JP3134542B2 - Hot water supply control method - Google Patents

Hot water supply control method

Info

Publication number
JP3134542B2
JP3134542B2 JP04253926A JP25392692A JP3134542B2 JP 3134542 B2 JP3134542 B2 JP 3134542B2 JP 04253926 A JP04253926 A JP 04253926A JP 25392692 A JP25392692 A JP 25392692A JP 3134542 B2 JP3134542 B2 JP 3134542B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
distribution ratio
bks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04253926A
Other languages
Japanese (ja)
Other versions
JPH0674559A (en
Inventor
富雄 三宅
忠彦 大塩
誠 浜田
晶 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP04253926A priority Critical patent/JP3134542B2/en
Publication of JPH0674559A publication Critical patent/JPH0674559A/en
Application granted granted Critical
Publication of JP3134542B2 publication Critical patent/JP3134542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は熱交換器を通って出湯さ
れた温水にバイパスを用いて水を混水し、所定の給湯温
度の給湯を行う給湯制御方法の提供を目的とする。
BACKGROUND OF THE INVENTION An object of the present invention is to provide a hot water supply control method for mixing hot water discharged through a heat exchanger with water by using a bypass to supply hot water at a predetermined hot water supply temperature.

【0002】[0002]

【従来の技術】従来のこの種給湯制御装置として、特開
平3-186150号公報に記載の装置が提供されている。この
装置は、加熱装置と、熱交換器と、前記熱交換器の水量
を制御する制御弁と、前記熱交換器への通水路をバイパ
スするバイパス路と、前記熱交換器出口と前記バイパス
路との混合部下流に設けられた出湯温度検出器と、前記
バイパス路に設けられた水量調節弁と、前記水量調節弁
の駆動装置と、出湯温度設定部と加熱制御部と水量制御
部からなる給湯制御部とを備え、前記出湯温度検出器と
前記出湯温度設定部の偏差信号によって加熱装置の加熱
量を調節すると共に、前記偏差信号によって前記水量調
節弁の開度を変化させ混合比を調節する給湯制御装置で
ある。
2. Description of the Related Art As a conventional hot water supply control apparatus of this kind, an apparatus described in Japanese Patent Application Laid-Open No. 3-186150 is provided. The apparatus includes a heating device, a heat exchanger, a control valve for controlling the amount of water in the heat exchanger, a bypass for bypassing a water passage to the heat exchanger, the heat exchanger outlet and the bypass passage. A tap water temperature detector provided downstream of a mixing section with the water, a water flow control valve provided in the bypass passage, a drive device for the water flow control valve, a tap water temperature setting section, a heating control section, and a water flow control section. A hot water supply control unit, which adjusts a heating amount of a heating device according to a deviation signal between the tap water temperature detector and the tap water temperature setting unit, and adjusts a mixing ratio by changing an opening degree of the water flow control valve according to the deviation signal. Hot water supply control device.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来の
装置においては、設定給湯温度の温水を給湯するのに、
加熱装置の加熱調節と、バイパス路の水量調節弁の開度
調節との両方を調節することから、両調節が互いに干渉
し合うため、設定給湯温度での給湯が上手く出来なかっ
たり、設定温度への調節に時間がかかる等の欠点があっ
た。また制御装置も複雑となる欠点があった。
However, in the above-mentioned conventional apparatus, hot water at a set hot water supply temperature is supplied.
Since both the heating control of the heating device and the opening control of the water flow control valve in the bypass path are adjusted, the two controls interfere with each other. There is a disadvantage that it takes a long time to adjust the temperature. Further, there is a disadvantage that the control device becomes complicated.

【0004】そこで、本発明は上記従来技術の欠点を解
消し、混水による設定給湯温度での給湯が容易且つ確実
にでき、しかも必要な構成が簡単で安価となる給湯制御
方法の提供を目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a hot water supply control method which can easily and reliably supply hot water at a set hot water supply temperature by mixing water, and which has a simple and inexpensive structure. And

【0005】[0005]

【課題を解決するための手段】上記目的を解決するた
め、本発明は、入水路からの水を瞬間熱交換器で加熱し
て出湯路に出湯すると共に、前記入水路からのバイパス
を出湯路に接続して水を混水し、所定の設定給湯温度に
調整して給湯を行うようにした給湯制御方法であって、
給湯温度が設定されると、該設定給湯温度TQSと入水
温度Tと前記バイパスにおける基準分配率KBKO
から前記熱交換器の設定出湯温度TKSを演算して、該
設定出湯温度TKSに対応する熱量を発生するよう
記瞬間熱交換器のバーナを以後一定の条件で燃焼させ、
さらに給湯開始後は、瞬間熱交換器からの実際の出湯温
度Tと前記設定給湯温度TQSと入水温度Tとから
設定給湯温度TQSの温水を給湯するために必要な目標
分配率KBKSを常時演算し、予め実験により得てテー
ブルとして記憶させている分配率とそれに1対1対応す
る混水調整弁の駆動電流値との関係から前記目標分配率
BKS に対応する目標分配率対応駆動電流値I BKS
をテーブルから選出すると共に、該目標分配率対応駆動
電流値I BKS に対して設定給湯温度T QS と実際の給
湯温度T との差に応じた補正駆動電流値I を加えて
全駆動出力電流値I OUT とし、該全駆動出力電流値I
OUT を前記混水調整弁に流すようにして、バイパスの
混水調整弁だけを制御するようにしたことを第1の特徴
としている。また本発明は、上記第1の特徴に加えて、
補正駆動電流値I として、設定給湯温度T QS と実際
の給湯温度T との差に応じた値を用いる代わりに、目
標分配率K BKS と基準分配率K BKO との差に応じた
値を用いることを第2の特徴としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned object, the present invention relates to a method of heating water from an inlet channel with an instantaneous heat exchanger to supply hot water to a hot water channel, and to connect a bypass from the water inlet channel to a hot water channel. A hot water supply control method in which water is mixed by connecting to a predetermined hot water supply temperature to perform hot water supply;
When the hot water supply temperature is set, the set hot water supply temperature T QS , the incoming water temperature T C, and the reference distribution ratio K BKO in the bypass are used to calculate the hot water supply set temperature T KS of the heat exchanger. The burner of the instantaneous heat exchanger is then burned under certain conditions so as to generate heat corresponding to KS ,
After an additional starting hot water supply, the actual hot water temperature T K and the set hot water supply temperature T QS and the incoming water temperature T C and the set hot water supply temperature T target distribution ratio K necessary for hot water supply hot water QS from the moment the heat exchanger BKS is always calculated and obtained by experiments in advance.
One-to-one correspondence with the distribution ratio stored as
The target distribution ratio from the relationship with the drive current value of the mixed water regulating valve.
Target distribution ratio corresponding driving current value I BKS corresponding to K BKS
Is selected from the table, and the drive corresponding to the target distribution ratio is selected.
The set hot water supply temperature T QS and the actual hot water supply are compared with the current value I BKS .
By adding the correction drive current I H in accordance with the difference between the water temperature T Q
A total driving output current I OUT, 該全driving output current value I
OUT to the mixed water regulating valve so that the bypass
The first feature is that only the water mixing regulating valve is controlled . In addition, the present invention provides, in addition to the first feature,
As the correction drive current value I H, the actual and set hot water supply temperature T QS
Instead of using a value corresponding to the difference between the hot water supply temperature TQ and
According to the difference between the standard distribution rate K BKS and the reference distribution rate K BKO
The second feature is to use a value .

【0006】[0006]

【作用】上記本発明の第1の特徴によれば、給湯温度が
設定され、給湯カランが開放されると、設定給湯温度T
QSと入水温度Tとバイパスにおける基準分配率K
BKOとから先ず瞬間熱交換器の設定出湯温度TKS
演算される。そして該設定出湯温度での出湯に対応する
熱量が発生されるべく瞬間熱交換器のバーナが以後一定
の条件で燃焼される。そして現実に出湯が開始された後
は瞬間熱交換器からの実際の出湯温度Tが前記演算さ
れた設定出湯温度TKSに一致しなくても、バーナの燃
焼量を修正制御することなく、バイパスの混水調整弁だ
けを制御する。この制御は前記設定給湯温度TQSと入
水温度Tとから設定給湯温度TQSの温水が給湯され
るために必要な目標分配率KBKSを常時演算し、それ
に対応する目標分配率対応駆動電流値I BKS がテーブ
ルから選出され、そしてこの値にさらに設定給湯温度T
QS と実際の給湯温度T との差に応じた補正駆動電流
値I が加算され、全駆動出力電流値I OUT が演算さ
れる。そして混水調整弁の制御は、この全駆動出力電流
値I OUT を流すことで行われる。設定給湯温度への調
整はバイパスの混水調整弁だけを用い、バーナの燃焼量
を途中で変更調整することを行わないので、上記従来の
ように燃焼と混水量の両方を調節することによる制御の
複雑さ、及び相互干渉による所定設定給湯温度への調整
の難しさが解消され、設定給湯温度の給湯を容易に正確
に行うことができる。またバーナ燃焼量を途中で変更調
整する手段を必要としないので、それに必要な部材や制
御機構が不要となり、またマイコンポートを減少させる
ことができる等、装置の構成を簡単に且つ安価にするこ
とができる。加えて、テーブルから選出された目標分配
率対応駆動電流値I BKS に対して設定給湯温度T QS
と実際の給湯温度T との差に応じた補正駆動電流値I
が加えられることで、より素早く所定の設定給湯温度
QS に調整することができる。また上記本発明の第2
の特徴によれば、補正駆動電流値I として、設定給湯
温度T QS と実際の給湯温度T との差に応じた値を用
いる代わりに、目標分配率K BKS と基準分配率K
BKO との差に応じた値を用いることで、フィードバ
ク対象として(T QS −T )を用いる場合に生じる制
御の不安定さを減らすことができる。
According to the first feature of the present invention, when the hot water supply temperature is set and the hot water supply curn is opened, the set hot water supply temperature T is set.
Reference distribution ratio K in the QS and the incoming water temperature T C and the bypass
First, the set tap temperature T KS of the instantaneous heat exchanger is calculated from BKO . Then, the burner of the instantaneous heat exchanger is burned under certain conditions so as to generate heat corresponding to tapping at the set tapping temperature. The reality without matching set hot water temperature T KS actual tapping temperature T K is the calculation of the moment after the tapping has been initiated the heat exchanger, without controlling modify the combustion amount of the burners, Only the bypass water mixing control valve is controlled. The control calculates a target distribution ratio K BKS required for hot water set hot water supply temperature T QS from and incoming water temperature T C the set hot water supply temperature T QS is hot water at all times, it
Table corresponding target distribution ratio corresponding driving current value I BKS to
The hot water supply temperature T
Correction drive current according to the difference between QS and actual hot water supply temperature T Q
Value I H is added, the total driving output current I OUT is-determination
It is. The control of the mixing valve is controlled by the total drive output current.
This is performed by passing the value IOUT . Since the adjustment to the set hot water supply temperature uses only the bypass water mixing adjustment valve and does not change and adjust the combustion amount of the burner on the way, control by adjusting both the combustion and the water mixing amount as in the conventional case described above And the difficulty of adjustment to the predetermined set hot water supply temperature due to mutual interference is eliminated, and hot water supply at the set hot water supply temperature can be easily and accurately performed. Also, since there is no need for a means for changing and adjusting the burner combustion amount on the way, the necessary members and control mechanisms are not required, and the configuration of the apparatus can be made simple and inexpensive, for example, the number of microcomputer ports can be reduced. Can be. In addition, the target distribution selected from the table
Hot water supply temperature T QS set for drive current value I BKS corresponding to rate
Correction drive current value I corresponding to a difference between the actual hot-water supply temperature T Q When
By adding H, the specified hot water supply temperature is more quickly
T QS can be adjusted. The second aspect of the present invention
According to the feature, as the correction drive current value I H, set hot water supply
A value corresponding to the difference between the temperature T QS and the actual hot water supply temperature T Q is used.
Instead of the target distribution K BKS and the reference distribution K
By using a value corresponding to the difference between the BKO, Fidoba Tsu
When using (T QS -T Q ) as the target,
You can reduce your instability.

【0007】[0007]

【実施例】図1は本発明の方法が実施される給湯器の全
体構成図で、図2は分配率とそれに1対1対応する混水
調整弁の駆動電流値との関係を示す図で、図3は制御例
を示すフロー図である。
FIG. 1 is a diagram showing the overall configuration of a water heater in which the method of the present invention is carried out, and FIG. 2 is a diagram showing the relationship between the distribution ratio and the driving current value of the water mixing regulating valve corresponding to the distribution ratio one-to-one. FIG. 3 is a flowchart showing a control example.

【0008】図1に示す給湯器において、入水路10を供
給されてくる水は瞬間熱交換器20で加熱され出湯路30に
出湯される。前記入水路10からはバイパス40が出湯路30
に接続され、水を混水するようになされている。前記入
水路10には入水温度センサ11と入水流量センサ12が設け
られている。また前記瞬間熱交換器20にはバーナ21が設
けられている。また前記出湯路30には出湯温度センサ31
が設けられ、更に出湯路30の前記バイパス40が接続する
点32より下流の給湯路50には給湯温度センサ51が設けら
れ、前記バイパス40には混水調整弁41及びその駆動部42
が設けられている。60は給湯器全体を制御するマイコン
内蔵のコントローラで、各センサ11、12、31、51からの
情報や図示しないリモコンからの指令を入力し、所定の
プログラムに従って演算を行い、各部21、41への制御信
号を出力する。
In the water heater shown in FIG. 1, the water supplied to the water inlet 10 is heated by the instantaneous heat exchanger 20 and discharged to the hot water outlet 30. From the water inlet channel 10, a bypass 40 is connected to the hot water channel 30.
And are adapted to mix water. The inlet channel 10 is provided with an inlet temperature sensor 11 and an inlet flow sensor 12. Further, the instant heat exchanger 20 is provided with a burner 21. A tapping temperature sensor 31 is provided in the tapping path 30.
A hot-water supply temperature sensor 51 is provided in a hot-water supply path 50 downstream of a point 32 of the hot-water supply path 30 to which the bypass 40 is connected.
Is provided. Reference numeral 60 denotes a controller with a built-in microcomputer for controlling the entire water heater, which inputs information from the sensors 11, 12, 31, and 51 and a command from a remote controller (not shown), performs calculations in accordance with a predetermined program, and performs operations to the respective parts 21 and 41. Output a control signal.

【0009】次に、コントローラ60による給湯制御の方
法について、図2、図3も参照して説明する。今、種火
が着いている状態で、給湯路50の図示しない給湯カラン
が開放されると(S1でイエス)、入水路10を通って水
が供給され、この水流を図示しない水流センサが検出す
ることで、バーナ21の燃焼が開始される。この際、コン
トローラ60は、使用者によって設定された設定給湯温度
QSと、入水温度センサ11からの入水温度TC と、バイ
パス40における基準分配率KBKO とから瞬間熱交換器20
の設定出湯温度TKSを演算する(S2)。そして該熱交
換器20の設定出湯温度TKSに対応する熱量を発生するよ
うバーナ21を以後一定の条件でフィードフォワード燃焼
させる(S3)。前記基準分配率KBKO によるバイパス
40側への水量をQBO、熱交換器20側への水量をQKOとす
ると、次の数1、数2が成立する。
Next, a method of controlling hot water supply by the controller 60 will be described with reference to FIGS. When a hot water supply curl (not shown) in the hot water supply path 50 is opened while the pilot flame is on (yes in S1), water is supplied through the water inlet path 10, and this water flow is detected by a water flow sensor (not shown). Then, the combustion of the burner 21 is started. At this time, the controller 60 determines the instantaneous heat exchanger 20 based on the set hot water supply temperature T QS set by the user, the incoming water temperature T C from the incoming water temperature sensor 11, and the reference distribution K BKO in the bypass 40.
Calculating a set hot water temperature T KS (S2). And allowed to feed forward combustion burners 21 in subsequent certain conditions to generate an amount of heat corresponding to the set hot water temperature T KS of the heat exchanger 20 (S3). Bypass by the reference distribution ratio KBKO
Assuming that the amount of water to the 40 side is Q BO and the amount of water to the heat exchanger 20 side is Q KO , the following equations 1 and 2 are established.

【0010】[0010]

【数1】TQS(QBO+QKO)=TC ・QBO+TKS・QKOQS:設定給湯温度 TC :入水温度 TKS:熱交換器20の設定出湯温度 QBO:基準分配率KBKO でのバイパス40側への水量 QKO:基準分配率KBKO での熱交換器20側への水量[Number 1] T QS (Q BO + Q KO ) = T C · Q BO + T KS · Q KO T QS: set hot water supply temperature T C: incoming water temperature T KS: setting of the heat exchanger 20 hot water temperature Q BO: reference distribution The amount of water to the bypass 40 at the rate K BKO Q KO : The amount of water to the heat exchanger 20 at the reference distribution rate K BKO

【0011】[0011]

【数2】KBKO =QBO/QKOBKO :基準分配率 QBO :基準分配率KBKO でのバイパス40側への水量 QKO :基準分配率KBKO での熱交換器20側への水量[Number 2] K BKO = Q BO / Q KO K BKO: reference distribution ratio Q BO: water to the bypass 40 side of the reference distribution ratio K BKO Q KO: the heat exchanger 20 side of the reference distribution ratio K BKO Amount of water

【0012】前記数1、数2より、熱交換器20の設定出
湯温度TKSが次の数3で得られる。
From the above equations (1) and (2), the set tapping temperature T KS of the heat exchanger 20 is obtained by the following equation (3).

【0013】[0013]

【数3】TKS=TQS(1+KBKO )−TC ・KBKOKS :熱交換器20の設定出湯温度 TQS :設定給湯温度 TC :入水温度 KBKO :基準分配率Equation 3] T KS = T QS (1 + K BKO) -T C · K BKO T KS: setting of the heat exchanger 20 hot water temperature T QS: set hot water supply temperature T C: incoming water temperature K BKO: reference distribution ratio

【0014】熱交換器20の設定出湯温度TKSが演算され
ると、瞬間熱交換器20の必要熱量はそれに水量QKOを掛
けたものであるので、その必要熱量が得られる燃料供給
量がコントローラ60から図示しない燃料供給調整手段に
指令される。これによってバーナ21はフィードフォワー
ド制御される。この制御量は以後その給湯が終了するま
でそのまま一定とし、途中では調整しない。前記基準分
配率KBKO は、混水調整弁41が給湯開始時に必ず一定の
基準分配率から開始されるように設計されたものであっ
ても、また混水調整弁41が前回の給湯が終了した時点で
の分配率がそのまま持ち越されるように設計されたもで
あっても、いずれの混水調整弁41であってもよく、要す
るに基準分配率KBKO は給湯開始時における混水調整弁
41の有する分配率とする。
When the set hot water temperature T KS of the heat exchanger 20 is calculated, the required heat quantity of the instantaneous heat exchanger 20 is multiplied by the water quantity Q KO. A command is issued from the controller 60 to a fuel supply adjusting means (not shown). Thus, the burner 21 is feed-forward controlled. This control amount is kept constant until the hot water supply ends thereafter, and is not adjusted in the middle. Even if the reference distribution ratio KBKO is designed so that the water mixing control valve 41 always starts from a constant reference distribution ratio at the start of hot water supply, the water mixing adjustment valve 41 also stops the previous hot water supply. Even if it is designed so that the distribution ratio at the time of carrying over is carried over as it is, any of the water mixing control valves 41 may be used. In short, the reference distribution ratio KBKO is the water mixing control valve at the start of hot water supply.
The distribution ratio of 41 is assumed.

【0015】以上のようにしてバーナ21が燃焼され、給
湯が開始されると、次にコントローラ60は、給湯温度セ
ンサ51が検出する実際の給湯温度TQ が設定給湯温度T
QSとなるよう、出湯温度センサ31によって検出した実際
の熱交換器20の出湯温度TKを入力して(S4)、目標
分配率KBKS を演算する(S5)。目標分配率KBKS
次の数4、数5から数6のように演算される。
When the burner 21 is burned as described above and hot water supply is started, the controller 60 then determines the actual hot water supply temperature T Q detected by the hot water supply temperature sensor 51 as the set hot water supply temperature T.
The actual tapping temperature T K of the heat exchanger 20 detected by the tapping temperature sensor 31 is input so as to be QS (S4), and the target distribution ratio KBKS is calculated (S5). The target distribution ratio K BKS is calculated from the following equations (4), (5) and (6).

【0016】[0016]

【数4】TQS(QBS+QKS)=TC ・QBS+TK ・QKSQS :設定給湯温度 TC :入水温度 TK :熱交換器20の出湯温度 QBS :目標分配率KBKS でのバイパス40側への水量 QKS :基準分配率KBKO での熱交換器20側への水量Equation 4] T QS (Q BS + Q KS ) = T C · Q BS + T K · Q KS T QS: set hot water supply temperature T C: incoming water temperature T K: tapping of the heat exchanger 20 temperature Q BS: target distribution ratio water Q KS to the bypass 40 side in K BKS: water to the heat exchanger 20 side of the reference distribution ratio K BKO

【0017】[0017]

【数5】KBKS =QBS/QKS [ Equation 5] K BKS = Q BS / Q KS

【0018】[0018]

【数6】 KBKS =QBS/QKS=(TK −TQS)/(TQS−TC ) KBKS :目標分配率 TK :熱交換器20の出湯温度 TQS :設定給湯温度 TC :入水温度K BKS = Q BS / Q KS = (T K −T QS ) / (T QS −T C ) K BKS : Target distribution ratio T K : Tap water temperature of heat exchanger 20 T QS : Set hot water temperature T C: incoming water temperature

【0019】以上のようにして、目標分配率KBKS が演
算されると、コントローラ60は次に内蔵の記憶部に記憶
させたテーブルから前記目標分配率KBKS に対応する前
記混水調整弁41の駆動部42の駆動電流値IBKS を摘出す
る(S6)。前記コントローラ60に内蔵の記憶部に記憶
させるテーブルは、予めの実験により、図2に示すよう
な駆動部42の各電流値と分配率との関係を得ておき、こ
れをテーブルにして記憶部に記憶させておくことで得ら
れる。
When the target distribution ratio K BKS is calculated as described above, the controller 60 then reads the mixing control valve 41 corresponding to the target distribution ratio K BKS from a table stored in a built-in storage unit. The drive current value I BKS of the drive section 42 is extracted (S6). The table stored in the storage unit built in the controller 60 obtains the relationship between each current value of the driving unit 42 and the distribution ratio as shown in FIG. It is obtained by memorizing it.

【0020】そして更に、コントローラ60は、制御時に
生じる各種誤差、偏差を吸収し、状況に応じた補正を加
えるため、補正駆動電流値IH を演算し(S7)、その
補正駆動電流値IH と前記目標分配率対応駆動電流値I
BKS との和をもって駆動部42の全駆動出力電流値IOUT
を演算する(S8) 。前記補正駆動電流値IH は設定
給湯温度TQSと実際の給湯温度TQ との差に比例したフ
ィードバック値とし、次の数7によって演算する。また
全駆動出力電流値IOUT は数8で表される。
[0020] The further controller 60, various errors occurring during control, absorb deviations, for adding the correction according to the situation, calculates a correction drive current value I H (S7), the correction driving current value I H And the drive current value I corresponding to the target distribution ratio.
The total drive output current value I OUT of the drive unit 42 is determined by summing with BKS.
Is calculated (S8). The corrected drive current value I H is a feedback value proportional to the difference between the set hot water supply temperature T QS and the actual hot water supply temperature T Q, and is calculated by the following equation (7). Further, the total drive output current value I OUT is represented by Expression 8.

【0021】[0021]

【数7】 IH =KP (TQS−TQ )+KI ・Σ(TQS−TQ ) IH :補正駆動電流値 KP :比例定数 KI :積分定数 TQS:設定給湯温度 TQ :実際の給湯温度I H = K P (T QS −T Q ) + K I · Σ (T QS −T Q ) I H : Corrected drive current value K P : Proportional constant K I : Integral constant T QS : Set hot water temperature T Q : Actual hot water temperature

【0022】[0022]

【数8】IOUT =IBKS +IHOUT :全駆動出力電流値 IBKS :目標分配率対応駆動電流値 IH :補正駆動電流値I OUT = I BKS + I H I OUT : all drive output current values I BKS : target distribution ratio corresponding drive current value I H : correction drive current value

【0023】以上により、全駆動出力電流値IOUT が演
算されると、該全駆動出力電流値IOUT でもって、混水
調整弁41を駆動するよう駆動部42に指令する(S9)。
そして給湯カランが閉止されるまでは、一定の短い時間
間隔でS4からS10が繰り返される。
The [0023] above, the entire drive output current I OUT is calculated, with at該全driving output current I OUT, it commands the drive unit 42 to drive the mixing water adjustment valve 41 (S9).
Until the hot water supply curn is closed, S4 to S10 are repeated at a fixed short time interval.

【0024】上記の例では、補正駆動電流値IH は数7
に示すように、(設定給湯温度TQS−実際の給湯温度T
Q )の温度偏差に対してフィードバックをかけるように
している。が、この場合、(TQS−TQ )は設定給湯温
度TQS、目標分配率KBKS 現在の分配率KBK、熱交換器
出湯温度TK 、入水温度TC を用いて、次の数9で表わ
される。
In the above example, the corrected drive current value I H is given by
(Set hot water supply temperature T QS −actual hot water supply temperature T)
Q ) Feedback is applied to the temperature deviation. However, in this case, (T QS -T Q ) is the following equation using the set hot water supply temperature T QS , the target distribution rate K BKS, the current distribution rate K BK , the heat exchanger outlet temperature T K , and the inlet water temperature T C. 9.

【0025】[0025]

【数9】 TQS−TQ =(KBK−KBKS )(TK −TC ) /(1+KBKS )(1+KBKT QS -T Q = (K BK -K BKS ) (T K -T C ) / (1 + K BKS ) (1 + K BK )

【0026】数9から(TQS−TQ )の変化量は熱交換
器20の出湯温度TK 、入水温度TC、目標分配率
BKS 、現在の分配率KBKの値如何により変動しやす
く、このため、フィードバック対象として(TQS
Q )を用いるのは、上記各値によっては不安定な制御
となる。
From equation (9), the amount of change of (T QS -T Q ) varies depending on the values of the outlet temperature T K , incoming water temperature T C , target distribution rate K BKS , and current distribution rate K BK of the heat exchanger 20. Therefore, as a feedback target (T QS
Using T Q ) may result in unstable control depending on the above values.

【0027】そこで、今一つの補正駆動電流値IH とし
て、目標分配率KBKS と現在の分配率KBKとの差に比例
したフィードバック値を用いるようにしてもよい。この
場合の補正駆動電流値IH は、次の数10によって演算す
る。
Therefore, a feedback value proportional to the difference between the target distribution ratio K BKS and the current distribution ratio K BK may be used as another corrected drive current value I H. The corrected drive current value I H in this case is calculated by the following equation (10).

【0028】[0028]

【数10】IH =KP (KBKS −KBK)+KI ・Σ(K
BKS −KBK) IH :補正駆動電流値 KP :比例定数 KI :積分定数 KBKS :目標分配率=(TK −TQS)/(TQS−TC ) KBK :現在の分配率=(TK −TQ )/(TQ
C
## EQU10 ## I H = K P (K BKS −K BK ) + K I I (K
BKS -K BK) I H: correction drive current value K P: proportional constant K I: integral constant K BKS: target distribution ratio = (T K -T QS) / (T QS -T C) K BK: Current distribution Rate = (T K −T Q ) / (T Q
T C )

【0029】数10で演算される補正駆動電流値IH を用
いることで、より安定した制御とすることができる。
By using the corrected drive current value I H calculated by the equation (10), more stable control can be achieved.

【0030】さらに、制御の安定性を増す方法として
は、前記数10において、目標分配率KBKS 中の熱交換器
20の出湯温度TK の進み補償、現在の分配率KBK中の熱
交換器20の出湯温度TK 遅れ補償、及び給湯温度TQ
進み補償をすることができる。即ちこの場合は、前記目
標分配率KBKS 、現在の分配率KBKは、例えば次の式11
で表わすことができる。
Further, as a method for increasing the stability of the control, the heat exchanger in the target distribution K BKS in the equation (10) is used.
It is possible to compensate for the advance of the hot water temperature T K of the heat exchanger 20, the delay of the hot water temperature T K of the heat exchanger 20 during the current distribution ratio K BK , and the advance of the hot water supply temperature T Q. That is, in this case, the target distribution ratio K BKS and the current distribution ratio K BK are calculated by, for example, the following equation (11).
Can be represented by

【0031】[0031]

【数11】 KBKS =(時定数補正TK −TQS)/(TQS−TC ) KBK =(数百ミリ秒前のTK −時定数補正TQ ) /(時定数補正TQ −TC ) TK :熱交換器出湯温度 TQS:設定給湯温度 TC :入水温度K BKS = (Time constant correction T K -T QS ) / (T QS -T C ) K BK = (T K several hundred milliseconds earlier-Time constant correction T Q ) / (Time constant correction T Q- T C ) T K : Outlet temperature of heat exchanger T QS : Set hot water supply temperature T C : Inlet water temperature

【0032】[0032]

【発明の効果】本発明は以上の構成、作用よりなり、請
求項1に記載の給湯制御方法によれば、給湯温度が設定
されると、設定出湯温度TKSに対応する熱量を発生さ
せるようバーナを以後一定の条件で燃焼させ、さらに給
湯開始後は必要な目標分配率KBKSを常時演算し、該
演算された目標分配率KBSKになるようバイパスの混
水調整弁だけを制御するようにしているので、バーナの
燃焼量は途中で変更調節されることなく、よって従来の
ように燃焼と混水量の両方を調節することによる制御の
複雑さ、及び相互干渉による所定設定給湯温度への調節
の難しさを解消でき、設定給湯温度の給湯を容易に正確
に行うことができる。勿論、バーナ燃焼量を途中で変更
調整する手段も必要としないので、それに必要な部材や
制御機構が不要となり、またマイコンポートを減少させ
ることができる等、装置の構成を簡単に且つ安価にする
ことができる。加えて、混水調整弁の制御は、テーブル
から選出された目標分配率対応駆動電流値IBKSに対
して設定給湯温度TQSと実際の給湯温度Tとの差に
応じた補正駆動電流値Iが加えられた全駆動出力電流
値IOUTで行うので、より素早く、誤差、偏差の少な
い正確な設定給湯温度TQSに調整することができる。
また請求項2の特徴によれば、補正駆動電流値Iとし
て、設定給湯温度TQSと実際の給湯温度Tとの差に
応じた値を用いる代わりに、目標分配率KBKSと基準
分配率KBKOとの差に応じた値を用いることで、フィ
ードバック対象として設定給湯温度TQSと実際の給湯
温度Tとの差を用いる場合に生じる制御の不安定さを
減らすことができる。
According to the hot water supply control method according to the first aspect of the present invention, when the hot water supply temperature is set, a heat quantity corresponding to the set tapping temperature T KS is generated. After that, the burner is burned under a certain condition, and after the hot water supply is started, the required target distribution ratio K BKS is always calculated, and only the bypass water mixing regulating valve is controlled so as to reach the calculated target distribution ratio KBSK. Therefore, the combustion amount of the burner is not changed and adjusted in the middle, so that the control is complicated by adjusting both the combustion and the mixed water amount in the conventional manner, and the predetermined hot water supply temperature due to mutual interference is not controlled. The difficulty of adjustment can be eliminated, and hot water supply at the set hot water supply temperature can be easily and accurately performed. Needless to say, there is no need for a means for changing and adjusting the burner combustion amount in the middle, so that members and a control mechanism necessary for the change are unnecessary, and the number of microcomputer ports can be reduced. be able to. In addition, the control of the water mixing regulating valve is performed by correcting the drive current value I BKS corresponding to the target distribution ratio selected from the table with the corrected drive current value corresponding to the difference between the set hot water supply temperature T QS and the actual hot water supply temperature T Q. is performed by I H is the total drive output current I OUT applied more quickly, the error can be adjusted to less accurate set hot water supply temperature T QS of deviation.
According to the second aspect of the present invention, instead of using the value corresponding to the difference between the set hot water supply temperature T QS and the actual hot water supply temperature T Q as the correction drive current value I H , the target distribution ratio K BKS and the reference distribution By using a value corresponding to the difference between the rate K BKO and the difference between the set hot water supply temperature T QS and the actual hot water supply temperature T Q as a feedback target, it is possible to reduce the instability of control that occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法が実施される給湯器の全体構成図
である。
FIG. 1 is an overall configuration diagram of a water heater in which a method of the present invention is performed.

【図2】分配率とそれに1対1対応する混水調整弁の駆
動電流値との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a distribution ratio and a driving current value of a water mixing regulating valve corresponding to the distribution ratio on a one-to-one basis.

【図3】本発明の方法による制御例を示すフロー図であ
る。
FIG. 3 is a flowchart showing a control example according to the method of the present invention.

【符号の説明】[Explanation of symbols]

10 入水路 11 入水温度センサ 20 瞬間熱交換器 21 バーナ 30 出湯路 31 出湯温度センサ 40 バイパス 41 混水調整弁 42 駆動部 50 給湯路 51 給湯温度センサ 60 コントローラ 10 Inlet channel 11 Inlet temperature sensor 20 Instantaneous heat exchanger 21 Burner 30 Outlet channel 31 Outlet temperature sensor 40 Bypass 41 Water mixing regulating valve 42 Drive unit 50 Hot water channel 51 Hot water temperature sensor 60 Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 晶 兵庫県神戸市中央区明石町32番地 株式 会社ノーリツ内 (56)参考文献 特開 平4−76350(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24H 1/10 302 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akira Yoshida 32, Akashi-cho, Chuo-ku, Kobe-shi, Hyogo Noritsu Co., Ltd. (56) References JP-A-4-76350 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F24H 1/10 302

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 入水路からの水を瞬間熱交換器で加熱し
て出湯路に出湯すると共に、前記入水路からのバイパス
を出湯路に接続して水を混水し、所定の設定給湯温度に
調整して給湯を行うようにした給湯制御方法であって、
給湯温度が設定されると、該設定給湯温度TQSと入水
温度Tと前記バイパスにおける基準分配率KBKO
から前記熱交換器の設定出湯温度TKSを演算して、該
設定出湯温度TKSに対応する熱量を発生するよう
記瞬間熱交換器のバーナを以後一定の条件で燃焼させ、
さらに給湯開始後は、瞬間熱交換器からの実際の出湯温
度Tと前記設定給湯温度TQSと入水温度Tとから
設定給湯温度TQSの温水を給湯するために必要な目標
分配率KBKSを常時演算し、予め実験により得てテー
ブルとして記憶させている分配率とそれに1対1対応す
る混水調整弁の駆動電流値との関係から前記目標分配率
BKS に対応する目標分配率対応駆動電流値I BKS
をテーブルから選出すると共に、該目標分配率対応駆動
電流値I BKS に対して設定給湯温度T QS と実際の給
湯温度T との差に応じた補正駆動電流値I を加えて
全駆動出力電流値I OUT とし、該全駆動出力電流値I
OUT を前記混水調整弁に流すようにして、バイパスの
混水調整弁だけを制御するようにしたことを特徴とする
給湯制御方法。
1. A system according to claim 1, wherein the water from the water inlet is heated by an instantaneous heat exchanger to supply the hot water to the hot water outlet, and a bypass from the water inlet is connected to the hot water outlet to mix the water. A hot water supply control method that adjusts the hot water supply.
When the hot water supply temperature is set, the set hot water supply temperature T QS , the incoming water temperature T C, and the reference distribution ratio K BKO in the bypass are used to calculate the hot water supply set temperature T KS of the heat exchanger. The burner of the instantaneous heat exchanger is then burned under certain conditions so as to generate heat corresponding to KS ,
After an additional starting hot water supply, the actual hot water temperature T K and the set hot water supply temperature T QS and the incoming water temperature T C and the set hot water supply temperature T target distribution ratio K necessary for hot water supply hot water QS from the moment the heat exchanger BKS is always calculated and obtained by experiments in advance.
One-to-one correspondence with the distribution ratio stored as
The target distribution ratio from the relationship with the drive current value of the mixed water regulating valve.
Target distribution ratio corresponding driving current value I BKS corresponding to K BKS
Is selected from the table, and the drive corresponding to the target distribution ratio is selected.
The set hot water supply temperature T QS and the actual hot water supply are compared with the current value I BKS .
By adding the correction drive current I H in accordance with the difference between the water temperature T Q
A total driving output current I OUT, 該全driving output current value I
OUT to the mixed water regulating valve so that the bypass
A hot water supply control method, wherein only a water mixing regulating valve is controlled .
【請求項2】 補正駆動電流値I として、設定給湯温
度T QS と実際の給湯温度T との差に応じた値を用い
る代わりに、目標分配率K BKS と基準分配率K BKO
との差に応じた値を用いる請求項1に記載の給湯制御方
法。
As wherein the correction drive current value I H, set hot water supply temperature
Using a value corresponding to the difference between the degree T QS and the actual hot water supply temperature T Q
Instead of the target distribution K BKS and the reference distribution K BKO
The hot water supply control method according to claim 1, wherein a value corresponding to a difference between the hot water supply and the hot water supply is used .
JP04253926A 1992-08-27 1992-08-27 Hot water supply control method Expired - Fee Related JP3134542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04253926A JP3134542B2 (en) 1992-08-27 1992-08-27 Hot water supply control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04253926A JP3134542B2 (en) 1992-08-27 1992-08-27 Hot water supply control method

Publications (2)

Publication Number Publication Date
JPH0674559A JPH0674559A (en) 1994-03-15
JP3134542B2 true JP3134542B2 (en) 2001-02-13

Family

ID=17257950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04253926A Expired - Fee Related JP3134542B2 (en) 1992-08-27 1992-08-27 Hot water supply control method

Country Status (1)

Country Link
JP (1) JP3134542B2 (en)

Also Published As

Publication number Publication date
JPH0674559A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
JP3134542B2 (en) Hot water supply control method
JPH0230425B2 (en)
JP3070293B2 (en) Water heater control method
JP3067418B2 (en) Water heater control method
JP3067498B2 (en) Water heater
JPH0633903B2 (en) Bypass mixing type water heater
JP2513092B2 (en) Bypass mixing control method
JPS61250447A (en) Control of hot-water supplier
JPH081329B2 (en) Water heater controller
JP2600777B2 (en) Hot water temperature control device
JPS60159553A (en) Control device for hot-water supplier
JP2560578B2 (en) Bypass mixing type water heater
JP2808736B2 (en) Water heater control device
JP2590503B2 (en) Hot water mixing control device
JP2669662B2 (en) Water heater control device
JPS63105357A (en) Temperature control of hot water supplier
JP2830257B2 (en) Water control device for water heater
JPH03186150A (en) Hot water supply control device
JP2584196B2 (en) Hot water supply control device
JPH0711361B2 (en) Water heater controller
JPH0443185B2 (en)
JP3061516B2 (en) Gas water heater
JPH0450498B2 (en)
JPH0745930B2 (en) Air-fuel ratio controller for gas combustion equipment
JPH06193966A (en) One-boiler two-circuit type hot water supplying apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees