JP3142078B2 - Fiber reinforced resin molding - Google Patents

Fiber reinforced resin molding

Info

Publication number
JP3142078B2
JP3142078B2 JP04061271A JP6127192A JP3142078B2 JP 3142078 B2 JP3142078 B2 JP 3142078B2 JP 04061271 A JP04061271 A JP 04061271A JP 6127192 A JP6127192 A JP 6127192A JP 3142078 B2 JP3142078 B2 JP 3142078B2
Authority
JP
Japan
Prior art keywords
frp
fiber
resin
strength
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04061271A
Other languages
Japanese (ja)
Other versions
JPH05220853A (en
Inventor
忠之 山本
敏裕 浜田
正樹 岡崎
志郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP04061271A priority Critical patent/JP3142078B2/en
Publication of JPH05220853A publication Critical patent/JPH05220853A/en
Application granted granted Critical
Publication of JP3142078B2 publication Critical patent/JP3142078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Knitting Of Fabric (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高強度な有機合成繊維
からなる編物を樹脂組成物の補強材として用いることに
より、優れた深絞り成形物を得る発明に関する。そし
て、その目的とするところは、深絞り成形物において、
曲げ強度及び耐衝撃性(特に耐貫通衝撃性)が極めて優
れた成形物を提供するところにある。なお、本明細書に
おいて深絞り成形というのは繊維補強樹脂成形物(以下
FPRと略記する)の成形方法の一種であって、凹凸の
ある型枠を用いてFRPを成形する際に織編物、不織布
等を型枠に沿うように裁断することなく、かつ、その布
帛が皺になって重なりあうことがないようにFRPを成
形する方法をいうものであり、プレス成形法、RTM
法、S−RIM法、オートクレーブ法、バック法等と併
用して用いることが可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an invention for obtaining an excellent deep drawn product by using a knitted fabric made of a high-strength organic synthetic fiber as a reinforcing material for a resin composition. And the purpose is to make deep drawn products,
It is an object of the present invention to provide a molded article having extremely excellent bending strength and impact resistance (particularly, penetration impact resistance). In the present specification, deep drawing is a kind of molding method of a fiber reinforced resin molded product (hereinafter, abbreviated as FPR), and is used for forming a woven or knitted fabric, This method refers to a method of forming an FRP without cutting a non-woven fabric or the like along a form, and preventing the fabric from wrinkling and overlapping.
Method, S-RIM method, autoclave method, back method and the like.

【0002】[0002]

【従来の技術】従来、複雑な形状のFRPを凹凸のある
型枠を用いて成形するときは、織物、不織布等を裁断す
ることによって型枠に沿わせ成形を行なっている。ま
た、汎用有機合成繊維であるナイロン、アクリル、ポリ
エステル等の繊維を編物とし、これを補強材として用い
て、深絞り成形をおこなうことも知られている。しか
し、これら従来の、織物、不織布等を裁断して型枠に沿
わせ複雑な形状のFRPを成形する方法は、FRPの成
形工程が非常に複雑になり、また、織物、不織布等の裁
断部分がFRP中で欠点となり、曲げ強度、耐衝撃性な
どの物性を悪くしている。また、汎用有機合成繊維であ
るナイロン、アクリル、ポリエステル等の繊維を用いた
編物では、深絞り成形はできるものの十分なFRP諸物
性が得られない。これは、汎用有機合成繊維であるナイ
ロン、アクリル、ポリエステル等の繊維の引張強度、引
張弾性率が低いためである。
2. Description of the Related Art Conventionally, when an FRP having a complicated shape is formed using a formwork having irregularities, a woven fabric, a nonwoven fabric, or the like is cut and formed along the formwork. It is also known that a fiber such as nylon, acrylic, or polyester, which is a general-purpose organic synthetic fiber, is used as a knitted material and used as a reinforcing material to perform deep drawing. However, the conventional method of cutting a woven fabric, a non-woven fabric, or the like, and forming an FRP having a complicated shape along the formwork requires a very complicated FRP forming process, and furthermore, a cut portion of the woven fabric, the non-woven fabric, etc. Are disadvantages in FRP, and deteriorate physical properties such as bending strength and impact resistance. Further, in the case of a knitted fabric using fibers such as nylon, acrylic, and polyester, which are general-purpose organic synthetic fibers, deep drawing can be performed but sufficient FRP physical properties cannot be obtained. This is because fibers such as nylon, acrylic, and polyester, which are general-purpose organic synthetic fibers, have low tensile strength and tensile modulus.

【0003】[0003]

【発明が解決しようとする課題】布帛を裁断することな
く深絞り成形ができるのであれば、FRPの成形工程が
非常に簡単になる。また従来のように裁断部分がFRP
中で欠点となり、曲げ強度、耐衝撃性などの物性が悪く
なることもない。また、もし、FRPの耐衝撃性が高い
ならば、FRPに衝撃が加わった際にFRPの表面にク
ラックあるいは白化が発生しにくく、製品の品質並びに
外観が損なわれることはない。したがって、高い剛性と
耐衝撃性能は、自動車、車両、船舶等の外板のみなら
ず、パイプ、浴槽等の用途には欠くことができない条件
である。ところが、現実には、織物、不織布等を裁断し
て型枠に沿わせ複雑な形状のFRPを成形する方法や、
汎用有機合成繊維であるナイロン、アクリル、ポリエス
テル等の編物が用いられているに過ぎない。従って、従
来技術による織編物、不織布等で補強されたFRPは曲
げ強度、耐衝撃性などの物性において不充分であり、自
動車、車両、船舶等の外板のみならず、パイプ、浴槽等
の用途には用いることができなかった。このようなこと
により、FRPの分野において深絞り成形ができ、かつ
十分なFRP物性を発現できる素材が求められていた。
従って本発明は、繊維補強された成形物において、曲げ
強度、耐衝撃性など優れた物性を有する深絞り成形物を
提供せんとするものである。
If deep drawing can be performed without cutting the fabric, the FRP forming process becomes very simple. In addition, the cutting part is FRP as before.
It does not become a defect inside, and the physical properties such as bending strength and impact resistance do not deteriorate. Further, if the impact resistance of the FRP is high, cracks or whitening hardly occurs on the surface of the FRP when an impact is applied to the FRP, and the quality and appearance of the product are not impaired. Therefore, high rigidity and impact resistance are indispensable conditions not only for outer plates of automobiles, vehicles, ships and the like but also for applications such as pipes and bathtubs. However, in reality, a method of cutting a woven fabric, a nonwoven fabric, or the like, and forming an FRP having a complicated shape along the formwork,
Only knitted fabrics such as nylon, acrylic, and polyester, which are general-purpose organic synthetic fibers, are used. Therefore, the FRP reinforced with a woven or knitted fabric or a nonwoven fabric according to the prior art is insufficient in physical properties such as bending strength and impact resistance, and is used not only for outer plates of automobiles, vehicles, ships, etc. but also for pipes and bathtubs. Could not be used. For these reasons, there has been a demand for a material that can be deep-drawn and exhibit sufficient FRP properties in the field of FRP.
Accordingly, an object of the present invention is to provide a deep drawn molded product having excellent physical properties such as bending strength and impact resistance in a fiber reinforced molded product.

【0004】[0004]

【課題を解決するための手段】本発明者らは、深絞り成
形できかつ十分なFRP物性を発現できる素材・技術に
関して研究を続けた結果、単繊維引張強度が100kg/
mm2以上、単繊維引張弾性率が4000kg/mm2以上の有
機合成繊維を用いて編物をつくり、この編物を深絞り成
形する樹脂の補強材として使用すれば、上記従来法での
成形上並びに製品上での欠点を排除でき、目的とする課
題が達成できることを見出した。すなわち、本発明は、
単繊維引張強度が100kg/mm2以上、単繊維引張弾性
率が4000kg/mm2以上の有機合成繊維からなる編物
を補強材として用いた深絞り成形してなるFRPであ
る。
Means for Solving the Problems The present inventors have continued research on materials and techniques that can be deep drawn and exhibit sufficient FRP physical properties, and as a result, have a single fiber tensile strength of 100 kg /.
mm 2 or more, making a knitted monofilament tensile modulus using a 4000 kg / mm 2 or more organic synthetic fibers, if used as a reinforcing material for resins which this knitted fabric deep drawing, the molding of the above conventional methods as well as It has been found that defects on the product can be eliminated and the intended problem can be achieved. That is, the present invention
This is an FRP formed by deep drawing using a knitted fabric made of an organic synthetic fiber having a single fiber tensile strength of 100 kg / mm 2 or more and a single fiber tensile elastic modulus of 4000 kg / mm 2 or more as a reinforcing material.

【0005】我々はFRPの曲げ強度および耐衝撃性を
高めるために最適な有機合成繊維について検討した結
果、単繊維引張強度が100kg/mm2以上、単繊維引張
弾性率が4000kg/mm2以上の有機合成繊維、例えば
上記特性を満足する高強力ポリビニルアルコール系繊
維、ポリアリレート繊維、アラミド系繊維、ポリエチレ
ン系繊維等の有機合成繊維を用いることが好ましいこと
を見出した。すなわち、上記機械特性より低い機械特性
を有する汎用有機合成繊維、例えばナイロン、アクリ
ル、ポリエステル繊維等は、好ましくないことがわかっ
た。また、無機繊維について検討をした結果、この繊維
は編物にするとき繊維に損傷が起こったり毛羽が発生し
満足のいく編物が得られなかった。また、FRPの曲げ
強度は向上するものの耐衝撃性が著しく低下する。すな
わち、炭素繊維、ガラス繊維等の無機繊維は好ましくな
いことがわかった。
[0005] As a result of examining the most suitable organic synthetic fiber for enhancing the bending strength and impact resistance of FRP, we have found that the single fiber tensile strength is 100 kg / mm 2 or more and the single fiber tensile elastic modulus is 4000 kg / mm 2 or more. It has been found that it is preferable to use organic synthetic fibers such as high-strength polyvinyl alcohol-based fibers, polyarylate fibers, aramid-based fibers, and polyethylene-based fibers that satisfy the above properties. That is, general-purpose organic synthetic fibers having mechanical properties lower than the above-mentioned mechanical properties, such as nylon, acrylic, and polyester fibers, were found to be unfavorable. In addition, as a result of studying inorganic fibers, it was found that when the fibers were knitted, the fibers were damaged or fluffed, and a satisfactory knit was not obtained. Further, the bending strength of the FRP is improved, but the impact resistance is significantly reduced. That is, it was found that inorganic fibers such as carbon fiber and glass fiber are not preferable.

【0006】また本発明で大切な事は、補強材としての
布帛が成形型枠の凹凸に沿うように伸びる事である。こ
のために補強材として編物を用いることである。この編
物の種類については、経編物、緯編物、丸編物等がある
が特に限定されない。本発明において深絞りの程度とし
ては、成形前の補強財の面積が1.5倍以上(すなわち
成形により陥没することとなる部分の面積に対する陥没
により生じた補強材立体部の表面積が1.5倍以上)で
5cm以上の深さの立体物となる程度が好ましい。ヘル
メットの場合には、面積は、約2倍、深さは約13cm
である。
What is important in the present invention is that the cloth as the reinforcing material extends along the irregularities of the molding frame. For this purpose, a knitted fabric is used as a reinforcing material. The type of the knitted fabric includes a warp knitted fabric, a weft knitted fabric, and a circular knitted fabric, but is not particularly limited. In the present invention, the degree of deep drawing is such that the area of the reinforcing material before forming is 1.5 times or more (that is, the surface area of the reinforcing member three-dimensional portion generated by the depression relative to the area of the portion to be depressed by molding is 1.5 times or more) (More than twice) is preferable to be a solid object having a depth of 5 cm or more. In the case of a helmet, the area is about twice and the depth is about 13cm
It is.

【0007】この編物のFRP中での体積含有率(以下
Vfと略記する)については、10%〜80%が好まし
い。より好ましくは20%〜70%である。Vfが10
%未満であるとFRPの補強効果が小さく、成形後のF
RPの曲げ剛性と耐衝撃性(とくに耐貫通衝撃性)が極
端に悪くなり、またVfが80%を越えると樹脂の含浸
性が悪くなりFRPが成形できない。
[0007] The volume content (hereinafter abbreviated as Vf) of the knitted fabric in FRP is preferably 10% to 80%. More preferably, it is 20% to 70%. Vf is 10
%, The reinforcing effect of FRP is small, and F
The flexural rigidity and impact resistance (especially penetration impact resistance) of RP become extremely poor, and if Vf exceeds 80%, the impregnating property of the resin becomes poor and FRP cannot be formed.

【0008】本発明のFRPは深絞り成形で補強材が型
枠の凹凸に充分に沿うことができることを特徴としてお
り、通常のハンドレイアップ法、マッチドダイ法、レジ
ンインジェクション法、レジントランスファーモールデ
ィング法等のFRP製造方法を併用しても得られる。こ
のために用いる樹脂としては、不飽和ポリエステル樹
脂、エポキシ樹脂、ビニルエステル樹脂、フェノール樹
脂、メラミン樹脂等の熱硬化性樹脂があり、また、ポリ
プロピレン樹脂、ポリエチレンテレフタレート樹脂、ポ
リブチレンテレフタレート樹脂、ポリカーボネート樹
脂、ポリアセタール樹脂、ポリフェニレンサルファイド
樹脂、ポリアミド樹脂、ABS樹脂等の熱可塑性樹脂も
用いられる。
[0008] The FRP of the present invention is characterized in that the reinforcing material can sufficiently conform to the irregularities of the mold by deep drawing, and the usual hand lay-up method, matched die method, resin injection method, resin transfer molding method, and the like. Can also be obtained by using the FRP production method of Examples of the resin used for this purpose include thermosetting resins such as unsaturated polyester resin, epoxy resin, vinyl ester resin, phenol resin, and melamine resin, and polypropylene resin, polyethylene terephthalate resin, polybutylene terephthalate resin, and polycarbonate resin. Thermoplastic resins such as polyacetal resin, polyphenylene sulfide resin, polyamide resin and ABS resin are also used.

【0009】[0009]

【実施例】以下に、実施例並びに比較例を用いてさらに
本発明を具体的に説明する。もっとも、本発明は、この
実施例に限定されるものではない。以下の実施例並びに
比較例は、本発明を、比較的深い凹部を有する半球状の
曲面部を有する成形物、即ち、いわゆるヘルメットとし
ての成形物を得る場合の各例である。なお以下の実施例
並びに比較例で用いる樹脂は、すべて以下に示す配合に
よった。 《樹脂配合》 ────────────────────────────────── 不飽和ポリエステル樹脂(昭和高分子(株)ポリマール6709) 80部 同 (昭和高分子(株)ポリマール9965) 20部 ────────────────────────────────── 硬化剤 (日本油脂(株)パーメックN) 2部 同 (ナフテン酸コバルト) 0.2部 ──────────────────────────────────
The present invention will be described in more detail with reference to the following Examples and Comparative Examples. However, the present invention is not limited to this embodiment. The following examples and comparative examples are examples in which the present invention is used to obtain a molded product having a hemispherical curved surface portion having a relatively deep concave portion, that is, a molded product as a so-called helmet. The resins used in the following Examples and Comparative Examples were all based on the following formulations. 《Resin formulation》 ────────────────────────────────── Unsaturated polyester resin (Showa Polymer Co., Ltd. 6709) 80 parts 20 parts (Showa High Polymer Co., Ltd. Polymer 9965) ─ Hardener (Nippon Oil & Fats Co., Ltd., Permec N) 2 parts Same (Cobalt naphthenate) 0.2 parts ────────────────────────── ────────

【0010】実施例1: 単繊維強度が230kg/m
m2、単繊維弾性率が5000kg/mm2、単繊維破断伸度
が4.9%のポリビニルアルコール(以下PVAと略記
する)繊維(商品名ビニロン;クラレ製)のフィラメン
ト(1800デニール/1000フィラメント)を用
い、目付が200g/m2の緯編物をつくった。この横
編物を半径13cmの半球状曲面を有する凹凸型枠に13
層積層し添わせて配置した後、そこに不飽和ポリエステ
ル樹脂を流し込み含浸させ、室温で2時間、50kg/mm
2のプレス圧で硬化させ、さらに80℃で1時間の熱処
理硬化を行なってFRPを成形した。このFRPにつき
3点曲げ試験および耐貫通性試験を行った。その結果を
表1に示した。
Example 1: Single fiber strength is 230 kg / m
Filament (1800 denier / 1000 filament) of polyvinyl alcohol (hereinafter abbreviated as PVA) fiber (trade name: Vinylon; manufactured by Kuraray) having m 2 , single fiber elastic modulus of 5000 kg / mm 2 , and single fiber breaking elongation of 4.9% ) To prepare a weft knitted fabric having a basis weight of 200 g / m 2 . The flat knitted fabric is placed on a concave and convex formwork having a hemispherical curved surface with a radius of 13 cm.
After laminating the layers and arranging them together, an unsaturated polyester resin is poured into the layers and impregnated with the layers, and the temperature is 50 kg / mm for 2 hours at room temperature.
The composition was cured at a press pressure of 2 and then heat-cured at 80 ° C. for 1 hour to form an FRP. This FRP was subjected to a three-point bending test and a penetration resistance test. The results are shown in Table 1.

【0011】実施例2: 単繊維強度が330kg/m
m2、単繊維弾性率が7600kg/mm2、単繊維破断伸度
が4.0%のポリアリレート繊維(商品名ベクトラン繊
維;クラレ製)のフィラメント(1500デニール/3
00フィラメント)を用い、目付が220g/m2の緯
編物をつくった。この横編物を半径13cmの半球状曲
面を有する凹凸型枠に16層積層し添わせて配置した
後、そこに不飽和ポリエステル樹脂を流し込み含浸さ
せ、室温で2時間、50kg/mm2のプレス圧で硬化さ
せ、さらに80℃で1時間の熱処理硬化を行ないFRP
を成形した。このFRPで3点曲げ試験および耐貫通性
試験を行なった。その結果を表1に示した。
Example 2: Single fiber strength is 330 kg / m
Filament (1500 denier / 3) of polyarylate fiber (trade name: Vectran fiber; manufactured by Kuraray) having m 2 , single fiber elastic modulus of 7600 kg / mm 2 and single fiber breaking elongation of 4.0%
00 filament) to produce a weft knitted fabric having a basis weight of 220 g / m 2 . After 16 layers of the flat knitted product are laminated and arranged on a concave-convex mold having a hemispherical curved surface with a radius of 13 cm, an unsaturated polyester resin is poured and impregnated therein, and a pressing pressure of 50 kg / mm 2 is applied at room temperature for 2 hours. And then heat-cured at 80 ° C for 1 hour for FRP
Was molded. A three-point bending test and a penetration resistance test were performed using this FRP. The results are shown in Table 1.

【0012】比較例1: 単繊維強度が80kg/mm2
単繊維弾性率が1270kg/mm2、単繊維破断伸度が1
5.0%のポリエステル繊維(商品名クラフテル;クラ
レ製)のフィラメント(1000デニール/192フィ
ラメント)を用い、目付が200g/m2の緯編物をつ
くった。この緯編物を実施例と同じく半径13cmの半球
状曲面を有する凹凸型枠に14層積層し添わせて配置し
た後、そこに不飽和ポリエステル樹脂を流し込み含浸さ
せ、室温で2時間、50kg/mm2のプレス圧で硬化さ
せ、さらに80℃で1時間熱処理硬化を行なってFRP
を成形した。このFRPにつき3点曲げ試験および耐貫
通性試験を行った。この結果を表1に示した。
Comparative Example 1: Single fiber strength was 80 kg / mm 2 ,
Single fiber elastic modulus is 1270 kg / mm 2 , single fiber breaking elongation is 1
A weft knitted fabric having a basis weight of 200 g / m 2 was produced using filaments (1000 denier / 192 filaments) of 5.0% polyester fiber (trade name: Kraftel; manufactured by Kuraray). After 14 layers of this weft knitted product are laminated and arranged on a concave and convex mold having a hemispherical curved surface with a radius of 13 cm as in the example, an unsaturated polyester resin is poured and impregnated therewith, and the resultant is kneaded at 50 kg / mm for 2 hours at room temperature. And then heat-hardened at 80 ° C for 1 hour to obtain FRP
Was molded. This FRP was subjected to a three-point bending test and a penetration resistance test. The results are shown in Table 1.

【0013】比較例2: 実施例1で用いたPVA繊維
と同じ繊維のフィラメント(1800デニール/100
0フィラメント)を用い平織物をつくった。この平織物
の打ち込み本数は11本/インチで、またその目付は2
00g/m2とした。この平織物を同じく半径13cmの
半球状曲面を有する凹凸型枠に添うように裁断して型枠
に添わせて13層を積層配置し、ここへ不飽和ポリエス
テル樹脂を流し込み含浸させて、室温で2時間、50kg
/mm2のプレス圧で硬化させ、さらに80℃で1時間熱
処理硬化を行ってFRPを成形した。このFRPにつき
3点曲げ試験および耐貫通性試験を行った。その結果を
表1に示した。
Comparative Example 2: Filament of the same fiber as the PVA fiber used in Example 1 (1800 denier / 100
0 filament) to make a plain weave. The number of punches of this plain fabric is 11 / inch, and the basis weight is 2
00 g / m 2 . This plain woven fabric is cut into a concave and convex formwork having a hemispherical curved surface with a radius of 13 cm, and 13 layers are laminated and arranged on the formwork. An unsaturated polyester resin is poured into the plain fabric and impregnated therein. 2 hours, 50kg
The composition was cured at a press pressure of / mm 2 , and further heat-cured at 80 ° C. for 1 hour to form an FRP. This FRP was subjected to a three-point bending test and a penetration resistance test. The results are shown in Table 1.

【0014】比較例3: 実施例2で用いたポリアリレ
ート繊維と同じ繊維のフィラメント(1500デニール
/300フィラメント)を用いて平織物をつくった。こ
の平織物の打ち込み本数は15本/インチで、またその
目付は220g/m2とした。この平織物を同じく半径
13cmの半球状曲面を有する凹凸型枠に添うように裁断
して型枠に添わせて13層を積層配置し、ここへ不飽和
ポリエステル樹脂を流し込み含浸させて、室温で2時
間、50kg/mm2のプレス圧で硬化させ、さらに80℃
で1時間熱処理硬化させてFRPを成形した。このFR
Pにつき3点曲げ試験および耐貫通性試験を行った。そ
の結果を表1に示した。
Comparative Example 3 A plain weave was made using filaments of the same fibers as the polyarylate fibers used in Example 2 (1500 denier / 300 filaments). The number of punches of this plain fabric was 15 / inch, and the basis weight was 220 g / m 2 . This plain woven fabric is cut into a concave and convex formwork having a hemispherical curved surface with a radius of 13 cm, and 13 layers are laminated and arranged on the formwork. An unsaturated polyester resin is poured into the plain fabric and impregnated therein. Cured for 2 hours with a pressing pressure of 50 kg / mm 2 ,
For 1 hour to form an FRP. This FR
P was subjected to a three-point bending test and a penetration resistance test. The results are shown in Table 1.

【0015】比較例4: 比較例2で用いたPVA繊維
からなる平織物と同じ平織物を用い、これを半径13c
mの半球状曲面を有する凹凸型枠へ、裁断することなく
型枠にできるだけ沿わせるようにその13層を積層配置
し、ここへ不飽和ポリエステル樹脂を流し込み含浸させ
て、室温で2時間、50kg/mm2のプレス圧で硬化さ
せ、さらに80℃で1時間熱処理硬化を行ってFRPを
成形した。しかし、得られたFRPは、末端部で織物が
重なり合い樹脂が含浸していないところを生じ、このよ
うな樹脂未含浸、含浸不十分な部分が全体の約3割程度
をも生じ、明らかに商品価値のない成形物となった。即
ちこの例から、高強力繊維を用いた平織物を裁断するこ
となく用いて半球面状凹凸の良好なFRPを得ることが
難しいことが再現された。
COMPARATIVE EXAMPLE 4 The same plain woven fabric as the PVA fiber used in Comparative Example 2 was used.
The 13 layers are stacked and arranged on a concave / convex mold having a hemispherical curved surface of m so as to fit the mold as much as possible without cutting, and an unsaturated polyester resin is poured and impregnated into the mold, and 50 kg for 2 hours at room temperature. The composition was cured at a press pressure of / mm 2 , and further heat-cured at 80 ° C. for 1 hour to form an FRP. However, in the obtained FRP, the woven fabric overlaps at the end portion and the resin is not impregnated, and such a resin-impregnated or insufficiently impregnated portion accounts for about 30% of the whole, and the product is clearly a product. It became a worthless molded product. That is, from this example, it was reproduced that it was difficult to obtain a good FRP having hemispherical irregularities using a plain woven fabric using high-strength fibers without cutting.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例1と比較例2とは、補強繊維素材と
して同じPVA繊維を用いた例であるが、後者が平織物
を型枠に沿うよう裁断して成形作業を行なうのに対し、
前者は編物を用い、裁断することなく作業が行なえるの
で、その成形作業が大幅に省力化できるばかりか、表1
で示されるように、深絞り成形FRPとしてすばらしい
特性を有している。これに対して後者は、結果として
も、深絞り性が悪く、織物の裁断部分でFRPの特性を
減少させ、深絞り成形FRPとして特性が発揮し得ない
ものとなっている。また比較例1は強度特性の低い従来
の汎用有機合成繊維を用いたときの例で、編物として用
いた場合であるが、深絞り性は良好であるが、FRPの
曲げ強度が低く、貫通度も大きい。実施例2および比較
例3は、実施例1および比較例2で用いた高強力PVA
繊維よりさらに高強力高弾性率なポリアリレート繊維を
用いた場合の例であるが、その繊維強度・弾性率が高い
点でFRPの曲げ強力も向上するが、比較例3の場合は
深絞り性不良で、貫通度が改良されない。これに対して
実施例2の場合は、深絞り性が良好で、繊維強度をよく
活かした優れた曲げ強力で貫通度の低い優れた深絞りF
RPが得られる。
Example 1 and Comparative Example 2 are examples in which the same PVA fiber was used as the reinforcing fiber material, but the latter performed a molding operation by cutting a plain woven fabric along a formwork.
The former uses a knitted material and can be performed without cutting, so not only can the molding work be significantly labor-saving, but also
As shown by the above, it has excellent properties as a deep drawing FRP. On the other hand, in the latter, as a result, the deep drawability is poor, and the characteristics of the FRP are reduced at the cut portion of the woven fabric, so that the characteristics cannot be exhibited as the deep draw molded FRP. Comparative Example 1 is an example in which a conventional general-purpose organic synthetic fiber having low strength characteristics is used, and is used as a knitted fabric. The deep drawability is good, but the bending strength of FRP is low, and the penetration Is also big. Example 2 and Comparative Example 3 are the high-strength PVA used in Example 1 and Comparative Example 2.
This is an example in which a polyarylate fiber having a higher strength and a higher elastic modulus than that of the fiber is used. The bending strength of the FRP is also improved due to its high fiber strength and elastic modulus. Poor, does not improve penetration. On the other hand, in the case of Example 2, the deep drawing property is good, and the excellent deep drawing strength with good fiber strength and low penetration is utilized.
RP is obtained.

【0018】[0018]

【発明の効果】本発明により、単繊維引張強度が100
kg/mm2以上、単繊維引張弾性率が4000kg/mm2以上
の有機合成繊維からなる編物を用いて深絞り成形で得ら
れるFRPは、汎用有機合成繊維のポリエステルの編物
で得られるFRPと比較して、曲げ強度、耐衝撃性とも
に改善され、また、織物を裁断して成形したFRPと比
較してもその作業性はもとよりその性能が大きく改善さ
れている。 したがって本発明で得られるFRPは、自
動車、車両、船舶、浴槽等の外板としてのみならず、ヘ
ルメット材として、安全靴の爪先或いは踵部の補強材と
して、またカバン類、ケース類、船外機カバーとしてな
ど、幅広い用途に適用できるものである。
According to the present invention, the single fiber tensile strength is 100
The FRP obtained by deep drawing using a knitted fabric made of an organic synthetic fiber having a tensile modulus of elasticity of 4000 kg / mm 2 or more and a single fiber tensile modulus of 4000 kg / mm 2 or more is compared with the FRP obtained by knitting a polyester of general-purpose organic synthetic fiber. As a result, both the bending strength and the impact resistance are improved, and the performance is greatly improved as well as the workability as compared with the FRP formed by cutting and forming a woven fabric. Therefore, the FRP obtained by the present invention can be used not only as an outer plate of automobiles, vehicles, ships, bathtubs and the like, but also as a helmet material, as a reinforcing material for toes or heels of safety shoes, and in bags, cases, and outboards. It can be applied to a wide range of uses, such as as a machine cover.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−69605(JP,A) 特開 昭63−135232(JP,A) 特開 昭63−135508(JP,A) 特開 平3−275729(JP,A) 特開 昭63−30209(JP,A) 特開 平1−259932(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 70/10 B29B 11/00 - 15/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-69605 (JP, A) JP-A-63-135232 (JP, A) JP-A-63-135508 (JP, A) 275729 (JP, A) JP-A-63-30209 (JP, A) JP-A-1-259932 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B29C 70/10 B29B 11 / 00-15/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単繊維引張強度が100kg/mm2以上、
単繊維引張弾性率が4000kg/mm2以上の有機合成繊
維からなる編物を補強材として用い深絞り成形してなる
繊維補強樹脂成形物。
1. A single fiber tensile strength of 100 kg / mm 2 or more,
A fiber-reinforced resin molded product formed by deep drawing using a knitted product made of an organic synthetic fiber having a single fiber tensile modulus of 4000 kg / mm 2 or more as a reinforcing material.
JP04061271A 1992-02-14 1992-02-14 Fiber reinforced resin molding Expired - Fee Related JP3142078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04061271A JP3142078B2 (en) 1992-02-14 1992-02-14 Fiber reinforced resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04061271A JP3142078B2 (en) 1992-02-14 1992-02-14 Fiber reinforced resin molding

Publications (2)

Publication Number Publication Date
JPH05220853A JPH05220853A (en) 1993-08-31
JP3142078B2 true JP3142078B2 (en) 2001-03-07

Family

ID=13166390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04061271A Expired - Fee Related JP3142078B2 (en) 1992-02-14 1992-02-14 Fiber reinforced resin molding

Country Status (1)

Country Link
JP (1) JP3142078B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3128738B2 (en) * 1998-11-27 2001-01-29 富山県 FRP composed of a single material and its manufacturing method
JP2005121237A (en) * 2005-02-03 2005-05-12 Shin Kobe Electric Mach Co Ltd Resin gear
WO2010061549A1 (en) * 2008-11-26 2010-06-03 株式会社クラレ Impact resistant composites
JP5451346B2 (en) * 2009-05-08 2014-03-26 落合 俊則 FRP material, FRP molded product, and manufacturing method of FRP material
JP2011033200A (en) * 2010-11-16 2011-02-17 Shin Kobe Electric Mach Co Ltd Method of manufacturing resin gear

Also Published As

Publication number Publication date
JPH05220853A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
JP4615398B2 (en) Carbon fiber composite material molded body
US5316834A (en) Fiber-reinforced thermoplastic sheet
JP2567828B2 (en) Molding sheet material and safety shoe toecap
US5075904A (en) Helmet with reinforcement
JP3199559B2 (en) Speaker damper and method of manufacturing the same
EP0390193B1 (en) Nonwoven fabric for reinforcing resin and moldable sheet utilizing the same
JP3142078B2 (en) Fiber reinforced resin molding
US10717397B2 (en) Interior part and method for manufacturing the same
JP2885038B2 (en) Fiber reinforced thermoplastic resin sheet and method for producing the same
US3317645A (en) Method for forming molded articles
US20220034012A1 (en) Nonwoven-fabric structure and manufacturing method therefor
JP3035409B2 (en) Manufacturing method of carbon fiber composite molded product
JP2013010255A (en) Thermoplastic resin composite material
JP2958036B2 (en) Penetration resistant composite molding
JPH08224793A (en) Manufacture of fiber reinforced resin molding
JP3065974B2 (en) Carbon fiber composite molded article and method for producing the same
JPS648739B2 (en)
JPH08134757A (en) Reinforcing material and fiber-reinforced resin formed article using the material
JP7340950B2 (en) Laminate and its manufacturing method
JP7508394B2 (en) Manufacturing method of resin molded products
JP2019523814A (en) Flexible core for machining or manufacturing composite parts or materials
JPH07197304A (en) Helmet
JPH0790551B2 (en) Non-woven fabric for resin reinforcement and molding sheet using the non-woven fabric
KR960005302B1 (en) Manufacturing method for polypropylene composite sheet and sheet therefrom
JPH079619A (en) Laminated composite

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees