JP3134776U - Luminescence analyzer - Google Patents

Luminescence analyzer Download PDF

Info

Publication number
JP3134776U
JP3134776U JP2007004451U JP2007004451U JP3134776U JP 3134776 U JP3134776 U JP 3134776U JP 2007004451 U JP2007004451 U JP 2007004451U JP 2007004451 U JP2007004451 U JP 2007004451U JP 3134776 U JP3134776 U JP 3134776U
Authority
JP
Japan
Prior art keywords
analysis
sample
image
threshold
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007004451U
Other languages
Japanese (ja)
Inventor
達也 貝發
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2007004451U priority Critical patent/JP3134776U/en
Application granted granted Critical
Publication of JP3134776U publication Critical patent/JP3134776U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】分析対象試料の成分種別や表面の前処理方法あるいは試料表面の撮像系などに相違・変動があっても常に試料表面の欠陥部を適切に検出し、分析精度と分析効率を向上させる。
【解決手段】CCDカメラ21によって撮像した試料表面の画像データはパーソナルコンピュータ3に送信され、画像解析される。パーソナルコンピュータ3は、この画像について、保管している判定グループ名別の暫定閾値より輝度が小さい部分を除いた領域の平均輝度を求め、平均輝度からの相対閾値(差による閾値または比による閾値の内指定された閾値)より輝度が小さい部分を欠陥部として検出する。その欠陥部情報に基づいて分析位置を抽出し、抽出した分析位置の座表を基にロボットアーム4を制御して移動させ、試料の位置決めを行い、分析位置を分析する。
【選択図】 図1
[PROBLEMS] To improve the accuracy and efficiency of analysis by always properly detecting a defective portion of a sample surface even if there is a difference or variation in the component type of the sample to be analyzed, the surface pretreatment method, or the imaging system of the sample surface. .
Image data of a sample surface imaged by a CCD camera is transmitted to a personal computer for image analysis. The personal computer 3 obtains the average luminance of the area excluding the portion where the luminance is lower than the provisional threshold for each judgment group name stored for this image, and calculates the relative threshold (the difference threshold or the ratio threshold based on the ratio) from the average luminance. A portion whose luminance is smaller than the threshold value specified in the image is detected as a defective portion. The analysis position is extracted based on the defect information, and the robot arm 4 is controlled and moved based on the table of the extracted analysis position, the sample is positioned, and the analysis position is analyzed.
[Selection] Figure 1

Description

本考案は、固体試料を放電により発光させて試料からの光を検出し分析を行う発光分析装置やレーザICP(誘導結合プラズマ)分析装置など、固体試料表面の分析を行う各種分析装置に関する。   The present invention relates to various analyzers that analyze the surface of a solid sample, such as a light emission analyzer and a laser ICP (inductively coupled plasma) analyzer that detect and analyze light from a sample by emitting light by discharge.

固体試料表面の分析をする装置の一例としての発光分析装置は、固体試料(以後試料という)の形状や材質などによって、スパーク放電やアーク放電など放電の種類を切り替えて分析を行う。固体の試料を分析する際、試料を分析ギャップに設置して高電流を流し放電するが、分析面(以後試料表面という)の欠陥部に放電を行うと、発光度合いが正常部とは異なり、正確な分析を行うことはできない。   An emission analysis apparatus as an example of an apparatus for analyzing the surface of a solid sample performs analysis by switching the type of discharge such as spark discharge or arc discharge depending on the shape or material of the solid sample (hereinafter referred to as sample). When analyzing a solid sample, the sample is placed in the analysis gap and discharged by flowing a high current. However, if a discharge is performed on a defective portion of the analysis surface (hereinafter referred to as the sample surface), the emission level is different from the normal portion, An accurate analysis is not possible.

正確な分析を行うため、試料表面の欠陥部を検出し、自動的にこの欠陥部を避けて分析する発光分析装置が提供されている。すなわち、試料表面の画像を撮像してパーソナルコンピュータに取り込み、画像解析により試料表面の正常部との輝度の違いから欠陥部を検出して、分析する位置が欠陥部を避けるように分析位置を抽出する。抽出した分析位置の座標に基づいてロボットアームをパーソナルコンピュータにより制御して試料の位置決めを行い、分析位置を分析する(例えば特許文献1参照)。
特開2005−69853号公報
In order to perform an accurate analysis, there is provided an emission analyzer that detects a defect portion on a sample surface and automatically avoids the defect portion. In other words, an image of the sample surface is captured and loaded into a personal computer, the image analysis is used to detect the defective part from the difference in brightness from the normal part of the sample surface, and the analysis position is extracted so that the analysis position avoids the defective part. To do. Based on the extracted coordinates of the analysis position, the robot arm is controlled by a personal computer to position the sample and analyze the analysis position (see, for example, Patent Document 1).
JP 2005-69853 A

撮像された試料表面の画像の画像解析により、試料表面の正常部との輝度の違いから欠陥部を検出する場合、その判定基準は予め登録してある欠陥判定輝度閾値である。画像の中で輝度がこの閾値より小さい部分が欠陥部と判定され検出される。従来、一種類の欠陥判定輝度閾値が登録されていたが、分析対象となる試料の成分種別、表面の前処理方法、表面前処理をする切削研磨材交換後の処理回数、試料表面の傾き、ランプ光源の輝度、あるいはカメラの感度などの相違・変動により試料表面の輝度が異なるため、一つの欠陥判定輝度閾値(判定基準)では誤判定をする可能性が高い。   When a defective part is detected from a difference in luminance from a normal part of the sample surface by image analysis of the captured image of the sample surface, the determination criterion is a defect determination luminance threshold registered in advance. A portion of the image whose luminance is smaller than this threshold is determined as a defective portion and detected. Conventionally, one type of defect determination brightness threshold has been registered, but the component type of the sample to be analyzed, the surface pretreatment method, the number of treatments after cutting abrasive replacement for surface pretreatment, the sample surface inclination, Since the brightness of the sample surface differs depending on the difference or variation in the brightness of the lamp light source or the sensitivity of the camera, there is a high possibility of erroneous determination with one defect determination brightness threshold (determination criterion).

そこで本考案は、分析対象となる試料の成分種別や表面の前処理方法、表面前処理をする切削研磨材交換後の処理回数、試料表面の傾き、ランプ光源の輝度、あるいはカメラの感度などの相違・変動があっても常に試料表面の欠陥部を適切に検出し、分析精度と分析効率を向上させることを目的とする。   Therefore, the present invention is designed to analyze the component type of the sample to be analyzed, the surface pretreatment method, the number of treatments after replacement of the cutting abrasive for surface pretreatment, the inclination of the sample surface, the brightness of the lamp light source, or the camera sensitivity The purpose is to always detect defects on the sample surface appropriately even if there are differences or fluctuations, and to improve analysis accuracy and efficiency.

試料の試料表面を撮像して欠陥部を検出する画像解析手段と、前記欠陥部の情報に基づいて分析位置を抽出する手段と、抽出された分析位置で試料の分析を行う分析部を備えた発光分析装置において、前記試料の試料表面の内その輝度が暫定閾値より小さい部分を除いた領域の平均輝度を検出しこの平均輝度より相対的な判定基準を設定する手段と、この判定基準に基づいて前記欠陥部を検出する検出手段を設けたものである。したがって、試料及び撮像系の相違・変動に対応した判定基準で欠陥部検出できる。   Image analysis means for imaging a sample surface of a sample to detect a defective part, means for extracting an analysis position based on information on the defect part, and an analysis part for analyzing the sample at the extracted analysis position In the emission analyzer, means for detecting an average luminance of a region of the sample surface excluding a portion where the luminance is smaller than a provisional threshold and setting a determination criterion relative to the average luminance, and based on the determination criterion And detecting means for detecting the defective portion. Therefore, it is possible to detect a defective portion based on a determination criterion corresponding to the difference / variation between the sample and the imaging system.

本考案によれば、欠陥判定輝度閾値(判定基準)として、試料の種類ごとに試料表面の平均輝度からの相対閾値が設定される。したがって、分析対象となる試料の成分種別や表面の前処理方法、表面前処理をする切削研磨材交換後の処理回数、試料表面の傾き、ランプ光源の輝度、あるいはカメラの感度などの相違・変動により、試料表面の輝度が異なっても、この平均輝度からの相対閾値(判定基準)を使えば、前記相違・変動の影響が補正されているで欠陥部を適切に検出し、常に正常部での分析ができ、分析精度と分析効率の向上が期待できる。   According to the present invention, a relative threshold value from the average luminance of the sample surface is set for each sample type as the defect determination luminance threshold value (determination criterion). Therefore, differences and fluctuations in the component type of the sample to be analyzed, the surface pretreatment method, the number of treatments after cutting abrasive replacement for surface pretreatment, the inclination of the sample surface, the brightness of the lamp light source, or the sensitivity of the camera Therefore, even if the brightness of the sample surface is different, if the relative threshold (judgment criterion) from this average brightness is used, the influence of the difference / variation is corrected and the defective part is properly detected, and the normal part is always detected. The analysis accuracy can be improved and the analysis efficiency can be improved.

可視光線を放射するランプの光を試料表面に照射して、試料表面の画像が撮像される。試料表面の画像は、CCDカメラやCMOSカメラ等で撮像される。   An image of the sample surface is taken by irradiating the sample surface with light from a lamp that emits visible light. The sample surface image is captured by a CCD camera, a CMOS camera, or the like.

以下、本考案の実施例について図1〜5を参照して説明する。図1は、実施例を概略的に示す構成図である。図2は、平均輝度からの相対閾値などが保存されている情報テーブルの例である。図3は、実施例の試料表面における分析位置の抽出を説明するための図である。図4は、実施例を示すブロック図である。図5は、実施例の動作を示すフローチャート図である。   Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a configuration diagram schematically showing an embodiment. FIG. 2 is an example of an information table in which a relative threshold value from the average luminance is stored. FIG. 3 is a diagram for explaining the extraction of the analysis position on the sample surface according to the embodiment. FIG. 4 is a block diagram showing an embodiment. FIG. 5 is a flowchart showing the operation of the embodiment.

本考案の発光分析装置は、図1に示すように、放電用の電極を備えた分析部1と、分析部1の近傍に設けられたCCDカメラ21とランプ22及び遮蔽カバー23とを有する撮像部2と、試料を保持して搬送する搬送機構としてのロボットアーム4と、CCDカメラ21とロボットアーム4及び分析部1に接続されて、CCDカメラ21からの画像データの解析処理を行い、その結果に基づいてロボットアーム4の動作及び分析部1を制御する制御装置としてのパーソナルコンピュータ3とを備えている。   As shown in FIG. 1, the emission analysis apparatus of the present invention has an imaging unit having an analysis unit 1 having an electrode for discharge, a CCD camera 21 provided near the analysis unit 1, a lamp 22, and a shielding cover 23. Unit 2, a robot arm 4 as a transport mechanism for holding and transporting a sample, a CCD camera 21, a robot arm 4, and an analysis unit 1 connected to perform analysis processing of image data from the CCD camera 21, A personal computer 3 is provided as a control device for controlling the operation of the robot arm 4 and the analysis unit 1 based on the result.

撮像部2は、試料表面の画像を撮像するためにCCDカメラ21が上向きに設置され、CCDカメラ21の近傍には試料表面に影ができないよう全面を照射するようにランプ22が設置されている。ランプ22は、試料表面に均一に照射できるものであれば、カメラと同軸のドーナツ型あるいは同軸落射型を用いてももちろん構わない。
また、撮像の妨害となる光の入射を防ぐ遮蔽カバー23で撮像部2を囲っている。
In the imaging unit 2, a CCD camera 21 is installed upward in order to capture an image of the sample surface, and a lamp 22 is installed in the vicinity of the CCD camera 21 so as to irradiate the entire surface so that no shadow is formed on the sample surface. . As long as the lamp 22 can uniformly irradiate the surface of the sample, it is of course possible to use a donut type or a coaxial incident type coaxial with the camera.
In addition, the imaging unit 2 is surrounded by a shielding cover 23 that prevents the incidence of light that interferes with imaging.

CCDカメラ21によって撮像した画像データはパーソナルコンピュータ3に送信される。パーソナルコンピュータ3は、撮像部2から取り込んだ試料表面の画像データを画像解析して試料表面全体の欠陥部の検出をし、その欠陥部情報に基づいて分析位置を抽出し、抽出した分析位置の座表を基にロボットアーム4を制御して移動させ、試料の位置決めを行う。   Image data captured by the CCD camera 21 is transmitted to the personal computer 3. The personal computer 3 performs image analysis on the image data of the sample surface captured from the imaging unit 2 to detect a defect portion on the entire sample surface, extracts an analysis position based on the defect portion information, and extracts the analysis position of the extracted analysis position. Based on the sitting surface, the robot arm 4 is controlled and moved to position the sample.

前記試料表面全体の欠陥部の検出には、図2に示す情報テーブル31に保存されている判定グループ名別に設定される暫定閾値と平均輝度からの相対閾値が使われる。この平均輝度からの相対閾値(判定基準)には差による閾値と比による閾値の2つがあり、どの閾値で欠陥部を検出するかオペレータが指定する。差による閾値は平均輝度が求まると対応するセル内の減算式により決定し、同様に比による閾値は平均輝度が求まると対応するセル内の乗算式により決定する。情報テーブル31は、パーソナルコンピュータ3に保管され、判定グループ名は、試料の成分種別、表面の前処理方法、試料径、必要とする分析点数などによって決まり、オペレータにより指定される。   For detection of a defective portion on the entire sample surface, a temporary threshold set for each determination group name stored in the information table 31 shown in FIG. 2 and a relative threshold from the average luminance are used. There are two relative threshold values (judgment criteria) based on the average luminance, that is, a threshold value based on a difference and a threshold value based on a ratio. The operator designates at which threshold a defective portion is detected. The threshold based on the difference is determined by a subtraction formula in the corresponding cell when the average luminance is obtained, and similarly, the threshold based on the ratio is determined by a multiplication formula in the corresponding cell when the average luminance is obtained. The information table 31 is stored in the personal computer 3, and the determination group name is determined by the sample component type, the surface pretreatment method, the sample diameter, the required number of analysis points, and the like, and is designated by the operator.

試料表面全体の欠陥部の検出では、先ず、パーソナルコンピュータ3は、画像解析した試料表面の画像の内その輝度が暫定閾値より小さい部分を除いた領域の平均輝度を求める。次に、パーソナルコンピュータ3に取り込まれ画像解析された試料表面の画像の輝度が平均輝度からの相対閾値(差による閾値または比による閾値の内指定された閾値)より小さい部分が欠陥部として検出される。画像解析では、画像内各部分の輝度の強さを例えば255段階に分けて数値化している。数値化される輝度の強さは、輝度の標準試料を撮像しパーソナルコンピュータ3に取り込み、画像解析して校正される。   In detection of a defective portion on the entire sample surface, first, the personal computer 3 obtains an average luminance of a region excluding a portion of the image of the sample surface subjected to image analysis whose luminance is smaller than the provisional threshold. Next, a portion in which the luminance of the sample surface image captured and analyzed by the personal computer 3 is smaller than the relative threshold value from the average luminance (threshold value by difference or specified threshold value by ratio) is detected as a defective portion. The In the image analysis, the intensity of the brightness of each part in the image is digitized in, for example, 255 levels. The intensity of the luminance to be digitized is calibrated by taking an image of a luminance standard sample, taking it into the personal computer 3, and analyzing the image.

パーソナルコンピュータ3は、ロボットアーム4が保持している試料について、欠陥部情報に基づいて抽出した分析位置で分析が行われるように、分析部1とロボットアーム4とを制御する。この際、分析位置の座標は、ロボットアーム4の位置座標と関連付けられており、抽出された分析位置を正確に分析することができるようになっている。   The personal computer 3 controls the analysis unit 1 and the robot arm 4 so that the sample held by the robot arm 4 is analyzed at the analysis position extracted based on the defect part information. At this time, the coordinates of the analysis position are associated with the position coordinates of the robot arm 4 so that the extracted analysis position can be analyzed accurately.

画像解析は、図3に示すように行われる。(A)は撮像部2から取り込まれた試料表面の画像であり、撮影試料40に欠陥域41、42の欠陥部が検出されている。(B)のように撮影試料40の試料表面上に複数の分析候補範囲43を設定し、画像解析により各分析候補範囲43が分析に適するかどうかを判定する。この判定は、欠陥域41、42の欠陥部が分析候補範囲43に占める割合(%)を設定値と比較することで、その分析候補範囲43の適否を判定する。欠陥域41、42の欠陥部が占める割合が設定値以下である分析候補範囲43のうち、お互いが重ならないような範囲を抽出して、(C)に示すように分析対象位置43aとして認識し、その結果に基づいてロボットアーム4を制御する。   Image analysis is performed as shown in FIG. (A) is an image of the sample surface taken from the imaging unit 2, and defective portions of the defect areas 41 and 42 are detected in the photographed sample 40. A plurality of analysis candidate ranges 43 are set on the sample surface of the photographed sample 40 as shown in (B), and it is determined by image analysis whether each analysis candidate range 43 is suitable for analysis. In this determination, the suitability of the analysis candidate range 43 is determined by comparing the ratio (%) of the defect portion of the defect areas 41 and 42 to the analysis candidate range 43 with a set value. A range that does not overlap each other is extracted from the analysis candidate range 43 in which the proportion of the defective portions 41 and 42 is equal to or less than the set value, and is recognized as the analysis target position 43a as shown in FIG. Based on the result, the robot arm 4 is controlled.

分析候補範囲43の設定は、画像解析の結果に基づいて、撮影試料40の半径などから分析に最適な位置(半径r)を割り出して決定する。また、分析対象位置43aの数、分析候補範囲43の適否を判定する設定値(%)、判定グループ名ごとの暫定閾値と平均輝度からの相対閾値を求める数値(差による閾値の場合は平均輝度から引く数値で、比による閾値の場合は平均輝度に掛ける数値)などのパラメータは、オペレータが任意に設定することができる。   The setting of the analysis candidate range 43 is determined by determining the optimal position (radius r) for analysis from the radius of the photographed sample 40 based on the result of image analysis. In addition, the number of analysis target positions 43a, a setting value (%) for determining the suitability of the analysis candidate range 43, and a numerical value for obtaining a relative threshold value from the provisional threshold value and the average luminance for each determination group name (in the case of a difference threshold value, average luminance A parameter such as a numerical value to be subtracted from the numerical value multiplied by the average luminance in the case of a threshold value based on a ratio can be arbitrarily set by the operator.

図4のブロック図を参照して実施例の説明をする。オペレータは試料をロボットアーム4に保持させて、分析する試料の判定グループ名や平均輝度からの相対閾値として差による閾値または比による閾値の内どちらを使用するかの指定などの様々な分析条件を設定し、パーソナルコンピュータ3に分析開始を入力する。パーソナルコンピュータ3はオペレータの指示に基づいてロボットアーム4を制御して、撮像部2まで試料を搬送する。撮像部2では試料表面に光を照射し、その画像をCCDカメラ21で撮像する。撮像された試料表面の画像はデータとしてパーソナルコンピュータ3に取り込まれて画像解析が行われ、画像の輝度が暫定閾値より小さい部分を除いた領域の平均輝度が求められる。次に、画像の輝度が平均輝度からの相対閾値(差による閾値または比による閾値の内指定された閾値)より小さい部分が欠陥部として検出される。この際分析中の試料の判定グループ名に対応する暫定閾値と平均輝度からの相対閾値が選択され使用される。パーソナルコンピュータ3は、画像解析によって得られた欠陥部情報に基づいて分析位置を抽出し、その分析位置を分析するようにロボットアーム4を分析部1まで移動させて、分析位置での分析を行うように制御し、分析データを取り込む。   The embodiment will be described with reference to the block diagram of FIG. The operator holds the sample on the robot arm 4 and sets various analysis conditions such as the determination group name of the sample to be analyzed and the specification of whether to use a threshold value based on a difference or a threshold value based on a ratio as a relative threshold value from the average luminance. Set and input analysis start to the personal computer 3. The personal computer 3 controls the robot arm 4 based on an instruction from the operator and transports the sample to the imaging unit 2. In the imaging unit 2, the sample surface is irradiated with light, and the image is captured by the CCD camera 21. The captured image of the sample surface is taken as data into the personal computer 3 and subjected to image analysis, and the average luminance of the area excluding the portion where the luminance of the image is smaller than the provisional threshold is obtained. Next, a portion where the luminance of the image is smaller than the relative threshold value from the average luminance (threshold value determined by difference or threshold value specified by ratio) is detected as a defective portion. At this time, the provisional threshold value corresponding to the determination group name of the sample under analysis and the relative threshold value from the average luminance are selected and used. The personal computer 3 extracts the analysis position based on the defect part information obtained by the image analysis, moves the robot arm 4 to the analysis part 1 so as to analyze the analysis position, and performs analysis at the analysis position. Control and capture the analysis data.

図5を参照して実施例の動作を説明する。試料を保持したロボットアーム4は撮像部2に試料を移動させ、撮像部2で試料表面の撮像が行われる(ステップS1)。撮像された画像データはパーソナルコンピュータ3に取り込まれ、画像解析され、画像の輝度が暫定閾値より小さい部分を除いた領域の平均輝度が求められる。次に、画像の輝度が平均輝度からの相対閾値(差による閾値または比による閾値の内指定された閾値)より小さい部分が欠陥域41、42の欠陥部として検出される(ステップS2)。欠陥域41、42の欠陥部の検出により、数箇所の分析対象位置43aが抽出される(ステップS3)。パーソナルコンピュータ3は分析対象位置43aの座標に基づいてロボットアーム4を制御し、分析対象位置43aを分析するように試料の位置決めを行う(ステップS4)。試料の位置決めが終わると、分析部1の分析用電極から放電され、分析が行われる(ステップ5)。1つの分析対象位置43aで分析が終了すると、次の分析対象位置43aを分析するようにロボットアーム4を動かし、試料の位置決めを行って分析する。このように、位置決め、分析の動作を全ての分析対象位置43aが分析されるまで繰り返し行い、全ての分析対象位置43aの分析が終了すると、その試料の分析を終了する(ステップ6)。   The operation of the embodiment will be described with reference to FIG. The robot arm 4 holding the sample moves the sample to the imaging unit 2, and the imaging unit 2 images the sample surface (step S1). The captured image data is taken into the personal computer 3 and subjected to image analysis, and the average luminance of the area excluding the portion where the luminance of the image is smaller than the provisional threshold is obtained. Next, a portion where the luminance of the image is smaller than the relative threshold from the average luminance (threshold specified by difference or threshold specified by ratio) is detected as a defective portion of the defect areas 41 and 42 (step S2). By detecting the defective portions of the defect areas 41 and 42, several analysis target positions 43a are extracted (step S3). The personal computer 3 controls the robot arm 4 based on the coordinates of the analysis target position 43a, and positions the sample so as to analyze the analysis target position 43a (step S4). When the positioning of the sample is completed, the analysis electrode of the analysis unit 1 is discharged and analysis is performed (step 5). When the analysis is completed at one analysis target position 43a, the robot arm 4 is moved so as to analyze the next analysis target position 43a, and the sample is positioned and analyzed. In this way, the positioning and analysis operations are repeated until all the analysis target positions 43a are analyzed, and when the analysis of all the analysis target positions 43a is completed, the analysis of the sample is ended (step 6).

本考案は以上の構成であるから、成分種別や表面の前処理方法などの相違する試料を分析する場合、表面前処理をする切削研磨材交換後の処理回数、試料表面の傾き、ランプ光源の輝度、あるいはカメラの感度などの相違・変動などにより各々の試料表面の輝度が異なっても、各々の試料に対応した判定グループ名別に設定される暫定閾値より小さい輝度の部分を除いた試料表面の平均輝度を求め、判定グループ名別に設定される平均輝度からの相対閾値(差による閾値または比による閾値の内指定された閾値)を使い、欠陥部を適切に検出するため、常に正常部での分析ができ、分析精度と分析効率の向上が期待できる。   Since the present invention is configured as described above, when analyzing different samples such as the component type and the surface pretreatment method, the number of treatments after cutting abrasive replacement for surface pretreatment, the inclination of the sample surface, the lamp light source Even if the brightness of each sample surface differs due to differences in brightness, camera sensitivity, etc., the surface of the sample surface excluding the part with a brightness smaller than the provisional threshold set for each judgment group name corresponding to each sample. The average brightness is obtained, and the relative threshold from the average brightness set for each judgment group name (the threshold specified by the difference or the threshold specified by the ratio) is used to properly detect the defective part. Analysis is possible, and improvement in analysis accuracy and efficiency can be expected.

実施例では、図3に示す画像解析が自動的に進行し、複数の分析対象位置43aの分析が自動的に行われるが、図3に示す画像をパーソナルコンピュータ3のモニタに表示し、これをオペレータが観察して分析を開始しても良いと判断しパーソナルコンピュータ3に分析開始を指令した時のみ、分析動作に移行できるようにしても、本考案は適用可能であり、本考案はこれら変形例を包含する。   In the embodiment, the image analysis shown in FIG. 3 automatically proceeds and the plurality of analysis target positions 43a are automatically analyzed. The image shown in FIG. 3 is displayed on the monitor of the personal computer 3, and this is displayed. The present invention can be applied only when the operator can observe and start the analysis, and only when the personal computer 3 is instructed to start the analysis, the present invention can be applied. Examples are included.

本考案は、試料を放電により発光させて試料からの光を検出し分析を行う発光分析装置やレーザICP(誘導結合プラズマ)分析装置など、試料表面の分析を行う各種分析装置に関する。   The present invention relates to various analyzers for analyzing the surface of a sample, such as an emission analyzer and a laser ICP (inductively coupled plasma) analyzer that detect and analyze light emitted from a sample by discharge.

実施例を概略的に示す構成図である。It is a block diagram which shows an Example schematically. 平均輝度からの相対閾値などが保存されている情報テーブルの例である。It is an example of the information table in which the relative threshold from the average luminance is stored. 実施例の試料表面における分析位置の抽出を説明するための図である。It is a figure for demonstrating extraction of the analysis position in the sample surface of an Example. 実施例を示すブロック図である。It is a block diagram which shows an Example. 実施例の動作を示すフローチャート図である。It is a flowchart figure which shows operation | movement of an Example.

符号の説明Explanation of symbols

1 分析部
2 撮像部
3 パーソナルコンピュータ
4 ロボットアーム
21 CCDカメラ
22 ランプ
23 遮蔽カバー
31 情報テーブル
40 撮影試料
41 欠陥域
42 欠陥域
43 分析候補範囲
43a 分析対象位置
DESCRIPTION OF SYMBOLS 1 Analysis part 2 Imaging part 3 Personal computer 4 Robot arm 21 CCD camera 22 Lamp 23 Shielding cover 31 Information table 40 Photographed sample 41 Defect area 42 Defect area 43 Analysis candidate range 43a Analysis object position

Claims (1)

固体試料の分析面を撮像して欠陥部を検出する画像解析手段と、前記欠陥部の情報に基づいて分析位置を抽出する手段と、抽出された分析位置で固体試料の分析を行う分析部を備えた発光分析装置において、前記固体試料の分析面の内その輝度が暫定閾値より小さい部分を除いた領域の平均輝度を検出しこの平均輝度より相対的な判定基準を設定する手段と、この判定基準に基づいて前記欠陥部を検出する検出手段を設けたことを特徴とする発光分析装置。   Image analysis means for imaging the analysis surface of a solid sample to detect a defective part, means for extracting an analysis position based on information on the defect part, and an analysis part for analyzing the solid sample at the extracted analysis position A means for detecting an average luminance of a region excluding a portion of the analysis surface of the solid sample whose luminance is smaller than a provisional threshold and setting a determination criterion relative to the average luminance; An emission analyzer characterized by comprising a detecting means for detecting the defective portion based on a reference.
JP2007004451U 2007-06-13 2007-06-13 Luminescence analyzer Expired - Fee Related JP3134776U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004451U JP3134776U (en) 2007-06-13 2007-06-13 Luminescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004451U JP3134776U (en) 2007-06-13 2007-06-13 Luminescence analyzer

Publications (1)

Publication Number Publication Date
JP3134776U true JP3134776U (en) 2007-08-23

Family

ID=43285334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004451U Expired - Fee Related JP3134776U (en) 2007-06-13 2007-06-13 Luminescence analyzer

Country Status (1)

Country Link
JP (1) JP3134776U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169589A (en) * 2009-01-23 2010-08-05 Nippon Steel Corp Method for spark discharge atomic emission spectrometric analysis and spectral analysis system of the same
JPWO2021166388A1 (en) * 2020-02-21 2021-08-26

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169589A (en) * 2009-01-23 2010-08-05 Nippon Steel Corp Method for spark discharge atomic emission spectrometric analysis and spectral analysis system of the same
JPWO2021166388A1 (en) * 2020-02-21 2021-08-26
WO2021166388A1 (en) * 2020-02-21 2021-08-26 国立研究開発法人産業技術総合研究所 Sample analysis system, learned model generation method, and sample analysis method
CN115135990A (en) * 2020-02-21 2022-09-30 国立研究开发法人产业技术总和研究所 Sample analysis system, learned model generation method, and sample analysis method
JP7388775B2 (en) 2020-02-21 2023-11-29 国立研究開発法人産業技術総合研究所 Sample analysis system, trained model generation method, and sample analysis method

Similar Documents

Publication Publication Date Title
US10068326B2 (en) System and method for enhancing visual inspection of an object
JP6294131B2 (en) Defect review apparatus and defect review method
US8548121B2 (en) X-ray analyzer
US10147174B2 (en) Substrate inspection device and method thereof
US9285348B2 (en) Automated system for handling components of a chromatographic system
JP3361768B2 (en) X-ray fluorescence analyzer and X-ray irradiation position confirmation method
CN109827970B (en) Semiconductor chip test system and method
JP3134776U (en) Luminescence analyzer
JP2010151566A (en) Particle image analysis method and apparatus
KR20130105453A (en) Fluorescence x-ray analyzing apparatus and method of analyzing fluorescence x-ray
US8705698B2 (en) X-ray analyzer and mapping method for an X-ray analysis
JP3134775U (en) Luminescence analyzer
JP5557271B2 (en) Radiation inspection apparatus, radiation inspection method, and radiation inspection program
JP3991959B2 (en) Solid sample surface analyzer
JP5379571B2 (en) Pattern inspection apparatus and pattern inspection method
KR102602005B1 (en) charged particle beam device
JP4941266B2 (en) Luminescence analyzer
KR20140012485A (en) Method and apparatus for inspecting flat panel display
JP5445156B2 (en) Luminescence analyzer
JP5077212B2 (en) Luminescence analyzer
JP3148548U (en) Luminescence analyzer
JP2013217915A (en) Fluorescent x-ray analyzer and fluorescent x-ray analysis method
KR101242936B1 (en) Optical Emission Spectroscope Having Function Of Measuring Location Of Spark And Method For Measuring Location Of Spark In Optical Emission Spectroscope
JP2015094643A (en) Fluorescent x-ray analyzer
JP4389761B2 (en) Solder inspection method and board inspection apparatus using the method

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees