JP3141919B2 - Chemical liquid preparation apparatus and method - Google Patents

Chemical liquid preparation apparatus and method

Info

Publication number
JP3141919B2
JP3141919B2 JP24791094A JP24791094A JP3141919B2 JP 3141919 B2 JP3141919 B2 JP 3141919B2 JP 24791094 A JP24791094 A JP 24791094A JP 24791094 A JP24791094 A JP 24791094A JP 3141919 B2 JP3141919 B2 JP 3141919B2
Authority
JP
Japan
Prior art keywords
mixing
concentration
solution
mixing device
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24791094A
Other languages
Japanese (ja)
Other versions
JPH08108054A (en
Inventor
勇 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP24791094A priority Critical patent/JP3141919B2/en
Publication of JPH08108054A publication Critical patent/JPH08108054A/en
Application granted granted Critical
Publication of JP3141919B2 publication Critical patent/JP3141919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体製造工程
などでポジ型レジストを現像する際に用いられるアルカ
リ系現像液を製造するため薬液調合装置および方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for preparing an alkaline developer for use in developing a positive resist in, for example, a semiconductor manufacturing process.

【0002】[0002]

【従来の技術】近年の半導体工業の発展は著しく、特に
最近の半導体集積回路は、超LSIに代表されるよう
に、高集積化に伴い回路を描画する際の最小線幅を次第
に微細化し、レジストパターンを精度良く形成すること
が要望されている。この要望に応えるものとしてポジ型
レジストがあり、従来のネガ型レジストよりも解像度が
優れていることから、高集積化された回路の描画などに
多く用いられている。
2. Description of the Related Art In recent years, the development of the semiconductor industry has been remarkable. Particularly, in recent semiconductor integrated circuits, as represented by a super LSI, a minimum line width for drawing a circuit has been gradually reduced along with high integration. It is desired to form a resist pattern with high accuracy. Positive resists meet this demand, and have higher resolution than conventional negative resists, and are therefore often used for drawing highly integrated circuits.

【0003】ポシ型レジストの現像液としては、一般に
テトラメチルアンモニウムハイドロオキサイドやトリメ
チルモノエタノールアンモニウムハイドロオキサイド等
のアルカリ水溶液が使用されるが、レジストの高解像
力、正確な寸法精度を得るために、この現像液はレジス
トと同程度の重要性を持つと言われている。即ち画像の
きれ、優れた解像力、安定性を得るためには、使用する
ポジ型レジストに合わせた濃度の現像液が必要である。
特に近年の半導体の高集積化に伴い、パターン寸法も微
細化が進んでサブミクロン時代に入り、レジストの実効
感度のばらつきを小さくするために現像濃度の精度の向
上が課題となっている。
As a developing solution for the positive resist, an aqueous alkali solution such as tetramethylammonium hydroxide or trimethylmonoethanolammonium hydroxide is generally used. This developer is said to be as important as the resist. That is, in order to obtain image sharpness, excellent resolution and stability, a developing solution having a concentration suitable for the positive resist to be used is required.
In particular, with the recent increase in the degree of integration of semiconductors, the pattern dimensions have been miniaturized, and the submicron era has been entered. In order to reduce the variation in the effective sensitivity of the resist, improvement in the accuracy of the development density has become an issue.

【0004】この現像液の濃度を高精度で管理すること
は極めて困難であり、これまで半導体工場などの現像液
を使用する側ではこの管理を行うことができないので、
現像現液を超純水で希釈して所望の濃度に調製された現
像液を購入して使用されている。現像原液の希釈倍率
は、原液の濃度や使用目的等により異なるが、通常は5
〜10倍程度である。このような現像原液の調合装置と
しては特開昭62−27624号に導電率測定によって
濃度を調製する装置が提案されている。また特開平5−
216241号にはロードセルと電位差測定による自動
滴定分析計、特開平6−61136号にはロードセルと
超音波濃度計を用いた自動希釈装置が記載されている。
[0004] It is extremely difficult to control the concentration of the developer with high accuracy, and this control cannot be performed by a developer using a developer such as a semiconductor factory.
A developing solution prepared by diluting a developing solution with ultrapure water to a desired concentration is purchased and used. The dilution ratio of the undiluted developing solution varies depending on the concentration of the undiluted solution, the purpose of use, and the like.
It is about 10 to 10 times. As an apparatus for preparing such a developing stock solution, Japanese Patent Application Laid-Open No. 62-27624 proposes an apparatus for adjusting the concentration by measuring the conductivity. Japanese Patent Laid-Open No. 5-
No. 216241 describes an automatic titration analyzer using a load cell and a potential difference measurement, and JP-A-6-61136 describes an automatic diluting device using a load cell and an ultrasonic densitometer.

【0005】[0005]

【発明が解決しようとする課題】従来、精密な混合精度
を得るために種々の工夫がされてきた。その主な方式は
混合手段を備えた調合槽溶液の濃度を計測し、その濃度
が目標値と差が有る場合は、その程度により原液の一方
または双方の供給量を加減する、いわゆるフィードバッ
ク制御が一般的であり、原液供給方式は流量制御やロー
ドセルによる重量計測が提案されて来た。しかし原液供
給量の計測には計測器特有の定常誤差やドリフト誤差が
あるため調合液濃度を正確に制御するのに大変な工夫を
凝らされている。例えば回分方式では、粗調合して濃度
分析を行った後、微調合が行われる。その濃度分析にお
いて不合格時には、再度、微調合が行われ、濃度分析で
合格するまで繰り返するのが一般的手法である。このよ
うな方式においては、高精度の調合品を得るのに長時
間を要し、このため装置の大きさに対し生産能力が少
ないことになり、不合格が続いて再調合が重なると調
合槽が満杯となり調合できなくなり、その不良品の処理
が煩雑となること等の問題点がある。
Conventionally, various attempts have been made to obtain a precise mixing accuracy. The main method is to measure the concentration of the preparation tank solution equipped with mixing means, and if the concentration differs from the target value, so-called feedback control that adjusts the supply amount of one or both of the stock solutions depending on the degree. As a general solution supply method, flow control and weight measurement by a load cell have been proposed. However, since the measurement of the undiluted solution supply amount has a steady error and a drift error peculiar to the measuring instrument, a great deal of effort has been devoted to accurately controlling the concentration of the prepared solution. For example, in the batch system, fine blending is performed after coarse blending and concentration analysis are performed. When the density analysis is rejected, it is a general method that fine preparation is performed again and the process is repeated until the density analysis is passed. In such a method, it takes a long time to obtain a high-precision blended product, and therefore, the production capacity is small with respect to the size of the apparatus. Are full and cannot be dispensed, and the processing of the defective product becomes complicated.

【0006】また例えば純水と薬液等を混合する回分式
調合装置においては、混合装置に純水と薬液を供給する
に際して、原料供給時間を短くすることにより調合時
間を短縮して生産能力を上げる場合は、短時間で大量の
原液を供給する必要が生じ、大型供給設備(例えば大型
純水装置)が必要になる等、原液供給面での対応が困難
な場合が多いこと、原料キャニスター等の原液容器か
ら直接混合装置に供給される場合には規定量の供給途中
で原液が無くなることがあり、全自動の無人設備等で対
処不能の事態を招きかねないこと等の問題点がある。更
に回分式調合装置においては、一般に混合装置での原
液の混合に長時間を要し、また滴定法などでは分析に相
当の時間がかかることから、薬液調合に多くの時間を要
し、大きな混合装置と大きな調合液貯槽が必要となる等
の問題点がある。
For example, in a batch type mixing apparatus for mixing pure water and a chemical, etc., when supplying pure water and a chemical to the mixing apparatus, the raw material supply time is shortened to shorten the mixing time and increase the production capacity. In such a case, it is often necessary to supply a large amount of undiluted solution in a short time, and large-scale supply equipment (for example, a large-sized pure water device) is required. When the liquid is directly supplied from the raw liquid container to the mixing device, the raw liquid may be lost during the supply of the specified amount, and there is a problem that a fully automatic unmanned facility may be unable to cope with the problem. Furthermore, in a batch-type dispenser, it generally takes a long time to mix an undiluted solution in a mixing device, and a titration method or the like requires a considerable amount of time for analysis. There are problems such as the necessity of an apparatus and a large preparation liquid storage tank.

【0007】[0007]

【課題を解決するための手段】本発明者は、薬液を調合
する際の上記の如き課題について鋭意検討した結果、混
合装置よりも相当大きい容積で混合手段を有する後混合
装置を混合装置の後段に設置し、混合装置からの溶液を
後混合装置で更に混合することにより、後混合における
濃度変動を著しく低下させることができ、従って混合装
置の溶液濃度が不合格でも、後混合装置で再混合すれば
全体として合格範囲に入る場合には、混合装置での再調
合は不要となり、上記の〜の問題点が大幅に改善さ
れること、回分式調合装置において、一回分の調合量よ
り大きく、規定量の原液を供給及び排出する計量及び制
御手段を有する原液中間槽を設置することにより混合装
置の混合操作中に次回混合用の原料を予め計量しておく
ことができるので、調合途中での原料切れによる中断と
いう事態を避けることができ、〜の問題点が解決さ
れること、また回分調合方式において生産能力を決定す
る一番大きな要因である混合装置を複数個として切替使
用とすることにより大幅に能力が増強されての問題点
が解決されることを見出し、本発明に到達した。
The inventor of the present invention has made intensive studies on the above-mentioned problems in preparing a chemical solution, and as a result, has found that a post-mixing device having a mixing means having a considerably larger volume than the mixing device is provided at the latter stage of the mixing device. And further mixing the solution from the mixing device in the post-mixing device can significantly reduce the concentration fluctuations in the post-mixing, so that even if the solution concentration in the mixing device is rejected, remixing in the post-mixing device If it falls within the acceptable range as a whole, re-mixing with the mixing device becomes unnecessary, and the above-mentioned problems (1) and (2) are greatly improved. By installing an undiluted solution intermediate tank having a measuring and controlling means for supplying and discharging a specified amount of undiluted solution, the raw materials for the next mixing can be measured in advance during the mixing operation of the mixing device, so that the adjustment can be performed. It is possible to avoid the situation of interruption due to running out of raw material in the middle, solve the problems of ~, and switch between multiple mixing devices, which is the biggest factor that determines the production capacity in batch mixing The present inventors have found that the problem of greatly increasing the capacity can be solved by doing so, and arrived at the present invention.

【0008】即ち本発明は、1)複数個の原液を混合して
目的成分を規定の濃度にする薬液調合装置であって、原
液の計量および供給手段と混合手段を有する混合装置、
混合溶液の目的成分の濃度を測定する濃度計、目的成分
の目標濃度と該成分の測定濃度との差に基づいて原液供
給量を決定する演算装置および、該混合装置の容量より
大きく、目的成分の濃度を測定する濃度計および液面計
と混合手段を備え、混合溶液を混合装置から受入れる後
混合装置を有する薬液調合装置、2)回分式調合装置にお
いて、一回分の調合量より大きく、規定量の原液を供給
及び排出する計測及び制御手段を有する原液中間槽を有
する薬液調合装置、および3)回分式調合装置において複
数個の混合装置を有する薬液調合装置である。
That is, the present invention provides: 1) a drug solution preparation device for mixing a plurality of undiluted solutions to obtain a target component at a specified concentration, and a mixing device having means for measuring and supplying the undiluted solution and mixing means;
A concentration meter for measuring the concentration of the target component in the mixed solution, an arithmetic unit for determining the supply amount of the undiluted solution based on the difference between the target concentration of the target component and the measured concentration of the component, and a target component larger than the capacity of the mixing device. A chemical dispensing device having a concentration meter and a liquid level meter for measuring the concentration of the mixture, and a mixing means, and having a mixing device after receiving the mixed solution from the mixing device.2) In a batch type dispensing device, the mixing amount is larger than a single dispensing amount. A drug solution dispensing device having a stock solution intermediate tank having a measuring and controlling means for supplying and discharging an amount of stock solution; and 3) a drug solution dispensing device having a plurality of mixing devices in a batch-type dispensing device.

【0009】本発明において使用される原液は特に限定
されず、種々の化学薬品の溶液や、それを希釈するため
の用途に応じた純度の水や有機溶媒などが用いられる。
例えば現像原液から現像液を製造する場合には、現像ア
ルカリ溶液とそれを希釈する超純水が用いられる。なお
現像液を半導体工場で製造する場合には、通常、現像原
液を運搬用容器(キャニスタ)により工場に供給し、加
圧した不活性ガスによって原液槽に移送する方式が採ら
れる。
The stock solution used in the present invention is not particularly limited, and a solution of various chemicals, water or an organic solvent having a purity depending on the use for diluting the same, and the like are used.
For example, when a developing solution is produced from an undiluted developing solution, a developing alkali solution and ultrapure water for diluting it are used. When a developer is manufactured in a semiconductor factory, a method is usually adopted in which a stock solution for development is supplied to the factory by a transport container (canister) and transferred to a stock solution tank by pressurized inert gas.

【0010】1)の発明では目的成分の濃度を測定する濃
度計および液面計と混合手段を備えた後混合装置を有し
ており、該後混合装置溶液の濃度計測値、その液量およ
び混合装置での混合容量から後混合装置の溶液濃度が目
標濃度となるための混合装置溶液濃度を算出し、該算出
濃度を混合装置の目標濃度として制御することによっ
て、送液濃度変動を著しく低下させることができる。こ
の後混合装置の容量は、該混合装置の容量より大きく、
好ましくは該混合装置容量の2倍以上、更に好ましくは
4倍以上である。このように後混合装置を該混合装置の
数倍以上の容量とすることによって、混合装置からの送
液濃度変動の数分の1以下に低下させることができる。
In the invention of 1), there is provided a post-mixing device provided with a concentration meter for measuring the concentration of the target component, a liquid level meter, and mixing means. By calculating the concentration of the solution in the mixing device so that the solution concentration of the post-mixing device becomes the target concentration from the mixing volume in the mixing device, and controlling the calculated concentration as the target concentration of the mixing device, fluctuations in the concentration of the liquid to be sent are significantly reduced. Can be done. After this, the capacity of the mixing device is greater than the capacity of the mixing device,
It is preferably at least twice the capacity of the mixing device, more preferably at least four times. In this way, by setting the capacity of the post-mixing device several times or more as large as that of the mixing device, it is possible to reduce the fluctuation in the concentration of the liquid sent from the mixing device to a fraction or less.

【0011】従って1)の発明により、たとえ混合装置の
溶液濃度が不合格でも、後混合装置で再混合すれば全体
として合格範囲に入る場合には、混合装置での再調合は
不要となり、規格内の調合液が短時間で得られることに
なる。このように再調合は不要となることの判断は、混
合装置の濃度測定の履歴や送液量、後混合装置の在庫量
履歴等の総合的な演算を行うことで可能となり、後混合
装置に濃度計を設置することによって更に正確な演算が
行われる。すなわち後混合装置に濃度計を設置し、目標
濃度と該後混合装置の溶液量と該溶液の濃度計測値及び
混合装置の混合容量から、後混合装置の溶液濃度が目標
濃度と一致させるための混合装置溶液濃度を算出し、該
算出濃度を混合装置の目標濃度の決定要素の一つに組入
れることにより、長期的に安定した高精度の調合ができ
るようになる。この算出濃度による混合装置の目標濃度
の変更は、急激な変化を避けるためと測定誤差によるフ
ラツキの影響を減少させるため、該計算により必要とさ
れる変更必要量の数分の1以下で継続的に行うことが望
ましい。
Therefore, according to the invention of 1), even if the solution concentration of the mixing device is unacceptable, if remixing with the post-mixing device falls within the acceptable range as a whole, re-mixing in the mixing device becomes unnecessary, Thus, the prepared liquid can be obtained in a short time. In this way, the determination that re-mixing becomes unnecessary can be made by performing comprehensive calculations such as the concentration measurement history of the mixing device, the amount of liquid sent, and the stock amount history of the post-mixing device. More accurate calculation is performed by installing a densitometer. That is, a concentration meter is installed in the post-mixing device, and from the target concentration, the amount of the solution in the post-mixing device, the measured value of the solution concentration, and the mixing volume of the mixing device, the solution concentration in the post-mixing device matches the target concentration. By calculating the concentration of the solution in the mixing apparatus and incorporating the calculated concentration into one of the determinants of the target concentration of the mixing apparatus, stable and accurate compounding can be performed over a long period of time. Changing the target concentration of the mixing device based on the calculated concentration is continuously performed at a fraction of the required change amount required by the calculation in order to avoid a sudden change and to reduce the influence of fluctuation due to a measurement error. It is desirable to carry out.

【0012】2)の発明では、回分式調合装置において、
一回分の調合量より大きく、規定量の原液を供給及び排
出する計量及び制御手段を有する原液中間槽を設置する
ことにより、たとえ調合途中で混合装置への原液供給が
できなくなった場合でも安全に調合装置の運転を継続す
ることができる。また原液中間槽への供給は混合装置で
の混合および分析操作の時間中に完了すれば良いので、
短時間に大量の供給の必要は無くなり、調合装置への原
液供給設備は必要以上に大型にする必要がなくなる。
In the invention of 2), in the batch-type dispensing apparatus,
By installing an undiluted solution intermediate tank that has a measuring and controlling means for supplying and discharging a specified amount of undiluted solution that is larger than the amount of one batch, even if the undiluted solution cannot be supplied to the mixing device during the dispensing, The operation of the compounding device can be continued. Also, the supply to the undiluted solution intermediate tank may be completed during the time of the mixing and analysis operation in the mixing device,
There is no need to supply a large amount in a short time, and the equipment for supplying the stock solution to the blending device does not need to be larger than necessary.

【0013】原液中間槽に規定量の原液を供給及び排出
する計測及び制御手段を付加し、混合装置での混合操作
や分析操作の期間中に該原液中間槽に次の操作で必要な
原液量を予め正確に供給しておくことにより、必要なタ
イミングで短時間で混合装置に供給するできるようにな
る。これにより全体の調合時間の短縮が可能となり、同
一能力の混合装置の実質的な能力増大を図ることができ
る。原液を供給及び排出するための制御手段は粗調合用
と微調合用とを別個に設置することが望ましく、また後
に述べる3)の発明により、回分式調合装置において複数
個の混合装置することによりその効果が更に発揮され
る。
A measuring and controlling means for supplying and discharging a specified amount of the undiluted solution to and from the undiluted solution intermediate tank is added to the undiluted solution intermediate tank during the mixing operation and the analysis operation in the undiluted solution intermediate tank during the next operation. Can be supplied to the mixing device in a short time at a necessary timing by accurately supplying in advance. This makes it possible to shorten the overall blending time, and to substantially increase the capacity of mixing devices having the same capacity. It is preferable that the control means for supplying and discharging the undiluted liquid be provided separately for coarse preparation and fine preparation, and according to the invention of 3) to be described later, a batch-type preparation apparatus comprises a plurality of mixing devices. The effect is further exhibited.

【0014】原液中間槽への原液量の供給、計測手段は
種々有るが、原液中間槽(周辺配管を含む)に、1個
又は複数個の液検知器 (LED等) を取付け、予め検知
器の取付位置と容量の関係から規定位置になるまで供給
する方法、該原液中間槽に連続式の液面計測器を設置
し、粗調合又は微調合に必要な原液容積の液面になるま
で供給する方法、超音波流量計等を設置して供給量を
積算し、規定量になったら供給を停止する方法、該原
液中間槽にロードセルを組み込み、重量計測により必要
量を供給する方法等が採用される。これらの方法では計
量途中で原液切れになっても、原液が再供給されれば計
量の続行が可能である。また原液中間槽の供給ラインに
は槽内部に液切れ検知器等を設置し、混合装置に原液を
供給中に該検知器が原液切れを検知したら、警報を発す
ると共に実行中の調合が完了の後には次の調合に入らな
い手順が組み込まれる。
There are various means for supplying and measuring the amount of the undiluted solution to the undiluted solution intermediate tank. One or a plurality of liquid detectors (LEDs or the like) are attached to the undiluted solution intermediate tank (including the peripheral piping), and the detector is set in advance. A method of supplying until the specified position is reached from the relationship between the mounting position and the capacity of the liquid, and a continuous liquid level measuring instrument is installed in the raw liquid intermediate tank, and the liquid is supplied until the liquid level reaches the raw liquid volume required for coarse preparation or fine preparation. A method of integrating the supply amount by installing an ultrasonic flow meter, etc., stopping the supply when the specified amount is reached, a method of incorporating a load cell in the stock solution intermediate tank, and supplying the required amount by weight measurement, etc. Is done. In these methods, even if the stock solution runs out during the measurement, the metering can be continued if the stock solution is supplied again. In the supply line of the undiluted liquid intermediate tank, a liquid shortage detector etc. is installed inside the tank, and when the detector detects the liquid shortage while supplying the undiluted liquid to the mixing device, it issues an alarm and completes the ongoing mixing. Later, procedures that do not enter the next formulation will be incorporated.

【0015】3)の発明により回分式調合装置で複数個の
混合装置とすることは、最も長時間が必要とされる混合
装置を複数設置することによりに回分式調合装置での各
機能毎の稼働率を平均的に上昇させることができ、複数
個の混合装置とすることによる設置面積及び装置価格の
増大割合以上に、調合能力を増大できることになるので
大きな利点がある。なお本発明の混合装置および後混合
装置における混合手段としては、槽内に攪拌機を設置す
る方法、循環ポンプを設置して槽内の液を循環すること
により混合する方法、ラインミキサーにより混合する方
法等があり、特に限定されない。また目的成分の濃度を
測定する濃度計には、導電率濃度計、超音波濃度計、滴
定分析計などが用いられる。
According to the invention of 3), the use of a plurality of mixing devices in the batch-type mixing device requires the installation of a plurality of mixing devices requiring the longest time, so that each function in the batch-type mixing device is The operating rate can be increased on average, and the mixing capacity can be increased more than the increase rate of the installation area and the equipment price by using a plurality of mixing apparatuses, which is a great advantage. As the mixing means in the mixing device and the post-mixing device of the present invention, a method of installing a stirrer in a tank, a method of installing a circulation pump to mix by circulating the liquid in the tank, and a method of mixing with a line mixer Are not particularly limited. As a densitometer for measuring the concentration of the target component, a conductivity densitometer, an ultrasonic densitometer, a titration analyzer, or the like is used.

【0016】調合精度を左右する供給量計測器や制御手
段および濃度計には、定常誤差、ドリフト誤差、ヒシテ
リシス誤差等がある。このため調合誤差が僅かの場合に
は原液供給量の補正をしない方が良い結果が得られるこ
とがあり、従って一定の許容誤差範囲内であれば、原液
供給量又は目標濃度の変更をしない機構を組込むことに
より、調合能率の向上と調合精度の安定を図ることがで
きる。このため本発明の薬液希釈装置において、目標濃
度に対して一定範囲の許容誤差を設定し、混合装置又は
後混合装置溶液の濃度測定値が該許容誤差範囲内の場合
には原液供給量または混合装置の変更を行わない方法が
採用される。
The supply amount measuring instrument, the control means, and the concentration meter which influence the mixing accuracy have a steady error, a drift error, a hysteresis error and the like. For this reason, when the mixing error is small, it may be better to not correct the stock solution supply amount, and therefore, a mechanism that does not change the stock solution supply amount or the target concentration within a certain allowable error range. By incorporating, it is possible to improve the mixing efficiency and stabilize the mixing accuracy. For this reason, in the drug solution dilution device of the present invention, a certain range of tolerance is set for the target concentration, and when the measured concentration of the solution of the mixing device or the post-mixing device is within the tolerance range, the supply amount of the undiluted solution or the mixing A method that does not change the device is adopted.

【0017】[0017]

【実施例】次に実施例により本発明を更に具体的に説明
する。但し本発明はこれらの実施例により制限されるも
のではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by these examples.

【0018】実施例1 図1に示す薬液調合装置において原液中間槽(薬液中間
槽および超純水中間槽)を用いずにアルカリ現像液を調
合した。原液(アルカリ溶液および超純水)の流量測定
には超音波流量計を用い、その流量信号をシーケンサ内
部で積算し、規定量に達した時点で供給が停止される。
混合槽および後混合槽の濃度測定には超音波濃度計を用
いた。なお混合槽および後混合槽は各槽内の液をポンプ
で循環することにより混合される。混合槽の容積は約1
50L、後混合槽の容積は約600Lであり、全体の演
算制御用としてデジタルおよびアナログ入出力機能を持
つシーケンサーを設置し、目的成分の目標濃度と該成分
の測定濃度との差に基づいて原液供給量を決定する演算
機能、すなわち後混合槽溶液の濃度計測値、液量および
混合装置の混合容量から後混合槽の溶液濃度が目標濃度
となるための混合装置溶液濃度を算出し、該算出濃度を
混合装置の目標濃度の決定要素の一つとする演算機能
と、目標濃度に対して一定範囲の許容誤差を設定し、混
合装置又は後混合槽の濃度測定値が該許容誤差範囲内で
は原液供給量または混合装置の変更を行わない機能が組
み込まれている。
Example 1 An alkali developer was prepared without using a stock solution intermediate tank (chemical solution intermediate tank and ultrapure water intermediate tank) in the chemical solution mixing apparatus shown in FIG. An ultrasonic flowmeter is used to measure the flow rate of the undiluted solution (alkaline solution and ultrapure water). The flow rate signal is integrated inside the sequencer, and the supply is stopped when the flow rate reaches a specified amount.
An ultrasonic densitometer was used for measuring the concentration in the mixing tank and the post-mixing tank. The mixing tank and the post-mixing tank are mixed by circulating the liquid in each tank with a pump. The volume of the mixing tank is about 1
50 L, the volume of the post-mixing tank is about 600 L. A sequencer with digital and analog input / output functions is installed for overall arithmetic control, and the undiluted solution is determined based on the difference between the target concentration of the target component and the measured concentration of the component. The calculating function for determining the supply amount, that is, the mixing device solution concentration for the solution concentration in the post-mixing tank to become the target concentration from the measured concentration value of the post-mixing tank solution, the liquid amount, and the mixing volume of the mixing device, is calculated. An arithmetic function that uses the concentration as one of the determinants of the target concentration of the mixing device, and a certain range of allowable error is set for the target concentration. When the measured concentration of the mixing device or the post-mixing tank is within the allowable error range, the undiluted solution is used. Incorporates a function that does not change the feed rate or the mixing device.

【0019】図1において原液のアルカリ溶液の濃度は
15重量%であり、超純水により目標濃度2.38重量
%となるように調合する。製品の許容変動幅は±0.0
03重量%である。最初に2.38重量%の製品を約1
00L製造するために必要なアルカリ原液量を計算・設
定し、最初の粗調合では調合液濃度が約2.6重量%と
なるように超純水量を計算・設定した。この設定に基づ
き原液のアルカリ溶液と超純水が混合槽に供給される。
供給開始から前述のシーケンサーにより供給停止するま
での時間は超純水装置の供給能力の関係から約15分間
を要した。混合槽に各原液が供給完了後に混合が開始さ
れ、超音波濃度計の計測値が一定になってから更に3分
後に、混合液濃度を2.38重量%にするために必要な
超純水量が計算され、同様の方法で混合槽に超純水が供
給された後、微調合のための混合が再開される。この供
給には2分弱を要した。混合槽の超音波濃度計の計測値
が一定になってから更に5分後に混合が中止され、後混
合槽に送液される。後混合槽からは使用先に常時製品が
送られるが、後混合槽液位が1バッチ分の調合液を受け
入れる余裕がある間は、この一連の操作がシーケンサの
ブログラムにより実施される。上記の薬液調合装置の混
合槽で連続20バッチの調合操作を行った結果、混合槽
の調合濃度の最大変動幅は0.005重量%であり、許
容変動幅を2回上回ったが、後混合槽の目標濃度に対す
る差の最大値は0.003重量%であり、常に許容範囲
以下の変動であったので、原液供給量又は混合装置の目
標変更は行われなかった。
In FIG. 1, the concentration of the undiluted alkaline solution is 15% by weight, and the concentration is adjusted with ultrapure water to a target concentration of 2.38% by weight. The allowable fluctuation range of the product is ± 0.0
03% by weight. First, add about 1.38% by weight of the product to about 1
The amount of the alkaline stock solution necessary for producing 00 L was calculated and set, and the amount of ultrapure water was calculated and set so that the concentration of the prepared solution was about 2.6% by weight in the first rough preparation. Based on this setting, the alkaline solution of the stock solution and the ultrapure water are supplied to the mixing tank.
The time from the start of the supply to the stop of the supply by the above-mentioned sequencer required about 15 minutes due to the supply capacity of the ultrapure water apparatus. Mixing is started after the supply of each undiluted solution to the mixing tank, and three minutes after the measured value of the ultrasonic densitometer becomes constant, the amount of ultrapure water required to bring the mixture concentration to 2.38% by weight. Is calculated, and after the ultrapure water is supplied to the mixing tank in the same manner, the mixing for fine preparation is restarted. This supply took less than two minutes. Mixing is stopped 5 minutes after the measured value of the ultrasonic densitometer in the mixing tank becomes constant, and the liquid is sent to the mixing tank. Although the product is always sent from the post-mixing tank to the place of use, this series of operations is performed by the program of the sequencer as long as the post-mixing tank liquid level has room to receive the preparation liquid for one batch. As a result of performing continuous 20 batches in the mixing tank of the above-mentioned chemical solution mixing apparatus, the maximum fluctuation width of the mixing concentration in the mixing tank was 0.005% by weight, which exceeded the allowable fluctuation width twice, but the post-mixing was performed. The maximum value of the difference with respect to the target concentration in the tank was 0.003% by weight, and the fluctuation always fell below the allowable range. Therefore, the supply amount of the stock solution or the target of the mixing device was not changed.

【0020】実施例2 実施例1において原液中間槽として20Lの薬液中間槽
と100Lの超純水中間槽を各超音波流量計の後に設置
し、同様のアルカリ濃度液の調合を行った。原液のアル
カリ溶液と超純水は先ず各々の原液中間槽に供給した
後、混合槽に供給される。各原液中間槽から混合槽への
供給は混合槽から後混合槽への送液完了と同時に行わ
れ、各原液中間槽から混合槽への供給が完了後、直ちに
次の粗調合に必要なアルカリ溶液の供給が該中間槽に開
始される。すなわち混合槽に各原液が供給完了後に混合
が開始され、超音波濃度計の計測値が一定になってから
更に3分後に、混合液濃度を2.38重量%にするため
に必要な超純水量が計算され、該計算量の超純水が超純
水中間槽に供給された後、混合槽に供給され、微調合の
ための再混合を開始すると同時に、次回の粗調合に必要
な超純水の供給が該中間槽に対して開始される。また混
合槽の超音波濃度計の計測値が一定になってから更に5
分後に混合が中止され、後混合槽に調合液が送液された
後、粗調合用に計量を完了していた各原液中間槽の原液
(アルカリ溶液と超純水)が直ちに混合槽に供給され
る。上記の装置で実施例1と比較するため、同じアルカ
リ濃度液の調合を20バッチ実施した結果、1バッチ当
たりの調合時間を約11分間短縮することができ、生産
能力の向上を図ることができた。この時の混合槽および
後混合槽の最大濃度変動幅は実施例1とほぼ同様であ
り、原液供給量又は混合装置の目標変更は行われなかっ
た。
Example 2 In Example 1, a 20 L chemical solution intermediate tank and a 100 L ultrapure water intermediate tank were installed after each ultrasonic flow meter as a stock solution intermediate tank, and the same alkali concentration solution was prepared. The stock solution alkaline solution and ultrapure water are first supplied to each stock solution intermediate tank, and then to the mixing tank. The supply from each stock solution intermediate tank to the mixing tank is performed simultaneously with the completion of the supply from the mixing tank to the post-mixing tank, and immediately after the supply from each stock solution intermediate tank to the mixing tank is completed, the alkali required for the next rough blending is prepared. The supply of the solution is started to the intermediate tank. In other words, mixing is started after the supply of each stock solution to the mixing tank, and three minutes after the measured value of the ultrasonic densitometer becomes constant, the ultrapure water necessary for bringing the mixed solution concentration to 2.38% by weight is obtained. The amount of water is calculated, and the calculated amount of ultrapure water is supplied to the ultrapure water intermediate tank, and then supplied to the mixing tank to start remixing for fine mixing, and at the same time, the amount of ultrapure water required for the next coarse mixing The supply of pure water is started to the intermediate tank. Further, after the measured value of the ultrasonic densitometer of the mixing tank becomes constant, another 5
After a minute, the mixing is stopped and the mixture is sent to the mixing tank. Then, the stock solution (alkaline solution and ultrapure water) of each stock solution intermediate tank, which has been completely weighed for rough mixing, is immediately supplied to the mixing tank. Is done. For comparison with Example 1 in the above apparatus, the same alkali concentration solution was prepared in 20 batches. As a result, the preparation time per batch can be reduced by about 11 minutes, and the production capacity can be improved. Was. At this time, the maximum concentration fluctuation widths of the mixing tank and the post-mixing tank were almost the same as those in Example 1, and no change was made in the supply amount of the stock solution or the target of the mixing apparatus.

【0021】[0021]

【発明の効果】本発明の装置では、混合装置よりも相当
大きい容積で混合手段を有する後混合装置を設置するこ
とにより、薬液調合時間が短縮され、不良品が無く、高
精度の調合液を短時間に得ることができる。また回分式
調合装置において本発明の原液中間槽を設置することに
より、調合時間を短縮して生産能力を上げることがで
き、また原液が混合装置に安定して供給されるので調合
途中での原料切れによる中断という事態を避けることが
できる。更に本発明により回分調合方式で混合装置を複
数個として切替使用とすることにより、一つの混合装置
が故障しても全面停止が避けられると共に、薬液調合装
置能力の著しい向上を図ることができる。
According to the apparatus of the present invention, by installing a post-mixing device having a mixing means with a considerably larger volume than the mixing device, the time required for preparing a chemical solution is shortened, and there is no defective product. Can be obtained in a short time. In addition, by installing the stock solution intermediate tank of the present invention in a batch-type blending device, the blending time can be shortened and the production capacity can be increased. The situation of interruption due to cutting can be avoided. Further, by switching and using a plurality of mixing devices in the batch mixing method according to the present invention, even if one mixing device fails, the entire stoppage can be avoided, and the capability of the chemical mixing device can be remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜2に用いた本発明の装置のフロー図
である。
FIG. 1 is a flowchart of the apparatus of the present invention used in Examples 1 and 2.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数個の原液を混合して目的成分を規定の
濃度にする薬液調合装置であって、原液の計量および供
給手段と混合手段を有する混合装置、混合溶液の目的成
分の濃度を測定する濃度計、目的成分の目標濃度と該成
分の測定濃度との差に基づいて原液供給量を決定する演
算装置および、該混合装置の容量より大きく、目的成分
の濃度を測定する濃度計および液面計と混合手段を備
え、混合溶液を混合装置から受入れる後混合装置を有す
ることを特徴とする薬液調合装置。
1. A chemical solution preparation device for mixing a plurality of stock solutions to bring a target component into a specified concentration, a mixing device having a means for measuring and supplying the stock solution and a mixing device, wherein the concentration of the target component in the mixed solution is determined. A densitometer for measuring, a computing device for determining the undiluted solution supply amount based on the difference between the target concentration of the target component and the measured concentration of the component, and a densitometer for measuring the concentration of the target component which is larger than the capacity of the mixing device and A chemical liquid preparation device comprising a liquid level meter and mixing means, and a mixing device after receiving the mixed solution from the mixing device.
【請求項2】複数個の混合装置を有する請求項1記載の2. The method according to claim 1, further comprising a plurality of mixing devices.
薬液調合装置。Chemical solution mixing device.
【請求項3】 原液の計量および供給手段、混合手段を有
する混合装置、混合溶液の目的成分の濃度を測定する濃
度計、目的成分の目標濃度と該成分の測定濃度との差に
基づいて原料供給量を決定する演算装置および、該混合
装置の容量より大きく、目的成分の濃度を測定する濃度
計および液面計と混合手段を備え、混合溶液を混合装置
から受入れる後混合装置を有する薬液調合装置におい
て、後混合装置溶液の濃度計測値、液量および混合装置
の混合容量から後混合装置の溶液濃度が目標濃度となる
ための混合装置溶液濃度を算出し、該算出濃度を混合装
置の目標濃度の決定要素の一つとすることを特徴とする
薬液調合方法。
3. A mixing apparatus having a means for measuring and supplying an undiluted solution, a mixing means, a concentration meter for measuring the concentration of a target component in a mixed solution, and a raw material based on a difference between a target concentration of the target component and the measured concentration of the component. A chemical solution dispensing device having a calculating device for determining the supply amount, a concentration meter larger than the capacity of the mixing device, a level meter for measuring the concentration of the target component, a level gauge, and mixing means, and a mixing device for receiving the mixed solution from the mixing device. In the apparatus, a mixing apparatus solution concentration for the solution concentration of the post-mixing apparatus to be the target concentration is calculated from the measured concentration value of the post-mixing apparatus solution, the liquid amount, and the mixing volume of the mixing apparatus, and the calculated concentration is set to the target of the mixing apparatus. A method for preparing a drug solution, wherein the method is one of the determining factors of the concentration.
JP24791094A 1994-10-13 1994-10-13 Chemical liquid preparation apparatus and method Expired - Fee Related JP3141919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24791094A JP3141919B2 (en) 1994-10-13 1994-10-13 Chemical liquid preparation apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24791094A JP3141919B2 (en) 1994-10-13 1994-10-13 Chemical liquid preparation apparatus and method

Publications (2)

Publication Number Publication Date
JPH08108054A JPH08108054A (en) 1996-04-30
JP3141919B2 true JP3141919B2 (en) 2001-03-07

Family

ID=17170379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24791094A Expired - Fee Related JP3141919B2 (en) 1994-10-13 1994-10-13 Chemical liquid preparation apparatus and method

Country Status (1)

Country Link
JP (1) JP3141919B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632960A (en) * 1995-11-07 1997-05-27 Applied Chemical Solutions, Inc. Two-stage chemical mixing system
KR20000062334A (en) * 1996-12-25 2000-10-25 나카노 가츠히코 Patterning chemical liquid centralized controller
US7344297B2 (en) * 1998-04-16 2008-03-18 Air Liquide Electronics U.S. Lp Method and apparatus for asynchronous blending and supply of chemical solutions
US7980753B2 (en) 1998-04-16 2011-07-19 Air Liquide Electronics U.S. Lp Systems and methods for managing fluids in a processing environment using a liquid ring pump and reclamation system
JP2001276600A (en) * 2000-03-31 2001-10-09 Shinko Pantec Co Ltd Supplying apparatus for chemical
TWI298423B (en) * 2001-02-06 2008-07-01 Nagase & Co Ltd Developer producing equipment and method
TWI298826B (en) * 2001-02-06 2008-07-11 Hirama Lab Co Ltd Purified developer producing equipment and method
WO2009069090A2 (en) 2007-11-27 2009-06-04 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Improved reclaim function for semiconductor processing systems
JP5795235B2 (en) * 2011-10-20 2015-10-14 オルガノ株式会社 Separation membrane slime prevention method and separation membrane slime prevention device
JP5826586B2 (en) * 2011-10-20 2015-12-02 オルガノ株式会社 Solid drug supply apparatus and solid drug supply method
JP5874514B2 (en) * 2012-04-26 2016-03-02 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method, and storage medium
US20160296902A1 (en) 2016-06-17 2016-10-13 Air Liquide Electronics U.S. Lp Deterministic feedback blender
JP2018120901A (en) * 2017-01-23 2018-08-02 株式会社平間理化研究所 Development device
CN107998976B (en) * 2017-10-31 2021-01-12 广西信发铝电有限公司 Alkali liquor preparation system

Also Published As

Publication number Publication date
JPH08108054A (en) 1996-04-30

Similar Documents

Publication Publication Date Title
JP3141919B2 (en) Chemical liquid preparation apparatus and method
KR100394181B1 (en) Two-stage chemical mixing system
KR100837673B1 (en) Chemical solution feeding apparatus and method for preparing slurry
US5476320A (en) Developer preparing apparatus and developer preparing method
US6146008A (en) System for diluting ultrapure chemicals which is intended for the microelectronics industry
KR100520252B1 (en) Developer producing equipment and method
JPH05144919A (en) Liquid fixed-quantity discharger and constant-ratio mixer of mixed liquid
US6706533B2 (en) Method for detecting a concentration of a solution
KR100520253B1 (en) Purified developer producing equipment and method
JP2004024954A (en) Dilution concentration correcting apparatus in caustic soda dilution system
KR100270946B1 (en) Developer Preparation Device and Developer Preparation Method
TW386900B (en) Developer solution centrally managing device for processing patterns
US5843602A (en) Method of adjusting concentration of developer through load cell utilization and wet nitrogen gas atmosphere
JP3120817B2 (en) Automatic developer dilution system
JPH0661136A (en) Continuous automatic dilution device of developer
JPH08262739A (en) Device and method for preparing developer
JPH0724289A (en) Device and method for preparing developer
JPH0871389A (en) Preparation of developing solution
JPH06238143A (en) Liquid mixing device
JPH1043572A (en) Raw material mixing device and production of mixed raw material
JPH0775727A (en) Device for blending liquids
JPH09162094A (en) Method for diluting original developer
KR100610004B1 (en) Mixing apparatus using weight of chemical
JP2000218143A (en) Chemical solution mixing equipment and supply quantity control method
CN109656103A (en) The method for monitoring online product focal length variations using SCD

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees