁被覆を有さない超電導線で編まれたメッシュを用い
たものである。
A superconducting magnet device according to claim 17 is the superconducting magnet device according to any one of claims 9 to 12, wherein a mesh woven with a superconducting wire having no insulating coating on the low electric resistance cover is used.

【0026】また、請求項18の超電導磁石装置は、請
求項9〜12のいずれかにおいて、低電気抵抗カバーは
その縁に超電導線を取り付けて形成されたものである。
The superconducting magnet device according to claim 18 is the superconducting magnet device according to any one of claims 9 to 12, wherein the low electric resistance cover is formed by attaching a superconducting wire to an edge thereof.

【0027】また、請求項19の超電導磁石装置は、請
求項17または18において、超電導線として内部安定
化超電導線を用いたものである。
The superconducting magnet device according to claim 19 is the superconducting magnet device according to claim 17 or 18, wherein an internal stabilized superconducting wire is used as the superconducting wire.

【0028】また、請求項20の超電導磁石装置は、請
求項9〜12のいずれかにおいて、低電気抵抗カバー,
あるいは超電導フィルム,あるいは超電導板に複数の貫
通孔を有しているものである。
A superconducting magnet device according to a twentieth aspect is the superconducting magnet device according to any one of the ninth to twelfth aspects, wherein the low electric resistance cover,
Alternatively, a superconducting film or a superconducting plate has a plurality of through holes.

【0029】また、請求項21の超電導磁石装置は、請
求項17において、超電導線で編んだメッシュは圧延さ
れているものである。
The superconducting magnet device according to the twenty-first aspect is the superconducting magnet device according to the seventeenth aspect, wherein the mesh knitted with the superconducting wires is rolled.

【0030】また、請求項22の超電導磁石装置は、請
求項21において、メッシュは圧延した後に400℃以
下の熱処理温度で焼鈍されているものである。
The superconducting magnet device according to claim 22 is the superconducting magnet device according to claim 21, wherein the mesh is rolled and then annealed at a heat treatment temperature of 400 ° C. or less.

【0031】また、請求項23の超電導磁石装置は、請
求項16または17において、低電気抵抗カバーの外部
磁力線に対向する面でその端部に面に対して垂直方向の
磁場成分が生じないようにまるみをつけたものである。
According to a twenty-third aspect of the present invention, there is provided a superconducting magnet device according to the sixteenth or seventeenth aspect, wherein a magnetic field component in a direction perpendicular to the surface is generated at an end of the surface of the low electric resistance cover facing the line of external magnetic force. It is the one with roundness.

【0032】また、請求項24の超電導磁石装置は、請
求項16,17および24のいずれかにおいて、低電気
抵抗カバーの外部磁力線に対向する面についてその端部
での臨界電流密度を中央付近に比べ小さくなるよう端部
の安定化材料を中央付近より多くしたものである。
According to a twenty-fourth aspect of the present invention, in the superconducting magnet device according to any one of the sixteenth, seventeenth and twenty-fourth aspects, the critical current density at the end of the surface of the low electric resistance cover facing the external magnetic field lines is set near the center. The stabilizing material at the end is larger than that near the center so as to be smaller.

【0033】また、請求項25の超電導磁石装置は、超
電導線材を巻回してなる超電導コイルと、該超電導コイ
ルを冷媒に浸漬して収納し表面に低電気抵抗材を設けて
なる内槽容器と、該内槽容器を真空断熱して収納する外
槽容器とを備え、地上コイルと対向して車体側に設けら
れた超電導磁石装置において、内槽容器は表面の渦電流
の流路で一部低電気抵抗材の断絶部を有しこの断絶部で
渦電流の流路の高電気抵抗部分を形成するとともに、断
絶部と並列に取り付けられた超電導体あるいは高電気抵
抗マトリックスを有する超電導線に低電気抵抗カバーが
具備され、かつ超電導体あるいは超電導線にヒータ線が
取り付けられているものである。
A superconducting magnet device according to a twenty-fifth aspect of the present invention provides a superconducting coil formed by winding a superconducting wire, and an inner vessel container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the inner tank container is partially formed by a flow path of eddy current on the surface. It has a break of low electrical resistance material and forms a high electrical resistance part of the eddy current flow path at this break, and a low-resistance superconductor or a superconducting wire with a high electrical resistance matrix attached in parallel with the break. An electric resistance cover is provided, and a heater wire is attached to a superconductor or a superconducting wire.

【0034】また、請求項26の超電導磁石装置は、請
求項25において、ヒータの近傍に温度計を設けたもの
である。
A superconducting magnet device according to a twenty-sixth aspect is the superconducting magnet device according to the twenty-fifth aspect, wherein a thermometer is provided near the heater.

【0035】また、請求項27の超電導磁石装置は、超
電導線材を巻回してなる超電導コイルと、該超電導コイ
ルを冷媒に浸漬して収納し表面に低電気抵抗材を設けて
なる内槽容器と、該内槽容器を真空断熱して収納する外
槽容器とを備え、地上コイルと対向して車体側に設けら
れた超電導磁石装置において、内槽容器は内槽容器が電
磁力で変形するのを防止する電磁力支持部材の表面の過
電流の流路で一部低電気抵抗材の断絶部を有し、この断
絶部で高電気抵抗部分を形成するとともに、電磁力支持
部材と片端あるいは両端が電気的に絶縁され高電気抵抗
部分を覆う低電気抵抗カバーを設けたものである。
A superconducting magnet device according to a twenty-seventh aspect of the present invention provides a superconducting coil formed by winding a superconducting wire, and an inner tank container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface. A superconducting magnet device provided on the vehicle body facing the ground coil, wherein the inner tank container is deformed by electromagnetic force. In the overcurrent flow path on the surface of the electromagnetic force supporting member, which has a cut-off portion of low electric resistance material, the cut-off portion forms a high electric resistance portion, and the electromagnetic force supporting member and one end or both ends Are provided with a low electric resistance cover which is electrically insulated and covers a high electric resistance part.

【0036】また、請求項28の超電導磁石装置は、超
電導線材を巻回してなる超電導コイルと、該超電導コイ
ルを冷媒に浸漬して収納し表面に低電気抵抗材を設けて
なる内槽容器と、該内槽容器を真空断熱して収納する外
槽容器とを備え、地上コイルと対向して車体側に設けら
れた超電導磁石装置において、内槽容器が電磁力で変形
するのを防止する電磁力支持部材が電気的絶縁材料を中
間に挟んで形成しているものである。
A superconducting magnet device according to claim 28 is a superconducting coil formed by winding a superconducting wire, and an inner tank container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on the surface. A superconducting magnet device provided on the vehicle body facing the ground coil, wherein the inner container is prevented from being deformed by electromagnetic force. The force supporting member is formed with an electrically insulating material interposed therebetween.

【0037】また、請求項29の超電導磁石装置は、請
求項28において、電磁力支持部材の支持方向に引っ張
り力の調整手段を設けたものである。
A superconducting magnet device according to a twenty-ninth aspect of the present invention is the superconducting magnet device according to the twenty-eighth aspect, wherein a means for adjusting a pulling force is provided in a supporting direction of the electromagnetic force supporting member.

【0038】[0038]

【作用】この発明の請求項1における超電導磁石装置
は、低電気抵抗材の断絶部で渦電流の流路の高電気抵抗
部分を形成する。
In the superconducting magnet device according to the first aspect of the present invention, the high electric resistance portion of the eddy current flow path is formed at the cutoff portion of the low electric resistance material.

【0039】また、請求項2における超電導磁石装置
は、低電気抵抗材の断絶部が超電導コイルの励消磁中の
変動磁界で発生する内槽容器表面の渦電流の流路の一部
を高電気抵抗部分として渦電流を小さく抑え渦電流損失
を低減させる。
In the superconducting magnet device according to the present invention, a part of the flow path of the eddy current on the surface of the inner vessel container in which the cutoff portion of the low electric resistance material is generated by the fluctuating magnetic field during the excitation and demagnetization of the superconducting coil is used. The eddy current is suppressed to be small as a resistance portion, and eddy current loss is reduced.

【0040】また、請求項3における超電導磁石装置
は、低電気抵抗材の断絶部を地上コイルからの高調波磁
場に起因する渦電流の流路を避けて設けたので、励消磁
中に発生する渦電流の流路に高電気抵抗部分を含むこと
になり流路の抵抗が高くなり渦電流は小さく内槽容器の
渦電流損失が抑えられ、かつ高調波磁界により発生する
渦電流は高電気抵抗部分を流路とせず内槽容器の渦電流
損失を抑えれる。
Further, in the superconducting magnet device according to the third aspect, since the cut portion of the low electric resistance material is provided so as to avoid the flow path of the eddy current caused by the harmonic magnetic field from the ground coil, the superconductive magnet device is generated during the demagnetization. The eddy current flow path contains a high electric resistance part, which increases the resistance of the flow path and reduces the eddy current. The eddy current loss of the inner vessel is suppressed, and the eddy current generated by the harmonic magnetic field has a high electric resistance. Eddy current loss of the inner vessel container can be suppressed without using a portion as a flow path.

【0041】また、請求項4における超電導磁石装置
は、低電気抵抗材の断絶部を地上コイルからの高調波変
動磁界が印加される側の内槽容器面以外に形成したので
高調波磁界を磁気シールドし超電導コイルに発生する渦
電流損失を抑えれる。
In the superconducting magnet device according to the fourth aspect, the cutoff portion of the low electric resistance material is formed on the surface of the inner tank vessel other than the side where the harmonic fluctuating magnetic field from the ground coil is applied. Shielding prevents eddy current loss generated in the superconducting coil.

【0042】また、請求項5における超電導磁石装置
は、低電気抵抗材の断絶部を跨ぎ低電気抵抗材間を電気
的に短絡する超電導線材が臨界値を越えて常電導転移し
たときは高電気抵抗となり、励消磁中に発生する渦電流
は高電気抵抗部分と高電気抵抗の超電導線材を流路と
し、内槽容器の渦電流損失を抑えれる。
Further, the superconducting magnet device according to claim 5 is characterized in that the superconducting wire which straddles the cut portion of the low electric resistance material and electrically short-circuits between the low electric resistance materials exceeds the critical value and has a high electric conductivity when the normal conduction transition occurs. The eddy current generated during the excitation and demagnetization becomes a resistance, and the eddy current loss of the inner tank is suppressed by using the high electric resistance portion and the superconducting wire having the high electric resistance as a flow path.

【0043】また、請求項6における超電導磁石装置
は、低電気抵抗材間の超電導線材に隣接させたヒータ線
が超電導コイルの励消磁中は超電導線材を加熱して常電
導状態にし、内槽容器に発生する渦電流が高電気抵抗部
分と常電導状態の超電導線材を流路とし内槽の渦電流損
失が抑えられ、一方、走行中はヒータ加熱は停止され超
電導線材が超電導状態となるため、地上コイルからの高
調波磁界による渦電流は低電気抵抗部分と超電導状態の
超電導線材を流路とし内槽容器の渦電流損失を抑えれ
る。
In the superconducting magnet device according to the present invention, the heater wire adjacent to the superconducting wire between the low electric resistance materials heats the superconducting wire during the demagnetization of the superconducting coil to bring the superconducting wire into a normal conducting state. Since the eddy current generated in the high-resistance part and the superconducting wire in the normal conducting state is used as a flow path, the eddy current loss in the inner tank is suppressed, while the heater is stopped during traveling and the superconducting wire enters the superconducting state, The eddy current caused by the harmonic magnetic field from the ground coil uses the low electric resistance portion and the superconducting superconducting wire as a flow path to suppress the eddy current loss of the inner vessel.

【0044】また、請求項7における超電導磁石装置
は、ヒータ線と直列に閉回路を構成する渦電流回路で励
消磁中は超電導コイルのつくる変動磁界によりヒータ線
に誘導電流が流れ超電導線材が加熱され常電導状態とな
り、一方、走行中はヒータ線に高調波磁界による誘導電
流は流れず超電導線材は超電導状態となり前項と同様に
内槽容器の渦電流損失を抑えれる。
In the superconducting magnet device according to the present invention, an induced current flows through the heater wire due to a fluctuating magnetic field generated by the superconducting coil during excitation and demagnetization by an eddy current circuit forming a closed circuit in series with the heater wire, and the superconducting wire is heated. As a result, the induction current due to the harmonic magnetic field does not flow through the heater wire during traveling, and the superconducting wire enters the superconducting state, thereby suppressing the eddy current loss of the inner vessel container as in the preceding paragraph.

【0045】また、請求項8における超電導磁石装置
は、低電気抵抗材を短絡している超電導線材の臨界電流
値が超電導コイルの励消磁中に発生する渦電流値よりも
低く、地上コイルからの高調波磁界により発生する渦電
流値より高くなっているため、励消磁中は超電導線材が
常電導状態となり、渦電流は高電気抵抗材を流路とし、
一方、走行中は地上コイルからの高調波磁界による渦電
流が超電導線材の臨界値に比べ微小であるため、超電導
線材は超電導状態となり前項と同様に内槽容器の渦電流
損失を抑えれる。
Further, in the superconducting magnet device according to claim 8, the critical current value of the superconducting wire short-circuiting the low electric resistance material is lower than the eddy current value generated during the demagnetization of the superconducting coil, and Because it is higher than the eddy current value generated by the harmonic magnetic field, the superconducting wire is in a normal conducting state during excitation and demagnetization, and the eddy current uses a high electric resistance material as the flow path,
On the other hand, during traveling, the eddy current due to the harmonic magnetic field from the ground coil is smaller than the critical value of the superconducting wire, so that the superconducting wire is in a superconducting state, and the eddy current loss of the inner vessel is suppressed as in the preceding paragraph.

【0046】また、請求項9における超電導磁石装置
は、低電気抵抗材の断絶部で渦電流の流路の高電気抵抗
部分を形成したことに加え、高電気抵抗部分を覆う低電
気抵抗カバーが走行中には外部変動磁界で渦電流を誘起
されこれにより高電気抵抗部分は磁気遮蔽されるため、
高電気抵抗部分における渦電流による損失を低減する。
According to a ninth aspect of the present invention, in the superconducting magnet device, the high electric resistance portion of the eddy current flow path is formed at the cutoff portion of the low electric resistance material, and the low electric resistance cover for covering the high electric resistance portion is provided. During traveling, an eddy current is induced by an externally fluctuating magnetic field, which causes the high electrical resistance part to be magnetically shielded.
The loss due to the eddy current in the high electric resistance part is reduced.

【0047】また、請求項10における超電導磁石装置
は、低電気抵抗カバーの一方側が低電気抵抗材断絶部の
一方と電気的に連結されているため取付が強固でかつ容
易にする。
Further, in the superconducting magnet device according to the tenth aspect, since one side of the low electric resistance cover is electrically connected to one of the cut portions of the low electric resistance material, the mounting is strong and easy.

【0048】また、請求項11における超電導磁石装置
は、低電気抵抗カバーが複数で形成されているため低電
気抵抗材の断絶部を広くすることが可能であると同時
に、1つの低電気抵抗カバーを小さくすることができ1
つの低電気抵抗カバーに働く電磁力が小さく固定を容易
にする。
Further, in the superconducting magnet device according to the eleventh aspect, since a plurality of low electric resistance covers are formed, it is possible to widen the cut portion of the low electric resistance material, and at the same time, one low electric resistance cover Can be reduced 1
The electromagnetic force acting on the two low electrical resistance covers is small and facilitates fixing.

【0049】また、請求項12における超電導磁石装置
は、高調波変動磁界に起因する振動で外槽容器との相対
変位が大きい内槽容器の表面に設けた低電気抵抗カバー
が、相対振動に起因する高調波磁界による渦電流損失を
低減する。
Further, in the superconducting magnet device according to the twelfth aspect, the low electric resistance cover provided on the surface of the inner vessel container having a large relative displacement with respect to the outer vessel vessel due to the vibration caused by the harmonic fluctuating magnetic field, Eddy current loss due to higher harmonic magnetic fields.

【0050】また、請求項13,14における超電導磁
石装置は、低電気抵抗容器が内槽容器との間の空間の冷
媒量を開閉手段で調節することで低電気抵抗容器の抵抗
値を制御して、励消磁時および高調波磁界印加時の両方
の場合について渦電流損失を低減する。
Further, in the superconducting magnet device according to the thirteenth and fourteenth aspects, the resistance value of the low electric resistance container is controlled by adjusting the amount of refrigerant in the space between the low electric resistance container and the inner tank container by opening and closing means. Thus, eddy current loss is reduced both in the case of excitation and demagnetization and in the case of application of a harmonic magnetic field.

【0051】また、請求項15における超電導磁石装置
は、低電気抵抗材の断絶部を低電気抵抗で短絡させる電
気スイッチが、高調波磁界が印加されているときは低電
気抵抗材を短絡して断絶部をなくし、励消磁中は低電気
抵抗材を分離させて断絶部をもうける。
Further, in the superconducting magnet device according to the present invention, the electric switch for short-circuiting the cut-off portion of the low electric resistance material with the low electric resistance is configured to short-circuit the low electric resistance material when a harmonic magnetic field is applied. Eliminate breaks and create breaks by separating low-resistance materials during excitation and demagnetization.

【0052】また、請求項16における超電導磁石装置
は、低電気抵抗カバーを形成する超電導フィルムあるい
は超電導板材が常電導の低電気抵抗材と比べて、より低
電気抵抗化を可能とし断絶部の磁気遮蔽を確実にして断
絶部が高調波磁界に曝されることがなくなるため、渦電
流損失が低減する。
In the superconducting magnet device according to the present invention, the superconducting film or the superconducting plate material forming the low electric resistance cover can have a lower electric resistance than the normal electric low resistance material, and the magnetism of the cut off portion can be reduced. Eddy current loss is reduced because the shield is ensured and the break is not exposed to the harmonic magnetic field.

【0053】また、請求項17における超電導磁石装置
は、低電気抵抗カバーを形成する超電導で編まれたメッ
シュが前項の作用と同様の理由により渦電流損失を低減
する。また柔軟性があるため取り付けを容易とする。
Further, in the superconducting magnet device according to claim 17, the mesh woven by superconductivity forming the low electric resistance cover reduces eddy current loss for the same reason as the above-mentioned operation. In addition, mounting is easy because of its flexibility.

【0054】また、請求項18における超電導磁石装置
は、低電気抵抗カバーの縁に取り付けられた超電導線が
前項の作用と同様の理由により渦電流損失を低減する。
また、超電導体の量が比較的少量でまかなえる。
In the superconducting magnet device according to the eighteenth aspect, the superconducting wire attached to the edge of the low electric resistance cover reduces eddy current loss for the same reason as the above-mentioned operation.
In addition, a relatively small amount of superconductor can be used.

【0055】また、請求項19における超電導磁石装置
は、低電気抵抗カバーの縁の超電導線を内部安定化超電
導線としているため、安定化マトリックスの低電気抵抗
率により超電導線同士の接続抵抗が低下し低電気抵抗カ
バーをさらに低電気抵抗化する。
Further, in the superconducting magnet device according to claim 19, since the superconducting wire at the edge of the low electric resistance cover is an internally stabilized superconducting wire, the connection resistance between the superconducting wires is reduced by the low electric resistivity of the stabilizing matrix. Then, the electric resistance of the low electric resistance cover is further reduced.

【0056】また、請求項20における超電導磁石装置
は、低電気抵抗カバーを形成する超電導フィルムあるい
は超電導板材の複数の貫通孔が内槽容器表面に固定する
とき余剰接着剤の溢れ口となり接着性および作業性を向
上させる。
Further, in the superconducting magnet device according to the twentieth aspect, when a plurality of through holes of the superconducting film or the superconducting plate material forming the low electric resistance cover are fixed to the surface of the inner vessel container, the superconducting magnet becomes an overflow port of the excess adhesive and has an adhesive property and Improve workability.

【0057】また、請求項21における超電導磁石装置
は、低電気抵抗カバーを形成する超電導メッシュが圧延
されていることにより超電導線間の接触抵抗が低下す
る、さらに、厚さの減少で装置をコンパクト化する。
In the superconducting magnet device according to the present invention, the superconducting mesh forming the low electric resistance cover is rolled, so that the contact resistance between the superconducting wires is reduced. Become

【0058】また、請求項22における超電導磁石装置
は、圧延された超電導メッシュが焼鈍されていることに
より、圧延で安定化マトリックスの抵抗率が高くなって
いるものを低電気抵抗化する。
Further, in the superconducting magnet device according to claim 22, since the rolled superconducting mesh is annealed, the electric resistance of the stabilization matrix having a high resistivity by rolling is reduced.

【0059】また、請求項23における超電導磁石装置
は、超電導体を適用した低電気抵抗カバーの端部に形成
する丸みが、超電導体内部に侵入する磁界の履歴による
損失(ヒステリシス損失)を低減し、低電気抵抗カバー
の超電導状態の安定性を向上させる。
Further, in the superconducting magnet device according to claim 23, the roundness formed at the end of the low electric resistance cover to which the superconductor is applied reduces the loss (hysteresis loss) due to the history of the magnetic field penetrating into the superconductor. And improve the stability of the superconducting state of the low electric resistance cover.

【0060】また、請求項24における超電導磁石装置
は、超電導体を適用した低電気抵抗カバーで端部に超電
導材の量を少なくし安定化材の量を多くした構成が、遮
蔽電流が低電気抵抗カバーの縁の超電導部材に集中した
とき、超電導状態の安定性が高いため、安定して臨界電
流密度まで遮蔽電流が流れる。
According to a twenty-fourth aspect of the present invention, there is provided a superconducting magnet apparatus comprising a low electric resistance cover to which a superconductor is applied, a small amount of superconducting material at an end portion and a large amount of stabilizing material. When concentrated on the superconducting member at the edge of the resistance cover, the shielding current flows stably to the critical current density because the stability of the superconducting state is high.

【0061】また、請求項25における超電導磁石装置
は、低電気抵抗材の断絶部と並列に取り付けられた超電
導体あるいは超電導線がヒータによって熱的に超電導状
態,常電導状態、即ち低電気抵抗,高電気抵抗に制御で
き、超電導コイル励消磁時には高抵抗化することで渦電
流損失を低減し、外部からの高調波磁界印加時には超電
導状態にして高電気抵抗部分を低電気抵抗でバイパスす
る。これにより渦電流による損失低減を可能とする。さ
らに低電気抵抗カバーによって超電導体あるいは超電導
線に直接、高調波磁界が印加されないため超電導状態が
安定に保たれる。
Further, in the superconducting magnet device according to the twenty-fifth aspect, the superconductor or the superconducting wire attached in parallel with the cut-off portion of the low electric resistance material is thermally superconducted by the heater, the normal conducting state, that is, the low electric resistance. High electric resistance can be controlled, eddy current loss is reduced by increasing the resistance when the superconducting coil is demagnetized, and the superconducting state is set when a harmonic magnetic field is applied from the outside, and the high electric resistance portion is bypassed with low electric resistance. This enables loss reduction due to eddy current. Furthermore, the superconducting state is stably maintained because the harmonic magnetic field is not directly applied to the superconductor or the superconducting wire by the low electric resistance cover.

【0062】また、請求項26における超電導磁石装置
は、ヒータの近傍の温度計が、温度管理を適切にし、ヒ
ータの焼損等の危険性を回避させるとともに超電導線が
常電導になる最低の温度になるようにヒータで印加する
熱量を設定することを可能とする。
Further, in the superconducting magnet device according to the twenty-sixth aspect, the thermometer in the vicinity of the heater controls the temperature appropriately, avoids danger such as burning of the heater, and reduces the temperature to the minimum temperature at which the superconducting wire becomes normal conducting. Thus, it is possible to set the amount of heat applied by the heater.

【0063】また、請求項27における超電導磁石装置
は、電磁力支持部材の低電気抵抗材の断絶部および断絶
部を覆う低電気抵抗カバーが、請求項9の作用と同様の
理由により渦電流損失を低減させる。
According to a twenty-seventh aspect of the present invention, in the superconducting magnet device, the cut-off portion of the low-resistance material of the electromagnetic force supporting member and the low electric resistance cover covering the cut-off portion are formed by an eddy current loss for the same reason as in the ninth aspect. To reduce.

【0064】また、請求項28における超電導磁石装置
は、電磁力支持部材の電気的絶縁材料によってこの絶縁
部を横切る渦電流は発生せず渦電流による発熱は起こら
ない。
In the superconducting magnet device according to claim 28, no eddy current is generated across the insulating portion by the electrically insulating material of the electromagnetic force supporting member, and no heat is generated by the eddy current.

【0065】また、請求項29における超電導磁石装置
は、電磁力支持部材の間に挟んだ電気的絶縁材に加えた
支持方向における引っ張り力の調節手段で内槽容器が超
電導コイルの励磁によって拡張方向に変形しないよう初
期引っ張り応力を与える。
In the superconducting magnet device according to the present invention, the inner container is extended in the expansion direction by exciting the superconducting coil by means of adjusting the tensile force in the supporting direction applied to the electrically insulating material sandwiched between the electromagnetic force supporting members. An initial tensile stress is applied to prevent deformation.

【0066】[0066]

【実施例】【Example】

実施例1.以下、この発明の実施例1を図について説明
する。図1はこの発明の実施例1における超電導磁石装
置で内槽容器に収納された超電導コイルの一部断面を示
す斜視図、図2はこの発明の実施例1における超電導磁
石装置で内槽容器の外観を示す斜視図である。図におい
て1ないし3は従来と同様でありその説明は省略する。
11は内槽容器2で低電気抵抗材3の断絶部分を形成す
る高電気抵抗部分で図44−(B)で示す渦電流の流路
に位置して設けられている。
Embodiment 1 FIG. Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a partial cross section of a superconducting coil housed in an inner vessel container in the superconducting magnet apparatus according to the first embodiment of the present invention, and FIG. It is a perspective view which shows an external appearance. In the figure, 1 to 3 are the same as those in the conventional art, and the description thereof is omitted.
Numeral 11 denotes a high electric resistance portion which forms a cut-off portion of the low electric resistance material 3 in the inner tank 2 and is provided in the eddy current flow path shown in FIG.

【0067】次に動作について説明する。超電導磁石装
置の超電導コイル1を励消磁中に発生する内槽容器2表
面の渦電流は図44−(B)で示される矢印のように流
れるがこの流路で低電気抵抗材3を設けない高電気抵抗
部分11では渦電流は内槽容器2自体即ち高抵抗である
ステンレス鋼を流れることになり、流路の抵抗が高電気
抵抗となるため内槽容器2に誘導される渦電流を小さく
抑え内槽容器2の渦電流損失が低減する。これにより超
電導コイル1を冷却する冷媒の蒸発を減少させる。
Next, the operation will be described. The eddy current generated on the surface of the inner vessel 2 during excitation and demagnetization of the superconducting coil 1 of the superconducting magnet device flows as shown by the arrow in FIG. 44- (B), but the low electric resistance material 3 is not provided in this flow path. In the high electric resistance part 11, the eddy current flows through the inner vessel 2 itself, that is, the high resistance stainless steel, and the resistance of the flow path becomes high electric resistance, so that the eddy current induced in the inner vessel 2 is reduced. Eddy current loss of the holding inner tank container 2 is reduced. Thereby, the evaporation of the refrigerant for cooling the superconducting coil 1 is reduced.

【0068】実施例2.なお、上記実施例1では高電気
抵抗部分11を図44−(B)で示す超電導コイルの励
消磁中に内槽容器2の表面に発生する渦電流の流路に設
けたものを示したが、図3に示すように図44−(A)
で記載した走行中の地上コイルからの高調波磁場に起因
する渦電流の流路を避けて高電気抵抗部分11を配置す
るようにすると、励消磁中に発生する渦電流の流路に高
電気抵抗部分を含むため流路の抵抗が高くなり渦電流は
小さく内槽容器の渦電流損失が抑えられ、かつ、高調波
磁界により発生する渦電流は高電気抵抗部分を流路とせ
ず、渦電流の流路のインダクタンスにより渦電流の大き
さが決まるため、内槽容器2の渦電流損失が抑えられ
る。
Embodiment 2 FIG. In the first embodiment, the high electrical resistance portion 11 is provided in the flow path of the eddy current generated on the surface of the inner vessel 2 during the excitation and demagnetization of the superconducting coil shown in FIG. FIG. 44- (A) as shown in FIG.
If the high electric resistance portion 11 is arranged so as to avoid the flow path of the eddy current caused by the harmonic magnetic field from the running ground coil described in the above section, the flow path of the eddy current generated during the excitation demagnetization becomes high. The resistance of the flow path is increased due to the inclusion of the resistance part, the eddy current is small and the eddy current loss of the inner vessel is suppressed, and the eddy current generated by the harmonic magnetic field does not flow through the high electric resistance part. Since the magnitude of the eddy current is determined by the inductance of the flow path, the eddy current loss of the inner vessel 2 is suppressed.

【0069】実施例3.また、実施例3は上記実施例1
および2に記載した高電気抵抗部分を、地上コイルから
の高調波変動磁界が印加される側の内槽容器2面以外に
位置させ図4に示すように構成したもので、上記実施例
の動作に加え、高調波磁界を磁気シールドし超電導コイ
ル1に発生する渦電流損失を抑えることができる。
Embodiment 3 FIG. The third embodiment is different from the first embodiment.
And the high electric resistance portion described in 2 is located on the side other than the inner tank 2 on the side to which the harmonic fluctuating magnetic field from the ground coil is applied, as shown in FIG. In addition to the above, it is possible to magnetically shield the harmonic magnetic field and suppress the eddy current loss generated in the superconducting coil 1.

【0070】実施例4.また、上記各実施例では高電気
抵抗部分11は内槽容器2の表面で低電気抵抗材3のな
い構成としたが、図5に示すように高電気抵抗部分11
を挟んだ低電気抵抗材3間に超電導線材12を渡し電気
的に短絡するように構成することによって、超電導線材
12が超電導状態であるとき即ち走行中は内槽容器2の
渦電流は低電気抵抗材と超電導線材12を流路とし、高
調波磁界による内槽容器の渦電流損失が抑えられる。ま
た、超電導線材12が常電導状態であるとき即ち,超電
導コイル励消磁中は内槽容器の渦電流は高電気抵抗部分
を流路とするため、励消磁中の内槽容器2の渦電流損失
が抑えられる。
Embodiment 4 FIG. Further, in each of the above embodiments, the high electric resistance portion 11 is formed on the surface of the inner tank container 2 without the low electric resistance material 3, but as shown in FIG.
When the superconducting wire 12 is in the superconducting state, that is, when the superconducting wire 12 is running, that is, when the superconducting wire 12 is running, the eddy current of the inner tank 2 is low electric current. The resistance material and the superconducting wire 12 are used as a flow path, and eddy current loss of the inner vessel container due to a harmonic magnetic field is suppressed. Also, when the superconducting wire 12 is in a normal conducting state, that is, during the excitation and demagnetization of the superconducting coil, the eddy current of the inner vessel is caused to flow through the high electric resistance portion. Is suppressed.

【0071】実施例5.さらに、上記実施例4における
低電気抵抗材2を短絡する超電導線材12において、超
電導線材12を被覆する安定化材(常電導金属,図示せ
ず)が超電導状態を呈する温度の時10-5〜10-4Ωc
mの高電気抵抗率を有する金属とするようにしたので、
超電導線材12が臨界値を越えて常電導転移したときは
高電気抵抗となり、励消磁中に発生する渦電流は高電気
抵抗部分と高電気抵抗の超電導線材を流路とし、内槽容
器の渦電流損失が抑えられる。
Embodiment 5 FIG. Further, in the superconducting wire 12 for short-circuiting the low electrical resistance material 2 in the fourth embodiment, the stabilizing material covering the superconducting wire 12 (normal-conducting metal, not shown) is 10 -5 to when the temperature exhibiting a superconducting state 10 -4 Ωc
m, so that the metal has a high electrical resistivity,
When the superconducting wire 12 exceeds the critical value and undergoes normal conduction transition, high electric resistance occurs, and the eddy current generated during excitation and demagnetization uses the high electric resistance portion and the superconducting wire having high electric resistance as a flow path, and the eddy Current loss is suppressed.

【0072】実施例6.また、図6に示すように実施例
4の超電導線材12にヒータ線13を隣接し外部電源1
4と通電可能に接続するように構成し、超電導コイル1
の励消磁中は、外部電源14によりヒータ線13で超電
導線材12が加熱して常電導状態となり、内槽容器に発
生する渦電流が高電気抵抗部分と常電導状態の超電導線
材12を流路とし、内槽の渦電流損失が抑えられる。一
方、走行中は外部電源14を切り離すため超電導線材1
2が超電導状態となり、地上コイルからの高調波磁界に
よる渦電流は低電気抵抗部分3と超電導状態の超電導線
材を流路とし、内槽容器の渦電流損失が抑えられる。
Embodiment 6 FIG. Further, as shown in FIG. 6, a heater wire 13 is adjacent to the superconducting wire 12
4 and a superconducting coil 1
During the demagnetization, the superconducting wire 12 is heated by the heater wire 13 by the external power source 14 to be in a normal conducting state, and an eddy current generated in the inner vessel container flows through the high electric resistance portion and the superconducting wire 12 in the normal conducting state. As a result, the eddy current loss of the inner tank is suppressed. On the other hand, the superconducting wire 1
2 is in a superconducting state, and the eddy current due to the harmonic magnetic field from the ground coil is made to flow through the low electric resistance part 3 and the superconducting superconducting wire, thereby suppressing the eddy current loss of the inner vessel.

【0073】実施例7.また、図7に示すように実施例
4の超電導線材12にヒータ線13を隣接しかつ、超電
導コイル1の励消磁中の変動磁界が鎖交するようなヒー
タ線13の閉回路15a,15bを構成するようにした
ので、励消磁中は超電導コイル1のつくる変動磁界によ
りヒータ線13に誘導電流が流れ超電導線材12が加熱
され常電導状態となり、一方、走行中はヒータ線13に
高調波磁界による誘導電流は流れず超電導線材12は超
電導状態となるため、それぞれ上記実施例6と同様の作
用効果を得る。
Embodiment 7 FIG. Further, as shown in FIG. 7, the heater wire 13 is adjacent to the superconducting wire 12 of the fourth embodiment, and the closed circuits 15a and 15b of the heater wire 13 in which the fluctuating magnetic field during the demagnetization of the superconducting coil 1 is linked. During the excitation and demagnetization, a fluctuating magnetic field generated by the superconducting coil 1 causes an induced current to flow through the heater wire 13 to heat the superconducting wire 12 to a normal conducting state. As a result, the superconducting wire 12 is in a superconducting state, and the same operation and effect as those of the sixth embodiment are obtained.

【0074】実施例8.また、図8に示す実施例8では
低電気抵抗材3を短絡している超電導線材16の臨界電
流値が超電導コイル1の励消磁中に発生する渦電流値よ
りも低く、地上コイルからの高調波磁界により発生する
渦電流値より高くなっているため、励消磁中は内槽容器
表面と超電導線材16に流れる過大な渦電流により超電
導線材16が常電導状態となり、渦電流は高電気抵抗材
を流路とし、一方、走行中は地上コイルからの高調波磁
界による渦電流が微小であるため、超電導線材16が超
電導状態のままであり、渦電流は低電気抵抗材と超電導
線材を流路とし、それぞれ上記実施例6と同様の作用効
果を得る。
Embodiment 8 FIG. In Example 8 shown in FIG. 8, the critical current value of the superconducting wire 16 short-circuiting the low electric resistance material 3 is lower than the eddy current value generated during the demagnetization of the superconducting coil 1, and the harmonic current from the ground coil is reduced. Since the eddy current is higher than the eddy current value generated by the wave magnetic field, the superconducting wire 16 becomes a normal conducting state due to an excessive eddy current flowing on the inner vessel surface and the superconducting wire 16 during the demagnetization, and the eddy current becomes a high electric resistance material. On the other hand, during traveling, the eddy current due to the harmonic magnetic field from the ground coil is minute, so that the superconducting wire 16 remains in a superconducting state, and the eddy current flows through the low electric resistance material and the superconducting wire. Thus, the same operation and effect as those of the sixth embodiment are obtained.

【0075】実施例9.また、上記実施例8では低電気
抵抗材3を短絡している超電導線材16が単数のものを
示したが図9に記載するように複数構成として、臨界電
流値の合計が超電導コイルの励磁中に内槽容器2表面に
発生する電流値より低く、地上コイルからの高調波変動
磁界に起因して内槽容器2表面に発生する電流値より高
くなるよう1本当たりの臨界電流値と構成本数を選定す
るようにしてもよい。
Embodiment 9 FIG. In Embodiment 8, the single superconducting wire 16 short-circuiting the low-resistance material 3 is shown as a single superconducting wire. However, as shown in FIG. The critical current value and the number of components so as to be lower than the current value generated on the surface of the inner vessel 2 and higher than the current value generated on the surface of the inner vessel 2 due to the harmonic fluctuating magnetic field from the ground coil May be selected.

【0076】実施例10.以下、この発明の実施例10
を図について説明する。図10はこの発明の実施例10
における超電導磁石装置の構成を示す斜視図である。図
において、2,3,11は実施例1の図1と同様であり
その説明は省略する。17は高電気抵抗部分11を覆う
例えばアルミニューム等でなる低電気抵抗カバー、18
は低電気抵抗カバー17と低電気抵抗材3の間に介在す
る絶縁材料である。
Embodiment 10 FIG. Hereinafter, Example 10 of the present invention
Will be described with reference to FIG. FIG. 10 shows Embodiment 10 of the present invention.
FIG. 2 is a perspective view illustrating a configuration of a superconducting magnet device in FIG. In the figure, 2, 3, and 11 are the same as those in FIG. 1 of the first embodiment, and the description thereof is omitted. Reference numeral 17 denotes a low electric resistance cover made of, for example, aluminum, which covers the high electric resistance portion 11;
Is an insulating material interposed between the low electric resistance cover 17 and the low electric resistance material 3.

【0077】次に動作について説明する。励消磁時に内
槽容器2表面に生じる渦電流の回路の電気的時定数をτ
としたとき、内槽容器2の一部に高電気抵抗部分11が
あることにより、電気抵抗が大きく、励消磁時の変動磁
界周波数ωについて、ω《1/τの条件が成立し、損失
の低減が可能である。しかし、地上コイルから高調波変
動磁界に対してはω》1/τとなり、渦電流回路の抵抗
に比例した損失が起こる。本実施例では、高電気抵抗部
分11が高調波磁界にさらされない様に遮蔽するため
に、高電気抵抗部分11を覆う、内槽容器2と電気的に
絶縁された低電気抵抗カバー17を有する構成としてい
る。外部変動磁界によって低電気抵抗カバー17に誘起
される渦電流によって、高電気抵抗部分11は磁気遮蔽
されるために、高電気抵抗部分11における渦電流によ
る損失を低減できる。または低電気抵抗カバー17と低
電気抵抗材料3を絶縁材料18を介してオーバラップさ
せているわけであるが、このオーバラップする面積を広
くするほど、外部変動磁界印加時の損失が低減できるの
は言うまでもない。
Next, the operation will be described. The electric time constant of the circuit of the eddy current generated on the surface of the inner vessel container 2 at the time of excitation and demagnetization is represented by τ.
In this case, the presence of the high electric resistance portion 11 in a part of the inner tank vessel 2 causes a large electric resistance, and the condition of ω << 1 / τ is satisfied with respect to the fluctuating magnetic field frequency ω at the time of demagnetization. Reduction is possible. However, ω >> 1 / τ from the ground coil to the harmonic fluctuating magnetic field, and a loss proportional to the resistance of the eddy current circuit occurs. In the present embodiment, in order to shield the high electric resistance portion 11 from being exposed to the harmonic magnetic field, a low electric resistance cover 17 that covers the high electric resistance portion 11 and is electrically insulated from the inner vessel 2 is provided. It has a configuration. Since the high electric resistance portion 11 is magnetically shielded by the eddy current induced in the low electric resistance cover 17 by the external fluctuating magnetic field, the loss due to the eddy current in the high electric resistance portion 11 can be reduced. Alternatively, the low electric resistance cover 17 and the low electric resistance material 3 are overlapped with each other via the insulating material 18. The larger the overlapping area, the more the loss at the time of applying the externally variable magnetic field can be reduced. Needless to say.

【0078】実施例11.なお、実施例10では低電気
抵抗カバー17が両端側とも絶縁材料18を介在して取
り付けたものを示したが、実施例11として図11に示
すように一端側のみ低電気抵抗材3に電気的に連結、例
えば半田接続19するようにしてもよい。
Embodiment 11 FIG. In the tenth embodiment, the low electric resistance cover 17 is mounted on both ends with the insulating material 18 interposed therebetween. However, as the eleventh embodiment, as shown in FIG. For example, a solder connection 19 may be used.

【0079】このような構成にすることで実施例10と
同様の効果が得られる。また製作に於いて低電気抵抗カ
バー17の片側を内槽容器2表面の低電気抵抗材料3
に、例えば半田付け等の手法で強固に取り付けることが
可能である。またたとえば低電気抵抗材料が銅であれば
銅メッキすることで低抵抗材料3と低電気抵抗カバー1
7を同じ材料で接続できる。このような構成の低電気抵
抗カバー17を絶縁材料18を介して低電気材料3と広
くオーバラップさせればさせるほど、高電気抵抗部分1
1を流れる渦電流が低減され、損失は低下する。
With this configuration, the same effects as in the tenth embodiment can be obtained. In the production, one side of the low electric resistance cover 17 is made of the low electric resistance material 3 on the surface of the inner tank 2.
In addition, it is possible to firmly attach it by a technique such as soldering. For example, if the low electric resistance material is copper, the low electric resistance material 3 and the low electric resistance cover 1 are plated with copper.
7 can be connected with the same material. The more the low electric resistance cover 17 having such a configuration overlaps with the low electric material 3 via the insulating material 18, the more the high electric resistance portion 1
The eddy currents flowing through 1 are reduced and losses are reduced.

【0080】実施例12.また、実施例10では低電気
抵抗カバー17が1枚で高電気抵抗部分11を覆うもの
を示したが、実施例12として図12および図13に示
すように複数の低電気抵抗カバー17aを互いに、ある
いは内槽容器2と電気的に絶縁18された状態で重複さ
せて取り付けるようにしてもよい。複数の低電気抵抗カ
バー17aを取り付けることで、高電気抵抗部分11を
広くすることが可能であると同時に、1つの低電気抵抗
カバー17aを小さくすることができ、1つの低電気抵
抗カバー17aにはたらく電磁力が小さくできるために
固定が容易である。
Embodiment 12 FIG. In the tenth embodiment, a single low electric resistance cover 17 covers the high electric resistance portion 11 with one sheet. However, as a twelfth embodiment, as shown in FIGS. Alternatively, it may be mounted so as to overlap with the inner tank 2 while being electrically insulated 18. By attaching a plurality of low electric resistance covers 17a, it is possible to make the high electric resistance portion 11 wide, and at the same time, it is possible to make one low electric resistance cover 17a small, and to attach one low electric resistance cover 17a. Fixing is easy because the working electromagnetic force can be reduced.

【0081】実施例13.さらに、実施例12では複数
の低電気抵抗カバー17aが低電気抵抗材3または高電
気抵抗部分11と絶縁材料18で電気的に絶縁状態のも
のを示したが、実施例13として図14に示すように低
電気抵抗カバー17aの片端が内槽容器2と電気的,機
械的に、溶接,ろう付け,半田付けなどで結合するよう
にすれば、実施例12の作用効果に加え低電気抵抗カバ
ー17aを強固に固定することができる。
Embodiment 13 FIG. Further, in the twelfth embodiment, the plurality of low electric resistance covers 17a are electrically insulated by the low electric resistance material 3 or the high electric resistance part 11 and the insulating material 18, but as shown in FIG. If one end of the low electric resistance cover 17a is electrically and mechanically connected to the inner vessel container 2 by welding, brazing, soldering, or the like, the low electric resistance cover can be obtained in addition to the effects of the twelfth embodiment. 17a can be firmly fixed.

【0082】実施例14.以下、この発明の実施例14
を図について説明する。図15はこの発明の実施例14
における超電導磁石装置の部分断面した構成を示す斜視
図である。図において、2は内槽容器、5は内槽容器2
を全体的に囲う外槽容器、20は内槽容器2の所定表面
に取り付けられた低電気抵抗カバーである。
Embodiment 14 FIG. Hereinafter, Example 14 of the present invention
Will be described with reference to FIG. FIG. 15 shows Embodiment 14 of the present invention.
FIG. 2 is a perspective view showing a partially cross-sectional configuration of the superconducting magnet device in FIG. In the figure, 2 is an inner tank container, 5 is an inner tank container 2
Is a low electric resistance cover attached to a predetermined surface of the inner tank container 2.

【0083】一般に外槽容器5はアルミニウムでできて
いるため内槽容器2が外槽容器5に対して相対振動を起
こすと、内槽容器2に収納された超電導コイル1の磁場
によって外槽容器5に渦電流が発生する、この渦電流に
よってつくられる高調波磁界が内槽容器2に印加される
と渦電流損失の原因となる。内槽容器2の振動は固有の
振動モードを有するため、相対振動によって渦電流が発
生する箇所は限定される。低電気抵抗カバー20をこの
ような箇所に集中的につけることで、相対振動に起因す
る高調波磁界による渦電流損失が低減できる。ここに示
す図15では曲げの共振が生じた際に有効な、低電気抵
抗カバー20を示している。曲げに対しては内槽の両端
で渦電流21が発生するので、この箇所に低電気抵抗カ
バー20を取り付けている。図中の白抜き矢印22は振
動方向を示している。
Generally, when the outer vessel 5 is made of aluminum, when the inner vessel 2 causes relative vibration with respect to the outer vessel 5, the magnetic field of the superconducting coil 1 housed in the inner vessel 2 causes the outer vessel 5 to be vibrated. An eddy current is generated in the inner tank 5 and when a harmonic magnetic field generated by the eddy current is applied to the inner vessel 2, the eddy current may be lost. Since the vibration of the inner tank 2 has a unique vibration mode, the location where the eddy current is generated by the relative vibration is limited. By intensively attaching the low electric resistance cover 20 to such a portion, eddy current loss due to a harmonic magnetic field caused by relative vibration can be reduced. FIG. 15 shows a low electric resistance cover 20 that is effective when bending resonance occurs. Since eddy currents 21 are generated at both ends of the inner tank with respect to bending, the low electric resistance cover 20 is attached to this location. The white arrow 22 in the figure indicates the vibration direction.

【0084】なお、上記実施例10〜14に記載の低電
気抵抗カバーを製作するとき、低抵抗板材料(例えば純
アルミ板や銅板)を加工した後に焼鈍をする。これによ
り加工時に生じた電気抵抗率の増加が解消される。ま
た、前記低電気抵抗カバーは内槽容器に比べ寸法が小さ
いため、容易に焼鈍可能である。
When the low electric resistance covers described in the above Examples 10 to 14 are manufactured, annealing is performed after processing a low resistance plate material (eg, a pure aluminum plate or a copper plate). This eliminates the increase in electrical resistivity that occurs during processing. Further, since the low electric resistance cover is smaller in size than the inner tank container, it can be easily annealed.

【0085】実施例15.以下、この発明の実施例15
を図について説明する。図16はこの発明の実施例15
における超電導磁石装置の要部構成を示す斜視図、図1
7は図16における線XVII−XVIIに沿った断面
図である。図において、1は超電導コイル、23は高電
気抵抗材料で形成された内槽容器、24は内槽容器23
の表面と所定空間24aを有し全体的に覆う低電気抵抗
材料で形成される容器で、上部に室温で操作可能な開閉
手段のバルブ25を有している。26は内槽容器23と
容器24間に空間を得るように固定された熱伝導率の小
さい材料、例えばGFRPでなる間隔片、23aは内槽
容器23の下方に設けられ所定空間24aと連通させる
穴である。
Embodiment 15 FIG. Hereinafter, a fifteenth embodiment of the present invention will be described.
Will be described with reference to FIG. FIG. 16 shows Embodiment 15 of the present invention.
1 is a perspective view showing a configuration of a main part of a superconducting magnet device in FIG.
FIG. 7 is a sectional view taken along the line XVII-XVII in FIG. In the figure, 1 is a superconducting coil, 23 is an inner vessel container formed of a high electric resistance material, and 24 is an inner vessel vessel 23
A container made of a low electric resistance material having a surface and a predetermined space 24a and entirely covering the container, and having a valve 25 of an opening / closing means operable at room temperature at an upper portion thereof. Reference numeral 26 denotes a spacing piece made of a material having a low thermal conductivity, for example, GFRP, fixed so as to obtain a space between the inner tank container 23 and the container 24, and 23a is provided below the inner tank container 23 and communicates with a predetermined space 24a. It is a hole.

【0086】この超電導磁石装置の動作原理は、まず励
消磁時には上部バルブ25を閉じておく。ここで低電気
抵抗容器24の表面が渦電流の発生で加熱されると内槽
容器23と低電気抵抗容器24の間の空間でヘリウムガ
スが溜まり低電気抵抗容器24は液体ヘリウムで冷却さ
れなくなる。これにより低電気抵抗容器24の温度がさ
らに上昇し、低電気抵抗容器24の抵抗率が大きくな
り、渦電流が低減されるために、蒸発量は低下する。一
方、高調波磁界が印加されているときは、上部のバルブ
25を開けておく。この時、空間は液体ヘリウムで満た
されているために低電気抵抗容器24は常に冷却されて
おり、抵抗が小さいために渦電流損失は小さく蒸発量が
低減される。
The principle of operation of this superconducting magnet device is as follows. First, the upper valve 25 is closed during demagnetization. Here, when the surface of the low electric resistance container 24 is heated by the generation of the eddy current, helium gas is accumulated in the space between the inner tank container 23 and the low electric resistance container 24, and the low electric resistance container 24 is not cooled by the liquid helium. . As a result, the temperature of the low electric resistance container 24 further increases, the resistivity of the low electric resistance container 24 increases, and the eddy current is reduced, so that the amount of evaporation decreases. On the other hand, when a harmonic magnetic field is being applied, the upper valve 25 is opened. At this time, since the space is filled with liquid helium, the low electric resistance container 24 is always cooled, and since the resistance is small, the eddy current loss is small and the amount of evaporation is reduced.

【0087】実施例16.なお、実施例15では高電気
抵抗材料で形成された内槽容器23全体を低電気抵抗材
料で形成された容器24で覆い形成された冷媒溜めの空
間24aの連通路に操作バルブ25を設けたものを示し
たが、実施例16として図18,19に示すように表面
に低電気抵抗材3を設けてなる内槽容器2で低電気抵抗
材3の断絶部11(高電気抵抗部分)のみを低電気抵抗
材料で形成された容器27で内槽容器2表面と所定空間
27aを有して覆いそれぞれの上部側に室温で操作可能
なバルブ25を設けるようにしてもよい。図中、28は
容器で覆われた部分の内槽容器下方に設けられた所定空
間27aと連通する穴である。
Embodiment 16 FIG. In Example 15, the operation valve 25 was provided in the communication path of the space 24a of the refrigerant reservoir formed by covering the entire inner tank container 23 formed of the high electric resistance material with the container 24 formed of the low electric resistance material. As shown in FIGS. 18 and 19, only the cut-off portion 11 (high electric resistance portion) of the low electric resistance material 3 in the inner tank 2 having the surface provided with the low electric resistance material 3 as shown in FIGS. May be covered with a container 27 formed of a low electric resistance material so as to cover the surface of the inner tank container 2 and the predetermined space 27a, and a valve 25 operable at room temperature may be provided on each upper side. In the figure, reference numeral 28 denotes a hole which communicates with a predetermined space 27a provided below the inner tank container in a portion covered by the container.

【0088】動作原理は実施例16に示したものと同様
であるが、上記の機構を部分的に用いることで、複雑な
形状をした内槽容器2に対しても取り付けることが比較
的容易となる。
The principle of operation is the same as that shown in the sixteenth embodiment. However, by partially using the above mechanism, it is relatively easy to attach it to the inner tank 2 having a complicated shape. Become.

【0089】実施例17.以下、この発明の実施例17
を図について説明する。図20はこの発明の実施例17
における超電導磁石装置の構成を示すもので、(A)に
その斜視図を(B)に(A)における線B−Bに沿った
部分断面図を示す。図において、2は内槽容器、3は低
電気抵抗材、11は低電気抵抗材の断絶部でなる高電気
抵抗部分、29は低電気抵抗材料で形成され室温部から
操作可能なスイッチであり高電気抵抗部分11に取り付
けてある。30は開閉機構30aを有しスイッチ29を
駆動(開閉)するための操作棒で、電気絶縁性の低熱伝
導率の材料でなる。
Embodiment 17 FIG. Hereinafter, Example 17 of the present invention
Will be described with reference to FIG. FIG. 20 shows Embodiment 17 of the present invention.
2A shows a configuration of the superconducting magnet device, and FIG. 2A is a perspective view thereof, and FIG. 2B is a partial cross-sectional view taken along line BB in FIG. In the drawing, reference numeral 2 denotes an inner vessel container, 3 denotes a low electric resistance material, 11 denotes a high electric resistance portion which is a cut off portion of the low electric resistance material, and 29 denotes a switch formed of a low electric resistance material and operable from a room temperature part. It is attached to the high electric resistance part 11. Reference numeral 30 denotes an operation rod having an opening / closing mechanism 30a for driving (opening / closing) the switch 29, which is made of an electrically insulating material having a low thermal conductivity.

【0090】この実施例に於ける動作原理について記
す。励消磁時には棒30を室温部から引っ張りスイッチ
29を開く。この時、渦電流は高電気抵抗部分11を流
れることになり、磁界変動が遅く電流路の抵抗が大きい
場合、つまりω《1/τの条件が成立するために損失が
低下する。また高調波磁界が印加されているときには、
スイッチ29を閉じておく。この時表面の電気抵抗は小
さく磁界変動が早い場合、つまりω》1/τの条件が成
立する。このため電気抵抗率が低いほど損失は低下し、
蒸発量は小さくなる。
The operation principle in this embodiment will be described. At the time of excitation / demagnetization, the rod 30 is pulled from the room temperature portion and the switch 29 is opened. At this time, the eddy current flows through the high electric resistance portion 11, and when the magnetic field fluctuation is slow and the resistance of the current path is large, that is, since the condition of ω << 1 / τ is satisfied, the loss decreases. When a harmonic magnetic field is applied,
The switch 29 is closed. At this time, when the electric resistance of the surface is small and the magnetic field fluctuates quickly, that is, the condition of ω >> 1 / τ is satisfied. Therefore, the lower the electrical resistivity, the lower the loss,
The amount of evaporation decreases.

【0091】実施例18.以下、この発明の実施例18
を図について説明する。図21はこの発明の実施例18
における超電導磁石装置の構成を示すもので、(A)に
その斜視図を(B)に(A)における矢視Bの詳細断面
図を示す。図において、2,3,11,18は実施例1
0と同様でありその説明は省略する。31は超電導フィ
ルムあるいは超電導板でなる低電気抵抗カバーである。
Embodiment 18 FIG. Hereinafter, an embodiment 18 of the invention will be described.
Will be described with reference to FIG. FIG. 21 shows Embodiment 18 of the present invention.
2A shows a configuration of the superconducting magnet device, and FIG. 2A is a perspective view thereof, and FIG. 2B is a detailed cross-sectional view taken along the arrow B in FIG. In the figure, 2, 3, 11, and 18 represent the first embodiment.
0 and the description is omitted. Reference numeral 31 denotes a low electric resistance cover made of a superconducting film or a superconducting plate.

【0092】超電導フィルムあるいは超電導板でなる低
電気抵抗カバーの取り付け方法としては実施例10から
13に示すいずれの方法で行っても同様の効果が得られ
る。超電導フィルムあるいは超電導板は電気抵抗零であ
るためにいずれの周波数においても完全に高電気抵抗部
分11を完全に磁気遮蔽するため、渦電流による発熱が
低減される。なお、図21−(B)に示すように超電導
フィルムあるいは超電導板でなる低電気抵抗カバー31
として超電導部分31aと安定化マトリックス31b、
例えば銅、アルミなどの多層構造のものを用いると変動
磁界に対する超電導状態の安定化が向上する。
The same effect can be obtained by applying any of the methods shown in Examples 10 to 13 as a method of attaching the low electric resistance cover made of a superconducting film or a superconducting plate. Since the superconducting film or the superconducting plate has zero electric resistance, the high electric resistance portion 11 is completely magnetically shielded at any frequency, so that heat generation due to eddy current is reduced. As shown in FIG. 21- (B), a low electric resistance cover 31 made of a superconducting film or a superconducting plate is used.
As a superconducting portion 31a and a stabilizing matrix 31b,
For example, use of a multilayer structure such as copper or aluminum improves the stabilization of the superconducting state with respect to a fluctuating magnetic field.

【0093】実施例19.実施例18で低電気抵抗カバ
ーとして超電導フィルムあるいは超電導板31を用いた
ものを示したが、実施例19として図22に示すように
絶縁被覆を取り除いた超電導線32aを編んで形成され
る超電導メッシュ32を低電気抵抗カバーとして用いる
ようにしても良い。超電導メッシュ32の取り付け方法
としては実施例10から13に示すいずれの方法で行っ
ても同様の効果が得られる。超電導メッシュ32は低電
気抵抗であるため、高電気抵抗部分11を効率よく磁気
遮蔽するため、渦電流による発熱が低減される。なお、
この超電導メッシュ32を低電気抵抗の低融点金属たと
えば半田などで含浸することにより、機械的に高強度
で、且つ低電気抵抗な低電気抵抗カバーが得られる。
Embodiment 19 FIG. In Example 18, a superconducting film or a superconducting plate 31 was used as the low electric resistance cover, but as Example 19, a superconducting mesh formed by knitting a superconducting wire 32a from which an insulating coating was removed as shown in FIG. 32 may be used as a low electric resistance cover. Regarding the method of attaching the superconducting mesh 32, the same effect can be obtained by performing any of the methods shown in Examples 10 to 13. Since the superconducting mesh 32 has a low electric resistance, the high electric resistance portion 11 is efficiently magnetically shielded, so that heat generation due to eddy current is reduced. In addition,
By impregnating the superconducting mesh 32 with a low-resistance metal having a low electric resistance, such as solder, a low-electric-resistance cover having high mechanical strength and low electric resistance can be obtained.

【0094】実施例20.実施例19で低電気抵抗カバ
ーとして超電導メッシュ32を用いたものを示したが、
実施例20として図23に示すように、実施例10で示
した低電気抵抗カバー17の縁に超電導線33を低接続
抵抗になるように、低融点金属例えば半田34などを用
いて取り付ける構成の低電気抵抗カバー35にしてもよ
い。超電導線33を縁に有する低電気抵抗カバー35の
取り付け方法としては実施例10から13に示すいずれ
の方法で行っても同様の効果が得られる。低電気抵抗カ
バー35は、その縁に超電導線33を有することで等価
的に低電気抵抗になるために、高電気抵抗部分11を効
率よく磁気遮蔽するため、渦電流による発熱が低減され
る。
Embodiment 20 FIG. Example 19 shows the case where the superconducting mesh 32 is used as the low electric resistance cover.
As a twentieth embodiment, as shown in FIG. 23, the superconducting wire 33 is attached to the edge of the low electric resistance cover 17 shown in the tenth embodiment using a low melting point metal such as solder 34 so as to have a low connection resistance. The low electric resistance cover 35 may be used. The same effect can be obtained by mounting the low electric resistance cover 35 having the superconducting wire 33 at the edge by any of the methods shown in Embodiments 10 to 13. Since the low electric resistance cover 35 has the superconducting wire 33 at the edge thereof, the electric resistance becomes equivalently low, and the high electric resistance portion 11 is efficiently magnetically shielded, so that heat generation due to eddy current is reduced.

【0095】なお、縁に取り付ける超電導線を超電導テ
ープとすれば低電気抵抗カバー35の厚みを薄くでき
る。また酸化物超電導体のテープなども適用により低電
気抵抗カバー35の磁場遮蔽性能が向上する。
When the superconducting wire attached to the edge is made of a superconducting tape, the thickness of the low electric resistance cover 35 can be reduced. In addition, the magnetic field shielding performance of the low electric resistance cover 35 is improved by using an oxide superconductor tape or the like.

【0096】実施例21.図24は、この発明の実施例
21を説明する要部を示すもので、実施例19および2
0で述べた超電導線として、内部安定化超電導線36を
用いたものである。内部安定化超電導線36は超電導体
部分36aの外側の安定化マトリックス36bの厚さが
薄いため超電導線同士の接続抵抗を小さくすることが可
能となる。
Embodiment 21 FIG. FIG. 24 shows a main part of a twenty-first embodiment of the present invention.
The internal stabilizing superconducting wire 36 is used as the superconducting wire described in FIG. Since the thickness of the stabilization matrix 36b outside the superconductor portion 36a is small, the connection resistance between the superconducting wires of the internally stabilized superconducting wire 36 can be reduced.

【0097】実施例22.実施例10から13あるいは
実施例18から20の構成の内槽容器を製作するとき、
低電気抵抗カバーの取り付け方法について実施例22と
して図25及び図26によって説明する。図25では例
えばセラミックなどを用いた絶縁ボルト37によるもの
で電気絶縁ボルト37で固定することで低電気抵抗カバ
ーを強固に内槽容器に取り付けることが可能である。ま
た、図26では低電気抵抗カバーを電気絶縁性の接着剤
38で貼りつけるもので、この方法は製作が容易であ
る。
Embodiment 22 FIG. When manufacturing the inner tank container having the configuration of Examples 10 to 13 or Examples 18 to 20,
A method for attaching the low electric resistance cover will be described as a twenty-second embodiment with reference to FIGS. In FIG. 25, for example, a low electric resistance cover can be firmly attached to the inner vessel container by fixing with an electric insulating bolt 37 using an insulating bolt 37 made of, for example, ceramic. In FIG. 26, the low electric resistance cover is attached with an electrically insulating adhesive 38, and this method is easy to manufacture.

【0098】実施例23.実施例10から13あるいは
実施例18,19の構成の内槽容器において、低電気抵
抗カバーの形状の一例を図27によって説明する。図の
ように、いくつかに分割された低電気抵抗板状材料39
をはりつけた後、メッキ処理を施すことで一体化して形
成される低電気抵抗カバーを有した様子を示している。
ここでメッキ40で低電気抵抗板材料39は電気的に結
合されるために複雑な形状の低電気抵抗カバーの製作が
容易である。当然、低融点金属で結合させても同様の効
果が得られる。
Embodiment 23 FIG. One example of the shape of the low electric resistance cover in the inner tank container having the configuration of Examples 10 to 13 or Examples 18 and 19 will be described with reference to FIG. As shown in the figure, the low electric resistance plate material 39 divided into several parts
2 shows a state having a low electric resistance cover integrally formed by applying a plating process after bonding.
Here, since the low electric resistance plate material 39 is electrically coupled by the plating 40, it is easy to manufacture a low electric resistance cover having a complicated shape. Naturally, the same effect can be obtained by bonding with a low melting point metal.

【0099】実施例24.図28は、この発明の実施例
24の要部を示す斜視図である。実施例10から13に
記載されて低電気抵抗カバー17あるいは実施例18に
記載された、超電導フィルムあるいは超電導板31が複
数の貫通穴41を有している。38は電気絶縁性の接着
剤である。貫通孔41を有する超電導フィルムあるいは
板31を用いることにより、接着で超電導フィルムある
いは板31を内槽容器2表面に固定するとき、余分な接
着剤38が貫通孔41から溢れるために、接着剤38層
の厚さを制御しやすいのと同時に作業性も向上する。さ
らに貫通孔41から溢れた接着剤38が硬化したとき、
内槽容器2表面と低電気抵抗カバー17間の剪断強度が
向上する。
Embodiment 24 FIG. FIG. 28 is a perspective view showing a main part of Embodiment 24 of the present invention. The superconducting film or the superconducting plate 31 described in Examples 10 to 13 or the low electric resistance cover 17 or Example 18 has a plurality of through holes 41. Reference numeral 38 denotes an electrically insulating adhesive. By using a superconducting film or plate 31 having a through hole 41, when the superconducting film or plate 31 is fixed to the surface of the inner vessel container 2 by bonding, an excess adhesive 38 overflows from the through hole 41, so that the adhesive 38 The workability is improved at the same time as the thickness of the layer is easily controlled. Further, when the adhesive 38 overflowing from the through hole 41 is hardened,
The shear strength between the surface of the inner tank 2 and the low electric resistance cover 17 is improved.

【0100】実施例25.図29は、この発明の実施例
25の要部を示す斜視図である。実施例19に記載の超
電導磁石装置において、超電導線32aで編んだ超電導
メッシュ32を圧延することで製作された低電気抵抗カ
バーを有している。圧延により超電導線32a間の接触
抵抗は低下すると考えられる。また厚さが減少し、超電
導材料の占積率も向上することから、超電導磁石装置の
コンパクト化が実現できる。
Embodiment 25 FIG. FIG. 29 is a perspective view showing a main part of Embodiment 25 of the present invention. The superconducting magnet device described in Example 19 has a low electric resistance cover manufactured by rolling a superconducting mesh 32 knitted with a superconducting wire 32a. It is considered that the rolling reduces the contact resistance between the superconducting wires 32a. Further, since the thickness is reduced and the space factor of the superconducting material is improved, the superconducting magnet device can be downsized.

【0101】なお、実施例25で示した超電導磁石装置
において、超電導線32aで編んだ超電導メッシュ32
を圧延した後に400度以下の熱処理温度で焼鈍したも
のを低電気抵抗カバーとすれば、圧延加工後の超電導線
32aにおいては安定化マトリックスの抵抗率が高くな
っているものを、必要な形状に低電気抵抗カバーを加工
した後で焼鈍することにより低電気抵抗化が図れる。な
お400℃以下の焼鈍温度では超電導体の劣化はない。
In the superconducting magnet device shown in Embodiment 25, the superconducting mesh 32 knitted with the superconducting wire 32a is used.
If the low electric resistance cover is formed by annealing at a heat treatment temperature of 400 ° C. or less after rolling, the superconducting wire 32a after the rolling process has a high resistivity of the stabilization matrix, and is converted into a required shape. Annealing after processing the low electric resistance cover can reduce electric resistance. At an annealing temperature of 400 ° C. or less, there is no deterioration of the superconductor.

【0102】実施例26.図30は、この発明の実施例
26の要部を示す斜視図である。上記実施例18および
19に記す超電導磁石装置に於いて、超電導フィルムあ
るいは超電導板31あるいは超電導メッシュ32の端部
での面に対して垂直方向の磁束の集中を緩和するよう
に、端部にまるみをつけている。図中42は磁力線であ
る。このため超電導体内部に侵入する磁界の履歴による
損失(ヒステリシス損失)が低減できるため、超電導材
料を用いた低電気抵抗カバーにおいて超電導状態の安定
性が向上する。
Embodiment 26 FIG. FIG. 30 is a perspective view showing a main part of Embodiment 26 of the present invention. In the superconducting magnet devices described in the above Examples 18 and 19, the end portions of the superconducting film or the superconducting plate 31 or the superconducting mesh 32 are rounded so as to reduce the concentration of magnetic flux in the direction perpendicular to the end surface. Is attached. In the figure, reference numeral 42 denotes lines of magnetic force. Therefore, the loss (hysteresis loss) due to the history of the magnetic field penetrating into the superconductor can be reduced, and the stability of the superconducting state is improved in the low electric resistance cover using the superconducting material.

【0103】実施例27.図31は、この発明の実施例
27の要部を示す斜視図である。上記実施例18および
19に記す超電導磁石装置に於いて、超電導フィルムあ
るいは超電導板31あるいは超電導メッシュ32の端部
での臨界電流密度を中央付近に比べ小さくしている。図
中43は超電導部分、44は安定化材料、45は磁力線
である。ここで、超電導フィルムあるいは超電導板にお
いて端部で低電気抵抗金属でなる安定化材料44の量を
多くしておくことにより、このような構成の低電気抵抗
カバーが完全に外部磁界を遮蔽したとき端部で超電導部
分43において安定に臨界電流まで遮蔽電流が流れるこ
とが可能である。
Embodiment 27 FIG. FIG. 31 is a perspective view showing a main part of Embodiment 27 of the present invention. In the superconducting magnet devices described in Examples 18 and 19, the critical current density at the end of the superconducting film, the superconducting plate 31, or the superconducting mesh 32 is smaller than that near the center. In the figure, 43 is a superconducting portion, 44 is a stabilizing material, and 45 is a line of magnetic force. Here, by increasing the amount of the stabilizing material 44 made of a low electric resistance metal at the end portion of the superconducting film or the superconducting plate, the low electric resistance cover having such a configuration completely shields the external magnetic field. At the end, the shielding current can stably flow to the critical current in the superconducting portion 43.

【0104】実施例28.図32は、この発明の実施例
28の要部を示す斜視図である。実施例10から13あ
るいは18から20に記載の超電導磁石装置に於いて、
高電気抵抗部分11と並列に取り付けられた超電導体あ
るいは高電気抵抗マトリックスを有する超電導線の上
に、低電気抵抗カバーが取り付けられている。さらに超
電導体あるいは超電導線46の近傍にヒータ線47が取
り付けられている。ヒータ線47を用いて、超電導体あ
るいは超電導線46を超電導状態・常電導状態、言い換
えれば低電気抵抗・高電気抵抗に制御することが可能で
あるために、超電導コイル励磁時には高電気抵抗化する
ことで渦電流損失を低減し、外部からの高調波磁界印加
時には超電導状態にして高電気抵抗部分スリット部分を
低電気抵抗でバイパスすることで高電気抵抗部分11を
跨いで流れる様な、比較的大きな渦電流経路に対しても
渦電流による損失低減が可能になる。また超電導体ある
いは超電導線46に直接、高調波磁界が印加されないた
め超電導状態が安定に保たれる。
Embodiment 28 FIG. FIG. 32 is a perspective view showing a main part of Embodiment 28 of the present invention. In the superconducting magnet device according to Examples 10 to 13 or 18 to 20,
A low electrical resistance cover is mounted on a superconductor mounted in parallel with the high electrical resistance portion 11 or a superconducting wire having a high electrical resistance matrix. Further, a heater wire 47 is attached near the superconductor or the superconducting wire 46. By using the heater wire 47, the superconductor or the superconducting wire 46 can be controlled to a superconducting state / normal conducting state, in other words, a low electric resistance and a high electric resistance. The eddy current loss is reduced by this, and when a harmonic magnetic field is applied from the outside, a superconducting state is set, and the high electrical resistance portion slit portion is bypassed with a low electrical resistance to flow over the high electrical resistance portion 11. The loss due to the eddy current can be reduced even for a large eddy current path. Further, since the harmonic magnetic field is not directly applied to the superconductor or the superconducting wire 46, the superconducting state is kept stable.

【0105】実施例29.図33は、この発明の実施例
29の要部を示す斜視図である。上記実施例28では、
ヒータ線47を用いて高電気抵抗部分11の超電導体4
6をON−OFFすることで励磁時、及び高調波磁界印
加時の渦電流損失を低減したものに加え、温度計48を
用いて、超電導体46近傍の温度をモニターし、超電導
体46が常電導状態になる最低の温度になるようヒータ
線47で印加する熱量を決定する。一般に内槽容器表面
は真空状態にあるため、ヒータ線47で熱を印加する
時、予想外に高温になってしまい、ヒータ線47を焼損
する恐れがある。ヒータ線部47近傍に温度計を装備す
ることでこのような危険性を回避できる。また、超電導
体46が常電導になる最低の温度になるようにヒータ線
47で印加する熱量を設定することが可能であるため液
体ヘリウムの蒸発量も低減できる。
Embodiment 29 FIG. FIG. 33 is a perspective view showing a main part of Embodiment 29 of the present invention. In Example 28 above,
Using the heater wire 47, the superconductor 4 of the high electrical resistance portion 11
6 is turned on and off to reduce eddy current loss during excitation and when a harmonic magnetic field is applied. In addition, the temperature near the superconductor 46 is monitored using a thermometer 48, and the The amount of heat to be applied by the heater wire 47 is determined so as to be the lowest temperature at which the conductive state occurs. Generally, since the surface of the inner vessel container is in a vacuum state, when heat is applied by the heater wire 47, the temperature of the heater wire 47 becomes unexpectedly high, and the heater wire 47 may be burned. By providing a thermometer near the heater wire portion 47, such a danger can be avoided. Further, since the amount of heat applied by the heater wire 47 can be set so that the superconductor 46 has the lowest temperature at which the superconductor 46 becomes a normal conductor, the evaporation amount of liquid helium can be reduced.

【0106】実施例30.図34は、この発明の実施例
30の要部を示す斜視図である。超電導コイル1を内蔵
する内槽容器2が電磁力で変形するのを防止する高電気
抵抗材でなる電磁力支持部材49の表面に低電気抵抗材
3が備えられており、低電気抵抗材3の断絶部を有し高
電気抵抗部分11を形成し、かつ高電気抵抗部分6を覆
う電磁力支持部材49と電気的に絶縁された低電気抵抗
カバー50を有している。超電導コイル1を励磁すると
き、電磁力支持部分49を通る渦電流経路が高電気抵抗
であるため、励磁時の渦電流損失が低減される。また高
調波変動磁界が外部から印加されるときには、低電気抵
抗カバー50が存在するために高電気抵抗部分11での
渦電流損失は小さい。ここで低電気抵抗カバーの配置方
法として、実施例10から13のいずれのものを適用し
たとしても同様の効果が得られる。
Embodiment 30 FIG. FIG. 34 is a perspective view showing a main part of Embodiment 30 of the present invention. A low electric resistance material 3 is provided on the surface of an electromagnetic force support member 49 made of a high electric resistance material for preventing the inner tank container 2 containing the superconducting coil 1 from being deformed by an electromagnetic force. And has a low electric resistance cover 50 that forms the high electric resistance portion 11 and has a low electric resistance cover 50 that is electrically insulated from the electromagnetic force supporting member 49 that covers the high electric resistance portion 6. When exciting the superconducting coil 1, the eddy current path passing through the electromagnetic force supporting portion 49 has high electric resistance, so that eddy current loss at the time of excitation is reduced. Further, when the harmonic fluctuating magnetic field is applied from the outside, the eddy current loss in the high electric resistance portion 11 is small because the low electric resistance cover 50 exists. Here, the same effect can be obtained by applying any one of the embodiments 10 to 13 as the method of arranging the low electric resistance cover.

【0107】実施例31.図35は、この発明の実施例
31の要部を示す斜視図である。内槽容器2が電磁力で
変形するのを防止する電磁力支持部材49が絶縁材料5
1の間に挟まれているため、超電導コイル1励磁中に渦
電流が電磁力支持部材49を流れることがないため渦電
流発熱が低減される。
Embodiment 31 FIG. FIG. 35 is a perspective view showing a main part of Embodiment 31 of the present invention. The electromagnetic force supporting member 49 for preventing the inner vessel 2 from being deformed by the electromagnetic force is made of an insulating material 5.
1, the eddy current does not flow through the electromagnetic force supporting member 49 during the excitation of the superconducting coil 1, so that eddy current heat generation is reduced.

【0108】実施例32.この発明の実施例32を図3
6について記す。実施例31に記載の絶縁材料51を間
に挟む電磁力支持部材49に於いて、絶縁材料51aと
金属部分49aの取り付け部をテーパー状にしている。
超電導コイル1励磁時の電磁力は拡張方向のみにかかる
ので、図36の線XXXVII−XXXVIIに沿った
断面図37に記す方向のテーパーになっていれば電磁力
に対して強度が高い。
Embodiment 32 FIG. Embodiment 32 of the present invention is shown in FIG.
No. 6 will be described. In the electromagnetic force supporting member 49 sandwiching the insulating material 51 described in the embodiment 31, the attachment portion between the insulating material 51a and the metal portion 49a is tapered.
Since the electromagnetic force at the time of excitation of the superconducting coil 1 is applied only in the expansion direction, the strength is high with respect to the electromagnetic force if it is tapered in the direction shown in the sectional view 37 along the line XXXVII-XXXVII in FIG.

【0109】なお、絶縁材料51aの外周に図38に示
すように円筒型あるいはリング形状の高強度部材52を
設ければ絶縁材料51aと金属部分49aの接続部の強
度を向上させることができる。
By providing a cylindrical or ring-shaped high-strength member 52 on the outer periphery of the insulating material 51a as shown in FIG. 38, the strength of the connection between the insulating material 51a and the metal portion 49a can be improved.

【0110】実施例33.図39は、この発明の実施例
33の要部を示す断面図である。上記実施例32に記載
の電磁力支持部材49について、引っ張り機構、例えば
両端側にネジ穴を有し回転させて螺合した金属部分49
a同士を引っ張る引っ張り調節手段53を有する構造に
したものであるため、内槽容器2が超電導コイル1の励
磁によって拡張方向に変形しないように初期引っ張り応
力をかけることが可能である。また初期引っ張り力を設
定した後にゆるみ止めの手段、例えば溶接などを施して
おくと、さらに高強度になる。
Embodiment 33 FIG. FIG. 39 is a sectional view showing a main part of a thirty-third embodiment of the present invention. Regarding the electromagnetic force supporting member 49 described in Embodiment 32, a pulling mechanism, for example, a metal portion 49 having screw holes on both ends and screwed by rotation.
Since the structure has the tension adjusting means 53 that pulls the a from each other, it is possible to apply an initial tensile stress so that the inner vessel 2 is not deformed in the expansion direction by the excitation of the superconducting coil 1. Further, if a means for preventing loosening, for example, welding, is applied after setting the initial tensile force, the strength is further increased.

【0111】[0111]

【発明の効果】以上のように、この発明の請求項1によ
れば超電導線材を巻回してなる超電導コイルと、超電導
コイルを冷媒に浸漬して収納し表面に低電気抵抗材を設
けてなる内槽容器と、内槽容器を真空断熱して収納する
外槽容器とを備え、地上コイルと対向して車体側に設け
られた超電導磁石装置において、内槽容器は表面の渦電
流の流路で一部低電気抵抗材の断絶部を有しこの断絶部
で渦電流の流路の高電気抵抗部分を形成するようにし、
請求項2によれば請求項1において高電気抵抗部分を超
電導コイルの励消磁中に内槽表面に発生する渦電流の流
路に設けたので、超電導コイルの励消磁中に変動磁界に
より発生する内槽容器表面の渦電流を小さく抑え渦電流
損失を低減し超電導コイルを冷却する冷媒の蒸発が減少
する超電導磁石装置が得られる効果がある。
As described above, according to the first aspect of the present invention, a superconducting coil formed by winding a superconducting wire, a superconducting coil immersed in a refrigerant and stored, and a low electric resistance material provided on the surface. In a superconducting magnet device provided with an inner tank container and an outer tank container that accommodates the inner tank container in a vacuum insulated manner and facing the ground coil, the inner tank container has a flow path of eddy current on the surface. In part, there is a cut-off portion of a low electric resistance material so that the cut-off portion forms a high electric resistance portion of an eddy current flow path,
According to the second aspect, the high electric resistance portion is provided in the flow path of the eddy current generated on the inner tank surface during the excitation and demagnetization of the superconducting coil. Therefore, the high electric resistance portion is generated by the fluctuating magnetic field during the excitation and demagnetization of the superconducting coil. There is an effect that a superconducting magnet device is obtained in which the eddy current on the surface of the inner vessel container is reduced, the eddy current loss is reduced, and the evaporation of the refrigerant for cooling the superconducting coil is reduced.

【0112】また、請求項3によれば請求項1において
高電気抵抗部分は地上コイルからの高調波変動磁界に起
因して内槽表面に発生する渦電流の流路には設けないよ
うにし、請求項4によれば請求項1において高電気抵抗
部分を地上コイルからの高調波変動磁界に起因して内槽
表面に発生する渦電流の流路および高調波変動磁界が印
加される側の内槽表面以外で、超電導コイルの励消磁中
に内槽表面に発生する渦電流の流路に設けたので、請求
項1の効果に加え地上コイルからの高調波磁界が印加さ
れる内槽容器表面の渦電流の流路が低電気抵抗となり内
槽容器の渦電流損失をより低減できる。
According to a third aspect of the present invention, in the first aspect, the high electric resistance portion is not provided in a flow path of an eddy current generated on the inner tank surface due to a harmonic fluctuating magnetic field from the ground coil. According to the fourth aspect, in the first aspect, the high electric resistance portion is formed on the flow path of the eddy current generated on the inner tank surface due to the harmonic fluctuating magnetic field from the ground coil and on the side to which the harmonic fluctuating magnetic field is applied. The surface of the inner tank vessel to which a harmonic magnetic field from the ground coil is applied in addition to the effect of claim 1, since the eddy current is generated in the flow path of the eddy current generated on the inner tank surface during excitation and demagnetization of the superconducting coil other than the tank surface The eddy current flow path has low electric resistance, and the eddy current loss of the inner tank can be further reduced.

【0113】また、請求項5によれば請求項1において
内槽表面の高電気抵抗部分を跨ぎ低電気抵抗材間を超電
導線材により電気的に短絡し、請求項6によれば低電気
抵抗材間の超電導線材に隣接して外部電源より通電可能
なヒータ線を設け、請求項7によれば請求項5において
低電気抵抗材間の超電導線材にヒータ線を隣接させかつ
ヒータ線と直列に閉回路を構成する渦電流回路を設け、
請求項8によれば請求項5において低電気抵抗材間の超
電導線材の臨界電流値が超電導コイルの励消磁中に内槽
容器表面に発生する電流値より低く、地上コイルからの
高調波変動磁界に起因して内槽容器表面に発生する電流
値より高くしたので、低電気抵抗材の断絶部を短絡した
超電導線材は、常電導状態即ち励消磁中であるときは内
槽容器の渦電流は高電気抵抗部分を流路とするため内槽
容器の渦電流を小さく抑え、超電導状態即ち地上コイル
と作動中であるときは内槽の渦電流は低電気抵抗材と超
電導線材を流路とし高調波磁界による内槽容器の渦電流
損失を低減させ超電導コイルを冷却する冷媒の蒸発を減
少できる効果がある。
According to a fifth aspect of the present invention, the low electrical resistance material is electrically short-circuited by a superconducting wire between the low electrical resistance materials across the high electrical resistance portion of the inner tank surface according to the first aspect. A heater wire which can be energized from an external power supply is provided adjacent to the superconducting wire between them, and according to claim 7, the heater wire is adjacent to the superconducting wire between low electric resistance materials and closed in series with the heater wire. Provide an eddy current circuit that constitutes the circuit,
According to claim 8, the critical current value of the superconducting wire between the low electric resistance materials is lower than the current value generated on the surface of the inner vessel container during the demagnetization of the superconducting coil, and the harmonic fluctuation magnetic field from the ground coil The superconducting wire that short-circuited the cutoff portion of the low-resistance material has a higher eddy current in the inner vessel when it is in a normal conducting state, that is, during excitation and demagnetization. The eddy current of the inner vessel is kept small because the high electric resistance part is used as a flow path, and the eddy current of the inner vessel is harmonically controlled by the low electric resistance material and the superconducting wire when the superconducting state, that is, when operating with the ground coil. This has the effect of reducing the eddy current loss of the inner vessel container due to the wave magnetic field and reducing the evaporation of the refrigerant that cools the superconducting coil.

【0114】また、請求項9によれば超電導線材を巻回
してなる超電導コイルと、該超電導コイルを冷媒に浸漬
して収納し表面に低電気抵抗材を設けてなる内槽容器
と、該内槽容器を真空断熱して収納する外槽容器とを備
え、地上コイルと対向して車体側に設けられた超電導磁
石装置において、内槽容器は表面の渦電流の流路で一部
低電気抵抗材の断絶部を有し、この断絶部で渦電流の流
路の高電気抵抗部分を形成するとともに、内槽容器及び
低電気抵抗材と電気的に絶縁され高電気抵抗部分を覆う
低電気抵抗カバーを設けたので、請求項1の効果に加え
走行中には外部変動磁界で渦電流を誘起されこれにより
高電気抵抗部分は磁気遮蔽されるため、高電気抵抗部分
における渦電流による損失を低減でき超電導コイルを冷
却する冷媒の蒸発を減少できる。
According to a ninth aspect of the present invention, a superconducting coil formed by winding a superconducting wire, an inner tank container having the superconducting coil immersed and stored in a refrigerant and having a low electric resistance material provided on the surface thereof, An outer tank container that houses the tank container in a vacuum insulated manner is provided. In the superconducting magnet device provided on the vehicle body side facing the ground coil, the inner tank container partially has a low electric resistance in a flow path of eddy current on the surface. The material has a cut-off portion, and the cut-off portion forms a high electric resistance portion of the eddy current flow path, and is electrically insulated from the inner vessel container and the low electric resistance material and has a low electric resistance covering the high electric resistance portion. Since the cover is provided, the eddy current is induced by the external fluctuating magnetic field during traveling and the high electric resistance portion is magnetically shielded during traveling, so that the loss due to the eddy current in the high electric resistance portion is reduced. Evaporation of the refrigerant that cools the superconducting coil It can be small.

【0115】また、請求項10によれば超電導線材を巻
回してなる超電導コイルと、該超電導コイルを冷媒に浸
漬して収納し表面に低電気抵抗材を設けてなる内槽容器
と、該内槽容器を真空断熱して収納する外槽容器とを備
え、地上コイルと対向して車体側に設けられた超電導磁
石装置において、内槽容器は表面の渦電流の流路で一部
低電気抵抗材の断絶部を有し、この断絶部で渦電流の流
路の高電気抵抗部分を形成するとともに、断絶部の一方
側の低電気抵抗材と電気的に連結し断絶部の他方側の低
電気抵抗材および高電気抵抗部分と電気的に絶縁され高
電気抵抗部分を覆う低電気抵抗カバーを設けたので、請
求項9の効果に加え低電気抵抗カバーの取付が強度でか
つ容易にできる。
Further, according to the tenth aspect, a superconducting coil formed by winding a superconducting wire, an inner tank container having the superconducting coil immersed and stored in a refrigerant and having a low electric resistance material provided on the surface thereof, An outer tank container that houses the tank container in a vacuum insulated manner is provided. In the superconducting magnet device provided on the vehicle body side facing the ground coil, the inner tank container partially has a low electric resistance in a flow path of eddy current on the surface. The cutoff portion has a high electrical resistance portion of the flow path of the eddy current, and is electrically connected to the low electrical resistance material on one side of the cutoff portion to form a low electrical resistance portion on the other side of the cutoff portion. Since the low electric resistance cover which is electrically insulated from the electric resistance material and the high electric resistance part and covers the high electric resistance part is provided, in addition to the effect of the ninth aspect, the mounting of the low electric resistance cover can be made strong and easy.

【0116】また、請求項11によれば、請求項9また
は10において、低電気抵抗カバーが重複部を有する複
数の組み合わせでなり、互いの重複部を電気的に絶縁し
て形成したので、低電気抵抗材の断絶部を広くすること
が可能であると同時に、1つの低電気抵抗カバーを小さ
くすることができ1つの低電気抵抗カバーに働く電磁力
が小さく固定を容易にする。
According to the eleventh aspect, in the ninth or tenth aspect, the low electric resistance cover is formed by a plurality of combinations having overlapping portions, and the overlapping portions are formed so as to be electrically insulated from each other. At the same time, it is possible to widen the cutoff portion of the electric resistance material, and at the same time, it is possible to make one low electric resistance cover small, so that the electromagnetic force acting on one low electric resistance cover is small, and fixing is easy.

【0117】また、請求項12によれば、超電導線材を
巻回してなる超電導コイルと、該超電導コイルを冷媒に
浸漬して収納し表面に低電気抵抗材を設けてなる内槽容
器と、該内槽容器を真空断熱して収納する外槽容器とを
備え、地上コイルと対向して車体側に設けられた超電導
磁石装置において、地上コイルからの高調波変動磁界に
起因する振動で外槽容器との相対変位が大きい内槽容器
表面部分の対応位置を覆って低電気抵抗カバーを設けた
ので、相対振動に起因する高調波磁界による渦電流損失
が低減でき超電導コイルを冷却する冷媒の蒸発を減少で
きる。
Further, according to the twelfth aspect, a superconducting coil formed by winding a superconducting wire, an inner tank container provided with the superconducting coil immersed in a refrigerant and provided with a low electric resistance material on its surface, A superconducting magnet device provided on the vehicle body facing the ground coil, wherein the outer tank container is vibrated by a harmonic fluctuating magnetic field from the ground coil. A low electric resistance cover is provided to cover the corresponding position on the surface of the inner tank vessel, which has a large relative displacement with respect to the eddy current, so that eddy current loss due to harmonic magnetic fields due to relative vibration can be reduced, and evaporation of refrigerant that cools the superconducting coil Can be reduced.

【0118】また、請求項13によれば超電導線材を巻
回してなる超電導コイルと、該超電導コイルを冷媒に浸
漬して収納し高電気抵抗材で形成された内槽容器と、該
内槽容器を真空断熱して収納する外槽容器とを備え、地
上コイルと対向して車体側に設けられた超電導磁石装置
において、内槽容器を覆いその内側空間と通じて内槽容
器内に冷媒が流通するように形成された低電気抵抗容器
と、該低電気抵抗容器内と通じる上方の冷媒路に設けら
れ、冷媒路を超電導コイルの励消磁中は閉路に高調波磁
界の印加中は開路に操作する開閉手段を設け、請求項1
4によれば内槽容器は表面の渦電流の流路で一部低電気
抵抗材の断絶部を有しこの断絶部で渦電流の流路の高電
気抵抗部分を形成するとともに、高電気抵抗部分をそれ
ぞれ覆いその内側空間を通じて内槽容器内に冷媒が流通
するように形成された低電気抵抗容器を設けかつ、低電
気抵抗容器内と通じる上方の冷媒路に冷媒路を超電導コ
イルの励消磁中は閉路に高調波磁界の印加中は開路に操
作する開閉手段を設けたので、低電気抵抗容器が内槽容
器との間の空間の冷媒量を開閉手段で調節することで低
電気抵抗容器の抵抗値を制御して、励消磁時および高調
波磁界印加時の両方の場合について渦電流損失を低減で
き超電導コイルを冷却する冷媒の蒸発を減少できる。
According to a thirteenth aspect, a superconducting coil formed by winding a superconducting wire, an inner tank container formed by immersing the superconducting coil in a refrigerant and housed and formed of a high electric resistance material, and an inner tank container An outer vessel container for vacuum-insulating and storing the inside, and in the superconducting magnet device provided on the vehicle body side facing the ground coil, the refrigerant flows through the inner vessel vessel through the inner space by covering the inner vessel vessel A low electric resistance container formed so as to be provided in the lower electric resistance container and an upper refrigerant passage communicating with the inside of the low electric resistance container, and the refrigerant passage is operated to be closed during excitation and demagnetization of the superconducting coil and to be opened during application of a harmonic magnetic field. 2. An opening / closing means for opening and closing, wherein
According to 4, the inner vessel has a cut-off portion of a low electric resistance material in a part of the eddy current flow path on the surface, and the cut part forms a high electric resistance part of the eddy current flow path and a high electric resistance part. A low electric resistance container formed so as to cover the respective parts and allow the refrigerant to flow through the inner space into the inner tank container, and a superconducting coil for demagnetizing the refrigerant path in the upper refrigerant path communicating with the low electric resistance container. The opening and closing means for operating the open circuit during the application of the harmonic magnetic field to the closed circuit is provided in the middle, so that the amount of refrigerant in the space between the low electric resistance container and the inner vessel container is adjusted by the opening and closing means so that the low electric resistance container is opened. By controlling the resistance value, the eddy current loss can be reduced in both the case of excitation and demagnetization and the case of application of a harmonic magnetic field, and the evaporation of the refrigerant for cooling the superconducting coil can be reduced.

【0119】また、請求項15によれば、超電導線材を
巻回してなる超電導コイルと、該超電導コイルを冷媒に
浸漬して収納し表面に低電気抵抗材を設けてなる内槽容
器と、該内槽容器を真空断熱して収納する外槽容器とを
備え、地上コイルと対向して車体側に設けられた超電導
磁石装置において、内槽容器は表面の渦電流の流路で一
部低電気抵抗材の断絶部を有しこの断絶部で渦電流の流
路の高電気抵抗部分を形成するとともに、高電気抵抗部
分に外部から連動操作可能な高電気抵抗部分を低電気抵
抗で短絡させる電気スイッチを設けたので、電気スイッ
チが高調波磁界が印加されているときは低電気抵抗材を
短絡して断絶部をなくし、励消磁中は低電気抵抗材を分
離させて断絶部が形成でき、励消磁時および高調波磁界
印加時の両方の場合について渦電流損失の低減が効果的
にできる。
According to a fifteenth aspect, a superconducting coil formed by winding a superconducting wire, an inner tank container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface, An outer tank container for housing the inner tank container in a vacuum-insulated state is provided. In the superconducting magnet device provided on the vehicle body opposite to the ground coil, the inner tank container partially has low electric power in a flow path of eddy current on the surface. An electrical part that has a cut-off portion of a resistance material, forms a high electrical resistance portion of an eddy current flow path at the cut-off portion, and short-circuits the high electrical resistance portion that can be externally operated to the high electrical resistance portion with low electrical resistance. Since the switch is provided, when the electric switch is applied with a harmonic magnetic field, the low electric resistance material is short-circuited to eliminate the disconnection, and during the excitation and demagnetization, the low electric resistance material can be separated to form the disconnection, Both when demagnetizing and applying a harmonic magnetic field Reduction of eddy current loss for can effectively.

【0120】また、請求項16によれば、請求項9〜1
2のいずれかにおいて、低電気抵抗カバーとして超電導
フィルムあるいは超電導板が貼り付けたので、常電導の
低電気抵抗と比べてより低電気抵抗化を可能とし断絶部
の磁気遮蔽を確実にして断絶部が高調波磁界に曝される
ことがなくなるため、渦電流損失が低減できる。
Further, according to claim 16, claims 9 to 1
In either of the above two cases, a superconducting film or a superconducting plate is attached as a low electric resistance cover, so that the electric resistance can be made lower than the normal electric low electric resistance, and the magnetic shielding of the cut part can be ensured. Is no longer exposed to the harmonic magnetic field, so that eddy current loss can be reduced.

【0121】また、請求項17によれば、請求項9〜1
2のいずれかにおいて、低電気抵抗カバーに絶縁被覆を
有さない超電導線で編まれたメッシュを用いたので、超
電導メッシュが前項の作用と同様の理由で磁気遮蔽を確
実にし、渦電流損失が低減できる。
Further, according to claim 17, claims 9 to 1
In any of 2 above, since the mesh woven with the superconducting wire without the insulating coating is used for the low electric resistance cover, the superconducting mesh ensures the magnetic shielding for the same reason as the operation of the preceding paragraph, and the eddy current loss is reduced. Can be reduced.

【0122】また、請求項18によれば、請求項9〜1
2のいずれかにおいて、低電気抵抗カバーはその縁に超
電導線を取り付けて形成されているので、縁に取り付け
た超電導線が前項の作用と同様の理由で渦電流損失を低
減し、構成的には超電導体の量を比較的少量でまかなえ
る。
Further, according to claim 18, claims 9 to 1
(2) In any one of (2) and (3), since the low electric resistance cover is formed by attaching a superconducting wire to the edge thereof, the superconducting wire attached to the edge reduces eddy current loss for the same reason as in the preceding paragraph, and is structurally Provides a relatively small amount of superconductor.

【0123】また、請求項19によれば、請求項17ま
たは18において、超電導線として内部安定化超電導線
を用いたので、安定化マトリックスの低電気抵抗率によ
り超電導線同士の接続抵抗が低下し、低電気抵抗カバー
をさらに低電気抵抗化できる。
Further, according to claim 19, since the internally stabilized superconducting wire is used as the superconducting wire in claim 17 or 18, the connection resistance between the superconducting wires decreases due to the low electric resistivity of the stabilizing matrix. The electric resistance of the low electric resistance cover can be further reduced.

【0124】また、請求項20によれば、請求項9〜1
2のいずれかにおいて、低電気抵抗カバー,あるいは超
電導フィルム,あるいは超電導板に複数の貫通孔を有し
ているので、複数の貫通孔が内槽容器表面に固定すると
き余剰接着剤の溢れ口となり接着性および作業性を向上
させる。
According to claim 20, claims 9 to 1 are provided.
2. In any one of the above, since the low electric resistance cover, the superconducting film, or the superconducting plate has a plurality of through holes, the plurality of through holes serve as overflow holes for the excess adhesive when fixed to the inner tank container surface. Improves adhesion and workability.

【0125】また、請求項21によれば、請求項17に
おいて、超電導線で編んだメッシュは圧延されているの
で、超電導線間の接触抵抗が低下する、さらに、厚さの
減少で装置のコンパクト化ができる。
According to the twenty-first aspect, in the seventeenth aspect, the mesh knitted with the superconducting wires is rolled, so that the contact resistance between the superconducting wires is reduced. Can be

【0126】また、請求項22によれば、請求項21に
おいて、メッシュは圧延した後に400℃以下の熱処理
温度で焼鈍されているので、圧延で安定化マトリックス
の抵抗率が高くなっているものを低電気抵抗化すること
ができる。
According to claim 22, in claim 21, since the mesh is annealed at a heat treatment temperature of 400 ° C. or less after rolling, the mesh having the increased resistivity of the stabilization matrix by rolling is used. The electric resistance can be reduced.

【0127】また、請求項23によれば、請求項16ま
たは17において、低電気抵抗カバーの外部磁力線に対
向する面でその端部に面に対して垂直方向の磁場成分が
生じないようにまるみをつけたので、超電導内部に侵入
する磁界の履歴による損失(ヒステリシス損失)を低減
し、低電気抵抗カバーの超電導状態の安定性を向上させ
る。
According to the twenty-third aspect, in the sixteenth or seventeenth aspect, the surface of the low electric resistance cover facing the external line of magnetic force is formed so that a magnetic field component perpendicular to the surface is not generated at the end. As a result, the loss (hysteresis loss) due to the history of the magnetic field penetrating into the superconductivity is reduced, and the stability of the superconducting state of the low electric resistance cover is improved.

【0128】また、請求項24によれば、請求項16,
17および24のいずれかにおいて、低電気抵抗カバー
の外部磁力線に対向する面についてその端部での臨界電
流密度を中央付近に比べ小さくなるよう端部の安定化材
料を中央付近より多くしたので、遮蔽電流が低電気抵抗
カバーの縁の超電導部分に集中したとき、超電導状態の
安定性が高いため、安定して臨界電流密度まで遮蔽電流
が流れる。
According to claim 24, according to claim 16,
In any of 17 and 24, the stabilizing material at the end was increased from the vicinity of the center so that the critical current density at the end of the surface of the low electric resistance cover facing the line of external magnetic force was smaller than that near the center. When the shielding current concentrates on the superconducting portion at the edge of the low electric resistance cover, the shielding current flows stably to the critical current density because the stability of the superconducting state is high.

【0129】また、請求項25によれば超電導線材を巻
回してなる超電導コイルと、該超電導コイルを冷媒に浸
漬して収納し表面に低電気抵抗材を設けてなる内槽容器
と、該内槽容器を真空断熱して収納する外槽容器とを備
え、地上コイルと対向して車体側に設けられた超電導磁
石装置において、内槽容器は表面の渦電流の流路で一部
低電気抵抗材の断絶部を有し、この断絶部で渦電流の流
路の高電気抵抗部分を形成するとともに、断絶部と並列
に取り付けられた超電導体あるいは高電気抵抗マトリッ
クスを有する超電導線に低電気抵抗カバーが具備され、
かつ超電導体あるいは超電導線にヒータ線が取り付けら
れているので、ヒータによって熱的に超電導状態,常電
導状態、即ち低電気抵抗,高電気抵抗に制御でき、超電
導コイル励消磁時には高抵抗化することで渦電流損失を
低減し、外部からの高調波磁界印加時には超電導状態に
して高電気抵抗部分を低電気抵抗でバイパスする。これ
により渦電流による損失低減を可能とする。さらに低電
気抵抗カバーによって超電導体あるいは超電導線に直
接、高調波磁界が印加されないため超電導状態が安定に
保たれる。
Further, according to the twenty-fifth aspect, a superconducting coil formed by winding a superconducting wire, an inner tank container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface, An outer tank container that houses the tank container in a vacuum insulated manner is provided. In the superconducting magnet device provided on the vehicle body side facing the ground coil, the inner tank container partially has a low electric resistance in a flow path of eddy current on the surface. It has a break in the material, which forms the high electrical resistance portion of the eddy current flow path, and a low electrical resistance in the superconductor or the superconducting wire with a high electrical resistance matrix attached in parallel with the break. A cover is provided,
In addition, since a heater wire is attached to the superconductor or the superconducting wire, the heater can be thermally controlled to a superconducting state or a normal conducting state, that is, a low electric resistance or a high electric resistance, and the resistance is increased when the superconducting coil is demagnetized. To reduce the eddy current loss, and when a harmonic magnetic field is applied from the outside, a superconducting state is established to bypass the high electric resistance portion with low electric resistance. This enables loss reduction due to eddy current. Furthermore, the superconducting state is stably maintained because the harmonic magnetic field is not directly applied to the superconductor or the superconducting wire by the low electric resistance cover.

【0130】また請求項26によれば、請求項25にお
いて、ヒータの近傍に温度計を設けたので、温度管理を
適切にし、ヒータの焼損等の危険性を回避させるととも
に超電導線が常電導になる最低の温度になるようにヒー
タで印加する熱量を設定することができる。
According to the twenty-sixth aspect, the thermometer is provided in the vicinity of the heater in the twenty-fifth aspect, so that the temperature can be properly controlled, the danger such as burnout of the heater can be avoided, and the superconducting wire can be connected to the normal conductivity. The amount of heat applied by the heater can be set such that the temperature becomes the lowest.

【0131】また、請求項27によれば、超電導線材を
巻回してなる超電導コイルと、該超電導コイルを冷媒に
浸漬して収納し表面に低電気抵抗材を設けてなる内槽容
器と、該内槽容器を真空断熱して収納する外槽容器とを
備え、地上コイルと対向して車体側に設けられた超電導
磁石装置において、内槽容器は内槽容器が電磁力で変形
するのを防止する電磁力支持部材の表面の過電流の流路
で一部低電気抵抗材の断絶部を有し、この断絶部で高電
気抵抗部分を形成するとともに、電磁力支持部材と電気
的に絶縁され高電気抵抗部分を覆う低電気抵抗カバーを
設けたので、高電気抵抗部分は磁気遮蔽されるため、高
電気抵抗部分における渦電流による損失を低減でき超電
導コイルを冷却する冷媒の蒸発を減少できる。
According to a twenty-seventh aspect, a superconducting coil formed by winding a superconducting wire, an inner tank container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface, An outer tank container that houses the inner tank container in a vacuum insulated condition. The superconducting magnet device installed on the vehicle body facing the ground coil prevents the inner tank container from being deformed by electromagnetic force. In the overcurrent flow path on the surface of the electromagnetic force supporting member to have a cut-off portion of a low electric resistance material, a high electric resistance portion is formed at the cut-off portion, and is electrically insulated from the electromagnetic force supporting member. Since the low electric resistance cover that covers the high electric resistance part is provided, the high electric resistance part is magnetically shielded, so that the loss due to the eddy current in the high electric resistance part can be reduced, and the evaporation of the refrigerant for cooling the superconducting coil can be reduced.

【0132】また、請求項28によれば、超電導線材を
巻回してなる超電導コイルと、該超電導コイルを冷媒に
浸漬して収納し表面に低電気抵抗材を設けてなる内槽容
器と、該内槽容器を真空断熱して収納する外槽容器とを
備え、地上コイルと対向して車体側に設けられた超電導
磁石装置において、内槽容器が電磁力で変形するのを防
止する電磁力支持部材が電気的絶縁材料を中間に挟んで
形成しているので、絶縁部を横切る渦電流は発生せず渦
電流による発熱は起こらない。
According to a twenty-eighth aspect, a superconducting coil formed by winding a superconducting wire, an inner tank container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface, An outer tank container for vacuum-insulating the inner tank container, and an electromagnetic force support for preventing the inner tank container from being deformed by electromagnetic force in a superconducting magnet device provided on the vehicle body facing the ground coil. Since the member is formed with an electrically insulating material interposed therebetween, no eddy current is generated across the insulating portion, and no heat is generated by the eddy current.

【0133】また、請求項29によれば、請求項28に
おいて、電磁力支持部材の支持方向に引っ張り力の調整
手段を設けたので、内槽容器が超電導コイルの励磁によ
って拡張方向に変形しないよう初期引っ張り応力を与え
ておくことができ、内槽容器を強固にできる。
According to claim 29, in claim 28, since the means for adjusting the pulling force in the supporting direction of the electromagnetic force supporting member is provided, the inner tank container is prevented from being deformed in the expanding direction by the excitation of the superconducting coil. An initial tensile stress can be given, and the inner vessel container can be strengthened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施例1における超電導磁石装置
で内槽容器に収納された超電導コイルの一部断面を示す
斜視図である。
FIG. 1 is a perspective view showing a partial cross section of a superconducting coil housed in an inner vessel container in a superconducting magnet device according to Embodiment 1 of the present invention.

【図2】 この発明の実施例1における超電導磁石装置
で内槽容器の外観を示す斜視図である。
FIG. 2 is a perspective view showing an outer appearance of an inner vessel container in the superconducting magnet device according to the first embodiment of the present invention.

【図3】 この発明の実施例2における超電導磁石装置
で内槽容器の外観を示す斜視図である。
FIG. 3 is a perspective view showing an external appearance of an inner tank container in the superconducting magnet device according to the second embodiment of the present invention.

【図4】 この発明の実施例3における超電導磁石装置
で内槽容器の外観を示す斜視図である。
FIG. 4 is a perspective view showing an external appearance of an inner tank container in a superconducting magnet device according to Embodiment 3 of the present invention.

【図5】 この発明の実施例4における超電導磁石装置
で内槽容器の外観を示す斜視図である。
FIG. 5 is a perspective view showing an outer appearance of an inner vessel container in a superconducting magnet device according to Embodiment 4 of the present invention.

【図6】 この発明の実施例6における超電導磁石装置
で内槽容器に収納された超電導コイルの一部断面を示す
斜視図である。
FIG. 6 is a perspective view showing a partial cross section of a superconducting coil housed in an inner vessel container in a superconducting magnet device according to Embodiment 6 of the present invention.

【図7】 この発明の実施例7における超電導磁石装置
で内槽容器の外観を示す斜視図である。
FIG. 7 is a perspective view showing an appearance of an inner vessel container in a superconducting magnet device according to Embodiment 7 of the present invention.

【図8】 この発明の実施例8における超電導磁石装置
で内槽容器の外観を示す斜視図である。
FIG. 8 is a perspective view showing an external appearance of an inner vessel container in a superconducting magnet device according to Embodiment 8 of the present invention.

【図9】 この発明の実施例9における超電導磁石装置
で内槽容器の外観を示す斜視図である。
FIG. 9 is a perspective view showing an appearance of an inner tank container in a superconducting magnet device according to Embodiment 9 of the present invention.

【図10】 この発明の実施例10における超電導磁石
装置で内槽容器の外観を示す斜視図である。
FIG. 10 is a perspective view showing an outer appearance of an inner vessel container in a superconducting magnet device according to Embodiment 10 of the present invention.

【図11】 この発明の実施例11における超電導磁石
装置で内槽容器の外観を示す斜視図である。
FIG. 11 is a perspective view showing an appearance of an inner tank container in a superconducting magnet device according to Embodiment 11 of the present invention.

【図12】 この発明の実施例12における超電導磁石
装置で内槽容器の外観を示す斜視図である。
FIG. 12 is a perspective view showing an appearance of an inner vessel container in a superconducting magnet device according to Embodiment 12 of the present invention.

【図13】 この発明の実施例12における内槽容器の
要部を示す部分断面図である。
FIG. 13 is a partial sectional view showing a main part of an inner tank container according to a twelfth embodiment of the present invention.

【図14】 この発明の実施例13における内槽容器の
要部を示す部分断面図である。
FIG. 14 is a partial cross-sectional view illustrating a main part of an inner tank container according to Embodiment 13 of the present invention.

【図15】 この発明の実施例14における超電導磁石
装置で内槽容器の外観を示す斜視図である。
FIG. 15 is a perspective view showing an appearance of an inner tank container in a superconducting magnet device according to Embodiment 14 of the present invention.

【図16】 この発明の実施例15における超電導磁石
装置で内槽容器の外観を示す斜視図である。
FIG. 16 is a perspective view showing the appearance of an inner tank container in the superconducting magnet device according to Embodiment 15 of the present invention.

【図17】 図16における線XVII−XVIIに沿
った断面図である。
FIG. 17 is a sectional view taken along lines XVII-XVII in FIG. 16;

【図18】 この発明の実施例16における超電導磁石
装置で内槽容器に収納された超電導コイルの一部断面を
示す斜視図である。
FIG. 18 is a perspective view showing a partial cross section of a superconducting coil housed in an inner vessel container in a superconducting magnet device according to Embodiment 16 of the present invention.

【図19】 図18における線XIX−XIXに沿った
断面図である。
FIG. 19 is a sectional view taken along the line XIX-XIX in FIG. 18;

【図20】 この発明の実施例17における超電導磁石
装置で内槽容器の構成を示すもので、(A)にその外観
斜視図を(B)に(A)における線B−Bに沿った断面
図を示すものである。
20A and 20B show a superconducting magnet device according to a seventeenth embodiment of the present invention, showing a configuration of an inner tank container, in which FIG. 20A is an external perspective view and FIG. 20B is a cross-section taken along line BB in FIG. FIG.

【図21】 この発明の実施例18における超電導磁石
装置で内槽容器の構成を示すもので、(A)にその外観
斜視図を(B)に(A)における矢視Bの詳細断面図を
示すものである。
21A and 21B show a configuration of an inner vessel container in a superconducting magnet device according to Embodiment 18 of the present invention, wherein FIG. 21A is an external perspective view thereof, and FIG. 21B is a detailed sectional view taken in the direction of arrow B in FIG. It is shown.

【図22】 この発明の実施例19における超電導磁石
装置で内槽容器の外観を示す斜視図である。
FIG. 22 is a perspective view showing an appearance of an inner vessel container in a superconducting magnet device according to Embodiment 19 of the present invention.

【図23】 この発明の実施例20における超電導磁石
装置で内槽容器の外観を示す斜視図である。
FIG. 23 is a perspective view showing an appearance of an inner vessel container in a superconducting magnet device according to Embodiment 20 of the present invention.

【図24】 この発明の実施例21における要部の構成
を示す斜視図である。
FIG. 24 is a perspective view illustrating a configuration of a main part according to a twenty-first embodiment of the present invention.

【図25】 この発明の実施例22における要部の構成
を示す斜視図である。
FIG. 25 is a perspective view showing a configuration of a main part according to a twenty-second embodiment of the present invention.

【図26】 この発明の実施例22における要部の別の
構成を示す斜視図である。
FIG. 26 is a perspective view showing another configuration of the main part in Embodiment 22 of the present invention.

【図27】 この発明の実施例23における超電導磁石
装置で内槽容器の外観を示す斜視図である。
FIG. 27 is a perspective view showing an appearance of an inner vessel container in a superconducting magnet device according to Embodiment 23 of the present invention.

【図28】 この発明の実施例24における超電導磁石
装置で内槽容器の外観を示す斜視図である。
FIG. 28 is a perspective view showing an appearance of an inner vessel container in a superconducting magnet device according to Embodiment 24 of the present invention.

【図29】 この発明の実施例25における要部の構成
を示す斜視図である。
FIG. 29 is a perspective view showing a configuration of a main part according to a twenty-fifth embodiment of the present invention.

【図30】 この発明の実施例26における要部の構成
を示す斜視図である。
FIG. 30 is a perspective view showing a configuration of a main part in Embodiment 26 of the present invention.

【図31】 この発明の実施例27における要部の構成
を示す斜視図である。
FIG. 31 is a perspective view showing a configuration of a main part in Embodiment 27 of the present invention.

【図32】 この発明の実施例28における要部の構成
を示す斜視図である。
FIG. 32 is a perspective view showing a configuration of a main part in Embodiment 28 of the present invention.

【図33】 この発明の実施例29における要部の構成
を示す斜視図である。
FIG. 33 is a perspective view showing a configuration of a main part according to a twenty-ninth embodiment of the present invention.

【図34】 この発明の実施例30における超電導磁石
装置で内槽容器の外観を示す斜視図である。
FIG. 34 is a perspective view showing an appearance of an inner vessel container in a superconducting magnet device according to Embodiment 30 of the present invention.

【図35】 この発明の実施例31における超電導磁石
装置で内槽容器の外観を示す斜視図である。
FIG. 35 is a perspective view showing an appearance of an inner vessel container in a superconducting magnet device according to Embodiment 31 of the present invention.

【図36】 この発明の実施例32における超電導磁石
装置で内槽容器の外観を示す斜視図である。
FIG. 36 is a perspective view showing an appearance of an inner vessel container in a superconducting magnet device according to Embodiment 32 of the present invention.

【図37】 図36における線XXXVII−XXXV
IIに沿った断面図である。
FIG. 37. Line XXXVII-XXXV in FIG.
It is sectional drawing which followed II.

【図38】 図37と同等部で別の構成を示す断面図で
ある。
FIG. 38 is a cross-sectional view showing another configuration equivalent to that of FIG. 37;

【図39】 この発明の実施例33における要部の構成
を示す斜視図である。
FIG. 39 is a perspective view showing a configuration of a main part in Embodiment 33 of the present invention.

【図40】 従来の超電導磁石装置で内槽容器に収納さ
れた超電導コイルの一部断面を示す斜視図である。
FIG. 40 is a perspective view showing a partial cross section of a superconducting coil housed in an inner vessel container in a conventional superconducting magnet device.

【図41】 図40における内槽容器の外観を示す斜視
図である。
FIG. 41 is a perspective view showing an appearance of the inner tank container in FIG. 40.

【図42】 超電導磁石装置全体の概略構成を示す一部
断面斜視図である。
FIG. 42 is a partially sectional perspective view showing a schematic configuration of the entire superconducting magnet device.

【図43】 超電導磁石装置が装着された超電導磁気浮
上車とその軌道の概略構成を示す断面図である。
FIG. 43 is a cross-sectional view illustrating a schematic configuration of a superconducting magnetic levitation vehicle on which a superconducting magnet device is mounted and a track thereof.

【図44】 内槽容器表面に発生する渦電流の流路の説
明図で(A)に地上コイルからの高調波磁場に起因する
場合を(B)に超電導コイルの励消磁中の磁場変動に起
因する場合を示すものである。
FIG. 44 is an explanatory view of a flow path of an eddy current generated on the surface of the inner vessel container. FIG. 44 (A) shows a case caused by a harmonic magnetic field from a ground coil, and FIG. This is a case where the above is caused.

【符号の説明】[Explanation of symbols]

1 超電導コイル、2 内槽容器、3 低電気抵抗材、
5 外槽容器、6,7 地上コイル、11 高電気抵抗
部分(低電気抵抗材の断絶部分)、12 超電導線材
(短絡用)、13 ヒータ線、14 外部電線、15
a,15b 閉回路、17 低電気抵抗カバー、17a
低電気抵抗カバー(複数)、18 絶縁部材、19
半田接続、20 低電気抵抗カバー、21 渦電流、2
2 振動方向、23 内槽容器、23a 連通穴、24
低電気抵抗容器、24a 所定空間、25 上部バル
ブ(開閉手段)、27 低電気抵抗容器、27a 所定
空間、28 連通穴、29 スイッチ、30 操作棒、
30a 開閉機構、31 低電気抵抗カバー、31a
超電導部分、31b 安定化マトリックス、32 超電
導メッシュ、32a 超電導線、33 超電導線、34
半田、35 低電気抵抗カバー、36 内部安定化超
電導線、36a 超電導体部分、36b 安定化マトリ
ックス、41 貫通孔、42 磁力線、43 超電導部
分、44 安定化材料、45 磁力線、46 超電導
線、47 ヒータ線、48 温度計、49 電磁力支持
部材、49a 金属部分、50 低電気抵抗カバー、5
1 絶縁材料、53 引っ張り調節手段。
1 superconducting coil, 2 inner vessel container, 3 low electric resistance material,
5 Outer tank container, 6,7 Ground coil, 11 High electric resistance part (cut part of low electric resistance material), 12 Superconducting wire (for short circuit), 13 Heater wire, 14 External electric wire, 15
a, 15b Closed circuit, 17 Low electric resistance cover, 17a
Low electric resistance cover (plural), 18 insulating member, 19
Solder connection, 20 Low electric resistance cover, 21 Eddy current, 2
2 Vibration direction, 23 Inner vessel container, 23a Communication hole, 24
Low electric resistance container, 24a predetermined space, 25 upper valve (opening / closing means), 27 low electric resistance container, 27a predetermined space, 28 communication hole, 29 switch, 30 operating rod,
30a opening / closing mechanism, 31 low electric resistance cover, 31a
Superconducting part, 31b stabilizing matrix, 32 superconducting mesh, 32a superconducting wire, 33 superconducting wire, 34
Solder, 35 Low electric resistance cover, 36 Internal stabilizing superconducting wire, 36a Superconducting portion, 36b Stabilizing matrix, 41 Through hole, 42 Magnetic force line, 43 Superconducting portion, 44 Stabilizing material, 45 Magnetic force line, 46 Superconducting wire, 47 Heater Wire, 48 thermometer, 49 electromagnetic force support member, 49a metal part, 50 low electric resistance cover, 5
1 Insulating material, 53 Tension adjusting means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守田 正夫 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社中央研究所内 (58)調査した分野(Int.Cl.7,DB名) H01F 6/00 ZAA ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masao Morita 8-1-1 Tsukaguchi Honcho, Amagasaki City Mitsubishi Electric Corporation Central Research Laboratory (58) Field surveyed (Int.Cl. 7 , DB name) H01F 6 / 00 ZAA

Claims (29)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超電導線材を巻回してなる超電導コイル
と、該超電導コイルを冷媒に浸漬して収納し表面に低電
気抵抗材を設けてなる内槽容器と、該内槽容器を真空断
熱して収納する外槽容器とを備え、地上コイルと対向し
て車体側に設けられた超電導磁石装置において、上記内
槽容器は表面の渦電流の流路で一部上記低電気抵抗材の
断絶部を有しこの断絶部で上記渦電流の流路の高電気抵
抗部分を形成するようにしたことを特徴とする超電導磁
石装置。
1. A superconducting coil formed by winding a superconducting wire, a superconducting coil immersed in a refrigerant and housed therein, and an inner tank container provided with a low electric resistance material on its surface, and a vacuum insulation of the inner tank container. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the inner tank container is partially cut off by the flow path of the eddy current on the surface of the low electric resistance material. A superconducting magnet device characterized in that a high electric resistance portion of the flow path of the eddy current is formed at the cutoff portion.
【請求項2】 高電気抵抗部分は超電導コイルの励消磁
中に内槽容器の表面に発生する渦電流の流路に設けられ
ていることを特徴とする請求項1に記載の超電導磁石装
置。
2. The superconducting magnet device according to claim 1, wherein the high electric resistance portion is provided in a flow path of an eddy current generated on a surface of the inner vessel container during demagnetization of the superconducting coil.
【請求項3】 高電気抵抗部分は地上コイルからの高調
波変動磁界に起因して内槽容器の表面に発生する渦電流
の流路には設けないことを特徴とする請求項1に記載の
超電導磁石装置。
3. The method according to claim 1, wherein the high electric resistance portion is not provided in a flow path of an eddy current generated on a surface of the inner vessel container due to a harmonic fluctuating magnetic field from the ground coil. Superconducting magnet device.
【請求項4】 高電気抵抗部分は地上コイルからの高調
波変動磁界に起因して内槽表面に発生する渦電流の流路
および上記高調波変動磁界が印加される側の内槽表面以
外で超電導コイルの励消磁中に上記内槽表面に発生する
渦電流の流路に設けられていることを特徴とする請求項
1に記載の超電導磁石装置。
4. The high electric resistance portion is located at a portion other than the flow path of the eddy current generated on the inner tank surface due to the harmonic fluctuating magnetic field from the ground coil and the inner tank surface on the side to which the harmonic fluctuating magnetic field is applied. The superconducting magnet device according to claim 1, wherein the superconducting magnet device is provided in a flow path of an eddy current generated on the surface of the inner tank during excitation and demagnetization of the superconducting coil.
【請求項5】 内槽表面の高電気抵抗部分を跨ぎ低電気
抵抗材間を超電導線材により電気的に短絡したことを特
徴とする請求項1に記載の超電導磁石装置。
5. The superconducting magnet device according to claim 1, wherein the superconducting wire is used to electrically short-circuit the low electric resistance material across the high electric resistance portion on the inner tank surface.
【請求項6】 低電気抵抗材間の超電導線材に隣接して
外部電源より通電可能なヒータ線を設けたことを特徴と
する請求項5に記載の超電導磁石装置。
6. The superconducting magnet device according to claim 5, wherein a heater wire energized from an external power source is provided adjacent to the superconducting wire between the low electric resistance materials.
【請求項7】 低電気抵抗材間の超電導線材にヒータ線
を隣接させかつ上記ヒータ線と直列に閉回路を構成する
渦電流回路を設けたことを特徴とする請求項5に記載の
超電導磁石装置。
7. The superconducting magnet according to claim 5, wherein a heater wire is provided adjacent to the superconducting wire between the low electric resistance materials, and an eddy current circuit forming a closed circuit in series with the heater wire is provided. apparatus.
【請求項8】 低電気抵抗材間の超電導線材の臨界電流
値が、上記超電導コイルの励消磁中に内槽表面に発生す
る電流値より低く、地上コイルからの高調波変動磁界に
起因して上記内槽表面に発生する電流値より高いことを
特徴とする請求項5に記載の超電導磁石装置。
8. The critical current value of the superconducting wire between the low electric resistance materials is lower than the current value generated on the inner tank surface during the demagnetization of the superconducting coil, and is caused by the harmonic fluctuating magnetic field from the ground coil. The superconducting magnet device according to claim 5, wherein the current value is higher than a current value generated on the inner tank surface.
【請求項9】 超電導線材を巻回してなる超電導コイル
と、該超電導コイルを冷媒に浸漬して収納し表面に低電
気抵抗材を設けてなる内槽容器と、該内槽容器を真空断
熱して収納する外槽容器とを備え、地上コイルと対向し
て車体側に設けられた超電導磁石装置において、上記内
槽容器は表面の渦電流の流路で一部上記低電気抵抗材の
断絶部を有しこの断絶部で上記渦電流の流路の高電気抵
抗部分を形成するとともに、上記内槽容器及び上記低電
気抵抗材と電気的に絶縁され上記高電気抵抗部分を覆う
低電気抵抗カバーを備えたことを特徴とする超電導磁石
装置。
9. A superconducting coil formed by winding a superconducting wire, a superconducting coil immersed in a refrigerant and housed therein, and a low electric resistance material provided on a surface thereof; A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the inner tank container is partially cut off by the flow path of the eddy current on the surface of the low electric resistance material. A low electric resistance cover that forms a high electric resistance portion of the eddy current flow path at the cutoff portion and is electrically insulated from the inner tank container and the low electric resistance material and covers the high electric resistance portion A superconducting magnet device comprising:
【請求項10】 超電導線材を巻回してなる超電導コイ
ルと、該超電導コイルを冷媒に浸漬して収納し表面に低
電気抵抗材を設けてなる内槽容器と、該内槽容器を真空
断熱して収納する外槽容器とを備え、地上コイルと対向
して車体側に設けられた超電導磁石装置において、上記
内槽容器は表面の渦電流の流路で一部上記低電気抵抗材
の断絶部を有しこの断絶部で上記渦電流の流路の高電気
抵抗部分を形成するとともに、上記断絶部の一方側の上
記低電気抵抗材と電気的に連結し上記断絶部の他方側の
上記低電気抵抗材および上記高電気抵抗部分と電気的に
絶縁され上記高電気抵抗部分を覆う低電気抵抗カバーを
備えたことを特徴とする超電導磁石装置。
10. A superconducting coil formed by winding a superconducting wire, an inner tank container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface, and a vacuum insulation of the inner tank container. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the inner tank container is partially cut off by the flow path of the eddy current on the surface of the low electric resistance material. Forming a high electric resistance portion of the flow path of the eddy current at the disconnection portion, and electrically connecting with the low electric resistance material on one side of the disconnection portion, and connecting the low resistance material on the other side of the disconnection portion. A superconducting magnet device comprising: an electric resistance material; and a low electric resistance cover electrically insulated from the high electric resistance part and covering the high electric resistance part.
【請求項11】 低電気抵抗カバーが重複部を有する複
数の組み合わせでなり、上記重複部を電気的に絶縁して
形成したことを特徴とする請求項9または10に記載の
超電導磁石装置。
11. The superconducting magnet device according to claim 9, wherein the low electric resistance cover is formed by a plurality of combinations having an overlapping portion, and the overlapping portion is formed so as to be electrically insulated.
【請求項12】 超電導線材を巻回してなる超電導コイ
ルと、該超電導コイルを冷媒に浸漬して収納し表面に低
電気抵抗材を設けてなる内槽容器と、該内槽容器を真空
断熱して収納する外槽容器とを備え、地上コイルと対向
して車体側に設けられた超電導磁石装置において、地上
コイルからの高調波変動磁界に起因する振動で上記外槽
容器との相対変位が大きい上記内槽容器表面部分の対応
位置を覆って低電気抵抗カバーを設けたことを特徴とす
る超電導磁石装置。
12. A superconducting coil formed by winding a superconducting wire, a superconducting coil immersed in a refrigerant and stored therein, and a low electric resistance material provided on a surface of the superconducting coil. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the relative displacement with the outer tank container is large due to the vibration caused by the harmonic fluctuating magnetic field from the ground coil. A superconducting magnet device, wherein a low electric resistance cover is provided so as to cover a position corresponding to the surface portion of the inner tank container.
【請求項13】 超電導線材を巻回してなる超電導コイ
ルと、該超電導コイルを冷媒に浸漬して収納し高電気抵
抗材で形成された内槽容器と、該内槽容器を真空断熱し
て収納する外槽容器とを備え、地上コイルと対向して車
体側に設けられた超電導磁石装置において、上記内槽容
器を覆いその内側空間と通じて上記内槽容器内に上記冷
媒が流通するように形成された低電気抵抗容器と、該低
電気抵抗容器内と通じる上方の冷媒路に設けられ、上記
冷媒路を上記超電導コイルの励消磁中は閉路に高調波磁
界の印加中は開路に操作する開閉手段とを備えたことを
特徴とする超電導磁石装置。
13. A superconducting coil formed by winding a superconducting wire, an inner vessel container formed by immersing the superconducting coil in a refrigerant and housed and made of a high electric resistance material, and housing the inner vessel vessel by vacuum insulation. In the superconducting magnet device provided on the vehicle body side facing the ground coil, such that the refrigerant flows through the inner tank container through the inner space and covers the inner tank container. The formed low electric resistance container is provided in an upper refrigerant passage communicating with the inside of the low electric resistance container, and the refrigerant passage is operated to be closed during excitation and demagnetization of the superconducting coil and to be opened during application of a harmonic magnetic field. A superconducting magnet device comprising an opening and closing means.
【請求項14】 超電導線材を巻回してなる超電導コイ
ルと、該超電導コイルを冷媒に浸漬して収納し表面に低
電気抵抗材を設けてなる内槽容器と、該内槽容器を真空
断熱して収納する外槽容器とを備え、地上コイルと対向
して車体側に設けられた超電導磁石装置において、上記
内槽容器は表面の渦電流の流路で一部上記低電気抵抗材
の断絶部を有しこの断絶部で上記渦電流の流路の高電気
抵抗部分を形成するとともに、上記高電気抵抗部分をそ
れぞれ覆いその内側空間を通じて上記内槽容器内に上記
冷媒が流通するように形成された低電気抵抗容器を設け
かつ、上記低電気抵抗容器内と通じる上方の冷媒路に上
記冷媒路を上記超電導コイルの励消磁中は閉路に高調波
磁界の印加中は開路に操作する開閉手段を備えたことを
特徴とする超電導磁石装置。
14. A superconducting coil formed by winding a superconducting wire, an inner tank container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface, and vacuum insulating the inner tank container. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the inner tank container is partially cut off by the flow path of the eddy current on the surface of the low electric resistance material. And forming the high electric resistance portion of the flow path of the eddy current at the disconnection portion, and forming the high electric resistance portion so as to cover the high electric resistance portion and to allow the refrigerant to flow through the inner space into the inner tank container. A low electric resistance container is provided, and an opening / closing means for operating the refrigerant path in the upper refrigerant path communicating with the inside of the low electric resistance container is closed during excitation and demagnetization of the superconducting coil and is open during application of a harmonic magnetic field. Superconducting magnet characterized by having Stone equipment.
【請求項15】 超電導線材を巻回してなる超電導コイ
ルと、該超電導コイルを冷媒に浸漬して収納し表面に低
電気抵抗材を設けてなる内槽容器と、該内槽容器を真空
断熱して収納する外槽容器とを備え、地上コイルと対向
して車体側に設けられた超電導磁石装置において、上記
内槽容器は表面の渦電流の流路で一部上記低電気抵抗材
の断絶部を有しこの断絶部で上記渦電流の流路の高電気
抵抗部分を形成するとともに、上記高電気抵抗部分に外
部から連動操作可能な上記高電気抵抗部分を低電気抵抗
で短絡させる電気スイッチを備えていることを特徴とす
る超電導磁石装置。
15. A superconducting coil formed by winding a superconducting wire, an inner tank container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface, and vacuum insulating the inner tank container. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the inner tank container is partially cut off by the flow path of the eddy current on the surface of the low electric resistance material. An electric switch for forming a high electric resistance portion of the flow path of the eddy current at the disconnection portion and short-circuiting the high electric resistance portion operable from the outside to the high electric resistance portion with low electric resistance. A superconducting magnet device, comprising:
【請求項16】 低電気抵抗カバーとして超電導フィル
ムあるいは超電導板が貼り付けてあることを特徴とする
請求項9〜12のいずれかに記載の超電導磁石装置。
16. The superconducting magnet device according to claim 9, wherein a superconducting film or a superconducting plate is attached as a low electric resistance cover.
【請求項17】 低電気抵抗カバーに絶縁被覆を有さな
い超電導線で編まれたメッシュを用いたことを特徴とす
る請求項9〜12のいずれかに記載の超電導磁石装置。
17. The superconducting magnet device according to claim 9, wherein a mesh woven with a superconducting wire having no insulating coating is used for the low electric resistance cover.
【請求項18】 低電気抵抗カバーはその縁に超電導線
を取り付けて形成されていることを特徴とする請求項9
〜12のいずれかに記載の超電導磁石装置。
18. The low electric resistance cover is formed by attaching a superconducting wire to an edge thereof.
13. The superconducting magnet device according to any one of claims to 12.
【請求項19】 超電導線として内部安定化超電導線を
用いたことを特徴とする請求項17または18に記載の
超電導磁石装置。
19. The superconducting magnet device according to claim 17, wherein an internally stabilized superconducting wire is used as the superconducting wire.
【請求項20】 低電気抵抗カバーとして超電導フィル
ム,あるいは超電導板に複数の貫通孔を有していること
を特徴とする請求項9〜12および請求項16のいずれ
かに記載の超電導磁石装置。
20. The superconducting magnet device according to claim 9, wherein the superconducting film or the superconducting plate has a plurality of through holes as the low electric resistance cover.
【請求項21】 超電導線で編んだメッシュは圧延され
ていることを特徴とする請求項17に記載の超電導磁石
装置。
21. The superconducting magnet device according to claim 17, wherein the mesh knitted with the superconducting wires is rolled.
【請求項22】 メッシュは圧延した後に400℃以下
の熱処理温度で焼鈍されていることを特徴とする請求項
21に記載の超電導磁石装置。
22. The superconducting magnet device according to claim 21, wherein the mesh is annealed at a heat treatment temperature of 400 ° C. or less after rolling.
【請求項23】 低電気抵抗カバーの外部磁力線に対向
する面でその端部に上記面に対して垂直方向の磁場成分
が生じないようにまるみをつけたことを特徴とする請求
項16または17に記載の超電導磁石装置。
23. A surface of the low electric resistance cover facing the line of external magnetic force, the end of which is rounded so that a magnetic field component in a direction perpendicular to the surface is not generated. 3. The superconducting magnet device according to 1.
【請求項24】 低電気抵抗カバーの外部磁力線に対向
する面についてその端部での臨界電流密度を中央付近に
比べ小さくなるよう上記端部の安定化材料を上記中央付
近より多くしたことを特徴とする請求項16,17およ
び24のいずれかに記載の超電導磁石装置。
24. The stabilizing material at the end portion of the surface of the low electric resistance cover facing the external magnetic line of force is increased so that the critical current density at the end portion is smaller than that near the center. The superconducting magnet device according to any one of claims 16, 17, and 24.
【請求項25】 超電導線材を巻回してなる超電導コイ
ルと、該超電導コイルを冷媒に浸漬して収納し表面に低
電気抵抗材を設けてなる内槽容器と、該内槽容器を真空
断熱して収納する外槽容器とを備え、地上コイルと対向
して車体側に設けられた超電導磁石装置において、上記
内槽容器は表面の渦電流の流路で一部上記低電気抵抗材
の断絶部を有しこの断絶部で上記渦電流の流路の高電気
抵抗部分を形成するとともに、上記断絶部と並列に取り
付けられた超電導体あるいは高電気抵抗マトリックスを
有する超電導線に低電気抵抗カバーが具備され、かつ上
記超電導体あるいは超電導線にヒータ線が取り付けられ
ていることを特徴とする超電導磁石装置。
25. A superconducting coil formed by winding a superconducting wire, an inner tank container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface, and vacuum insulating the inner tank container. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein the inner tank container is partially cut off by the flow path of the eddy current on the surface of the low electric resistance material. A high electric resistance portion of the flow path of the eddy current is formed at the cutoff portion, and a superconducting wire or a superconducting wire having a high electric resistance matrix attached in parallel with the cutout portion has a low electric resistance cover. And a heater wire attached to the superconductor or the superconducting wire.
【請求項26】 ヒータ線の近傍に温度計を備えている
ことを特徴とする請求項25に記載の超電導磁石装置。
26. The superconducting magnet device according to claim 25, further comprising a thermometer near the heater wire.
【請求項27】 超電導線材を巻回してなる超電導コイ
ルと、該超電導コイルを冷媒に浸漬して収納し表面に低
電気抵抗材を設けてなる内槽容器と、該内槽容器を真空
断熱して収納する外槽容器とを備え、地上コイルと対向
して車体側に設けられた超電導磁石装置において、上記
内槽容器は上記内槽容器が電磁力で変形するのを防止す
る電磁力支持部材の表面の過電流の流路で一部上記低電
気抵抗材の断絶部を有し、この断絶部で高電気抵抗部分
を形成するとともに、上記電磁力支持部材と片端あるい
は両端が電気的に絶縁され上記高電気抵抗部分を覆う低
電気抵抗カバーを備えたことを特徴とする超電導磁石装
置。
27. A superconducting coil formed by winding a superconducting wire, an inner tank container having the superconducting coil immersed and stored in a refrigerant and having a low electric resistance material provided on a surface thereof, and a vacuum insulation of the inner tank container. A superconducting magnet device provided on the vehicle body facing the ground coil, wherein the inner tank container is an electromagnetic force supporting member for preventing the inner tank container from being deformed by electromagnetic force. A part of the overcurrent flow path on the surface has a cut-off portion of the low electric resistance material, which forms a high electric resistance portion, and one or both ends are electrically insulated from the electromagnetic force support member. And a low electrical resistance cover for covering the high electrical resistance portion.
【請求項28】 超電導線材を巻回してなる超電導コイ
ルと、該超電導コイルを冷媒に浸漬して収納し表面に低
電気抵抗材を設けてなる内槽容器と、該内槽容器を真空
断熱して収納する外槽容器とを備え、地上コイルと対向
して車体側に設けられた超電導磁石装置において、上記
内槽容器が電磁力で変形するのを防止する電磁力支持部
材が電気的絶縁材料を中間に挟んで形成していることを
特徴とする超電導磁石装置。
28. A superconducting coil formed by winding a superconducting wire, an inner tank container having the superconducting coil immersed and stored in a refrigerant and provided with a low electric resistance material on its surface, and a vacuum insulation of the inner tank container. A superconducting magnet device provided on the vehicle body side facing the ground coil, wherein an electromagnetic force supporting member for preventing the inner tank container from being deformed by an electromagnetic force is an electrically insulating material. A superconducting magnet device characterized in that the superconducting magnet device is formed so as to be sandwiched in the middle.
【請求項29】 電磁力支持部材の支持方向に引っ張り
力の調節手段を備えていることを特徴とする請求項28
に記載の超電導磁石装置。
29. The apparatus according to claim 28, further comprising means for adjusting a pulling force in a supporting direction of the electromagnetic force supporting member.
3. The superconducting magnet device according to 1.
JP22333894A 1993-09-20 1994-09-19 Superconducting magnet device Expired - Lifetime JP3144234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22333894A JP3144234B2 (en) 1993-09-20 1994-09-19 Superconducting magnet device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-233132 1993-09-20
JP23313293 1993-09-20
JP22333894A JP3144234B2 (en) 1993-09-20 1994-09-19 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JPH07153618A JPH07153618A (en) 1995-06-16
JP3144234B2 true JP3144234B2 (en) 2001-03-12

Family

ID=26525410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22333894A Expired - Lifetime JP3144234B2 (en) 1993-09-20 1994-09-19 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JP3144234B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895860B2 (en) * 2007-02-23 2012-03-14 三菱電機株式会社 Superconducting magnet device
JP5175640B2 (en) * 2008-06-30 2013-04-03 株式会社東芝 Superconducting coil

Also Published As

Publication number Publication date
JPH07153618A (en) 1995-06-16

Similar Documents

Publication Publication Date Title
JP3771947B2 (en) Magnet assembly of superconducting magnetic resonance imaging system
KR20100069602A (en) Arrangement having a superconducting cable
JPH0236504A (en) Superconducting magnet device
JP3144234B2 (en) Superconducting magnet device
JP2790549B2 (en) Superconducting magnet device for crystal pulling device
JP4599807B2 (en) Current leads for superconducting equipment
US5387889A (en) Superconducting magnet apparatus
JP3122709B2 (en) Superconducting magnet device
JP2971660B2 (en) Superconducting magnet device
JPH0511647B2 (en)
JP2889485B2 (en) Superconducting wire connection method and device, and superconducting coil device
JPH03123005A (en) Superconducting magnet device
US11769615B2 (en) Superconducting joints
JP4723936B2 (en) Persistent current superconducting coils and magnets
JPH08162316A (en) Superconducting magnet apparatus
JP3218649B2 (en) Current leads for superconducting devices
JPH05160447A (en) Permanent current switch
JPH07111212A (en) Superconducting magnet device
JPH0521227A (en) Superconductive magnet
JPH05114753A (en) Current lead of superconductive magnet device
JP3139925B2 (en) Superconducting magnet device
JPH0570921B2 (en)
JPH05175045A (en) Super conducting magnet
JP3263764B2 (en) Superconducting magnet device
JPH088469A (en) Current lead for superconducting equipment and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080105

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 12

EXPY Cancellation because of completion of term