JP3132990B2 - Mold material for shell mold - Google Patents

Mold material for shell mold

Info

Publication number
JP3132990B2
JP3132990B2 JP07217527A JP21752795A JP3132990B2 JP 3132990 B2 JP3132990 B2 JP 3132990B2 JP 07217527 A JP07217527 A JP 07217527A JP 21752795 A JP21752795 A JP 21752795A JP 3132990 B2 JP3132990 B2 JP 3132990B2
Authority
JP
Japan
Prior art keywords
mold
weight
shell
strength
disintegration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07217527A
Other languages
Japanese (ja)
Other versions
JPH0957391A (en
Inventor
文幸 小川
浩 古沢
勲 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP07217527A priority Critical patent/JP3132990B2/en
Publication of JPH0957391A publication Critical patent/JPH0957391A/en
Application granted granted Critical
Publication of JP3132990B2 publication Critical patent/JP3132990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規なシェルモー
ルド用鋳型材料、さらに詳しくは、シェルモールド鋳造
法に用いられる鋳型(主型や中子)の製造に使用され、
特に低融点の金属を鋳造した際の鋳型の崩壊性に優れる
シェルモールド用鋳型材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel mold material for shell molds, and more particularly, it is used for producing molds (main molds and cores) used in shell mold casting.
In particular, the present invention relates to a mold material for a shell mold which is excellent in disintegration property of a mold when casting a metal having a low melting point.

【0002】[0002]

【従来の技術】従来、アルミニウム合金、マグネシウム
合金、銅合金などの非鉄鋳物や、鋳鋼、鋳鉄などの鉄鋳
物の砂型鋳造においては、耐火性粒子にフェノール系樹
脂を被覆して成る熱硬化性の鋳型材料で製造されたシェ
ル鋳型が、主型や中子として広く用いられている。
2. Description of the Related Art Conventionally, in sand casting of non-ferrous castings such as aluminum alloys, magnesium alloys, and copper alloys, and iron castings such as cast steel and cast iron, thermosetting particles formed by coating refractory particles with a phenolic resin. Shell molds made of mold materials are widely used as main molds and cores.

【0003】しかしながら、従来の鋳型材料で製造され
たシェル鋳型を非鉄鋳物の中子として用いた場合、前記
フェノール系樹脂は耐熱性に優れる結合剤であることか
ら、鋳造後でも中子は高い強度を保持し、鋳物の内部で
崩壊せずに残存することが多い。したがって、鋳造後の
鋳物には、残留中子砂を取り出すために、例えばチッピ
ングマシンなどによる衝撃処理や400〜500℃の温
度での熱処理が施されており、多大の労力やエネルギー
が費やされている。なかでも自動車関連のアルミニウム
中空鋳物は、近年の軽量化指向に伴う薄肉化傾向にある
ため、鋳造後の中子の崩壊性を向上させることがますま
す重要な課題となっている。また、鋳造後の主型の壊れ
にくさを改善し、鋳物を取り出す際の労力の負荷を軽減
することも要求されている。
[0003] However, when a shell mold made of a conventional mold material is used as a core of a non-ferrous casting, since the phenolic resin is a binder having excellent heat resistance, the core has high strength even after casting. , And often remains without collapse inside the casting. Therefore, in order to remove the residual core sand, the casting after the casting is subjected to an impact treatment, for example, by a chipping machine or a heat treatment at a temperature of 400 to 500 ° C., which consumes a great deal of labor and energy. ing. Above all, aluminum hollow castings for automobiles are becoming thinner with the recent trend toward weight reduction, and thus improving the collapse property of the core after casting has become an increasingly important issue. It is also required to improve the difficulty of breaking the main mold after casting and to reduce the burden of labor when removing a casting.

【0004】このようなニーズに対応するために、例え
ば鋳造時に樹脂結合剤の分解を促進させ、鋳型の強度を
弱めて崩壊性を改善するための添加剤、具体的には粉末
状の硝酸カリウムや硝酸ナトリウムなどを用いる方法が
提案されている(特公昭31−7256号公報)。しか
しながら、この種の添加剤を用いた鋳型材料は、十分な
熱量が溶融金属から鋳型に供給される箇所(鋳型の到達
温度が高い箇所)では良好な鋳型の崩壊性を示す反面、
十分な熱量が溶融金属から鋳型に供給されない箇所(鋳
型の到達温度が低い箇所)では鋳型の崩壊性が不十分で
あるという欠点を有している。
[0004] In order to meet such needs, for example, additives for accelerating the decomposition of the resin binder at the time of casting, weakening the strength of the mold and improving the disintegration property, specifically, potassium nitrate powder, A method using sodium nitrate or the like has been proposed (Japanese Patent Publication No. 31-7256). However, a mold material using this type of additive shows good mold disintegration at a place where a sufficient amount of heat is supplied from the molten metal to the mold (a place where the temperature reached by the mold is high).
There is a drawback that the disintegration of the mold is insufficient at locations where a sufficient amount of heat is not supplied from the molten metal to the mold (where the temperature reached by the mold is low).

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
従来のシェルモールド用鋳型材料がもつ欠点を克服し、
鋳型の崩壊性に優れるシェルモールド用鋳型材料、特に
アルミニウム合金などの非鉄鋳物のシェルモールド鋳造
法に用いられる鋳型(主型や中子)の製造に使用され、
十分な熱量が溶融金属から鋳型に供給されない箇所、す
なわち低温域でも良好な鋳型の崩壊性を示すシェルモー
ルド用鋳型材料を提供することを目的としてなされたも
のである。
SUMMARY OF THE INVENTION The present invention overcomes the drawbacks of the conventional shell mold mold material,
It is used for the production of mold materials (main molds and cores) used in shell mold casting methods for shell molds that have excellent mold disintegration properties, especially non-ferrous castings such as aluminum alloys.
It is an object of the present invention to provide a mold material for a shell mold that exhibits a good mold disintegrability even at a location where a sufficient amount of heat is not supplied from the molten metal to the mold, that is, even at a low temperature range.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記の好
ましい性質を有するシェルモールド用鋳型材料を開発す
べく鋭意研究を重ねた結果、耐火性粒子とフェノール系
樹脂と特定の鋳型崩壊性向上剤とを必須成分とする材料
がその目的に適合しうることを見出し、この知見に基づ
いて本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to develop a mold material for a shell mold having the above-mentioned preferable properties. As a result, the refractory particles, the phenolic resin, and the specific It has been found that a material containing an enhancer as an essential component can be suitable for the purpose, and based on this finding, the present invention has been completed.

【0007】すなわち、本発明は、耐火性粒子、フェノ
ール系樹脂及び鋳型崩壊性向上剤を必須成分とするシェ
ルモールド用鋳型材料において、鋳型崩壊性向上剤とし
て、(A)酸素含有量25重量%以上の含酸素炭化水素
系化合物及び(B)アルカリ金属硝酸塩を、それぞれフ
ェノール系樹脂の重量に基づき2〜30重量%及び2〜
50重量%の割合で用いることを特徴とするシェルモー
ルド用鋳型材料を提供するものである。
That is, the present invention relates to a mold material for shell mold comprising refractory particles, a phenolic resin and a mold disintegration enhancer as essential components, wherein (A) an oxygen content of 25% by weight is used as the mold disintegration enhancer. The oxygen-containing hydrocarbon compound and the alkali metal nitrate (B) are each contained in an amount of 2 to 30% by weight and 2 to 30% by weight based on the weight of the phenolic resin.
It is intended to provide a mold material for a shell mold, which is used at a ratio of 50% by weight.

【0008】[0008]

【発明の実施の形態】本発明の鋳型材料において用いら
れる耐火性粒子は、鋳型の基材をなすものであって、鋳
造に耐えうる耐火性と鋳型形成に適した粒径を有する無
機粒子であればよく、特に制限はない。このような耐火
性粒子の例としては、ケイ砂の他にオリビンサンド、ジ
ルコンサンド、クロマイトサンド、アルミナサンドなど
の特殊砂、フェロクロム系スラグ、フェロニッケル系ス
ラグ、転炉スラグなどのスラグ系粒子、ナイガイセラビ
ーズのような多孔質粒子あるいはこれらを鋳造後に回収
再生した再生粒子などが挙げられる。これらは単独で用
いてもよいし、2種以上を組み合わせて用いてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The refractory particles used in the mold material of the present invention, which form the base material of the mold, are inorganic particles having fire resistance enough to withstand casting and a particle size suitable for mold formation. There is no particular limitation. Examples of such refractory particles, other than silica sand, olivine sand, zircon sand, chromite sand, special sand such as alumina sand, ferrochrome-based slag, ferronickel-based slag, slag-based particles such as converter slag, Examples include porous particles such as nigaicera beads or regenerated particles obtained by collecting and regenerating them after casting. These may be used alone or in combination of two or more.

【0009】一方、本発明の鋳型材料において用いられ
るフェノール系樹脂は、前記耐火性粒子を結合保持する
結合剤として機能するものであって、フェノール類とア
ルデヒド類との反応生成物を主体とし、かつ硬化剤の存
在下又は非存在下で加熱硬化する性質を有する樹脂であ
ればよく、特に制限はない。このようなフェノール系樹
脂の例としては、ノボラック型フェノール樹脂、レゾー
ル型フェノール樹脂、含窒素レゾール型フェノール樹
脂、ベンジルエーテル型フェノール樹脂、及びこれらフ
ェノール樹脂と例えばエポキシ樹脂、尿素樹脂、メラミ
ン樹脂、キシレン樹脂、ポリアミド樹脂、エポキシ系化
合物、メラミン系化合物、尿素系化合物などとを混合又
は反応して成る変性フェノール樹脂などが挙げられる。
これらは単独で用いてもよいし、2種以上を組み合わせ
て用いてもよい。なお、ノボラック型フェノール樹脂
は、単独で用いる場合、鋳型材料製造時に例えばヘキサ
メチレンテトラミンのような硬化剤を併用して熱硬化性
を付与する必要がある。
On the other hand, the phenolic resin used in the mold material of the present invention functions as a binder for binding and holding the refractory particles, and mainly comprises a reaction product of a phenol and an aldehyde. The resin is not particularly limited as long as it has a property of being cured by heating in the presence or absence of a curing agent. Examples of such phenolic resins include novolak-type phenolic resins, resol-type phenolic resins, nitrogen-containing resole-type phenolic resins, benzyl ether-type phenolic resins, and these phenolic resins and, for example, epoxy resins, urea resins, melamine resins, xylenes Modified phenolic resins formed by mixing or reacting with a resin, a polyamide resin, an epoxy compound, a melamine compound, a urea compound, and the like.
These may be used alone or in combination of two or more. When the novolak-type phenol resin is used alone, it is necessary to impart thermosetting properties by using a curing agent such as hexamethylenetetramine at the time of producing the mold material.

【0010】このようなフェノール系樹脂の配合量は、
要求される強度、崩壊性及びその他の特性を考慮して選
ばれるが、一般的には、耐火性粒子100重量部に対し
て固形分換算で0.5〜5重量部、好ましくは1.5〜
2.5重量部の範囲で選ばれる。また、このフェノール
系樹脂の使用形態については特に制限はないが、一般的
には適当な形状の固体であり、必要に応じて樹脂液や溶
液として用いられる。また、固液併用しても差し支えな
い。
The amount of such a phenolic resin is as follows:
It is selected in consideration of required strength, disintegration and other properties, but is generally 0.5 to 5 parts by weight, preferably 1.5 to 5 parts by weight in terms of solid content, based on 100 parts by weight of the refractory particles. ~
It is selected in the range of 2.5 parts by weight. The use form of the phenolic resin is not particularly limited, but is generally a solid having an appropriate shape, and is used as a resin liquid or a solution as needed. In addition, solid-liquid may be used in combination.

【0011】本発明の鋳型材料においては、前記フェノ
ール系樹脂は、鋳型材料の品質改善(強度、滑性など)
に有用なアミノ系、エポキシ系、ビニル系のシランカッ
プリング剤や滑剤と組み合わせて用いることが好まし
い。前記シランカップリング剤の代表的な例としては、
γ‐アミノプロピルトリエトキシシラン、N‐β‐(ア
ミノエチル)‐γ‐アミノプロピルトリメトキシシラ
ン、γ‐グリシドキシプロピルトリメトキシシラン、β
‐(3,4‐エポキシシクロヘキシル)‐エチルトリメ
トキシシラン、ビニルトリメトキシシラン、ビニルトリ
ス(β‐メトキシ)シラン、ビニルトリス(β‐メトキ
シエトキシ)シランなどが挙げられる。また、前記滑剤
の代表的な例としては、エチレンビスステアリン酸アマ
イド、メチレンビスステアリン酸アマイド、オキシステ
アリン酸アマイド、メチロールステアリン酸アマイドな
どが挙げられる。
In the mold material of the present invention, the phenolic resin improves the quality of the mold material (strength, lubricity, etc.).
It is preferable to use in combination with amino-, epoxy-, and vinyl-based silane coupling agents and lubricants that are useful for the above. As a typical example of the silane coupling agent,
γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, β
-(3,4-epoxycyclohexyl) -ethyltrimethoxysilane, vinyltrimethoxysilane, vinyltris (β-methoxy) silane, vinyltris (β-methoxyethoxy) silane and the like. Representative examples of the lubricant include ethylene bisstearic acid amide, methylene bisstearic acid amide, oxystearic acid amide, and methylol stearic acid amide.

【0012】本発明の鋳型材料において用いられる鋳型
崩壊性向上剤は、耐火性粒子を結合している硬化フェノ
ール系樹脂を熱劣化させて鋳型の強度を弱める機能を有
するものであり、本発明においては、このような機能を
有する鋳型崩壊性向上剤として、(A)酸素含有量が2
5重量%以上の含酸素炭化水素系化合物と(B)アルカ
リ金属硝酸塩との組合せが用いられる。
The mold disintegration improver used in the mold material of the present invention has a function of thermally deteriorating the cured phenolic resin to which the refractory particles are bound to reduce the strength of the mold. (A) having an oxygen content of 2
A combination of 5% by weight or more of an oxygen-containing hydrocarbon compound and (B) an alkali metal nitrate is used.

【0013】前記(A)成分の含酸素炭化水素系化合物
の酸素含有量が25重量%未満では鋳造時に鋳型の強度
を弱める機能が低温域において十分に発揮されず、本発
明の目的が達せられない。酸素含有量が25重量%以上
の含酸素炭化水素系化合物としては、例えば低級カルボ
ン酸類や多価カルボン酸類や対応する有機スルホン酸類
又はそれらのエステル類若しくは無機酸エステル類、低
級アルコール類、多価アルコール類、低級エーテル類、
パーオキシド類などが挙げられるが、これらの中で、取
扱い時の安全性の面から、カルボン酸類及び多価アルコ
ール類が好ましい。
If the oxygen content of the oxygen-containing hydrocarbon compound of the component (A) is less than 25% by weight, the function of reducing the strength of the mold during casting is not sufficiently exhibited in a low temperature range, and the object of the present invention is achieved. Absent. Examples of the oxygen-containing hydrocarbon compound having an oxygen content of 25% by weight or more include lower carboxylic acids, polyvalent carboxylic acids, corresponding organic sulfonic acids, their esters or inorganic acid esters, lower alcohols, and polyhydric alcohols. Alcohols, lower ethers,
Peroxides and the like can be mentioned. Among them, carboxylic acids and polyhydric alcohols are preferable from the viewpoint of safety during handling.

【0014】前記低級カルボン酸類、多価カルボン酸類
としては特に制限はないが、例えばマレイン酸、フマル
酸、クエン酸、リンゴ酸、コハク酸、安息香酸、アジピ
ン酸などに代表される固体カルボン酸類が好ましい。ま
た、有機スルホン酸類としては、例えばエタンスルホン
酸、プロパンスルホン酸、ブタンスルホン酸のような低
級アルカンスルホン酸を挙げることができるし、無機酸
エステル類としては、低級アルキル基をもつ硫酸エステ
ルやリン酸エステルを挙げることができる。これらの中
で、鋳型強度及び臭気の点からは、化学便覧(改訂3
版)基礎編IIに記載されるpKa(水溶液中での有機
化合物の酸解離定数の逆数の対数値)が4.0、とりわ
け4.2以上のコハク酸、安息香酸、アジピン酸などの
固体カルボン酸類が好適である。また、前記多価アルコ
ール類としては、例えばプロピレングリコール、グリセ
リン、ネオペンチルグリコール、トリメチロールプロパ
ン、ペンタエリトリトール、ポリビニルアルコールなど
が挙げられるが、これらに限定されるものではない。こ
れらの中で、鋳型材料の融着点の面からは、ネオペンチ
ルグリコール、トリメチロールプロパン、ペンタエリト
リトール、ポリビニルアルコールなどの固体多価アルコ
ール類が好適である。これらの含酸素炭化水素系化合物
は単独で用いてもよいし、2種以上を組み合わせて用い
てもよい。
The lower carboxylic acids and polycarboxylic acids are not particularly restricted but include, for example, solid carboxylic acids such as maleic acid, fumaric acid, citric acid, malic acid, succinic acid, benzoic acid and adipic acid. preferable. Examples of the organic sulfonic acids include lower alkanesulfonic acids such as ethanesulfonic acid, propanesulfonic acid, and butanesulfonic acid, and examples of the inorganic acid esters include sulfuric acid esters and phosphorus acids having a lower alkyl group. Acid esters can be mentioned. Among them, Chemical Handbook (revised 3)
Edition) Solid carboxyl groups such as succinic acid, benzoic acid and adipic acid having a pKa (logarithm of the reciprocal of the acid dissociation constant of an organic compound in an aqueous solution) of 4.0, especially 4.2 or more, described in Basic Edition II. Acids are preferred. Examples of the polyhydric alcohols include, but are not limited to, propylene glycol, glycerin, neopentyl glycol, trimethylolpropane, pentaerythritol, and polyvinyl alcohol. Among these, solid polyhydric alcohols such as neopentyl glycol, trimethylolpropane, pentaerythritol, and polyvinyl alcohol are preferred from the viewpoint of the fusion point of the template material. These oxygen-containing hydrocarbon compounds may be used alone or in combination of two or more.

【0015】一方、前記(B)成分のアルカリ金属硝酸
塩としては、例えば硝酸カリウム、硝酸ナトリウム、硝
酸リチウム、硝酸セシウムなどが挙げられるが、これら
の中で、商業的に入手しやすく、経済性の面から、硝酸
カリウム及び硝酸ナトリウムが好適である。これらのア
ルカリ金属硝酸塩は単独で用いてもよいし、2種以上を
組み合わせて用いてもよく、また、取扱い時の安全性の
点から、適当な濃度の水溶液、例えば10〜50重量%
濃度の水溶液として用いるのが有利である。
On the other hand, examples of the alkali metal nitrate as the component (B) include potassium nitrate, sodium nitrate, lithium nitrate, and cesium nitrate. Of these, commercially available and economical ones are preferred. Thus, potassium nitrate and sodium nitrate are preferred. These alkali metal nitrates may be used alone or in combination of two or more. In view of safety during handling, an aqueous solution having an appropriate concentration, for example, 10 to 50% by weight.
It is advantageous to use it as a concentrated aqueous solution.

【0016】本発明の鋳型材料における鋳型崩壊性向上
剤の配合量については、フェノール系樹脂(固形分換
算)の重量に基づき、前記(A)成分を2〜30重量
%、(B)成分を2〜50重量%の割合で配合する。
(A)成分の配合量が2重量%未満では鋳型の低温域で
の崩壊性改善効果が十分に発揮されないし、30重量%
を超えると鋳型強度が著しく低下する。また、(B)成
分の配合量が2重量%未満では鋳型の崩壊性改善効果が
十分に発揮されないし、50重量%を超えると添加量が
増大する割には崩壊性改善効果の向上がみられず経済的
に不利である。鋳型の崩壊性改善効果及び鋳型強度のバ
ランスの面から、より好ましい鋳型崩壊性向上剤の配合
量は、(A)成分2〜20重量%及び(B)成分2〜2
0重量%の範囲である。
The amount of the mold disintegration improver in the mold material of the present invention is 2 to 30% by weight based on the weight of the phenolic resin (in terms of solid content), and 2% to 30% by weight of the component (B). It is blended at a ratio of 2 to 50% by weight.
When the amount of the component (A) is less than 2% by weight, the effect of improving the disintegration of the mold in a low temperature range is not sufficiently exhibited, and the amount of the component is 30% by weight.
If it exceeds 300, the mold strength will be significantly reduced. If the amount of the component (B) is less than 2% by weight, the effect of improving the disintegration of the mold is not sufficiently exhibited, and if it exceeds 50% by weight, the effect of improving the disintegration is improved although the added amount increases. It is economically disadvantageous. From the viewpoint of the balance between the mold disintegration improving effect and the mold strength, the more preferable compounding amount of the mold disintegrable improver is 2 to 20% by weight of the component (A) and 2 to 2 of the component (B).
The range is 0% by weight.

【0017】本発明の鋳型材料には、上記必須成分以外
に必要に応じて各種の添加剤、例えばステアリン酸カル
シウムなどの固結防止剤、離型剤、消臭剤、ベンガラ、
砂鉄などを配合しても差し支えない。
In the mold material of the present invention, in addition to the above-mentioned essential components, various additives may be used as necessary, for example, an anti-caking agent such as calcium stearate, a releasing agent, a deodorant, a red iron oxide,
It can be mixed with iron sand.

【0018】本発明のシェルモールド用鋳型材料は、当
該技術分野で従来採用されてきたドライホットコート
法、セミホットコート法、コールドコート法、粉末溶剤
法などのいずれの方法によっても製造することができる
が、生産性、品質などの観点からドライホットコート法
を用いるのが好ましい。
The mold material for a shell mold of the present invention can be produced by any of the methods conventionally used in the art, such as a dry hot coating method, a semi-hot coating method, a cold coating method, and a powdered solvent method. However, it is preferable to use a dry hot coating method from the viewpoint of productivity, quality and the like.

【0019】[0019]

【発明の効果】本発明のシェルモールド用鋳型材料によ
れば、従来の鋳型材料よりも低温域(300〜350
℃)での鋳型の崩壊性を向上させることができる。した
がって、鋳物の生産効率の向上、作業環境(騒音や高
熱)の改善及びそれに伴う省エネルギーに寄与すること
ができる。
According to the mold material for shell molding of the present invention, the temperature is lower than that of the conventional mold material (300 to 350).
C) can be improved. Therefore, it is possible to contribute to the improvement of the production efficiency of the casting, the improvement of the working environment (noise and high heat), and the accompanying energy saving.

【0020】本発明のシェルモールド用鋳型材料は、特
にアルミニウム合金などの非鉄鋳物のシェルモールド鋳
造法に用いられる鋳型(主型や中子)の製造に好適に使
用される。
The mold material for a shell mold of the present invention is suitably used for producing a mold (main mold or core) used in a shell mold casting method for a non-ferrous casting such as an aluminum alloy.

【0021】[0021]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。なお、得られたシェルモールド用鋳
型材料については、下記項目の試験を実施した。 (1)曲げ強度 JIS K−6910に準拠して測定した。 (2)強度劣化率(%) 強度劣化率(%)は、鋳型の崩壊性良否を判断するため
の指標であって、具体的には、まずJIS K−691
0に準拠して曲げ強度測定用試験片(厚み10mm×幅
10mm×長さ60mm)を造型し、その曲げ強度(常
態強度A)を測定する。次に、この試験片をアルミニウ
ム箔(縦100mm×横150mm)で完全に包み込ん
で鋳型崩壊性供試体を作製し、次いでこの供試体を所定
温度に保持された熱風循環式電気炉中で所定時間放置し
たのち取り出し、常温まで放置冷却後、アルミニウム箔
を取り除いて得た試験片の曲げ強度(残留強度B)を測
定し、強度劣化率を次式により算出する。 強度劣化率(%)=[(常態強度A−残留強度B)/常
態強度A]×100 強度劣化率(%)の数値が大きいほど、鋳型の崩壊性が
良好であることを意味する。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The following tests were performed on the obtained shell mold material. (1) Flexural strength Measured according to JIS K-6910. (2) Strength Degradation Rate (%) The strength degradation rate (%) is an index for judging whether or not the disintegrability of the mold is good. Specifically, first, JIS K-691
A test piece for bending strength measurement (thickness: 10 mm × width: 10 mm × length: 60 mm) is formed in accordance with 0 and its bending strength (normal strength A) is measured. Next, the test piece was completely wrapped with an aluminum foil (100 mm long × 150 mm wide) to prepare a mold collapsible specimen, and then the specimen was placed in a hot air circulating electric furnace maintained at a predetermined temperature for a predetermined time. After leaving it, it is taken out, left to cool to room temperature, and then the aluminum foil is removed. The bending strength (residual strength B) of the test piece is measured, and the strength deterioration rate is calculated by the following equation. Strength degradation rate (%) = [(normal strength A−residual strength B) / normal strength A] × 100 The larger the value of the strength degradation rate (%), the better the disintegration of the mold.

【0022】実施例1 遠州鉄工(株)製ワールミキサー内に約150℃に予熱
したケイ砂5kg、シランカップリング剤及び滑剤含有
ノボラック型フェノール樹脂85g及び鋳型崩壊性向上
剤の(A)成分としてアジピン酸8.5gを入れてから
60秒間混練したのち、(B)成分として硝酸カリウム
8.5gを水34gに溶かした水溶液42.5g及びヘ
キサメチレンテトラミン13gを水50gに溶かした水
溶液63gを添加した。ブロワーで送風しながら砂の塊
が崩れるまで混練したのち、ステアリン酸カルシウム5
gを加えてさらに15秒間混合し、ミキサーより排出し
てシェルモールド用鋳型材料(以下、単に鋳型材料とい
う)を得た。この鋳型材料について、その曲げ強度及び
強度劣化率を測定した。結果を表1に示す。
Example 1 5 kg of silica sand preheated to about 150 ° C. in a whirl mixer manufactured by Enshu Tekko Co., Ltd., 85 g of a novolak type phenol resin containing a silane coupling agent and a lubricant, and as a component (A) of a mold disintegration improver After adding 8.5 g of adipic acid and kneading for 60 seconds, 42.5 g of an aqueous solution of 8.5 g of potassium nitrate dissolved in 34 g of water and 63 g of an aqueous solution of 13 g of hexamethylenetetramine dissolved in 50 g of water were added as the component (B). . Knead while blowing with a blower until the lump of sand collapses, then calcium stearate 5
g was added and mixed for another 15 seconds, and the mixture was discharged from the mixer to obtain a mold material for shell molding (hereinafter, simply referred to as a mold material). The bending strength and strength deterioration rate of this mold material were measured. Table 1 shows the results.

【0023】実施例2〜8 実施例1において、鋳型崩壊性向上剤の(A)及び
(B)成分を表1〜3に示す種類及び配合量に変更した
以外は実施例1と同様にして7種類の鋳型材料を得た。
なお、実施例6においては(A)成分のペンタエリトリ
トール8.5gを34gの熱水(温度80℃以上)に溶
かした水溶液42.5gを使用した。これらの鋳型材料
について、その曲げ強度及び強度劣化率を測定した。結
果を表1〜3に示す。
Examples 2 to 8 The same procedures as in Example 1 were carried out except that the components (A) and (B) of the mold disintegration improver were changed to the types and amounts shown in Tables 1 to 3. Seven types of mold materials were obtained.
In Example 6, 42.5 g of an aqueous solution in which 8.5 g of pentaerythritol (A) was dissolved in 34 g of hot water (temperature of 80 ° C. or higher) was used. With respect to these mold materials, the bending strength and the strength deterioration rate were measured. The results are shown in Tables 1 to 3.

【0024】実施例9 遠州鉄工(株)製ワールミキサー内に約140℃に予熱
したケイ砂5kgとシランカップリング剤及び滑剤含有
アンモニアレゾール型フェノール樹脂85gとを入れて
から40秒間混練したのち、鋳型崩壊性向上剤の(A)
成分としてペンタエリトリトール6.8gを34gの熱
水(温度80℃以上)に溶かした水溶液40.8gと
(B)成分として硝酸ナトリウム8.5gを水37.5
gに溶かした水溶液46gを添加した。ブロワーで送風
しながら砂の塊が崩れるまで混練したのち、ステアリン
酸カルシウム5gを加えてさらに15秒間混合し、ミキ
サーより排出して鋳型材料を得た。この鋳型材料につい
て、その曲げ強度及び強度劣化率を測定した。結果を表
3に示す。
Example 9 5 kg of silica sand preheated to about 140 ° C. and 85 g of a silane coupling agent and an ammonia resol type phenol resin containing a lubricant were put into a whirl mixer manufactured by Enshu Tekko Co., Ltd., and kneaded for 40 seconds. (A) of mold disintegration improver
40.8 g of an aqueous solution obtained by dissolving 6.8 g of pentaerythritol as a component in 34 g of hot water (temperature of 80 ° C. or higher) and 8.5 g of sodium nitrate as a component (B) in 37.5 water
46 g of an aqueous solution dissolved in g. After the mixture was kneaded with a blower until the lump of sand collapsed, 5 g of calcium stearate was added and mixed for 15 seconds, and the mixture was discharged from the mixer to obtain a mold material. The bending strength and strength deterioration rate of this mold material were measured. Table 3 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】比較例1〜4 実施例1において、鋳型崩壊性向上剤の(A)及び
(B)成分を表4及び表5に示す配合量に変更した以外
は実施例1と同様にして3種類の鋳型材料を得た。これ
らの鋳型材料について、その曲げ強度及び強度劣化率を
測定した。結果を表4及び表5に示す。
Comparative Examples 1 to 4 In the same manner as in Example 1, except that the components (A) and (B) of the mold disintegration improver were changed to the compounding amounts shown in Tables 4 and 5, Different mold materials were obtained. With respect to these mold materials, the bending strength and the strength deterioration rate were measured. The results are shown in Tables 4 and 5.

【0029】比較例5 実施例9において、鋳型崩壊性向上剤の(A)成分を使
用しなかったこと以外は実施例9と同様にして鋳型材料
を得た。この鋳型材料について、その曲げ強度及び強度
劣化率を測定した。結果を表5に示す。
Comparative Example 5 A mold material was obtained in the same manner as in Example 9 except that the component (A) of the mold disintegration improving agent was not used. The bending strength and strength deterioration rate of this mold material were measured. Table 5 shows the results.

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【表5】 [Table 5]

【0032】表1〜5から明らかなように、本発明の鋳
型材料は(A)成分を用いない従来材料よりも300〜
350℃の低温域での鋳型の崩壊性が向上し、しかも実
用上支障のない鋳型強度を有することが確認された(実
施例1〜9)。しかし、(A)成分として酸素含有量が
25重量%未満のステアリン酸を用いた場合には低温域
での鋳型の崩壊性向上効果は不十分であることが確認さ
れた(比較例4)。
As is clear from Tables 1 to 5, the mold material of the present invention is 300 to 300 times more than the conventional material without the component (A).
It was confirmed that the disintegration of the mold in a low-temperature range of 350 ° C. was improved, and that the mold had a practically acceptable mold strength (Examples 1 to 9). However, when stearic acid having an oxygen content of less than 25% by weight was used as the component (A), it was confirmed that the effect of improving the disintegration of the template in a low temperature range was insufficient (Comparative Example 4).

フロントページの続き (72)発明者 甲斐 勲 愛知県丹羽郡扶桑町大字南山名字新津26 番地の4 旭有機材工業株式会社 愛知 工場内 (56)参考文献 特開 平7−124685(JP,A) 特開 昭60−108138(JP,A) 特公 昭49−31178(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B22C 1/00 - 1/26 Continued on the front page (72) Inventor Isao Kai 26-fourth Niitsu, Minamiyama, Fuso-cho, Fuwa-cho, Niwa-gun, Aichi Prefecture Asahi Organic Materials Industry Co., Ltd. Inside the Aichi factory (56) References JP-A-7-124685 JP-A-60-108138 (JP, A) JP-B-49-31178 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) B22C 1/00-1/26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 耐火性粒子、フェノール系樹脂及び鋳型
崩壊性向上剤を必須成分とするシェルモールド用鋳型材
料において、鋳型崩壊性向上剤として、(A)酸素含有
量25重量%以上の含酸素炭化水素系化合物及び(B)
アルカリ金属硝酸塩を、それぞれフェノール系樹脂の重
量に基づき2〜30重量%及び2〜50重量%の割合で
用いることを特徴とするシェルモールド用鋳型材料。
1. A mold material for shell mold comprising refractory particles, a phenolic resin and a mold disintegration enhancer as essential components, wherein (A) an oxygen-containing material having an oxygen content of 25% by weight or more is used as the mold disintegration enhancer. Hydrocarbon compounds and (B)
A mold material for shell molds, wherein alkali metal nitrates are used in proportions of 2 to 30% by weight and 2 to 50% by weight, respectively, based on the weight of the phenolic resin.
【請求項2】 (A)成分の含酸素炭化水素系化合物が
カルボン酸類及び多価アルコール類の中から選ばれた少
なくとも1種である請求項1記載のシェルモールド用鋳
型材料。
2. The mold material for a shell mold according to claim 1, wherein the oxygen-containing hydrocarbon compound as the component (A) is at least one selected from carboxylic acids and polyhydric alcohols.
【請求項3】 カルボン酸類及び多価アルコール類が、
それぞれ固体状のものである請求項2記載のシェルモー
ルド用鋳型材料。
3. A carboxylic acid and a polyhydric alcohol,
3. The mold material for a shell mold according to claim 2, which is a solid material.
JP07217527A 1995-08-25 1995-08-25 Mold material for shell mold Expired - Fee Related JP3132990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07217527A JP3132990B2 (en) 1995-08-25 1995-08-25 Mold material for shell mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07217527A JP3132990B2 (en) 1995-08-25 1995-08-25 Mold material for shell mold

Publications (2)

Publication Number Publication Date
JPH0957391A JPH0957391A (en) 1997-03-04
JP3132990B2 true JP3132990B2 (en) 2001-02-05

Family

ID=16705649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07217527A Expired - Fee Related JP3132990B2 (en) 1995-08-25 1995-08-25 Mold material for shell mold

Country Status (1)

Country Link
JP (1) JP3132990B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6054774B2 (en) * 2013-02-26 2016-12-27 旭有機材株式会社 Resin-coated sand for high-temperature easily disintegratable shell mold, and mold and casting produced using the same

Also Published As

Publication number Publication date
JPH0957391A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
JP4119515B2 (en) Resin coated sand for mold
JP3132990B2 (en) Mold material for shell mold
JP3831586B2 (en) Resin coated sand for shell mold
JP3933794B2 (en) Binder composition for carbon dioxide gas curing
JP3831668B2 (en) Resin binder composition for mold
JPH0346213B2 (en)
JP2003170244A (en) Phenol resin composition for shell molding and resin coated sand for shell molding mold
JPS5881539A (en) Resin coated sand and its production
JP4046860B2 (en) Binder composition for mold
JP3453485B2 (en) Method for treating casting sand and method for producing mold
JP3472701B2 (en) Resin-coated sand for shell mold
JP4393250B2 (en) Resin composition for shell mold and resin coated sand for shell mold coated with the resin composition
JP3881208B2 (en) Resin composition for mold and resin-coated sand for mold using the same
JP2954395B2 (en) Resin composition for producing curable mold and method for producing mold
JP2954397B2 (en) Resin composition for producing curable mold and method for producing mold
JP3131641B2 (en) Resin coated sand for shell mold
JP3453461B2 (en) Mold molding method and mold composition
JP2898799B2 (en) Method for treating casting sand and method for producing sand mold for casting
JP2002263787A (en) Method of manufacturing resin coated sand for shell mold
JP3145548B2 (en) Mold material for shell mold
JP3092984B2 (en) Mold resin composition and method for producing mold
JPH07106420B2 (en) Mold material
JP2001219242A (en) Binder composition for molding sand and casting mold composition
JP2023152693A (en) Method for manufacturing highly collapsible mold
JP3459849B2 (en) Binder composition for mold production and mold molding method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees